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Abstract—The mean squared error (MSE) is commonly used to 
measure and compare the performance of various phase 
estimation techniques in communications and signal processing 
systems. When the received signal contains recursive nuisance 
parameters, the MSE is extremely difficult to obtain and even the 
conventional modified Cramér-Rao bound (MCRB) can not be 
readily applied. In this paper, a recursive MSE bound and its 
simplified calculation method are proposed to solve the problem. 
As an application example, an adaptive hybrid antenna array and 
its associated angle-of-arrival (AoA) estimation technique are 
presented. The MSE of the AoA estimation is simulated and 
compared with the recursive MSE bound and MCRB. The results 
show that the proposed recursive MSE bound provides a tighter 
lower MSE bound than the recursive MCRB. 
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I. INTRODUCTION 

Phase estimation is a fundamental technique in 
communications and signal processing systems [1–4]. 
Demodulation of phase modulated signals and carrier 
frequency synchronization are the most common applications 
of phase estimation. In radar and communications systems 
employing phased antenna arrays, phase estimation is also 
essential to detect the angle-of-arrival (AoA) of the incident 
signal. Based on the AoA information, the phases of the 
antenna elements can be adaptively adjusted to increase the 
signal-to-noise ratio (SNR) of the received signal [2,3,11–13]. 

The mean squared error (MSE) is commonly used to 
measure and compare the performance of different phase 
estimation techniques [6,7]. Unfortunately, the MSE is often 
infeasible to obtain, especially when random nuisance 
parameters are present in the received signals. This difficulty is 
somewhat moderated by using the Cramér-Rao bound (CRB) 
and modified Cramér-Rao bound (MCRB) to give the lower 
MSE bounds for the estimation and hence provide a 
meaningful indication of the estimation performance at 
relatively high SNRs [5–10]. 

In many applications such as the above mentioned AoA 
estimation for phased antenna arrays, however, the received 
signal sometimes contains recursive nuisance parameters 
[12,13], that is, the previously estimated phases are fed back to 
the received signal and thus impact on the phase estimation 
which follows. For phase estimations under this condition, the 
direct evaluation of the MSE is prohibitively difficult, and 

even the MCRB can not be readily applied. This is because the 
MSE evaluation requires the unconditional probability density 
function (pdf) of a phase estimate, but this pdf at a given time 
instant can only be determined if the unconditional pdfs of the 
phase estimates at all previous times are determined first. This 
recursive nature in finding the unconditional pdf of a phase 
estimate not only makes the MSE analysis impossible but also 
the numerical methods extremely difficult. To the authors’ 
knowledge, a better way to overcome the difficulty in 
analytically evaluating the performance for the phase 
estimation in presence of recursive nuisance parameters has 
not been found in the literature. 

In this paper, a recursive MSE bound is proposed to evaluate 
the phase estimation performance in the presence of recursive 
nuisance parameters using an adaptive hybrid antenna array for 
millimeter wave (mm-wave) communications [12,13] as the 
application example. The main contribution is the 
simplification in obtaining the unconditional pdf of a phase 
estimate by using a known phase distribution function 
according to the property of the received information-bearing 
signal and a recursively determined average SNR of the 
statistic for the phase estimation. This way, the recursion on 
pdf is shifted to the recursion on SNR, thus resulting in a 
recursive MSE bound as well as a recursive MCRB. A closed-
form expression of the recursive MSE bound is also derived at 
a given average SNR. 

The rest of the paper is organized as follows. In Section II, 
the signal model for phase estimation in presence of recursive 
nuisance parameters is described using the hybrid antenna 
array. In Section III, the infeasibility of the maximum-
likelihood (ML) method for the phase estimation is explained. 
A sub-optimal method is thus proposed and the difficulty in 
evaluating the MSE performance is discussed. In Section IV, 
the recursive MSE bound is proposed and a closed-form 
expression of the bound is given to simplify the calculation. 
The AoA estimation performance using the hybrid antenna 
array is also simulated and compared with the analytical 
results. Finally, conclusions are drawn in Section V.  

II. SIGNAL MODEL 

To show that the problem of phase estimation in presence of 
recursive nuisance parameters is of practical interest and 
importance, an application example is given in the following. 
It relates to the AoA estimation and beamforming for an 



adaptive hybrid antenna array of subarrays used in high data 
rate ad hoc mm-wave communications systems [12,13], where 
the recursive MSE bound can be applied to evaluate the AoA 
estimation performance. 

Fig. 1 shows the hybrid antenna array and beamformer 
structure. For simplicity, only two linear interleaved subarrays 
are considered. Each linear subarray is composed of N  
antenna elements and respective analogue phase shifters 0α , 

1α , …, 1−Nα . The signals received by the antenna elements in 

a subarray are combined after phase shifting to produce the 
subarray signal, and the subarray signal is then converted to 
digital domain via an analogue-to-digital converter (A/D). The 
digital subarray signals are denoted as ( )ns0  and ( )ns1  

respectively. It is seen that the use of analogue subarrays can 
produce less digital signals for the digital beamformer, and 
thus significantly reduce the digital signal processing cost, 
which is an important design consideration for wideband mm-
wave communications. The purpose of the AoA estimation is 
to determine the incident angle of the received information-
bearing signal and adjust the analogue phase shifters in the 

subarrays as well as the digital weights ∗
0w  and ∗

1w  so that the 

hybrid antenna array can be beamformed to maximize SNR. 
 

 

0α  

A/D A/D 

∗
0w  ∗

1w  

AoA 
Estimation 

Beamformed 
Array Output 

0α  1α  1α  2α  2α  3α  3α  

d  

( )ns0  ( )ns1  

θ  

( )ns~  

 
Fig. 1. Adaptive hybrid antenna array and beamformer with two interleaved 
linear subarrays of size N = 4. 

 
Assuming that each antenna element has an omni-directional 

radiation pattern, the received subarray signal is given by  
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array factor of the subarrays, λ  is the wavelength of the radio 
frequency signal, d  is the element spacing, and ( )nvm  is the 

additive white Gaussian noise presented at the output of the 
mth subarray. Once θ  is estimated, the phase shifts determined 

by θ
λ
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dii −= , 1,,1,0 −= Ni L , will be fed back to 

the phase shifters in the subarrays to steer the hybrid antenna 
array towards the incident signal beam. 

Since the AoA estimation is performed recursively, the 
subarray signals received at time index n  are influenced by 
the previously determined phase shifts. Defining a new 

variable  θ
λ
π

sin
2

du = , the subarray signal model can be 

rewritten as  
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where ( ) ( )nsNns ~= , ( )1−nu  is the estimate of u  at time index 

1−n  which is used to determine the phase shifts 

( ) ( )11 2 −− −= nn
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∆
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 is 

the normalized array factor of the subarrays, the magnitude of 
which is shown in Fig. 2 for 4=N . We see that ( )uP ∆  is a 

periodic function of the phase error u∆  with period π2 and 

satisfies ( ) 1≤∆uP  and ( ) 10 =P . 
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Fig. 2. Magnitude of normalized array factor P(∆u). 

 

Assuming that ( )ns  has average signal power ( ){ }22 nsEs =σ  

where {}⋅E  denotes ensemble expectation and that ( )nv0  and 

( )nv1  are independent with zero mean and the same noise 

power 2
vσ , the SNR of a subarray signal is defined as 

22
vs σσγ = .  

Note that in terms of estimating u  at time index n , ( )ns  



and ( )1−nu  are all nuisance parameters. Since ( )1−nu  is estimated 
at a previous time, it is called the recursive nuisance parameter. 
Thus the AoA estimation is formulated as the phase estimation 
in the presence of recursive nuisance parameters, which is 
significantly different from the conventional phase estimation 
models [7–9]. 

III.  PHASE ESTIMATION AND PERFORMANCE 

Given an initial estimate ( )0u , the ML estimation of u  at 
time index n  can be derived as 
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To solve this non-linear optimization problem, a complicated 
search over û  in [ )ππ ,−  is required. Moreover, the 

knowledge of ( )ns  and perfect synchronization are necessary. 

Since the subarray SNR is very low before the beam is 
correctly formed and the signal synchronization is difficult to 
achieve, the optimal coherent estimation is costly and highly 
infeasible.  

A sub-optimal non-coherent method is therefore preferable 
using the differential signal between ( )ns0  and ( )ns1 , i.e., 
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can be approximated as a complex Gaussian variable with zero 
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is an approximately Gaussian distributed statistic with the joint 
conditional pdf of its real and imaginary parts, given ( )ks  for 

nk ,,2,1 L= , denoted as s , and ( )1−ku  for nk ,,2,1 L= , 
denoted as u , 
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where ( )n
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iR  are the real and imaginary parts of ( )nR  
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variance of the real or imaginary part of ( )nR .  

 Since ( )nu  is the phase of a non-zero mean Gaussian 

distributed signal ( )nR , the conditional pdf of ( )nu  is thus [7] 
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indicates that the conditional pdf of ( )nu  is determined by the 

conditional SNR of ( )nR .  
The MSE is usually used to measure the performance of the 

phase estimation. It can be expressed at time index n  as 
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is the unconditional pdf of ( )nu  and [ )ππ ,][ −⋅  means that the 

argument must be restrained to the interval [ )ππ ,− . 

The direct and exact evaluation of MSE from (9) is 

practically infeasible, because the unconditional pdf of ( )nu  not 
only requires the expectation over ( )ks  for nk ,,2,1 L= , but 

also the expectation over ( )1−ku  for nk ,,2,1 L= , which in turn 

requires the knowledge of the unconditional pdf of ( )1−ku  for 

nk ,,2,1 L= . We see that the unconditional pdf of ( )nu  have to 
be recursively obtained, which is extremely difficult even with 
powerful numerical methods. 

 In presence of nuisance parameters, the difficulty of 
evaluating the MSE of the phase estimation can be somewhat 
moderated by alternatively calculating the modified Cramér-
Rao bound (MCRB) [8], which gives a lower MSE bound at 
high SNRs. From (5), the MCRB can be obtained as  
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is the average SNR of ( )nR . It is seen from (11) that even the 
MCRB is still infeasible to calculated since it also requires the 



unconditional pdf of ( )1−ku  for nk ,,2,1 L=  to perform the 

expectation ( )( ){ }21 uuPE k −− . 

IV.  RECURSIVE MSE BOUND 

To solve the problem encountered in evaluating the MSE as 
well as the MCRB, we now replace the unconditional pdf of 

( )nu  expressed in (9) with a known phase distribution 

determined only by ( )nγ  defined in (12). Assuming that ( )ns  is 

Gaussian distributed and thus ( )ns  is Rayleigh distributed, the 

known phase distribution can be chosen as the phase 
distribution function under Rayleigh fading [7], i.e., 
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which is also a periodic function of x  with period π2 .  

To justify the above selection, we simply let ( ) 1=∆uP  for 

any u∆ , i.e., there is no recursive nuisance parameter, then 
( ) ( )( )nn uup γ,1 −  will be the true phase pdf in Rayleigh fading 

channels.  

Since ( ) 1≤∆uP  when there exists recursive nuisance 

parameter, which leads to a reduced average SNR of ( )nR , the 
actual MSE expressed in (9) will be always larger than that 

calculated using ( ) ( )( )nn uup γ,1 − , i.e., 
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Therefore, the right-hand side of (15) represents a lower MSE 

bound, denoted as ( )( )2
nu

MSEB σ . 

Furthermore, from (12) and using the assumption that 
( )uP ∆  is a periodic function, the initial average SNR can be 

determined as 
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where the initial estimate ( )0u  is assumed to be uniformly 
distributed in [ )ππ ,− , and the average SNR for 1>n  can be 

recursively determined as  

( ) ( ) ( )( ) ( ) ( )( ) ( )
∫

−

−−−−− +=
π

π

γγγγ 111
1

211 , nnnnnn duupuP .        (17) 

The MSE bound calculated based on the above recursively 
determined average SNR is thus called recursive MSE bound. 
With the recursive MSE bound, the difficulty in the recursion 

on the unconditional pdf of ( )nu  is simplified to the recursion 

on the average SNR of ( )nR . The MCRB based on this average 
SNR is called recursive MCRB accordingly.    

Further simplification is possible at higher SNR, since 
( )γ,0 xp  can be approximated as the Gaussian distribution 

( ) 2
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xexp γ

π
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and accordingly ( )γ,1 xp  can be approximated as 
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after normalizing it to satisfy the condition ( ) 1,1 =∫
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π
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γ dxxp . 

Fig. 3 and Fig. 4 show the comparisons of the approximated 
( )γ,0 xp  and ( )γ,1 xp  with their respective true phase pdfs 

under different γ  values.  

With the above approximation, the recursive MSE bound 
can be expressed in closed-form as 
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Fig. 3. Approximate and true phase pdfs in Gaussian channel. 
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Fig. 4. Approximate and true phase pdfs in Rayleigh fading channel. 
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where ( ) ( )1lnsinh 21 ++=− xxx  denotes the inverse hyperbolic 

sine function. 
Simulation of the AoA estimation is performed using the 

hybrid antenna array shown in Fig. 1 under subarray SNR =γ  

–2, 3, and 8 dB respectively. The incident angle is assumed to 

be 0=θ  degree. Fig. 5 shows the estimated ( )nu  values for 
one realization under different SNRs, and Fig. 6 shows the 
simulated MSEs averaged over 1000 realizations. The 
recursive MSE bounds and the recursive MCRBs are obtained 
analytically using (20) and (11) respectively based on the 
recursively determined average SNR calculated by (16) and 
(17). It is seen that the recursive MSE bound is rather loose at 
lower SNRs but becomes tighter at higher SNRs. In both cases, 
the recursive MSE bound provides better performance 
indication than the recursive MCRB. 

V. CONCLUSIONS 

It has been shown that the true MSE of the phase estimation 
in presence of recursive nuisance parameters is extremely 
difficult to obtain and the conventional modified Cramér-Rao 
bond can not be readily applied. By replacing the 
unconditional probability density function of a phase estimate 
with a known phase distribution function according to the 
statistical property of the information-bearing signal and the 
recursively obtained average SNR of the statistic for the phase 
estimation, a recursive MSE bound and its simplified 
calculation method are derived. The usefulness of the recursive 
MSE bound is demonstrated through the AoA estimation for 
an adaptive hybrid antenna array of interleaved subarrays. 
Simulation results show that the recursive MSE bound 
provides a tighter MSE lower bound than the recursive 
modified Cramér-Rao bound. 
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