

Why trampolines are so much

David Eager, Chris Chapman, Kenneth Bondoc Faculty of Engineering and Information Technology University of Technology Sydney, Australia

UNIVERSITY OF

Introduction and background

Most people know that trampolines are exciting and fun $\stackrel{\smile}{\smile}$

- There has been little published research into the physical and emotional benefits of trampolining
- A common example linking acceleration and excitement is the roller-coaster ride where people may experience in excess of 4 G-force

Aim

- Aim of this project was to characterise the effects of trampoline acceleration (G) on the human body
- This was achieved by:
 - Developing an experimental method for measuring the cyclical acceleration the human body experiences whilst using a trampoline
 - Correlating the trampoline characteristics such as acceleration with human emotion

UNIVERSITY OF TECHNOLOGY SYDNEY

Extrinsic factors of acceleration

- Trampoline bouncing experiments were conducted at UTS to obtain the change in acceleration experienced by a trampolinist over a specified time period
- Extrinsic factors of acceleration investigated in experiments:
 - Magnitude: peak acceleration (G)
 - Direction: vertical displacement (mm)
 - Duration: cycle-time (s), air-time (s)
 - Rate of onset: change in rate of acceleration, jerk (G/s)
 - Position: location of bounce on trampoline bed

Intrinsic factors of acceleration

- A survey was conducted with 39 participants to obtain subjective feedback on the motion and emotion felt in conditions that mirrored the trampoline experiments
- Intrinsic factors of acceleration were investigated to see what personal attributes influence the trampoline experience
 - Age
 - Health
 - Gender
 - Physical conditioning
 - Other factors

Acceleration data

- The accelerometers provided acceleration v time graphs
- The acceleration characteristics were derived from these graphs
- The camera captured images of the trampolinist to compare a person's movement to acceleration characteristics

UNIVERSITY OF TECHNOLOGY SYDNEY

Variables experimentally tested

- Biomechanics: compared images that were synced to acceleration graphs to determine what movements influenced trampoline acceleration characteristics
- Trampoline type: compared acceleration characteristics of trampolines with three different spring systems
- Weight: the influence of weight on acceleration characteristics
- Location: the influence of bouncing location on acceleration characteristics

