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Abstract

I propose a new estimation method for finite sequential games that is effi cient,

computationally attractive, and applicable to a fairly general class of finite sequential

games that is beyond the scope of existing studies. The major challenge is computa-

tion of high-dimensional truncated integration whose domain is complicated by strate-

gic interaction. This complication resolves when unobserved off-the-equilibrium-path

strategies are controlled for. Separately evaluating the likelihood contribution of each

subgame-perfect equilibrium that generates the observed outcome allows the use of the

GHK simulator, a widely used importance-sampling probit simulator. Monte Carlo

experiments demonstrate the performance and robustness of the proposed method.
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1 INTRODUCTION

In this paper, I study the structural estimation of finite sequential games and propose a new

estimation method that is effi cient, computationally attractive, and applicable to a fairly

general class of finite sequential games that is beyond the scope of existing studies. Existing

empirical studies that consider sequential games (at least as an addition to simultaneous

games) range over the entry of firms (Bresnahan and Reiss, 1991; Berry, 1992; Mazzeo, 2002;

Maruyama, 2011), technology adoption (Schmidt-Dengler, 2006), the labor participation of

couples (Kooreman, 1994; Hiedeman, 1998), the retirement behavior of elderly couples (Jia,

2005), the location choice of siblings (Konrad et al., 2002; Maruyama and Johar, 2013),

political science and international relations (Signorino and Tarar, 2006; Bas et al., 2008),

tax competition (Kempf and Rota-Graziosi, 2010), and the validity of subgame perfection

in experimental economics (Andreoni and Blanchard, 2006). All of the existing literature

on sequential games has so far focused on simple cases where: the number of players is very

small (two in most cases); the game structure is very simple (e.g. a binary choice symmetric

game); or emphasis is not on the structural estimation of strategic effect.1

The class of games I study in this paper is finite sequential games, i.e., finite-horizon

pure-strategy discrete-choice sequential games with perfect information, in which each player

makes a decision in publicly known exogenous decision order. The econometrician knows

the decision order and uses data on players and their decisions to estimate a parametric

1Exceptions are Maruyama (2011) and Maruyama and Johar (2013), which are based on the approach
outlined in this paper.
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model of payoffs and random components. The random components serve as structural

errors that are observed by players, but not by the econometrician. Conceptually, solving

such sequential games is straightforward by backward induction. When the random errors

follow continuous distribution, such as multivariate normal distribution, the game becomes

even simpler to solve, because ties occur with probability measure zero and there always

exists a unique subgame-perfect equilibrium. Once the relationship from realized values

of the random errors to a unique equilibrium outcome is established, the remaining task

is simply to seek parameter values that minimize a certain distance metric between the

predicted and observed game outcomes. Computationally, however, except for extremely

simple games, estimating sequential games is challenging. Even for a fairly simple game

in which four players sequentially make binary decisions, the standard maximum likelihood

method is not feasible because the likelihood function does not have an analytical solution

due to high-dimensional integration. Maximum likelihood based on simulation techniques

is an alternative, but its computation is a daunting task; the game needs to be solved for

each observation of game plays for each simulation draw for each set of candidate parameter

values.

The proposed method in this paper relies on two ideas. First, I propose the use of the

Geweke-Hajivassiliou-Keane (GHK) simulator, the most popular solution for approximating

high-dimensional truncated integrals in standard probit models. This importance-sampling

simulator recursively truncates the multivariate normal probability density function, by de-

composing the multivariate normal distribution into a set of univariate normal distribution
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using Cholesky triangularization.

Sequential strategic interaction, however, complicates high-dimensional truncated inte-

gration in the probit framework, causing interdependence of truncation thresholds, which

undermines the ground of the GHK’s recursive conditioning approach. As the second build-

ing block of the proposed method, I propose the use of the GHK simulator not for the

observed equilibrium outcome per se, but separately for each of all the subgame-perfect

strategy profiles that rationalize the observed equilibrium outcome. In the sequential game

framework, the observed equilibrium outcome arises according to the underlying subgame-

perfect equilibrium, but the econometrician does not observe the underlying equilibrium,

because an equilibrium strategy consists of a complete contingent plan, which includes off-

the-equilibrium-path strategies as unobserved counterfactuals. Even if a unique subgame-

perfect equilibrium is guaranteed, from the econometrician’s viewpoint, there may exist

different realizations of unobservables that lead to different subgame-perfect equilibria that

generate an observationally identical game outcome.

The use of subgame perfection allows us to uniquely determine the corresponding subgame-

perfect equilibrium for each realization of random components. I show that the separate

evaluation of likelihood contribution for each subgame-perfect strategy profile allows us to

control for the unobserved off-the-equilibrium-path strategies so that the recursive condition-

ing of the GHK works by making the domain of Monte Carlo integration (hyper-)rectangular.

The econometrician then obtains the probability of the observed outcome by summing the

probabilities of each equilibrium that rationalizes the observed outcome, and the use of
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maximum likelihood follows.

Section 2 positions the proposed method in the empirical game literature and discusses

the potential usefulness of the method. After formally presenting the setup in Section 3,

I explain in Section 4 how the GHK simulator can aid high-dimensional integration under

subgame perfection. In Section 5, to demonstrate the performance and robustness of the pro-

posed estimation method, I conduct Monte Carlo experiments. Section 6 discusses potential

extension and computation issues.

2 RELATIONTOTHE LITERATUREANDAPPLICA-

BILITY

This paper builds on a line of research on the estimation of non-cooperative discrete games,

initiated by Bjorn and Vuong (1984) and Bresnahan and Reiss (1991). Recent development

in this literature has mostly centered around two issues: the identification problem due to

multiple equilibria2 and the computation problem. This paper contributes to the latter by

providing a direction different from recent developments. There is a very active literature

on the estimation of dynamic discrete games. Recent work by Pesendorfer and Schmidt-

Dengler (2003), Pakes et al. (2007), Aguirregabiria and Mira (2007), and Bajari et al.

(2007) is based on a computationally convenient two-step approach, developed by Hotz and

Miller (1993), which exploits the mapping in discrete-choice problems between conditional

2For example, see Chernozhukov et al. (2007), Ciliberto and Tamer (2009), and Pakes et al. (2011).
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choice probabilities and choice-specific value functions. The computational advantage of this

type of method comes from the fact that it only uses necessary conditions of equilibrium

and does not explicitly compute equilibrium. Two general drawbacks to these estimators

are the information loss that may lead to substantial finite sample bias and the diffi culty of

conducting counterfactual simulations. The approach proposed in this paper, although its

computational advantage depends on each application, does not have these drawbacks as it

is based on the explicit calculation of equilibrium.

The recent work by Jia (2008) on the location choice of discount chains has some simi-

larities to this paper in that she studies a discrete simultaneous complete-information game

with a large choice set. Her innovative approach to the dimensionality problem relies on

the lattice theory. For her approach to work, however, the model has to satisfy several

strong restrictions.3 Similarly, the literature on incomplete-information static games com-

putes equilibrium by using fixed point theorem (e.g. Seim, 2007). The fixed point algorithm

works well as long as the underlying assumptions are satisfied. My approach, on the other

hand, relies on the backward induction algorithm to find equilibrium, a conceptually much

simpler approach, which works in a fairly general class of finite sequential games.

Whether sequentiality is a reasonable assumption to make depends on each application.

In entry games, for example, there may not be an explicit sequence in the first place. It may

be natural that the recent empirical game literature has centered around the identification

issue under the possibility of multiple equilibria. The sequential game assumption allows

3In Jia’s setup, externality across markets must be positive and the number of players cannot exceed two.
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this paper to circumvent the issue of multiple equilibria but the validity of the assumption

needs to be warranted in each application.

More importantly, however, the sequential game framework is not merely a technical

assumption to avoid multiple equilibria but a tool to investigate sequential strategic inter-

action, such as the first-mover (dis-)advantage and preemptive behavior to deter a rival’s

action. Sequential strategic interaction is observed in a wide range of real world phenomena:

heavily regulated industries, organizational decision making, labor disputes, judicial cases,

decisions among siblings, drafts in sports leagues, parlor and TV show games, and so on.

Innumerable theoretical studies on sequential games exist, but there has been little empirical

work devoted to quantifying the relevance and implications of sequential interaction.

It is worthwhile to point out that the proposed method does not fully resolve the high

dimensionality problem. The GHK significantly facilitates high-dimensional integration, but

as the game size increases, the number of possible strategy profiles increases exponentially.

Although there are ways to further improve computational effi ciency, as discussed in the last

section, computational practicality remains a challenge when a game is very large.4

The benefit of the proposed method will be fully exploited when an application focuses

on sequential interaction in a middle-sized game, which is not overly large but if larger than

the two-player binary-choice game. On one hand, the two-player Stackelberg game, which

has been widely studied in the theoretical literature, has limited use in empirical research.

On the other hand, an application with a game played by a large number of players may

4The maximum size of the game a researcher can practically estimate depends on various factors, such
as imposed game structures, the sample size, and the availability of high-performance computing.
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entail less value in inference on sequential interaction; a simultaneous game framework may

be more appropriate for such a game.

The paper by Maruyama and Johar (2013) offers an example of the intended use of

the proposed method. The paper concerns the location choice of adult siblings. In our

setup, adult siblings make location decisions in their birth order– the order they finish

their schooling– while the well-being of their elderly parents is their shared concern. This

setting creates a public good problem and sequential strategic interaction. While statistical

inferences are based on a quite large data set, the game is not large: we consider families

with up to four siblings and the decision is binary– whether to live far away from the parent

or not. The model, instead, features very rich heterogeneity. The error term has a complex

covariance structure in which correlation among siblings depends on their characteristics,

such as age and gender differences. We do not impose a priori assumption on strategic

complementarity, allowing families to play different types of games. The proposed algorithm

performs very well, leading us to find economically insignificant sequential interaction but a

significant public good problem.

In the rest of the paper I repeatedly use entry game examples. Readers should note that

this is primarily for illustration purposes. I employ the entry game examples because of

their simple form as a discrete game that is a well-understood classic in the empirical game

literature (Bresnahan and Reiss, 1991; Berry, 1992). The applicability and fruitfulness of

the finite sequential game framework depends on each application.
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3 MODEL

3.1 The Sequential Game

The model is a finite sequential game with perfect information. There are i = 1, ..., N players,

each makes a decision in publicly known exogenous order. The game can be set up so that

players take multiple turns alternately. Each player chooses an "action" ai from a finite set

of actions Ai, e.g. ("left", "right") and ("enter", "not enter").5 Define A ≡ ×iAi and let

a ≡ (a1, ..., aN) denote a generic element of A. Player i’s payoff, such as utility or profit,

from action ai depends on a−i, the vector of actions taken by the other players. The payoff

function of player i, πi : A→ R, is

πi (a, x, εi; θ1) = πi (a, x; θ1) + εaii , (1)

where θ1 is a vector of parameters and vector x contains exogenous characteristics that

describe the players and the environment in which the game is played. The first term,

πi (a, x; θ1), is an assumed parametric function of mean payoffs. The second term, εaii ∈ R, is

a random preference shock player i incurs when ai is chosen. Define a vector, εi ≡ {εaii }ai∈Ai

and ε ≡ (ε1, ..., εN). ε follows continuous parametric density function, g (ε; θ2), where θ2

is a vector of parameters.6,7 Both x and ε are common knowledge to the players, but the

5Allowing the choice set to vary across decision nodes is a straightforward extention.
6g (ε; θ2) may depend on x as well.
7I assume the additive separability of the random shock term following much of the existing literature,

such as Bresnahan and Reiss (1991). In the following discussion, this assumption is not essential as long as
the identification of parameter estimates is established.
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econometrician observes only x.

All the game theoretical concepts used in this paper are textbook standard, except for

"action profile", a, defined above, which records decisions made on the equilibrium path (but

not off-the-equilibrium-path decisions) and corresponds to what the econometrician observes

as a game outcome in data, whether the game is sequential or simultaneous. An extensive-

form game is a perfect-information game if every information set is a singleton decision node.

With perfect information, every decision made earlier is observable for the following players.

Player i’s (pure) strategy, si ∈ Si, specifies her decision at each decision node.8 Define S ≡

×iSi and let s ≡ (s1, ..., sN) ∈ S denote a strategy profile. Since s uniquely determines a game

outcome, define a (s) : S → A and ai (s) : S → Ai. In the example of a two-player sequential

entry game, if sleader = (”In”) and sfollower = (”In” if leader stays out, ”Out” if leader enters),

then a (s) = (In,Out).

Given the primitives defined above, each player chooses a strategy si that maximizes the

payoff taking rivals’strategies as given. The solution concept of the game in this paper is

subgame perfection, which is a refinement of Nash equilibrium to exclude certain strategies

such as noncredible threat. A subgame of an extensive-form game with perfect information

is a subset of the game that begins with a single decision node, contains all the decision

nodes that are successors of this node, and contains only these nodes. A subgame-perfect

equilibrium, se, is a strategy profile in which each player’s strategy is the best response to

the strategies of the other players in every subgame. It is a well-known fact that every

8Incorporating mixed strategies in the present framework is computationally impractical and beyond the
scope of this paper.
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finite game with perfect information has a pure-strategy subgame-perfect equilibrium (Zer-

melo’s theorem). Furthermore, in the current setup, the game almost surely has a unique

equilibrium, because ties occur with probability measure zero. Denote this subgame-perfect

equilibrium, se (x, ε; θ1), and its i’th component, sei (x, ε; θ1). An equilibrium outcome func-

tion is also defined as ae (x, ε; θ1) ≡ a (se (x, ε; θ1)), with its i’th component, aei (x, ε; θ1).

Given (x, ε, θ1), the game can be solved to obtain se by backward induction. In other words,

given (x, θ1), a realization of ε results in a unique subgame-perfect equilibrium.

3.2 Data

The econometrician observes T independent realizations of the game, (Γ1, ...,ΓT ), e.g., T

different markets, T different families, and T periods of time. Each realization of the game

is indexed by t = 1, ..., T . The structure and environment of the game may vary across t in

terms of the number and identity of players, the choice set of each player, the decision order,

and covariates x. The parametric forms of πi (at, xt, εit; θ1) and gi (ε
ait
i ; θ2) and parameters,

θ ≡ (θ1, θ2), are assumed to be invariant across t to draw statistical inferences. In each t,

the econometrician observes equilibrium outcome aot and covariate vector xt. Equilibrium

strategy seit is not observed as it contains counterfactuals. The econometrician knows the

structure of game Γt, such as the number of players and the decision order either from

institutional knowledge, by assumption, or from observation of data. In the following, I drop

the subscript for each game, t, when no ambiguity arises.
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To utilize a probit simulator below, I assume a normal distribution for εt as

εt ∼ N (0,Ω) . (2)

Covariance matrix Ω has a dimension of ΠN
i=1 [the number of alternatives for i] and is para-

meterized by θ2. For the parameterization of Ω, the standard identification conditions of

probit models apply. In particular, the fact that payoff πit is an unobserved latent construct

means that what the econometrician can infer from observed decisions concerns only the

relative comparison of payoffs among alternatives, and consequently requires normalization

of the mean and variance of ε.9 For example, in the setup of standard binary-choice games,

the dimension of Ω is the number of players. Below, I abuse notation and use ε and Ω to

denote the error structure after normalization.

3.3 Estimation and the High-Dimensional Integration

The task of the econometrician is to make statistical inferences on θ based on the structure

of game Γt and the assumed parametric forms of πi (a, x, εi; θ1) and gi (ε
ai
i ; θ2). Since the

distribution of ε is specified fully parametrically, the estimation procedure relies on maximum

likelihood. Game Γt is the unit for which individual likelihood is defined as follows:

l (θ;xt, a
o
t ) = Pr [aot = aet (xt, εt; θ1) |θ2] . (3)

9In applications with more model structures, information on the level of payoffs may be available and aid
identification, making the normalization of the variance of error terms unnecessary.
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This leads to the following maximum likelihood problem:

θ̂ML = arg max
θ

[
1

T

T∑
t

ln l (θ;xt, a
o
t )

]
. (4)

The challenge in this maximum likelihood framework is that the probability term in (3)

involves high-dimensional integrals and generally does not have an analytical solution. The

dimension depends on the number of players and the number of alternatives each player has.

There are several cases where this likelihood function is easily computed. First is the two-

dimensional case (Stackelberg games), which arises if the number of players is two and the

decision to be made is binary. The econometrician can then solve the two threshold values

for (ε1t, ε2t) in accordance with the observed equilibrium outcome, aot . The bivariate normal

distribution function then produces an analytical solution for the probability term. If the

dimension of integration increases to three, an analytical solution is generally not available,

but the quadrature method enables numerical approximation. Another special case is when

each stochastic component in εt follows an independent univariate normal distribution. In

this case, though the game still needs to be solved for an equilibrium, once it is solved,

obtaining an analytical solution is trivial. In most applications, however, the independent

normal assumption is restrictive. It implies no game specific error (e.g. market specific

random component), and when the choice set is larger than the binary case, it also implies

a quite restrictive substitution pattern among alternatives.

For high-dimensional integration, the literature has developed the maximum simulated
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likelihood (MSL) method, which utilizes Monte Carlo integration.10 The most straightfor-

ward simulator for MSL is the crude frequency simulator, first proposed by Lerman and

Manski (1981). This simulation procedure takes R sets of random draws from the assumed

distribution. For each random draw ε̃rt , an equilibrium outcome aet is solved by backward

induction. The probability simulator is based on how many times the predicted equilibrium

outcome coincides with the observed outcome out of R times repetition of simulation draws.

Although this simulator provides estimates that are consistent with R and T , it has two

major limitations. First, the simulated probability is a discontinuous function of the para-

meters and is not bounded away from 0 and 1. Second, the use of the indicator function

makes the variance of this simulator quite large, especially in high-dimensional cases. As

a result of these problems, Lerman and Manski (1981) find that their estimator requires a

very large number of simulations for satisfactory performance. McFadden (1989) develops

smoothed simulators that solve the discontinuity problem. Smoothed simulators simplify the

iterative computation of the estimator, allowing researchers to use an optimization method

that relies on the differentiability of the optimand. McFadden’s (1989) smoothed simulators,

however, do not address the large variance problem in high-dimensional cases. Since a likeli-

hood evaluation of relatively large asymmetric extensive form games tends to be particularly

expensive, these simulators are practically infeasible.

10The method of simulated moments (MSM) and the method of simulated scores (MSS) are alternative
options. These may improve the finite sample property of estimators by removing the simulation bias that
results from the logarithm in the log likelihood function (Hajivassiliou and McFadden, 1998), though Geweke
et al. (1994) do not find such an advantage of MSM over MSL.
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3.4 The GHK Simulator

For high-dimensional integration over a region of the multivariate normal, the most pop-

ular simulator is the GHK simulator (Geweke, 1992; Hajivassiliou and McFadden, 1994;

and Keane, 1994). The GHK simulator recursively truncates the multivariate normal prob-

ability density function. Its algorithm draws recursively from truncated univariate normal

distributions, and relies on Cholesky triangularization to decompose the multivariate normal

distribution into a set of univariate normal distributions. The combination of the recursive

conditioning approach and the algorithm to generate a smooth univariate truncated variate

produces an unbiased and smooth importance-sampling simulator. Importance sampling

aims to achieve higher effi ciency by adjusting the weight or "importance" of different points

in the sample space. Compared with the frequency simulator, the GHK simulator requires

remarkably fewer draws for alternatives with low probability of being chosen. A number

of studies have confirmed its usefulness and relative accuracy, especially when considering

the low computational effort required (Börsch-Supan and Hajivassiliou, 1993; Geweke et al.,

1994; Hajivassiliou et al., 1996; Hajivassiliou and McFadden, 1998).

The complication in using the GHK simulator for empirical games stems from the recur-

sive conditioning approach. The GHK algorithm repeats recursive simulation draws from

truncated univariate normal distributions so that the resulting random shocks, ε̃r, generate

the observed equilibrium outcome, ao. The requirement for this recursive conditioning is

that, in the ε space, the truncation threshold for each simulation draw is independent of

other simulation draws and hence, the truncation thresholds are orthogonal to each other.
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However, because of sequential strategic interaction, the truncation threshold for a draw may

depend on other simulation draws, and recursive conditioning simulation breaks down.

4 USING THE GHK SIMULATOR

The problem of interdependent truncation thresholds arises as a result of changes in un-

observed off-the-equilibrium-path strategies. Before formally presenting the general case

results, I illustrate this point by a simple two-player entry game. Note that this two-player

entry game is only for explanation purposes, as the game is two-dimensional and its likelihood

function can easily be solved analytically.

The entry game is played by two players, firm 1 and firm 2. Firm 1 is the Stackelberg

leader. Having observed firm 1’s entry decision, firm 2 makes its entry decision. Firms 1

and 2 incur random shocks ε1 and ε2 respectively in their profit functions. For illustration

purposes, assume that the rival’s entry reduces payoff (this is not essential for the proposed

method). Each firm enters the market when it expects nonnegative profits from entry. If it

does not enter, a firm earns zero profit. Given the assumed payoff functions, the realized

values of ε1 and ε2 determine which market outcome occurs (Figure 1). A firm with a larger

random shock is more likely to enter the market. However, the effects of ε1 and ε2 are

not symmetric and the decisions of the two firms are not independent of each other, due

to the sequential nature of the game. The center part of Figure 1 shows the asymmetry;

when neither ε1 nor ε2 has dominating impact, only firm 1, the leader with the first-mover

advantage, enters. In this example, the probability of market configuration (Out,In) cannot
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be computed by the GHK simulator directly, because the domain of integration is not a

rectangle, and thus drawing ε1 cannot be conditional on ε2 and vice versa.

[Insert Figure 1]

The notion of subgame perfection solves this dependency. Indeed, this non-rectangular

shaped domain of integration stems from a behavioral change in an off-the-equilibrium path.

The strategic interaction in this sequential game is illustrated by its extensive form (Figure

2). With perfect information, firm 2 has two singleton decision nodes, and the choice set

of firm 2 consists of four strategies: "never enter", "imitate", "preempted", and "always

enter". Assuming "Out" for firm 1, Figure 2 shows four possible equilibria. The extensive

form highlights several important facts. First, subgame perfection implies that firm 2 chooses

the best strategy based on its random shock, ε2, irrespective of ε1. Facing a large negative

shock, firm 2 chooses "never enter". For a large positive shock, firm 2 chooses "always enter".

For a medium value of ε2, firm 2 chooses "preempted", i.e. it enters the market only if firm

1 does not.11 Thus, ε1 does not affect the thresholds of ε2 that determine the choice of firm

2. Second, different strategy profiles may generate game outcomes that are observationally

equivalent to the econometrician. In Figure 2, strategy profiles (3) and (4) both result in

(Out,In). Third, firm 1’s decision does depend on the strategy of firm 2, and hence, it does

depend on ε2. When preemption is possible, the entry threshold for firm 1 is lower and the

integration domain of ε1 is larger. However, if the strategy of firm 2 is given, the threshold

of ε1 does not depend on the value of ε2.

11Firm 2 never chooses the "imitate" strategy, due to the assumed negative impact of a rival’s entry.
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[Insert Figure 2]

Figure 3 incorporates these considerations into the (ε1, ε2) space. Now the (Out,In) area is

divided into two rectangles, each representing different strategy profiles, i.e. (3) "preempted"

and (4) "always enter" as named in Figure 2. The standard GHK procedure works as long

as the domain of integration is rectangular (or hyperrectangular in a general n-dimensional

space) and therefore, we can simulate the likelihood function by evaluating each subgame

perfect equilibrium separately.

[Insert Figure 3]

To formalize the discussion so far in the general n-dimensional case, let s−i denote the

subvector of strategy profile s that excludes component i, and let sBRi (x, εi, s−i; θ1) denote

the function that determines the best response strategy of player i given x, εi, and s−i. Given

(x, εi, s−i), the best response strategy of player i is uniquely determined almost surely by

comparing payoffs at each decision node. Then, the following result holds.

Proposition 1 For any strategy profile s∗ ∈ S, if there exists a set of {ε} that rationalizes

s∗ as a subgame-perfect strategy profile given x and θ1, then

{ε|se (x, ε; θ1) = s∗} = ×i
{
εi|sBRi

(
x, εi, s

∗
−i; θ1

)
= s∗i

}
.

In words, the set of ε under which s∗ solves the game as a subgame-perfect equilibrium can be

written as a Cartesian product of each player’s set of εi under which s∗i is the best response

strategy to s∗−i.
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Proof. In a finite sequential game with continuous random unobservables, player i’s best

response strategy is uniquely determined by s−i, x, and εi almost surely. Thus, given s∗−i

and x, the set of εi under which s∗i is the best response strategy to s
∗
−i does not depend on

another player’s component of ε. Then the proposition follows trivially.

The logic underlying this proposition comes directly from the Nash equilibrium concept,

not specifically from subgame perfection. However, for this result to hold, the best response

needs to be uniquely determined. The subgame perfection (and hence the assumption of

a sequential game) plays the key role in avoiding indeterminacy from the ε space to each

player’s best response.12

The main virtue of the proposition is that for any observed market outcome, ao, by di-

viding the integration problem into the subgame-perfect equilibria that rationalize ao, the

interdependency of integral intervals across players resolves and the standard GHK proce-

dure can be used. When the econometrician ignores subgame perfection and only considers

observed actions, ao, the realized value of εj may change player j’s off-the-equilibrium-path

decisions, which in turn affects the set of εi under which player i chooses aoi on her equilib-

rium path. The proposition clarifies that this interdependency across players does not occur

as far as each subgame-perfect equilibrium is concerned.

To obtain θ̂ML using Monte Carlo integration, the estimation procedure evaluates the

GHK simulator for every strategy profile that rationalizes observed outcome aot . Let S
o (a) ≡

{s ∈ S|a (s) = a}. Rewrite the individual likelihood in the original maximum likelihood

12Without subgame perfection, indeterminancy arises in off-the-equilibrium paths and makes Monte Carlo
integration impossible.
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problem, (3), as

l (θ;x, ao) = Pr [ao = ae(x, ε; θ1)|θ2]

=
∑

s∈So(ao)

Pr [s = se(x, ε; θ1)|θ2] .

The second equality holds owing to the fact that any ε leads to a unique subgame-perfect

equilibrium. Given the discussion so far, using the GHK simulator for each subgame-perfect

equilibrium is trivial. The rest of this section sets out this standard procedure to evalu-

ate Pr [s = se(x, ε; θ1)|θ2] for each s ∈ So (ao). Readers familiar with the standard GHK

procedure can turn directly to the Monte Carlo experiments.

The probability that the event, s = se(x, ε; θ1), occurs can be rewritten using an integral.

Let n (ε,Ω) denote the probability density function of the multivariate normal variates, ε,

with zero mean and covariance matrix Ω. Then

Pr [s = se(x, ε; θ1)|θ2] =

∫
I [s = se(x, ε; θ1)]n (ε,Ω (θ2)) dε

=

∫ ∏
i

I
[
si = sBRi (x, εi, s−i; θ1)

]
n (ε,Ω (θ2)) dε.

The last equality holds from the proposition. Covariance matrix Ω (θ2) takes a parametric

form of θ2 that allows identification. Defining a set∆i (x, s; θ1) ≡
{
εi|sBRi (x, εi, s−i; θ1) = si

}
,

Pr [s = se(x, ε; θ1)|θ2] =

∫ ∏
i

I [εi ∈ ∆i(x, s; θ1)]n (ε,Ω (θ2)) dε.
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The set ∆i(x, s; θ1) represents the conditions that random shocks εi needs to satisfy for si

to be player i’s best response given s−1. The derivation of ∆i(x, s; θ1) is based on finding

thresholds of εi by comparing payoffs across available strategies given s−1. There may be

a strategy that is dominated by another strategy regardless of the value of εi. For such a

dominated strategy si, ∆i(x, si, s−i; θ1) = ∅, and strategy profile s that contains si occurs

with probability zero. Define S
o

(ao, θ1) ⊂ So (ao) as the set of strategy profiles each element

of which leads to market outcome ao and occurs with positive probability. Then the likelihood

function becomes

l (θ;x, ao) =
∑

s∈So(ao)

Pr [s = se(x, ε; θ1)|θ2]

=
∑

s∈So(ao,θ1)

Pr [s = se(x, ε; θ1)|θ2] .

In the following I focus on S
o

(ao, θ1) so that ∆i(x, s; θ1) is not the empty set.

Before applying the GHK simulator, I introduce Cholesky decomposition. For the sim-

plicity of exposition, assume the choice set of player i = 1, ..., N is binary. Then, after

normalization, ε ∈ RN and Ω (θ2) is a N ×N matrix. Allowing more than two alternatives

is straightforward under the GHK procedure. Denote the lower-triangular Cholesky factor

of Ω (θ2) as L so that LL′ = Ω (θ2). Denote η = (η1, ..., ηN) an N -dimensional multivariate

standard normal vector; η ∼ N (0, IN). Hence we can write ε = Lη ∼ N (0,Ω (θ2)). I intro-

duce notation to simplify the following presentation. For a vector of indexes (1, ..., N), the

notation "< i" denotes the subvector (1, ..., i− 1) and "≤ i" denotes the subvector (1, ..., i).
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Thus, for a vector ε, ε<i is the subvector of the first i−1 components, and ε−i is the subvector

excluding component i. For a matrix L, Lii is the i-th diagonal elements of L, and Li,<i and

Li,≤i denote vectors containing the first i − 1 and i elements of row i, respectively. Using

this notation, εi = Li,≤iη≤i.

Then the probability expression becomes

Pr [s = se(x, ε; θ1)|θ2] =

∫
<N

∏
i

I [εi ∈ ∆i(x, s; θ1)]n (ε,Ω (θ2)) dε

=

∫
<N

[∏
i

I
[
Li,≤iη≤i ∈ ∆i(x, s; θ1)

]]
·
[∏

i

φ(ηi)

]
dη (5)

=

∫
<N

∏
i

[
I
(
Li,≤iη≤i ∈ ∆i(x, s; θ1)

)
· φ (ηi)

]
dη,

where φ() is the probability density function of the univariate standard normal distribution.

The simulated likelihood with the GHK simulator is constructed as follows. For each

simulation, r = (1, ..., R), prepare an N -dimensional vector of independent uniform (0, 1)

random variables, ũr = (ũr1, ..., ũ
r
N). For u ∈ (0, 1) and a non-empty set ∆ ⊂ R, define

an inverse distribution function q (u,∆) which is a mapping that takes u into a truncated

standard normal distribution which ranges over ∆. For example, if ∆ = (−∞, a], then q (·)

is a mapping into a standard normal random variate that is right-hand truncated at a, i.e.

q (u, (−∞, a]) = Φ−1 (Φ (a) · u), where Φ (a) is the standard normal distribution function.

For given x, s, θ1, L, and ũr, recursively define a sequence of simulated η̃
r
i so as to satisfy
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si = sBRi (x, εi, s−i; θ1) for i = 1, ..., N as

η̃r1 ≡ q (ũr1, {η1|L1,1η1 ∈ ∆1 (x, s; θ1)})

η̃r2 ≡ q (ũr2, {η2|L2,1η̃
r
1 + L2,2η2 ∈ ∆2 (x, s; θ1)})

...

η̃rN ≡ q (ũrN , {ηN |LN,<N η̃r<N + LN,NηN ∈ ∆N (x, s; θ1)}) .

After obtaining simulated η̃r, the probability for εi to satisfy si = sBRi (x, εi, s−i; θ1), which I

denote Qs
i , is recursively calculated. For ∆ ⊂ R, define Ψ (∆) ≡

∫
∆
φ (η) dη. For example, if

∆ = (−∞, a], then Ψ (∆) = Φ (a). Then

Qs
1 ≡ Ψ ({η1|L1,1η1 ∈ ∆1 (x, s; θ1)})

Qs
2 (η̃r<2) ≡ Ψ ({η2|L2,1η̃

r
1 + L2,2η2 ∈ ∆2 (x, s; θ1)})

...

Qs
N (η̃r<N) ≡ Ψ ({ηN |LN,<N η̃r<N + LN,NηN ∈ ∆N (x, s; θ1)}) .

Repeat this simulation R times for each element of S
o

(ao, θ1) and define the likelihood

simulator as

l̂GHKR (θ;x, ao) ≡
∑

s∈So(ao,θ1)

1

R

R∑
r=1

[
Qs

1 ·
N∏
i=2

Qs
i (η̃

r
<i)

]
.

Using this simulator, the estimation procedure solves the following maximum simulated
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likelihood problem,

θ̂MSL−GHK = arg max
θ

{
1

T

T∑
t

ln l̂GHKR (θ;xt, a
o
t )

}
.

This maximum likelihood problem is solved using numerical derivatives. In searching θ̂, each

iteration should use the same simulation draws
(
ũ1, ..., ũR

)
to minimize standard errors.

5 MONTE CARLO EXPERIMENTS

5.1 Experimental Design

In this section, I conduct Monte Carlo experiments and demonstrate the performance and

robustness of the estimation method presented in this paper. I pay particular attention to

(1) potential simulation bias in the Monte Carlo integration and (2) robustness with respect

to the misspecification of the decision order. The latter is especially important, as the precise

decision order may not be available in many empirical applications. Inspired by Berry (1992),

I employ a simple binary-choice entry game in the passenger airline industry, in which at

most six heterogeneous airline firms compete to serve different markets.

A market, defined as a city pair route that connects major U.S. cities, constitutes the unit

of observation. The six largest national carriers of differing sizes (as defined by the number

of existing served routes) non-cooperatively play a sequential entry game independently in

each market, based on predicted profitability in the market. The number of players in each

market varies from one to six. By construction, there is no distinction between entry by new
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entrants and "entry" by incumbent firms. The econometrician observes the list of "potential

entrants" and which firms choose to enter each market in the following year. Also available

are variables in the base period that explain the potential profitability from entry. These

variables are either at the market level, firm level, or market-firm level. In the base model,

potential entrants make their decisions in order of size.

Twenty artificial data sets are generated using pseudo-random numbers. Each data

set consists of 3,000 market observations and around 8,300 market-firm observations and

contains information on the list of potential entrants, covariates, and generated random

shocks in each market. Throughout all the experiments conducted below, I use the same

twenty data sets for better compatibility of the simulation results. I conduct three sets

of experiments. First, I examine the effects of changing the simulation setting, such as

the number of simulation draws, to check the size of potential simulation bias. Second,

to study the effect of misspecification, I impose restrictions on underlying models to be

estimated. Third, I introduce various degrees of randomness in the decision order to address

the possibility that the econometrician has only imprecise information about the true decision

order.
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5.2 Model and Data Generating Process

In market t, Nt firms play the entry game, where Nt ∈ {1, . . . , 6}. Firm i in market t chooses

to enter if it expects a non-negative profit. The expected profit from entry, πit, is

πit (n) = x
′

itβ − δ ln (n) + εit

where xit is a vector of covariates that are specific to either market t, firm i, or firm-market

pair (i, t), εit is the firm-market specific random component, and n is the number of firms

that choose to enter market t. The key parameter, δ, captures the strategic effect. For

simplicity, the strategic effect is assumed to depend only on the number of competitors, not

their identity. The random term εit is not observed by the econometrician but is known to

every firm, and follows a multivariate normal distribution: εt = (ε1t, ..., εNt,t)
′ ∼ N (0,Ωt).

The payoff when a firm does not enter is normalized to zero. The econometrician desires to

learn about β, δ, and Ω based on observed entry decisions and xit.

The covariate vector contains the following variables: two market-specific continuous

variables, population (pop) and distance (dist); a firm-market specific continuous variable,

past profitability in neighboring markets (pastp); a firm-market level dummy variable that

indicates the firm’s presence at both airports of the route in the previous period, city2; and

nroute, a firm-specific variable for the number of existing routes in the country (in 100’s)

that indicates the size of each firm and determines the decision order.

Data on the pool of entrants and covariates are generated using pseudo-random numbers.
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For each of three thousand markets, I first generate market population, pop, the number of

potential entrants, NCity1, and the number of potential entrants with a presence at two

airports, NCity2 based on trivariate normal distribution. These three variables are assumed

to be positively correlated with covariance matrix


1.0 0.3 0.3

0.3 1.0 0.6

0.3 0.6 1.0

 . For pop, generated
normal variable values are transformed to a log-normal variable with mean 4.0 and standard

deviation 1.0. To constrain the number of players in each market between one and six, the

two generated normal variables are transformed into truncated normal distributions. For

NCity1, the generated normal variable is transformed to a truncated normal variable with

mean 3.0 and standard deviation 1.5 and with the truncation points at 1.0 and 7.0. Like-

wise, for NCity2, the third generated normal variable is transformed to a truncated normal

variable with mean 1.5 and standard deviation 1.0 with truncation points at 0.0 and 7.0.

Both variables are then rounded down to integers. To guarantee NCity2 ≤ NCity1, NCity2

is replaced with the value of NCity1 where NCity2 > NCity1. The numbers of existing

routes, nroute, are set as (2.8, 2.5, 2.0, 1.7, 1.1, 0.75) for the six airlines. In each market,

potential entrants are randomly chosen up to the number of NCity1 with probabilities pro-

portional to nroute. This determines the list of players in each market. Potential entrants

with a presence at both airports of the market are also randomly chosen up to the number

of NCity2 (each firm with same probability). This generates the dummy variable, city2.

The two remaining variables, dist and pastp are independently generated from the standard

normal distribution.
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The error component εit is generated for the twenty data sets and is kept fixed throughout

all experiments. The covariance matrix of the error component, Ωt, is assumed to be aNt×Nt

matrix with diagonal elements, 1.0, and off-diagonal elements, ρ2. In other words, εit consists

of two independent standard normal errors, (νit, νt), as

εit =
√

(1− ρ2)νit + ρνt

where ρ is a correlation among the error terms within a market and νt measures a market-

specific factor that makes entry more attractive for all firms in the market. The correlation,

ρ, is set to be 0.7, which implies νit and νt have about the same weights in the error term.

The coeffi cients on (constant, pop, dist, pastp, city2, nroute) are set to be (−5.0, 1.2, 0.0,

0.4, 1.5, 0.0). To highlight misspecification bias, the coeffi cient on firm size, nroute, is set

to zero so that the firm size affects profits not directly, only via the decision order. Once I

specify these parameter values, the value of the strategic effect parameter, δ, and the decision

order, I can solve the game by backward induction and obtain the data on market outcomes.

The default specification is δ = 2.0 and assumes that firms make decisions in order of nroute.

Tables 1 and 2 report descriptive numbers from one of the twenty artificial data sets as

an example. Similar patterns are observed in the other data sets. The equilibrium number of

entrants presented in the tables is generated with two different values of δ, 1.0 and 2.0. The

majority of the three thousand markets have two or three potential entrants. A monopoly

is the most frequent outcome, with no entrant being the second likely outcome. The higher

value of δ magnifies the competitive effect and leads to fewer entrants.
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[Insert Table 1]

Since the pool of potential entrants is constructed randomly but with probability propor-

tional to firm size, firm 1 appears in the data set most frequently and firm 6 least frequently

(Table 2). When δ = 1.0, the early-mover advantages are smaller, so the entry propensity

does not vary much across firms, whereas when δ = 2.0, the larger early-mover advantages

reduce the entry propensity of followers.

[Insert Table 2]

5.3 Results of the Experiments

The first set of Monte Carlo experiments is based on the correct model specification and

concerns about the size of potential simulation bias inherent in the method of simulated

likelihood for a small number of simulation draws. A debate exists in the literature on the

choice between the method of simulated likelihood and the method of simulated moments.

While the method of simulated likelihood may suffer from simulation bias given a fixed

number of simulation draws, it is simple to implement, numerically stable, and potentially

effi cient under the correct specification. Geweke et al. (1997) and McFadden and Ruud

(1994) provide evidence of the instability of the method of simulated moment estimator.

Nevertheless, the number of simulation draws that will lead to a suffi ciently small bias is an

empirical question specific to each application, and in particular depends on the complexity

of the covariance structure of error terms.
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Table 3 compares the estimates of four different simulation draw settings. The data

generating process assumes δ = 2.0. The first experiment makes twenty independent simula-

tion draws, while the second experiment uses antithetic sampling to make twenty simulation

draws, i.e. ten symmetric replications of ten independent pseudo-random draws to make

simulation draws more systematic. The results show that, first, even with only twenty in-

dependent simulation draws, the comparison of the true parameter values and estimated

values indicates overall accuracy given the estimated standard errors. Second, the use of

antithetic sampling improves the model fit in terms of the average log likelihood value and

reduces bias in terms of mean squared error. Third, increasing the number of draws to forty

and one hundred shows a further improvement in the fit, though the improvement is small.

This pattern is consistently observed in simulations with different values of parameters and

different seeds of pseudo-random number generator. The results show accuracy even with

a very small number of simulation draws, because the covariance structure in the model is

simple and the correctly specified specification is used in these experiments. Though not

shown here, for a smaller value of ρ, i.e. a smaller market level random effect, the number of

simulation draws required to generate the same level of accuracy is even smaller, since the

distribution of each random error is closer to the univariate standard normal distribution.

[Insert Table 3]

The next series of experiments examines the effect of misspecification by imposing re-

strictions on the correctly specified model (Table 4). The data generating process assumes

δ = 2.0 and each estimation makes forty simulation draws using antithetic sampling. The
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first restricted model assumes that the econometrician has no correct knowledge about the

decision order thus estimates the model by imposing a completely random decision order.

The lack of decision order information reduces the model fit and leads to significant bias of

most estimates. The serious underestimation of δ and ρ and the overestimation of nroute are

particularly notable. In the data generating process, early movers enjoy their advantages,

but without correct information on the decision order, these advantages are not captured as

a strategic effect in δ and instead are captured in the positive coeffi cient of nroute, which

determines the decision order but has no direct effect on payoff in the true data generating

process. Inability to well explain the entry decision of each firm results in higher weights on

individual random components, which leads to the underestimation of ρ. The two variables

that have no correlation with the decision order, dist and pastp, are nevertheless precisely

estimated, which is the case for all the experiments conducted below. The next restricted

model assumes the correct specification of the decision order but imposes zero market level

random effect, ρ = 0. Since this restriction removes the correlation between multivari-

ate normal variates, high-dimensional integration is no longer necessary and the estimation

procedure is significantly simplified. This misspecification, however, leads to considerable

reduction in the model fit and significant bias of estimates. The strategic effect, δ, is under-

estimated because ignoring market random errors that generate correlation between entry

decisions of firms blurs the true harshness of strategic interaction. The last restricted model

assumes no market error and no interaction effect (δ = 0 and ρ = 0). These restrictions

degenerate the model to a binary probit model. The model fit is the worst in this table.
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Ignoring early-mover advantages again leads to a spurious positive estimate of the size effect.

[Insert Table 4]

Table 5 reports the results of the same comparison for the case of weak strategic effect:

δ = 1.0. Overall the results are consistent with the previous table. While misspecificatoin

still leads to substantial bias, the impact of misspecification is smaller when the strategic

effect is smaller.

[Insert Table 5]

The last set of experiments introduces various degrees of randomness in the decision

order. This is motivated by the fact that in many potential applications, the econometrician

may have limited information that reflects the true decision order only approximately or with

measurement error. Specifically, while the estimated models still assume that the firms make

decisions in order of nroute, I modify the data generating process in such a way that the true

decision order is determined by a weighted sum of nroute and a random variable that follows

a uniform distribution with the same mean and variance as nroute. Thus, the weight of this

uniform random variable captures the level of imprecision of the decision order information

used in the estimation. Table 6 reports the results for different degrees of randomness. The

results indicate that when the econometrician correctly specifies more than about 85 percent

of the decision order, the differences between the estimated coeffi cients and their population

values are smaller than the estimated standard error.

[Insert Table 6]
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6 DISCUSSION AND EXTENSIONS

6.1 The Perfect Information Assumption

The perfect information assumption plays a key role in guaranteeing a unique subgame-

perfect equilibrium. The uniqueness is necessary to specify the domain of integration in the

ε space for each strategy profile that rationalizes the observed game outcome, without mak-

ing a strong assumption on the equilibrium selection mechanism. The perfect information

assumption, however, may be too strong in many applications. The assumption does not hold

when some players have private information, when players move simultaneously, and when

"nature" may bring in uncertainty. Relaxing the perfect information assumption is possible

as long as the uniqueness of an equilibrium is guaranteed for any possible values of random

shocks, ε. In general the following approaches potentially help to relax the perfect informa-

tion assumption. First, we can specify the game and payoff function in such a way that a

unique subgame-perfect equilibrium is guaranteed. Second, focusing on a set of equilibria

might provide uniqueness. An example is an entry game in which the identity of entering

firms is not uniquely determined but the number of entrants is uniquely determined (Berry,

1992). Third, an equilibrium concept that is stronger than subgame-perfection may help to

avoid the multiplicity of equilibria. For example, sequential equilibrium (Kreps and Wilson,

1982) may reduce the set of subgame-perfect equilibrium strategy profiles when decision

nodes that are never reached exist (Litan and Pimienta, 2008). Fourth, some equilibrium

selection mechanism can be assumed. The use of the notions of Pareto and risk-dominance
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may provide a reasonable option if it leads to a unique equilibrium.

6.2 Decision Order

The entry game example in the previous section assumes that each firm makes a decision

sequentially. In general, the proposed method allows players to take multiple turns alter-

nately. In simulating the likelihood function, all turns of player i must be simulated at once,

as the strategy of each player consists of a decision at every decision node.

A more fundamental issue on decision order is the empirical analogue of decision order.

The proposed method utilizes a publicly known exogenous decision order. In some applica-

tions, even if sequential interaction appears likely, such decision order may not be available

or may be endogenously determined. The above Monte Carlo experiments illustrate that

misspecifying the true decision order may lead to a significantly biased estimate of strategic

effect. At the same time, if the game is correctly specified except for decision order, we can

draw an inference about not only structural parameters but also decision order. Specifically,

the econometrician can estimate different models, each with a different imposed decision

order, then conduct a model selection test for non-nested specifications. Advancing this idea

further, estimation of the population decision order by selecting the decision order that max-

imizes the likelihood function may be a possibility. The statistical properties of an estimated

decision order and how to deal with the discontinuity that arises from maximization over

decision orders are left for future research.13

13Endogenizing the order of decision is another possible extension. This class of games is called a leadership
game or a commitment game (Hamilton and Slutsky, 1990) and has attracted some theoretical applications
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6.3 Computational Feasibility

For applications with relatively simple games, the computation burden of the proposed

estimation procedure is fairly manageable. This is due to the high performance of the GHK

simulator. Conducting all the Monte Carlo experiments shown in this paper requires less

than a half day with a standard high-end DELL desktop computer purchased in 2007.

However, as the number of players, the number of turns, or the number of alternatives

increases, the size of the game tree increases exponentially and computation quickly be-

comes infeasible. Though this exponential computational burden is inherent in the nature

of sequential games, the following computation techniques may significantly reduce compu-

tational burden. First, structures of payoff function and strategic interaction implied by

assumed economic theory can be utilized to skip the unnecessary part of the calculation in

the backward induction algorithm. In the above entry game example, the assumed negative

effect of a rival’s entry excludes one strategy ("imitate" in Figure 2) from the simulation

procedure. In Maruyama (2011), I exploit the non-increasing property of the profit func-

tion in the number of entering rival firms; imposing this structure dramatically reduces the

computation time.

Second, given the assumed independence across each game play, parallel computing is a

promising way to reduce computational burden; the parallelization of the maximum likeli-

hood evaluation loop is straightforward. Third, variance reduction techniques will enhance

(e.g. Kempf and Rota-Graziosi, 2010). These games endogenize the order by introducing a pre-play stage
that determines the order of decision. Consequently, these games are no longer perfect information games, but
as long as a unique outcome is secured, estimation may be possible, as discussed in the previous subsection.
However, the empirical analogue of leadership games seems to be rather unclear.
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the performance of the simulator. The Monte Carlo experiments above show the gain from

antithetic sampling. Instead of using pseudo-random numbers, systematic simulation draws

by quasi-Monte Carlo sampling, such as Halton sequences, and sampling methods based on

orthogonal arrays will produce better performance (Train, 2003; Sándor and András, 2004).

Lastly another potential avenue is the use of a more effi cient importance-sampling algorithm

to enhance the GHK simulator (Liesenfeld and Richard, 2010).
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Table 1: EXAMPLE OF DATA SET: DISTRIBUTION OF MARKETS BY NUMBER OF
ENTRANTS

Number of Number of potential entrants
actual entrants 1 2 3 4 5 6 Total
(a) δ = 1.0 0 317 244 176 59 14 6 766

1 239 368 296 161 64 8 1,201
2 0 182 230 140 55 9 612
3 0 0 144 92 40 11 272
4 0 0 0 76 24 8 104
5 0 0 0 0 18 8 34
6 0 0 0 0 0 11 11

(b) δ = 2.0 0 317 244 176 59 14 6 816
1 239 442 429 250 102 15 1,477
2 0 108 187 149 66 21 531
3 0 0 54 52 20 10 136
4 0 0 0 18 12 4 34
5 0 0 0 0 1 3 4
6 0 0 0 0 0 2 2

Total 556 794 846 528 215 61 3,000
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Table 2: EXAMPLE OF DATA SET: NUMBER OF OBSERVATIONS AND ENTRY
PROFITABILITY BY AIRLINES

Airline ID Number of Entry frequency
observations δ = 1.0 δ = 2.0

1 2,091 1,005 48.1% 930 44.5%
2 1,931 934 48.4% 779 40.3%
3 1,589 724 45.6% 565 35.6%
4 1,379 628 45.5% 448 32.5%
5 803 361 45.0% 249 31.0%
6 442 205 46.4% 144 32.6%

Total 8,235 3,857 46.8% 3,115 37.8%
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Table 3: POTENTIAL SIMULATION BIAS: δ = 2.0
20 draws no antithetics 20 draws 40 draws 100 draws

DGP θ θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −5.086 0.146 0.133 −5.081 0.147 0.130 −5.078 0.147 0.127 −5.077 0.147 0.128
pop 1.2 1.204 0.032 0.027 1.207 0.032 0.027 1.207 0.032 0.027 1.208 0.032 0.027
dist 0.0 0.008 0.022 0.019 0.008 0.022 0.019 0.008 0.022 0.019 0.008 0.022 0.019
pastp 0.4 0.402 0.018 0.018 0.402 0.018 0.017 0.402 0.018 0.017 0.401 0.018 0.017
city2 1.5 1.521 0.041 0.040 1.517 0.041 0.037 1.516 0.041 0.036 1.516 0.041 0.036
nroute 0.0 0.016 0.033 0.027 0.012 0.033 0.024 0.011 0.033 0.023 0.010 0.033 0.023
δ 2.0 1.986 0.074 0.083 1.997 0.074 0.077 2.001 0.074 0.076 2.003 0.074 0.076
ρ 0.7 0.677 0.029 0.033 0.685 0.029 0.026 0.688 0.029 0.027 0.689 0.029 0.025
LogL −3136.85 −3134.57 −3133.95 −3133.84

Note: Monte Carlo experiments for 20 independent data sets with 3,000 markets. DGP θ ≡ parameter values used
to generate data, θ̂ ≡average parameter estimate, ASE ≡ average asymptotic standard error, MSE ≡ root mean
squared error, LogL ≡ average log likelihood value.
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Table 4: RESTRICTED MODELS: δ = 2.0
Full Model No Order Info No Market Error Probit

DGP θ θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −5.078 0.147 0.127 −5.417 0.141 0.427 −5.241 0.129 0.260 −4.474 0.126 0.534
pop 1.2 1.207 0.032 0.027 1.077 0.031 0.124 1.072 0.026 0.130 0.625 0.021 0.575
dist 0.0 0.008 0.022 0.019 0.007 0.020 0.017 0.007 0.017 0.017 0.006 0.020 0.014
pastp 0.4 0.402 0.018 0.017 0.413 0.019 0.022 0.423 0.019 0.029 0.391 0.018 0.019
city2 1.5 1.516 0.041 0.036 1.576 0.039 0.083 1.627 0.039 0.131 1.561 0.036 0.072
nroute 0.0 0.011 0.033 0.023 0.281 0.028 0.282 0.180 0.031 0.182 0.382 0.027 0.383
δ 2.0 2.001 0.074 0.076 1.460 0.070 0.543 1.416 0.051 0.588
ρ 0.7 0.688 0.029 0.027 0.466 0.041 0.237

LogL / BIC −3133.95 / 6339.95 −3218.43 / 6508.92 −3200.29 / 6472.63 −3609.46 / 7290.99
Note: 40 simulation draws with antithetic sampling for 20 data sets with 3,000 markets. DGP θ ≡ parameter
values to generate data, θ̂ ≡ average parameter estimate, ASE ≡ average asymptotic standard error, MSE ≡
root mean squared error, LogL ≡ average log likelihood value, BIC ≡ average Bayesian information criterion.
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Table 5: RESTRICTED MODELS: δ = 1.0
Full Model No Order Info No Market Error Probit

DGP θ θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −5.046 0.140 0.130 −5.183 0.139 0.217 −4.986 0.121 0.122 −4.786 0.126 0.242
pop 1.2 1.204 0.032 0.031 1.172 0.032 0.041 1.048 0.024 0.155 0.893 0.022 0.308
dist 0.0 0.005 0.021 0.019 0.005 0.020 0.019 0.006 0.016 0.019 0.006 0.017 0.018
pastp 0.4 0.401 0.018 0.017 0.409 0.018 0.019 0.416 0.018 0.024 0.418 0.018 0.024
city2 1.5 1.506 0.042 0.034 1.541 0.041 0.051 1.602 0.038 0.105 1.633 0.038 0.138
nroute 0.0 0.007 0.028 0.022 0.087 0.026 0.089 0.108 0.029 0.111 0.167 0.028 0.169
δ 1.0 0.993 0.064 0.075 0.859 0.060 0.155 0.489 0.035 0.513
ρ 0.7 0.690 0.028 0.029 0.637 0.029 0.070

LogL / BIC −3329.17 / 6730.40 −3341.70 / 6755.45 −3431.66 / 6935.39 −3464.88 / 7001.83
Note: 40 simulation draws with antithetic sampling for 20 data sets with 3,000 markets. DGP θ ≡ parameter
values to generate data, θ̂ ≡ average parameter estimate, ASE ≡ average asymptotic standard error, MSE ≡
root mean squared error, LogL ≡ average log likelihood value, BIC ≡ average Bayesian information criterion.
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Table 6: EFFECT OF RANDOMNESS IN DECISION ORDER
Randomness misspecified δ (δ0 = 2.0) ρ (ρ0 = 0.7)

in sequence order (%) δ̂ ASE MSE ρ̂ ASE MSE LogL
0% 0.0% 2.001 0.074 0.076 0.688 0.029 0.027 −3133.95
10% 0.0% 2.001 0.074 0.076 0.688 0.029 0.027 −3133.95
20% 1.8% 1.992 0.075 0.080 0.683 0.029 0.029 −3135.86
30% 13.0% 1.928 0.075 0.111 0.654 0.031 0.052 −3154.22
40% 25.7% 1.857 0.076 0.161 0.623 0.033 0.081 −3176.04
50% 37.1% 1.801 0.077 0.209 0.596 0.034 0.107 −3199.64
60% 45.9% 1.754 0.077 0.254 0.573 0.036 0.130 −3218.71
70% 52.4% 1.717 0.077 0.291 0.560 0.037 0.145 −3233.78
80% 57.2% 1.696 0.077 0.311 0.554 0.037 0.151 −3243.32
90% 60.9% 1.679 0.077 0.327 0.547 0.038 0.157 −3250.80
100% 63.8% 1.669 0.077 0.338 0.544 0.038 0.161 −3251.66

Note: misspecified order indicates how many observations are assigned with different decision

order. δ̂, ρ̂ ≡ average parameter estimate, ASE ≡ average asymptotic standard error, MSE ≡
root mean squared error, LogL ≡ average log likelihood value. Experiments based on
40 simulation draws using antithetic sampling for 20 independent data sets with 3,000 market.
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Figure 1: TWO PLAYER STACKELBERG ENTRY GAME
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Figure 2: STRATEGIES AND OUTCOMES IN THE EXTENSIVE FORM WHEN FIRM
1 CHOOSES "OUT"
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