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Preamble 

The Australian urban water industry faces significant challenges to meet growing 
demands on urban water resources under a shifting climate.  To tackle these 
challenges, the sector must adopt new supply and demand strategies to enhance 
climate change resilience, improve water use efficiencies, and protect our urban 
waterways – all in a transparent and cost-effective manner. 

The industry also needs to better understand community expectations regarding 
levels of service, manage the risks entailed in more sophisticated water supply 
systems, minimise greenhouse gas emissions, and develop the expertise required to 
achieve sustainability across the water, energy and land-use planning nexus. 

Good-quality, robust and relevant information is needed to help the sector make 
decisions concerning these emerging challenges.  In 2007 the National Water 
Commission, in partnership with Water Services Association of Australia (WSAA), 
identified several important areas where nationally coordinated action would benefit 
the Australian urban water sector and progress commitments made under the 
National Water Initiative and the COAG.  Embarking on this project, the Commission 
and WSAA had several objectives in mind:  

 build capacity and improve planning by urban water utilities by developing
resources that support best practice urban water supply and demand
planning

 create resources specifically targeting the water planning needs of regional
and smaller urban water utilities and local councils, where resources and
skills can often be in scarce supply

 provide resources that will assist the urban water utility sector and local
government water managers to better incorporate community values and
public benefits and as part of their water planning and investment decisions

 support water managers and utilities to start the complex task of incorporating
climate change into water supply and demand planning.

The Integrated Resource Planning tools and resources that make up this package 
have been developed by industry, for industry, under the guidance of a steering 
committee comprising of urban water planners and practitioners from major and 
regional water utilities.  The Commission and WSAA are pleased to offer the package 
of resources and tools as a contribution to assist the sector in meeting its future 
challenges.   

Ross Young  James Cameron 
Executive Director Chief Executive Officer 
Water Services Association of Australia National Water Commission 
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1. Introduction

This document is the compiled suite of resources developed as part of the Integrated 

Resource Planning for Urban Water project funded by the National Water Commission 

(NWC). It draws on the principles of integrated resource planning (IRP) and builds on a body 

of work previously undertaken for the Water Services Association of Australia (WSAA). 

This chapter provides a brief introduction to IRP, the Integrated Resource Planning for Urban 

Water project and the previous work. 

1.1 Integrated resource planning 

IRP is a process of planning services in a way that ensures the efficient and sustainable 

management of water, energy or other resources. It involves considering both the projected 

demand and the available supply to determine the supply–demand gap. It also involves 

considering a suite of options with the potential to reduce demand or increase supply. 

Demand management and water/energy/resource conservation are core to IRP. Developed 

by the electricity industry in the United States in the 1980s, IRP has been applied to the 

planning of other large infrastructure systems, and has become an important component of 

water supply planning in Australia since the early 1990s. 

Vickers (2001) describes IRP as an open, participatory, strategic planning process, 

emphasising least-cost analysis of options for meeting service needs, while for Swisher 

(1997) IRP is a planning process that aims to integrate centralised and distributed sources of 

supply; conservation measures and supply-side options; and often-conflicting economic, 

social and environmental objectives. IRP generally involves making detailed forecasts of 

demand, developing a wide range of options, assessing demand- and supply-side options on 

an equal basis, and deciding how to meet objectives at least cost while accounting for 

sustainability impacts and uncertainties. 

While supply–demand questions remain a core area for the application of IRP in all situations, 

a key feature of IRP‘s application to urban water is that it can consider wastewater objectives 

as well as water supply objectives. Another feature is that impacts across the total water cycle 

will be relevant. IRP for urban water can be characterised as planning for water services in a 

way that values water conservation as much as it values augmenting existing water supply, 

wastewater and stormwater systems. 

IRP is only one framework within the broad field of integrated urban water management. It 

has both similarities to and differences from other frameworks, approaches and tools in the 

field, such as integrated water cycle management (IWCM), integrated water management, 

water sensitive urban design (WSUD) and Water Sensitive Cities. These approaches focus 

on the integration of water supply, wastewater and stormwater systems and the integration of 

land and water management on a catchment basis. IRP for urban water also addresses those 

issues but retains a focus on the integration of water conservation with supply augmentation. 

1.2 The Integrated Resource Planning for Urban 
Water project 

The Integrated Resource Planning for Urban Water project, led by the Institute for Sustainable 

Futures at the University of Technology, Sydney, involved collaboration with WSAA, the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane City 
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Council, Riverina Water County Council and Wagga Wagga City Council, as well as the 

NWC. 

The project comprises a series of resource papers on various topics, two case studies and 

further development of an existing demand forecasting and options model called the 

Integrated Supply–Demand Planning (iSDP) model. The project also updates the existing 

Guide to demand management (Turner et al. 2008) and demand-management training 

package developed by the Institute for Sustainable Futures for WSAA members. The updated 

guide is titled Guide to demand management and integrated resource planning for urban 

water. 

The resource papers are intended to inform a national water industry audience and 

specifically to assist those involved in urban water planning to deal with emerging issues in 

supply–demand planning. The resource papers cover: 

 Sustainability assessment in urban water IRP (Chapter 2) 

 Complementary analytical techniques for urban water forecasting in IRP (Chapter 3) 

 Incorporating climate change into urban water IRP (Chapter 4) 

 Techniques for estimating water saved through demand management and restrictions 
(Chapter 5). 

The first three of these papers were developed through a three-stage process. First, a 

scoping paper was drafted, based upon current literature. The scoping paper was then used 

to brief key practitioners from around Australia, who were invited to a series of industry 

workshops on the field and brought together for facilitated discussion. The workshop 

discussions were used to shape the development of a draft resource paper on each subject. 

All the resource papers were reviewed by a technical working group comprising Australian 

water industry representatives. 

For more details on the NWC Integrated Resource Planning for Urban Water project, go to 

http://urbanwaterirp.net.au. 

1.3 The Australian IRP framework 

The Guide to demand management and integrated resource planning for urban water and 

associated materials developed for WSAA, such as the iSDP model and training materials 

(updated as part of this project), are based on the Australian IRP framework. The existing IRP 

framework has also been used as a point of reference for this document. The framework for 

urban water planning has five major steps (see Figure 1.1). 
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Figure 1.1: The main steps in the Australian IRP framework  

STEP 4: IMPLEMENT THE RESPONSE

STEP 3: DEVELOP THE RESPONSE

- Develop individual options

- Analyse options & portfolios

STEP 5: MONITOR, EVALUATE & REVIEW

STEP1: PLAN THE OVERALL PROCESS

STEP 2: ANALYSE THE SITUATION

- Forecast demand

- Estimate available supply

 

Source: Turner et al. (2010). 

Step 1 covers planning the overall process. It involves initial problem framing and establishing 

the process. Step 2 (Analyse the situation) includes water demand forecasting and assessing 

available system yields. Step 3 (Develop the response) covers the development and analysis 

of demand- and supply-side options, the selection of options and the development of 

portfolios of options. Step 4 (Implement the response) involves implementing the portfolio of 

options determined in Step 3. Step 5 (Monitoring, evaluation and review) covers the 

evaluation of outcomes for both the implemented response and the overall process. 

1.4 References 

Swisher J, de Martino Jannuzzi G and Redlinger R (1997). Tools and methods for integrated 
resource planning: improving energy efficiency and protecting the environment, UNEP 
Collaborating Centre on Energy and Environment, Risø National Laboratory, Denmark. 

Turner A, Willetts J, Fane S, Giurco D, Kazaglis A and White S (2008). Guide to demand 
management, Water Services Association of Australia. 

Turner A, Willets J, Fane S, Giurco D, Chong J, Kazaglis A and White S 2010, Guide to 
demand management and integrated resource planning, pepared by the Institute for 
Sustainable Futures, University of Technology Sydney for the National Water Commission 
and the Water Services Association of Australia, Inc 

Vickers A (2001). Handbook of water use and conservation, Waterplow Press, Amherst, 
Massachusetts. 
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2. Sustainability assessment in urban water IRP 

Simon Fane, Naomi Blackburn and Joanne Chong 

Institute for Sustainable Futures, University of Technology, Sydney 

Please cite this paper as: 

Fane S, Blackburn N and Chong J 2010, ‗Sustainability assessment in urban water IRP‘, in 
Integrated resource planning for urban water—resource papers, Waterlines report, National 
Water Commission, Canberra 

Summary 

What is the purpose this paper? 

The purpose of this paper is to provide urban water planners with the background required to 

make informed decisions about how they will incorporate sustainability impacts into options 

assessments. The paper focuses on options used in integrated resource planning (IRP) for 

supply–demand planning. It will be of interest to those considering multi-criteria analysis 

(MCA), such as that documented in the WSAA sustainability framework (Lundie et al. 2008a), 

‗triple bottom line‘ assessment or valuing sustainability impacts in dollar terms as 

‗externalities‘. 

This paper should provide readers with the information needed to: 

 decide which approach will best suit their situation 

 identify what the implications of selecting a particular approach are likely to be 

 decide what will be needed for the assessment to constitute good practice in 
sustainability assessment. 

The paper aims to inform the reader about the implications of different approaches and how 

to use other resources on MCA and externality valuation together with the Australian IRP 

framework (see Chapter 1 for an overview of the IRP framework). 

The paper does not aim to provide a step-by-step guide for conducting a sustainability 

assessment. 

Why is the paper needed? 

Despite the widespread recognition of the importance of sustainability assessment, there is a 

lack of guidance for urban water planners on how to choose between the different decision-

making frameworks available for incorporating sustainability. The WSAA sustainability 

framework, documented in Lundie et al. (2008a), guides readers on the use of MCA. It is 

drawn on extensively in this paper. There is less information available on how to value the 

sustainability impacts of urban water systems in dollar terms as externalities for inclusion in 

urban water planning. Before this paper, there has been limited guidance that directly 

compares the different decision-making frameworks and highlights the advantages and 

challenges of each. 

Will this paper be useful to me? 

The primary intended audience for this paper is urban water planners working at the scale of 

a single utility‘s area of operations or planning for a particular water system or sub-area. It 

should be useful to those tasked with developing regional urban water supply–demand or 
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integrated water cycle management (IWCM) plans. However, the question of how best to 

include sustainability impacts together with direct costs in the assessment of options for urban 

water is equally relevant to those engaged in studies of IWCM for a new suburb or 

development site. 

What are the approaches to sustainable assessment for urban 
water and how do they compare? 

This paper compares approaches that utilise multiple criteria to assess sustainability impacts 

to economic evaluation methods for assessing those impacts as externalities using the single 

criterion of dollars. 

In relation to economic evaluation, the paper focuses on including externalities into an 

extended cost-effectiveness analysis (CEA) rather than a cost–benefit analysis (CBA) 

because CEA is used within the existing IRP framework. In CEA, the objective (such as 

having a secure water supply for a region over a given planning period) is set, and potential 

options are considered to meet that objective. Despite the focus on CEA, the discussion of 

economic evaluation in the paper is equally applicable to CBA. 

In many situations, treating sustainability impacts as externalities in an extended CEA or CBA 

is not viable, given the constraints of the available data for measuring and valuing 

‗externalities‘ and the resources available for generating additional data. Furthermore, the 

potential exists for impacts to be considered ‗intangibles‘ in the economic sense. They cannot 

be valued adequately in dollars. In such situations, some form of MCA may well be the only 

approach available for including sustainability impacts. 

MCA is not a ‗quick and dirty‘ alternative to sustainability assessment. The requirements for 

good practice in MCA, particularly in relation to the participation of stakeholders, necessitate 

careful consideration and sufficient resourcing. How MCA integrates with the existing IRP 

framework also needs to be considered. Likewise, consideration should be given to how the 

results of assessments against different criteria will be aggregated. The outcome of an MCA 

can be a single ‗score‘ for each option and a ‗triple bottom line‘ scoring on economic, 

environmental and social indexes, or independent scores against each criterion for all options. 

In Table 2.1 the principles of IRP as described by Vickers (2001) and Swisher et al. (1997) 

are used to contrast extending CEA via economic evaluation of externalities and MCA. It 

provides a summary of the comparisons between approaches that are made in this paper. 
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Table 2.1: Comparison of economic evaluation of externalities in extended CEA and MCA 
against IRP principles 

IRP principle Extended CEA MCA 

An open and 
transparent 
planning process 

In CEA the objective is clear. 
Alternatives are considered in relation to 
how cost-effectively they meet the 
objective. 

There is a potential loss of transparency 
in extending CEA, both in how 
externalities are valued and through 
including direct costs with externalities 
in a single dollar value. 

The potential for openness is seen as 
one of the key strengths of MCA 
because all the objectives and criteria 
are usually clearly stated. 

However, whether criteria overlap and 
result in a form of double counting is 
commonly less clear. 

Participatory 
planning process 

It is technically possible to include 
stakeholder values in an extended CEA 
in a robust way with no significant 
stakeholder participation. 

However, stakeholder participation is a 
highly effective means of identifying and 
mapping stakeholder groups, as well as 
mapping out which impacts exist. 

Stakeholder participation is essential 
for good practice in MCA and 
advocates of MCA see the potential for 
stakeholder participation as a strength 
of the approach. 

Critics of MCA highlight the ‗gaming‘ 
that can result from stakeholders 
selecting assessment criteria. 

Emphasising 
least cost … for 
meeting service 
needs  

A key advantage of extended CEA is 
that it retains a focus on minimising the 
cost of service provision. 

Relative cost-effectiveness can easily 
be lost in MCA. It can then be difficult 
to demonstrate that the final portfolio of 
options selected to meet the goals and 
objectives of a water strategy do so 
cost-effectively. 

How MCA can be integrated with the 
existing IRP framework is addressed in 
this paper. 

Integrating 
demand 
management 
with increased 
supplies 

Emphasising least cost highlights that 
many demand-management options are 
low impact and highly cost-effective. 

With MCA, highly cost-effective 
demand-management options may be 
missed if only options popular with 
stakeholders (such as reuse and 
rainwater tanks) are compared to large-
scale supplies. 

Integrating often 
conflicting 
economic, 
environmental 
and social 
objectives 

There are inherent difficulties in 
measuring all economic, environmental 
and social values of sustainability 
impacts in dollar terms. The potential 
exists for impacts that will be 
considered ‗intangibles‘. 

For some impacts, there is unlikely to 
be the data required to make the links 
from the source of the externality 
through the changes in the biophysical 
environment to who is affected and to 
what extent.  

MCA can be well suited to integrating 
multiple, often conflicting, objectives. 
Various MCA methodologies are 
designed to do just that. 

MCA can incorporate some impacts 
that cannot be valued adequately in 
dollar terms where the linkages are 
difficult to establish quantitatively. 

However, the extent to which the 
results of assessments against different 
criteria can sensibly be aggregated 
need to be considered. 

When would each approach make sense? 

Extending CEA via the economic evaluation of externalities makes sense where the ranking 
of options and portfolios of options in terms of relative dollar costs is the best means of 
communicating the choice involved to decision makers. While placing dollar values on some 
sustainability impacts can be problematic, it provides a critical relativity between impacts and 
direct costs and between choices among urban water options and other public policy goals. 
Extended CEA requires the availability of sufficient data that can both measure and value the 
significant sustainability impacts of options as externalities. Alternatively, resources will be 
needed to conduct the biophysical and valuation studies to collect that data. 

MCA makes sense where it is recognised that decision-making may involve multiple 
objectives and multiple viewpoints, and that there will need to be trade-offs between 
objectives and viewpoints. MCA also makes sense where stakeholder participation is likely to 
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be considered an important part of the sustainability assessment process. MCA can take 
various forms, and there are numerous potential methods and techniques. The outcome of an 
MCA can vary from a single ‗score‘ for each option to a ‗triple bottom line‘ score to a 
non-aggregated assessment against each criteria. Different approaches will suit different 
situations and decision-making contexts. 

Where to look in the paper 

Some sections of the paper that might be of particular interest to reader groups: 

 Section 2.2.2 provides an introduction to CBA, CEA and MCA as the main decision-
making frameworks available for incorporating sustainability impacts. It also explains why 
CEA and MCA are the approaches primarily addressed in this paper. 

 Section 2.2.3 delineates the seven characteristics of ‗good practice‘. 

 Section 2.3.1 covers the issue of stakeholder participation and the place of stakeholders 
within governance arrangements for sustainability assessment. 

 Sections 2.4.1 and 2.4.2 provide details on the challenges of identifying, estimating and 
measuring externalities in order to make the links from the source of an externality 
through to who is affected. 

 Section 2.4.3 discusses the difficulties raised for extended CEA by ‗intangible‘ impacts 
that cannot be valued in dollar terms. 

 Section 2.5.3 discusses how MCA can be used with the existing IRP framework. 

 Section 2.5.4 explores the strengths and limitations of an MCA decision-making 
framework. 

What are the take-home messages? 

A sustainability assessment of urban water options should involve examining all the potential 
solutions on their merits for a particular location. 

Regardless of the decision-making framework selected, how to muster the resources, 
capacity and willingness to strive for good practice should be the main considerations. 
Determining how to do either MCA or extended CEA well will be more important in the end 
than which approach is selected. 

This paper sets out six common steps that should be discernible in any sustainability 
assessment of options for urban water. Together, the lists of six common steps and seven 
‗good practice‘ characteristics can be used as a checklist for practitioners designing their own 
assessments. 

2.1 Introduction 

The Australian IRP framework, as described in Turner et al. (2010), is designed to guide 
water utilities in planning for the provision of water services across long-term planning 
horizons. This type of strategic planning for urban water involves seeking a set of options 
which together will achieve a specified objective, across a set time period and within 
regulatory limits. The goal of the overall IRP process is to determine which options to 
recommend in a final strategic plan. 

Traditionally, a key element of IRP is the comparison of options on the basis of least cost as 
measured by a CEA. While the cost of implementing a strategy will always be an important 
consideration in water planning, water utilities are increasingly looking to incorporate into their 
decision making a broader range of sustainability impacts that are not conventionally captured 
in a CEA. 

Despite the widespread recognition of the importance of sustainability assessment, there is a 
lack of guidance for urban water planners on how to choose between different decision-
making frameworks to incorporate sustainability. The WSAA sustainability framework, 
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documented in Lundie et al. (2008a) and referenced throughout this paper, provides guidance 
on the use of MCA. However, there is limited tailored guidance available on the use of CEA or 
even CBA for sustainability assessments in urban water. This paper seeks to fill some of 
those gaps by describing and comparing the CEA and MCA frameworks, methods and tools 
that could enable the assessment of economic, environmental and social impacts within IRP 
for urban water. While the same techniques for economic evaluation of externalities can be 
used with either approach, the paper focuses on CEA rather than CBA because CEA aligns 
with the IRP framework.

1

2.1.1 Outline of this paper 

This paper has six main sections: 

 Section 2.2 provides background and answers three questions: why is sustainability
assessment important in IRP and urban water planning more generally, what are the
possible decision-making frameworks, and what constitutes good practice?

 Section 2.3 addresses the broad question of which initial issues need to be considered
when selecting an appropriate decision-making framework and sustainability assessment
method for urban water planning in a region. This includes the overarching issues of how
a sustainability assessment will sit within the governance arrangements for water
planning in that region, and therefore what forms of stakeholder or public participation
will be appropriate.

 Sections 2.4 and 2.5 describe the frameworks, methods and tools for CEA and MCA
approaches, respectively. The sections provide details on how sustainability impacts can
be identified, estimated and measured within each of the frameworks. The strengths and
weaknesses of the two approaches and the implications of choosing between the
methods and tools associated with them are discussed.

 Section 2.6 outlines the issues that need to be considered when the results of
sustainability assessments are integrated back into an urban water planning process.

 Section 2.7 draws conclusions and sets out key next steps for prospective water
planners.

 Section 2.8 provides a list of further resources on relevant topics and studies that provide
examples from around Australia.

2.1.2 Scope of this paper 

The purpose of this paper is to provide potential users of the Australian IRP framework and 
other water planners with enough background on how to incorporate considerations beyond 
direct cost into water planning so that they can make decisions about which methods best suit 
their situations. It should be of value to those interested in either ‗triple bottom line‘ 
assessment, incorporating externalities, or sustainability assessment more generally. It aims 
to enable water planners to either develop a brief of works for an assessment (and for 
evaluating consultants‘ proposals) or to develop a plan to do the works themselves. 

This paper aims to inspire readers to incorporate an assessment of a broad range of 
sustainability impacts into their water planning practice. The paper does not provide a 
step-by-step guide on how to conduct a sustainability assessment within either a CEA or an 
MCA framework. Rather, it shows the reader how to use existing resources, such as the 
WSAA sustainability framework (Lundie et al. 2008a), together with the Australian IRP 
framework. 

The primary intended audience for this paper is urban water planners working at the scale of 
a single utility‘s area of operations or planning for a particular water system, although it will 
also interest others in the urban water and water planning fields. It has been assumed that 
readers are not completely new to this area and may have looked at the final plans of other 
utilities and discussed urban water planning processes with more experienced practitioners. It 

1
 See the overview section in Turner et al. 2010 for a discussion of why the IRP framework utilises CEA 

in comparison to CBA. 
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is assumed that readers will have heard of MCA and CBA and possibly CEA, but that this 
paper may be the first they have read that explains the differences and compares the 
approaches in the context of sustainability assessment for urban water. 

On the question of how the material presented in this paper relates to the existing IRP 
framework as set out in Turner et al. (2010), the paper‘s primary goal is to inform the 
sustainability assessment of options and portfolios of options. This is Step 3 of the existing 
IRP framework (‗Develop the response‘—see Figure 1.1). Details of the alternative 
approaches to sustainability assessment provided in the background section (Section 2.2) as 
well as in sections 2.4 and 2.5 are directly relevant to Step 3. Those sections describe how 
the sustainability impacts of options and portfolios might be assessed when taking either a 
CEA or MCA approach. 

This paper also addresses Step 1 of the existing framework (‗Plan the overall process‘). The 
question of what needs to be considered when selecting an appropriate approach to 
sustainability assessment is covered in Section 2.3; indeed, the paper as a whole should 
inform the initial planning phase of an urban water planning process. 

This resource paper and Turner et al. (2010), Guide to demand management and integrated 
resource planning for urban water, does not replace the need for water planners in specific 
regions to look first to the guidance provided by the relevant state government department. 
For example, in New South Wales the Department of Water and Energy has IWCM guidelines 
for water planning by non-metropolitan water utilities. Those guidelines require triple bottom 
line assessment of options. In Victoria, the Department of Sustainability and Environment has 
guidelines for water planning by non-metropolitan water utilities. Relevant state government 
guidelines are included in Section 2.8 at the end of this paper. 

2.2 Background 

2.2.1 Why is sustainability assessment important? 

Since the Bruntland Commission was convened in 1983, sustainable development and 
sustainability have emerged internationally as one of the fundamental and overarching goals 
of public policy. The concept of sustainability implies that whatever is done should be done in 
a manner that will not harm future generations. It implies a more ‗holistic‘ understanding of the 
relationships between the social, economic and ecological aspects of any problem or 
situation. It also implies that what we do should not destroy critical life-supporting capacities 
of ecological systems. By definition, ‗sustainability assessment‘ should enable decisions 
about how resources are allocated and managed in order to achieve sustainable outcomes. 

The concept of sustainability encompasses not only environmental and ecological systems, 
but also the social and economic dimensions of society, as well as the interactions between 
those dimensions. The triple bottom line categorisations of economic (or financial), 
environmental and social impacts are a useful guide to sustainability assessment, which may 
also be expanded to include technical risks and public health impacts. For example, Lundie 
et al. (2008a:6) observe that: 

To assist the urban water industry to achieve sustainable use of scarce water resources, 
the industry needs to develop a methodology for evaluating the sustainability of the 
various supply and demand options taking into account economic, environmental, human 
health, technical and social considerations. 

Existing frameworks and guidelines have identified the importance of including sustainability 
impacts in urban water management and planning, including in IRP (Ashley et al. 2004, 
Mitchell et al. 2007, Lundie et al. 2008a, Turner et al. 2010). This includes impacts on 
biodiversity, recreation and amenity, greenhouse gas emissions, and river health. In the 
context of IRP for urban water, decisions about which options and portfolios of options to 
implement should be informed by an assessment of how the different choices would affect 
sustainability. However, despite existing guidelines, the assessment of the environmental, 
social and other ‗non-market‘ aspects of sustainability in urban water management and 
planning remains limited (Turner et al. 2010). 
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Significantly, it is often the environmental and social aspects of decisions not reflected in 
market transactions that represent the most substantial value for individuals, communities and 
society. It can be argued that if stakeholders are to regard an urban water planning process 
as credible, and hence if the resulting decisions are to be politically acceptable, planners must 
explicitly take into account both direct costs and non-market considerations, as well as the 
trade-offs between them. This is because sustainability assessment attempts to include 
society‘s broader values in the selection of options for urban water. 

An assessment of the sustainability impacts, whether as environmental, social and other 
criteria or as non-market impacts (externalities), is indicative of taking a ‗whole of society‘ 
perspective to options analysis. Such a perspective is the appropriate one for water planning. 
However, tensions may exist between the results of an analysis from a whole-of-society 
perspective and the results of an analysis from a water utility‘s financial perspective. In the 
context of options analysis for IRP, the tensions are addressed through having a number of 
alternative ‗cost perspectives‘, including a societal and utility cost perspective (see Step 3C in 
Turner et al. 2010). Alternative cost perspectives do not by themselves resolve the tensions, 
but they highlight issues such as the loss of revenue from water sales when potable water is 
conserved. How easily tensions are resolved will depend on the institutional arrangements 
governing water planning in a given region. 

In short, sustainability assessment is necessary if decision makers are to make good 
decisions when planning urban water systems and be perceived as making good decisions. 
Good decisions do not cause significant unexpected adverse impacts, do not result in 
unnecessary harm, and are acceptable to the community. It is hoped that they are also 
decisions that will be looked back upon as having been the right ones. 

2.2.2 What are the possible approaches to sustainability 
assessment? 

This section introduces the main decision-making frameworks available for incorporating 
sustainability impacts into the assessment of urban water management options: CBA, CEA 
and MCA. Of the three, CBA and CEA are presented separately but share many common 
techniques for estimating the monetary values of non-market impacts. 

Cost–benefit analysis involves estimating monetary values for all future benefits and costs 
of alternatives under consideration. The nature of the alternatives will depend on the context 
and the objectives of the CBA study. For example, it could focus on a change to urban water 
policy, a demand-management program or a single infrastructure development. A 
recommendation can then be made to implement one or more alternatives expected to have a 
net benefit to society—that is, those for which the total benefits outweigh the total costs. 

By translating all impacts, sustainability or others, into monetary terms, CBA provides a 
methodological framework for systematically including all financial, social and environmental 
impacts into a decision in dollar terms (see Box 2.1). Various methods are available to assign 
a monetary value to sustainability impacts that are not traded in markets, and hence have no 
market price. Those impacts could include effects on values from biodiversity to amenity and 
recreation (see Section 2.4 for further discussion). CBA also involves a systematic 
‗discounting‘ of the streams of future benefits and costs to account for the time preference for 
money. This reflects the idea that consumption now is worth more than consumption in the 
future. Valuation is therefore sensitive to the choice of discount rate, and this aspect can be a 
concern for some stakeholders when applied to particular sustainability impacts (see Box 2.5 
in Section 2.4). 
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Box 2.1: Assumptions and principles underlying cost–benefit analysis 

The foundations of CBA lie in welfare economics; it therefore incorporates the key 
assumptions that: 

 the level of welfare for the whole of society is the sum of the welfare of each individual 

 the option that offers the highest net benefit should be the preferred option for society 

 the level of welfare for the whole of society can be measured in dollar terms. 

In other words, CBA assumes that, while there may be winners and losers from a particular 
alternative (some individuals and organisations will benefit, whereas others will bear costs), 
government can redistribute the gains from winners to losers, leaving everyone better off. It 
further assumes that impacts of all types can be represented as dollar costs or benefits. 

Some critics of CBA believe that these key assumptions abstract too far from reality and that, 
therefore, decisions made solely on the basis of a CBA study may not ultimately maximise 
social welfare. 

Proponents of CBA agree that it should not be the sole decision-making criterion in any given 
situation. They also point to methodological developments that can improve CBA, if not 
completely resolve the theoretical issues raised by critics. 

Sources: Gowdy (2003), Spash et al. (2005), OECD (2006).  

 

CBA is generally the preferred decision framework recommended in Australian and state 
government guidelines for regulation, project and policy appraisal (see, for example 
Queensland Treasury 2002, Commonwealth of Australia 2006, Government of Victoria 2007). 
It is also the methodology recommended in the Council of Australian Governments‘ best 
practice regulation guide (COAG 2007). However, for the reasons given below, this paper 
focuses on the simpler CEA methodology. CEA is also an accepted economic appraisal 
method (NSW Treasury 2007, Queensland Treasury 2002, Government of Victoria 2007). 

While CBA can be used to compare demand and supply options, placing a value on the water 
supplied or saved in the context of a supply–demand plan is not nessarily as simple as 
applying the current per kilolitre price of water. Equally, a previously calculated long-run 
marginal cost of supply cannot nessarily be used. This is because both the water price and 
the marginal cost will vary depending on the outcome of a supply–demand plan (see the 
overview section in Turner et al. (2010) for a discussion of using CBA in comparison to CEA 
in urban water supply–demand planning. Given these issues, the main role for CBA in urban 
water planning is more likely to be at the point of environmental impact assessment (EIA) of 
large-scale individual projects, such as new dams, desalination plants or water recycling 
plants. 

Cost-effectiveness analysis, like CBA, involves valuing benefits and costs of options in 
monetary terms—the difference is that the main benefits of alternatives are measured in 
physical rather than monetary terms. The decision metric is then the net dollar cost (or the 
dollar cost per unit) of achieving the underlying objective. 

CEA is a useful technique when it is easier to identify benefits and measure them in physical 
terms, rather than assign a dollar value (Mitchell et al. 2007, Government of Victoria 2007). It 
is best applied where the various options being considered will result in the same or 
comparable outcomes. It is therefore well suited to urban water planning situations, such as 
supply–demand planning, where the levels of service are commonly predefined by regulated 
standards. Ideally, the levels of service standards will also reflect community preferences 
(Erlanger and Neal 2005). In this way, CEA allows options to be ranked and compared on the 
basis of least (net) cost to meet a previously agreed objective. 

In the current IRP framework, CEA is used to estimate the (net) cost per kilolitre of water 
saved or supplied by each individual option. From this ranking of the options, portfolios of 
options that all meet the same objective (for example, providing a secure water supply over 
the study period) are then developed and compared according to their relative (net) cost in 
another CEA. The IRP framework guidelines (Turner et al. 2010) suggest that some 
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sustainability impacts can be incorporated into IRP via monetisation and inclusion in an 
extended CEA. However, beyond greenhouse gas emissions, the monetisation of 
sustainability impacts has not occurred in most IRP studies to date. 

Proponents of CBA argue that cost-effectiveness can only be a partial evaluation of options 
because not all benefits are valued in dollar terms. Consequently, they argue that CEA cannot 
help with the decision about whether or not the underlying objective is itself worth public 
investment (OECD 2006). This is true, but in practice CEA is used extensively to evaluate 
public investments in the health, safety and education sectors, where the case for pursuing 
particular public policy goals has already been established through other political, institutional 
or consultative processes. 

Security of urban water supply could arguably be one such type of public policy goal. This is 
not to say that community input into the parameters of a ‗secure water supply‘ is not required, 
but rather that processes other than CBA may offer more pragmatic, defensible and 
representative ways to capture society‘s preferences in the formulation of overriding public 
policy goals. Due to CEA‘s alignment with the existing IRP framework, this paper focuses on 
CEA rather than on CBA. Nevertheless, the guidance material on economic evaluation is 
equally relevant to CBA. 

Multi-criteria analysis is an alternative framework for decision making, and involves using 
multiple criteria to assess options. Unlike CEA and CBA, MCA does not require the 
monetisation of all impacts, although there may be some criteria for which indicators can be 
measured in dollar terms. MCA requires a mechanism for selecting the criteria on which 
alternatives will be measured or ranked, as well as a mechanism for making trade-offs 
between criteria. At its simplest, trade-offs can be made by weighting criteria against each 
other. 

MCA frameworks have been applied in urban water planning in numerous locations, are 
encouraged by government department guidelines such as the IWCM guidelines in New 
South Wales, and have been documented by a decade of literature. Examples of urban water 
planning applications of MCA include the Eurobodalla IWCM study (DPWS 2003), the Gold 
Coast Waterfutures project (Lundie et al. 2008b) and WA Water Corporation‘s Water Forever 
project (Water Corporation 2008c). Literature supporting the application of MCA to water 
planning includes academic papers describing various approaches and criteria sets, as well 
as a number of water industry guidance documents on the practical application of MCA to 
urban water planning (for example, Lundie et al. 2008a and Ashley et al. 2004). 

MCA explicitly recognises that decision making may involve multiple objectives and multiple 
viewpoints, and that in complex situations trade-offs will need to occur between objectives. It 
acknowledges that complex decisions are rarely made by one person or on the basis of a 
single metric, such as dollar cost alone (Lundie et al. 2008a). While MCA can be used in 
sustainability assessment, it can also be embedded in a larger set of techniques or steps that 
are applied to assist in structuring decision making or developing a coherent preference 
selection among stakeholders in complex situations. 

The principal objective of many MCA frameworks is to support the decision-making process in 
identifying the option most preferred by the selected stakeholders (Roy 1991). This process 
captures sustainability impacts that are identified as important by those stakeholders. The 
selection and use of agreed decision criteria are central to this process. Approaches to MCA 
vary, based on how stakeholders are selected, how they express their preferences and how 
those preferences are captured in mathematical terms to enable a comparative assessment 
(Lundie et al. 2008a). 

The OECD (2006) observes that MCA tends to be more ‗transparent‘ than CBA because all 
the objectives and criteria are usually clearly stated, while the assumptions underlying the 
objectives of a CBA are not usually made explicit. However, critics of MCA argue that in 
practice it is not as ‗accountable‘ as CBA, because scores and weights are often chosen by a 
small group of experts rather than a wider representative group covering all stakeholders 
(OECD 2006). Nevertheless, these are issues of application rather than fundamental 
characteristics of the various decision-making frameworks, and CBA, CEA or MCA can be 
conducted in ways that are both transparent and participatory. 
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It is important to remember that, whatever framework is used, bringing sustainability impacts 
into decision making for urban water necessarily involves processes of simplification and 
codification. As a result, some sustainability impacts and types of values may be given 
greater recognition than others in the overall decision-making process. For this reason, 
decisions about which approach and methods to use for sustainability assessment need to be 
carefully considered and transparently communicated. 

2.2.3 What constitutes good practice in sustainability assessment? 

Despite variations between decision-making frameworks, there are a number of common 
characteristics that can be used to judge good practice in the assessment of sustainability 
impacts for urban water planning. 

Good practice is characterised by: 

1. An approach aligned with the governance situation in the region 

2. A structured assessment framework 

3. A method appropriate to the circumstance and scale of the decisions 

4. The application of a systems understanding when identifying impacts 

5. The use of robust estimates of the magnitude of impacts 

6. Clarity in the treatment of uncertainty 

7. Transparent valuation and reporting. 

Aligned with the governance situation 

A sustainability assessment should be aligned with the existing governance situation in a 
given region. This includes ensuring consistency with current state government policy 
covering water planning and recognising the existing institutional arrangements. It also 
involves considering the range of stakeholders in water planning decisions and their potential 
desire for participation or representation in any assessment of options. 

Structured assessment framework 

Various authors stress the importance of a structured framework to guide the process when 
incorporating sustainability impacts into an assessment (Lundie et al. 2008a, Bowers and 
Young 2000). This is because, to make an informed choice, all options must be considered in 
a consistent manner across the same period of analysis, the same spatial scale, using the 
same criteria, and the same decision metrics. A structured assessment framework provides 
the basis for justifying a recommendation for a particular option or portfolio. 

Another of the reasons cited for a structured framework is to provide ‗markers‘ to return to 
when inevitable iterations occur. The acceptance of the possible need for iteration is a 
common theme in guidance on options assessment for urban water (Lundie et al. 2008a, 
Turner et al. 2010). 

Appropriate method 

The approach selected needs to be appropriate to the scale of the decisions that are being 
informed by the assessment, as well as the circumstances of the water utility or water 
planning organisation. Those circumstances include the prevailing institutional arrangements 
and the available resources, including the skills and capacities of staff. 

These first three characteristics of good practice are the basis for Section 2.3 of this paper. 

Identifying impacts through a systems understanding 

A sustainability assessment first requires the identification of the potential impacts that will be 
considered in the study. In relation to sustainability assessment of urban water options, this 
paper argues that the best approach to comprehensively identify the potential impacts is 
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through developing a ‗systems understanding‘ of the urban water options. Alternatively, a 
previously developed list of impacts or criteria that is based on such a systems approach can 
be consulted. 

Importantly, developing a systems understanding will involve the explicit definition of the 
urban water system, with the options, the system boundaries and the surrounding systems 
included. A systems approach provides both a method for the analyst to systematically 
identify impacts and a means to demonstrate that important impacts have not been excluded. 
It shows clearly the extent to which secondary or flow-on effects are to be considered inside 
the assessment. Without this, the basis on which some impacts are included and others are 
not may be, or may seem to be, arbitrary. Also, defining the system and its surrounds should 
make it easier to determine what the links are in the chain of cause and effect from the 
system to the impact that will be assessed. 

Robust estimates of the magnitude of impacts 

Before placing a value on a sustainability impact, it is necessary to determine the magnitude 
of that impact. From a systems perspective, this can be viewed as a particular option altering 
the attributes of the urban water system, which in turn causes changes to flow to surrounding 
systems. Those, in turn, cause sustainability impacts. 

Making a robust estimate of an impact requires a firm understanding of the cause and 
attribute links from the urban water option to the sustainability impact that is being valued. For 
example, a supply option that increases pumping from a river may increase turbidity, which 
would affect macro-invertebrates. This would affect native fish and therefore anglers. 
Estimating the impact on anglers relies on having an evidence base on which to estimate 
each of these magnitudes. 

Most if not all impacts included in sustainability assessments will result from an initial physical 
cause. To estimate the magnitude of sustainability impacts one must first determine the 
magnitude of the initial physical cause before determining the magnitude of each of the 
causal links. This usually requires direct measurement, estimates based on modelling of the 
available biophysical data, or both. 

Sections 2.4 and 2.5 address in detail the methods for identifying sustainability impacts and 
estimating the magnitude of impacts in relation to MCA and CEA, respectively. 

Clarity in the treatment of uncertainty 

There will always be uncertainties in assessments of sustainability impacts. Commonly, the 
uncertainties will be significant and may also arise at each link in the chain from the option to 
the impact. Some uncertainties are quantifiable. For these, risk assessment methods exist. 
However, it is likely that significant uncertainty will remain with some physical measurements 
and/or valuations of some impacts. 

Good practice involves separating those uncertainties that can be dealt with via risk 
assessment from other forms of uncertainty where the unknowns are greater. Risk can be 
addressed analytically because both the magnitude and the probability of impacts are known 
or can be estimated. Where real uncertainty exists, probabilities or magnitudes are unknown. 
Parameters can sometimes be dealt with via sensitivity analysis, but uncertainties may also 
need to be simply acknowledged. 

Transparent valuation and reporting 

Transparency in reporting—and particularly in how values are assigned to impacts—is a key 

element of good practice and is important for the credibility of a sustainability assessment. 

A transparent valuation method will inform decision making by illustrating how environmental, 

social and economic impacts are weighed up. This includes demonstrating how any trade-offs 

between particular sustainability impacts, and between sustainability impacts and direct costs, 

occurred. Transparency could also mean acknowledging whose values are being included in 



NATIONAL WATER COMMISSION — WATERLINES          15 

the assessment and how (for example, consumer values in a CEA via a survey, or 

stakeholders in an MCA meeting). 

More generally, transparent reporting is important for ensuring the credibility and defensibility 

of the overall decision process. As a key medium for communicating with stakeholders, 

communities and constituents, reporting facilitates accountability. That is, reporting allows 

organisations that are making decisions about investment of public money for urban water 

outcomes to demonstrate, and be held to account for, the reasoning behind their decisions. 

These last two characteristics of good practice are expanded in Section 2.6. 

2.3 Planning the overall assessment process 

This section addresses issues that need to be considered when designing a sustainability 
assessment process for urban water planning in a region. It outlines how to select an 
approach that is aligned to the governance context, while accounting for the potential for 
iteration as well as the internal circumstances of the water utility. 

2.3.1 Accounting for governance and participation 

The starting points for a consideration of governance will be the current state government 
policies covering urban water planning for the particular region; the local, state and national 
regulatory arrangements dictating levels of services, environmental licensing and planning 
consent; and, where applicable, the state government urban water planning guidelines (see 
Section 2.8). Together, these form the existing institutional arrangements with which 
sustainability assessment as part of an IRP process would need to align. 

However, governance is not only about compliance with current regulations. Urban water 
planning decisions are often complex and involve multiple interests, and the finer points of a 
decision-making process in any given situation will defy capture within generic guidelines. A 
consideration of governance requires a consideration of the wider stakeholders in water 
planning decisions and their potential desire for participation or representation in the 
assessment of options. 

Stakeholder participation is a key principle of IRP (Turner et al. 2010), and identifying 
stakeholders is a part of Step 1 of the IRP framework. However, there is limited guidance in 
Turner et al. (2010) on who to involve and how to involve them. Questions about who 
participates are particularly important for sustainability assessment because, as stated in 
Section 2.2.1, sustainability assessment is an attempt at representing society‘s broader 
values in the selection of options for urban water. 

Identifying stakeholders 

Identifying who to involve in water planning begins with the definition of ‗stakeholder‘. A 
United Kingdom guide, Sustainable water services: a procedural guide (Ashley et al. 
2004:79), defines stakeholders as ‗Any individual or group which has a stake in how water 
and wastewater services are delivered, and could include customers, employees, 
environmental and community groups‘. Many water utilities will already have a similar 
definition in use. Lundie et al. (2008a:17) develop this further by outlining, as a starting point, 
a checklist of possible stakeholders for Australian water utilities: 

[the] water authority, owner developer, consent authority, local government, state or 
federal government departments, residents, community groups, environmental groups, 
small business/industry groups, consumer groups, indigenous groups, catchment 
management groups and farmers. 

There are three types of stakeholders represented in this list: 
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1. The first type, institutional stakeholders, have direct power over whether a particular 
urban water option can be implemented. They include the water utility‘s executive, the 
planning and environmental consent authorities, the pricing regulator, local government, 
and various state and federal government departments. They also include an owner or 
developer of a site who has rights under property law. These stakeholders are 
representatives of the existing institutional arrangements. 

2. The second type of stakeholder represents the public, organised into groups. They do not 
have direct power but may wield influence because they are organised into representative 
groups for political engagement. These include groups representing local business 
interests, specific industry groups (such as land developers), trade unions or trade 
councils, pensioner groups and environmental groups. 

3. The last type of stakeholder is the general public, acting individually. They include the 
average residential water user and are not politically organised or necessarily 
represented by a specific group. 

These three types of stakeholders are quite different, and their participation in a given 
sustainability assessment or water planning process will require different mechanisms. 

For the institutional stakeholders, obviously any water planning process will endeavour to 
meet the prescribed requirements of that group. However, beyond that, the appropriate extent 
of stakeholder participation, including public participation, becomes less clear-cut. 

Public participation 

Many authors have argued for a role for public participation or community engagement in 
decision making about public infrastructure, such as urban water systems. The United 
Nations Brisbane Declaration on Community Engagement (2005) states that community 
engagement: 

 is critical to effective, transparent and accountable governance in the public, community 
and private sectors 

 generates better decisions, delivering sustainable economic, environmental, social and 
cultural benefits 

 enables the free and full development of human potential, fosters relationships based on 
mutual understanding, trust and respect, facilitates the sharing of responsibilities, and 
creates more inclusive and sustainable communities. 

There is, however, a potential tension in public participation between the participation of 
representative groups and the participation of individuals, such as residents, who are not 
affiliated with a group. Lundie et al. (2008a) acknowledge this tension, cautioning that some 
types of stakeholders may need more attention because they are not represented by 
established organisations or cohesive groups. Sussking (cited in Carson 2008) also sees this 
tension in the public participation field and notes that, while representatives of organised 
groups can feed information back to their respective groups and represent many voices, 
individuals speak only for themselves and therefore display a sample of the public‘s reaction 
rather than a representation of it. This distinction between individuals and group 
representatives needs to be addressed in the process used for stakeholder involvement; 
different engagement mechanisms may be required for the different types of stakeholders. 

The International Association for Public Participation (IAP2) Australasia‘s Public Participation 
Spectrum outlines five levels of public participation with increasing public impact, from ‗inform‘ 
to ‗empower‘ (see Table 2.2). 
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Table 2.2: IAP2 public participation spectrum 

Level Goal 

Inform
a
 To provide the public with balanced and objective information to assist them in 

understanding the problems, alternatives, opportunities and/or solutions. 

Consult To obtain public feedback on analysis, alternatives and/or decisions. 

Involve To work directly with the public throughout the process to ensure that public concerns 
and aspirations are consistently understood and considered. 

Collaborate To partner with the public in each aspect of the decision, including the development 
of alternatives and the identification of the preferred solution. 

Empower To place final decision-making in the hands of the public. 

a Many practitioners stress that ‗inform‘ is a passive process and could be better considered as a prelude to 
participation rather than as a form of participation (Carson 2008). 

Source: IAP2 (2007). 

The IAP2 spectrum is a useful reference for water utilities seeking to be transparent about the 
level of participation they are committing to, because each level is accompanied by an 
associated ‗promise to the public‘ (IAP2 2007). For example, a commitment to consult may 
involve engagement mechanisms such as focus groups, surveys, public meetings and 
promises to the public that ‗we will keep you informed, listen to and acknowledge concerns 
and provide feedback on how the public input influenced the decision‘ (IAP2 2007). 

In comparison, a commitment to collaborate may involve mechanisms such as citizen 
advisory committees, consensus building and participatory decision-making (IAP2 2007). 
Such an approach promises the public that ‗we will look to you for direct advice and 
innovation in formulating solutions and incorporate your advice and recommendations into the 
decisions to the maximum extent possible‘ (IAP2 2007). Specific techniques such as surveys, 
focus groups, citizen advisory committees and citizen juries require expertise and are likely to 
require the engagement of social researchers. 

Ideally the public should also be involved in deciding what level of involvement is appropriate 
for them. For example, when the WA Water Corporation surveyed community members in the 
early stages of Water Forever planning (Water Corporation 2008a), it found that there was a 
range of preferred engagement levels within the WA community. Fifty-five per cent of 
respondents wanted the Water Corporation to ‗consult‘. However, a significant proportion 
(22%) of respondents indicated that they wanted less involvement, keeping to the ‗inform‘ 
level, and about the same proportion (23%) preferred the higher level ‗involve‘ style of 
engagement.

2
 These preferences were incorporated into the Water Corporation‘s next stages 

of planning (Water Corporation 2008b). 

Section 2.8 includes further resources specifically on the issue of public participation. 

Implications for selecting the decision-making framework 

The level of stakeholder participation decided on may influence the methodology that is then 
selected for options assessment. For example, it is technically possible to include stakeholder 
values in an extended CEA in a methodologically robust way without, or with only limited, 
stakeholder participation. This is not the case with MCA. Likewise, while there is significant 
potential for an ‗involve‘ level of participation in a CBA, a ‗collaborate‘ level of participation 
may prove more difficult because the CBA frame of analysis (the criteria or the decision 
metric) is already set. 

Despite this, in either CBA or CEA stakeholder participation is a highly effective means of 
identifying and mapping all the stakeholder groups, as well as mapping out which non-market 
impacts exist and who would be affected. Estimating stakeholder impacts can also involve 
significant engagement with stakeholders. Methodologically, stakeholder participation in an 
extended CEA through interviews or workshops provides a clear and defensible technique for 
identifying impacts, identifying affected stakeholders, and estimating those impacts on 
stakeholders in dollar terms. There is also potential for ‗collaborate‘ level participation in an 

                                                 
2
 Note that the range in the question was limited to whether respondents preferred an ‗inform‘, ‗consult‘ 

or ‗involve‘ approach. 
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extended CEA, in which stakeholders are involved in defining the objectives that 
cost-effectiveness will be assessed against. 

For advocates of MCA, a particular strength of the approach is the potential for stakeholder 
participation in both the selection and the valuation of criteria. The WSAA sustainability 
framework process is based on the use of stakeholder steering committees—a process of 
‗collaboration‘ that may be accompanied by other public participation opportunities at lower 
levels. One example of such ‗collaboration‘ is the Gold Coast Waterfutures project. MCA has 
also been used for other levels of public participation. For example in its Water Forever 
process, the WA Water Corporation applied MCA for options analysis using a process 
informed by the WSAA framework but the commitment was to ‗involve‘ the public rather than 
to ‗collaborate‘. The Water Corporation published its Reflections: community engagement 
report (Water Corporation 2008b) to show how community input had been gathered and how 
public concerns and aspirations had shaped the criteria and options used in its internal MCA 
process. 

With any form of stakeholder participation beyond the level of ‗inform‘ will come the potential 
for stakeholder ‗gaming‘. Gaming refers to the idea that stakeholders will anticipate how their 
responses are going to be included in any final assessment and respond accordingly. Unless 
the assessment methodologies used are specifically designed to manage gaming, then an 
influence of stakeholder gaming on the assessment should be expected. It is only natural that 
stakeholders will have an interest in particular outcomes. 

For critics of MCA, the potential for stakeholders to influence the selection of assessment 
criteria is a particular issue. However, there are also risks of undue influence from stakeholder 
lobbying or gaming of specific methods in monetary valuation. 

Monetisation methods such as ‗choice modelling‘, because of the more sophisticated framing 
of alternatives, can counter the influence of survey respondents gaming their responses. 
Choice modelling asks respondents to choose between more than two alternatives, each of 
which is described by multiple attributes. This forces respondents to ‗trade off‘ between 
attributes and enables implicit values for the attributes to be estimated (Morrison et al. 2002). 

In MCA with a stakeholder steering committee, the reality of gaming may simply need to be 
acknowledged and managed through the selection of a wide range of stakeholders with 
representative views. It will also be important to maintain some control over the selection 
criteria so that the final set is coherent and avoids criteria that overlap. 

In summary, it is important to consider who the stakeholders are, the different ways they 
might be engaged in the assessment of options, whether there is a need to manage the 
potential for stakeholders gaming the assessment, and how stakeholder participation might 
also need to play a role in the wider IRP process. 

2.3.2 Allow for a structured but iterative assessment 

Urban water IRP is described by Turner et al. (2010) as ‗a complex task involving multiple 
(and often conflicting) objectives, stakeholders, options, risks and uncertainties‘. They cite this 
complexity as necessitating a structured, iterative approach. The need for a sustainability 
assessment framework to provide structure and an acceptance of iteration are themes 
common to the assessment of options for urban water from both multi-criteria and economic 
perspectives (Lundie et al. 2008a, Bowers and Young 2000). These themes are not limited to 
urban water planning; rather, they emerge in literature about public policy and decision 
making in all its forms (Deleon 1999). Two of the reasons given are that they enable planners 
to work systematically and ‗know where they sit‘ based on ‗markers‘ in an established 
structure, and that a coherent framework supports a transparent justification for the 
recommendation of options. 

An iterative approach is necessary because it acknowledges that the real world of strategy 
formation is rarely as straightforward as a linearly structured process implies. Referring to the 
practice of policy development generally, Deleon (1999:28) notes that: 

Policy analysis is invariably iterative because in practice things are seldom tidy. 
Information is often incomplete, people disagree over objectives, parameters shift, policy 
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analysts must be reconciled to developing options and testing them … and then working 
them through again and again. 

This type of policy untidiness will be familiar to water planners. 

The role of iteration in a sustainability assessment is also addressed by the United Kingdom 
Department of Communities and Local Government (DCLG), which states that the underlying 
aim of an assessment should be to ‗reflect the informed preferences of people as a whole‘ 
and that this requires the iteration of the analysis

3
 until a ‗requisite model has been obtained‘

(DCLG 2009:70). A ‗requisite‘ model is described, following Phillips (1984, cited in DCLG 
2009:70), as one that is ‗just good enough to resolve the issues at hand‘. This advice dictates 
that the assessment should only be the minimum necessary to reach a resolution of the key 
issues. The DCLG argues that, while people often find it difficult to rely on approximate or 
‗rough-and-ready‘ inputs, an initial up-front analysis combined with sensitivity analysis will 
help to show what data really matters in selecting between options. 

The potential need for iterations in an assessment only reinforces the need for a structured 
framework, because it is only with a structured and coherent framework that both the water 
planner and all participants are able to identify ‗where we are at‘ in both the options 
assessment process and the wider decision-making process. Lundie et al. (2008a) note that 
an explicit structure supports the participation of stakeholders by providing a reference point 
should iterations occur. 

For practitioners following the current IRP framework, as outlined in Turner et al. (2010), a 
level of structure comes from conducting a sustainability assessment within that framework. 

2.3.3 Matching the assessment to the circumstances 

A key ‗good practice‘ characteristic raised by practitioners is ‗matching the assessment to the 
circumstances‘. In other words, ensure that the assessment will be adequately resourced. 
This also covers the need to select a method that is appropriate to the scale of the decisions it 
aims to inform and reflects the situation of the water utility or water planning organisation. 

Whatever approach to sustainability assessment or options assessment is chosen, there will 
be important common considerations. In addition to the consideration of the current 
institutional arrangements and potential need for stakeholder participation (as discussed in 
Section 2.3.2), it is necessary to ensure that the assessment is systematic, rigorous and 
transparent. To ensure those qualities, adequate resources must be provided. Adequate 
resourcing means the provision of adequate time, funding and skilled people. Consideration 
must be given to the resources needed to conduct the technical analysis, to use the 
assessment method selected and to coordinate the participation of stakeholders. 

The type of sustainability impacts, organisational expertise and technical data available to an 
organisation should also influence the selection of the assessment method. For example, 
MCA approaches generally require biophysical data linked to each of the criteria for each of 
the options, whereas to implement CEA both biophysical data and relevant monetary 
valuations are required. 

Different considerations inform the resourcing of the stakeholder engagement, which also 
links to the assessment method selected. To be done well, MCA, for example, requires 
stakeholder engagement. The resources needed for stakeholder engagement with MCA 
include time to initiate and manage these interactions, facilitation skills, the resources to allow 
stakeholders to be involved in workshops, and the in-house capacity to run such engagement 
processes. 

One tool for considering the implications of alternative approaches is to think through 
prospective approaches using a set of steps that are common to all. These are: 

1. Drawing boundaries and establishing baselines

2. Recognising the requirement for further assessment of impacts of options not
represented in the analysis of direct costs

3
 The DCLG is discussing an MCA , but the principle can be extended more broadly. 
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3. Identifying the impacts to include in a broader assessment

4. Estimating the magnitude of each impact

5. Placing a value on each impact

6. Interpreting and communicating the results.

The resourcing implications of each step can then be taken into account. In conducting a 
comparison of alternative approaches, there is much in common in the resources required to 
apply the two approaches. For example, a well-conducted extended CEA may use 
stakeholder consultation to identify the sustainability impacts and stakeholders affected and 
then conduct an options assessment internally. It is also possible to use focus groups as a 
means to engage the public on questions about which sustainability impacts can be 
monetised and which cannot, and what are acceptable valuations to include in an 
assessment. This process would have similar resource requirements to the MCA process 
described by Lundie et al. (2008a). 

Having the resources to do well whichever method is selected should be the most important 
consideration. There is likely to be a greater difference between a poorly done CEA and a 
well-done CEA than between a well-done MCA and a well-done CEA. Given this, the key 
consideration when selecting an approach should be ‗what will we be able to adequately 
resource and therefore do well?‘ 

2.4 Options and portfolio analysis using 
extended CEA 

The key characteristic of the CEA framework is that it is used for comparing alternative 
options for meeting the same objective (Hanley and Spash 1993). As discussed in 
Section 2.2.2, CEA differs from CBA in that the value of the underlying objective—such as the 
provision of secure urban water services—is not itself measured, but is taken as a necessary 
goal for society. The decision-making metric in CEA is the net dollar cost (or the dollar cost 
per unit) of achieving the underlying objective. In this way, the least-cost set of options to 
meet the required goal can be selected. In IRP for urban water supply–demand planning, both 
the unit cost of water saved or supplied for individual options and the net present value (NPV) 
of portfolios are assessed based on relative cost-effectiveness. 

Incorporating values for sustainability into this framework involves measuring how various 
options and portfolios of options affect sustainability, and valuing those impacts in monetary 
terms. As discussed in Section 2.2.2, an inherent challenge is that, unlike many of the direct 
costs and benefits of urban water options (such as the costs of construction, or avoided 
energy costs of water efficiency programs), many of the impacts on environmental or social 
sustainability are not reflected in market transactions or are only reflected indirectly. For 
example, an urban water option could result in changes to downstream habitat and 
biodiversity, which in turn could affect recreational, amenity, tourism and commercial fishing 
values. For biodiversity, recreational and amenity values, there is no immediate ‗price‘ that 
can easily be used to value the impacts, so valuation studies would be needed. In the case of 
tourism and commercial fishing values, while market prices do exist, the likely extent of any 
impacts that would be caused by the option in question needs to be demonstrated. Together, 
these two types of non-market impacts are referred to as ‗externalities‘ (see Box 2.2). 

This section outlines ways of identifying sustainability impacts, focusing on the economic 
valuation of non-market sustainability impacts (externalities). It then addresses the question of 
how those externalities can be measured and valued in dollar terms. There is a focus on 
environmental externalities or changes to values that arise out of impacts on the biophysical 
environment, but some of the key considerations are also given to social sustainability 
impacts. A final subsection outlines the strengths and limitations of economic valuation 
methodologies and an extended CEA approach to sustainability assessment. 
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Box 2.2: What is an externality? 

Definitions vary, but broadly externalities are the unintended side effects (or ‗spillover 
effects‘) of an action taken by one party that affect the welfare of another party and have not 
taken place through a market transaction between the parties. Externalities may be positive 
or negative. 

The definition of externality is useful to consider when identifying sustainability impacts for 
incorporation into an option assessment, because it requires specifications from cause 
through to effect. That is, it requires identification of the entity undertaking the activity that 
causes a change in the biophysical environment, which in turn has an impact on a third party 
or stakeholder, whether that be an individual, an organisation or the wider community. 

Bowers and Young (2000) provide a useful framework for considering externalities from 
urban water and describe a process of measuring externalities as identifying some sort of 
‗dose–response‘ model. They specify that ‗dose-response modelling has to extend from the 
actions of the individual or body that is causing the externality, to the response of the 
individuals or bodies who perceive the external effect‘ (Bowers and Young 2000:33). This 
means that in identifying sustainability impacts for CEA, it is essential to identify who will be 
affected, because that will in part determine the magnitude of the cost or benefit. 

 

2.4.1 Identifying sustainability impacts 

As discussed in Section 2.2.3, adopting a systems understanding when identifying and 
measuring sustainability impacts of urban water options is a characteristic of good practice for 
a comprehensive assessment. This involves clearly defining the urban water system, the 
system boundary and those aspects of the surrounding systems that could be affected. It 
involves drawing the boundaries of the analysis in terms of space, timeline and stakeholders 
(see Box 2.3 at the end of this section, on applying a systems understanding to urban water 
systems). 

For an economic valuation, whether under extended CEA or CBA, identifying the 
sustainability impacts of an urban water option will involve mapping how that option‘s 
attributes might cause changes to environmental or biophysical conditions, and then how 
those changes would affect various stakeholder groups. An example process for identifying 
impacts that are externalities is shown in Figure 2.1 and described in the following 
subsections. 

Figure 2.1: A process for identifying externalities 

 

C: Who is 
affected? 
e.g. recreational 
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A: Source of 
impact 
e.g. pumping 
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environment 
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numbers 

IDENTIFYING 

EXTERNALITY 

Source: Adapted from Dwyer et al. (2006). 

As in any options analysis, a baseline or ‗base case scenario‘ will also be necessary for the 
period of analysis (Mitchell et al. 2007). This allows the impacts of all options to be compared 
against the same ‗do nothing‘ scenario. The base case should include expected 
environmental, social, economic and policy changes over the analysis period. 



NATIONAL WATER COMMISSION — WATERLINES          22 

A: Identify the sources of impact 

Describing a sustainability impact of an urban water option involves first the systematic 
identification of those elements of the option that could have an impact on environmental or 
biophysical conditions—the ‗source‘ of externality. The way those activities are described will 
depend on the planning objective and the types of urban water options being considered. 

For example: 

 Bowers and Young (2000), in their framework for valuing externalities across an entire 
system supply, categorise activities broadly under the economic services of water use, 
wastewater return, stormwater management and disposal. 

 The Productivity Commission (2006), in its framework for valuing externalities caused by 
irrigation water use, categorises sources as those activities undertaken by suppliers of 
water (constructing, maintaining and operating supply infrastructure) and users of water 
(applying water to crops and pasture). 

In identifying and describing potential sources of sustainability impacts, it is important to take 
a wider systems view. For example, a supply option will have potential sustainability impacts 
not only through its direct construction and operation, but also through its implications for the 
quantity or probability of how other components of the urban water system are then operated 
(for example, the amount of pumping for distribution or the likelihood of intercatchment 
transfers). This also applies to water-use efficiency options. 

The systematic identification of sustainability impacts from urban water infrastructure systems 
should also consider impacts across the ‗life cycle‘. This might involve explicit and transparent 
descriptions of what potential sources of impact are included (for example, only the 
operational and use phases of the options) and what sources are not included (such as the 
production of materials that go into a system‘s manufacture). 

As well as clarity about the system boundaries, being clear about what is in the baseline (for 
example, what activities would be undertaken in the business-as-usual case if none of the 
options is initiated) will aid in identifying which sources of sustainability impact should be 
attributed to the options. 

B: Identify changes in environmental conditions 

Once possible sources of externalities have been identified, the potential changes to the 
biophysical environment can be estimated. The changes might include alterations to 
hydrology, water quality, ecosystem health or air quality of the surrounding environment. They 
also include impacts such as expected increases or decreases in GHG emissions. Identifying 
potential changes in environmental conditions is required to enable the measurement or 
estimation of those changes in physical or biophysical terms; some level of modelling is 
commonly a part of such estimations (see Section 2.4.2 for further discussion of the 
measurement of physical impacts). 

Again, clearly specifying the baselines for comparison is critical to the identification of 
changes in environmental or biophysical conditions attributable to the urban water option. For 
assessing future options, the relevant baseline will be the projected business-as-usual 
conditions rather than conditions at a point in time in the past (for example, the pre-European 
river regime). 

Key variables in determining baselines are the current and expected policy and regulatory 
environments. Goals and limits, if they are set by regulation, are part of the boundary 
conditions for designing the options. For example, if water quality standards are expected to 
change in the near future, the new standards should be included in the baseline. This means 
that an assessment of options to improve discharge water quality to the new standard should 
not include the value of those improvements as a positive externality. 
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C: Identify who is affected by the sustainability impact, and 
how 

Identifying the stakeholders affected by sustainability impacts is required in order to value 
those impacts in dollar terms. Affected stakeholders might be individuals or organisations; 
businesses, sectors or industries; or the local, regional, national or global community. There 
may also be overlaps between stakeholder groups. 

Once again, a systems approach can be used to clearly map which stakeholders are 
considered in the assessment in relation to which impact. For example, a biodiversity impact 
might affect, among other things, recreational fishing catches. This fishing aspect of the 
biodiversity impact could be seen to flow through to suppliers of fishing equipment. When 
making the assessment, it should be clear whether the biodiversity impacts extend to include 
these flow-on effects or whether they are captured in a separate ‗recreational fishing‘ impact. 
Also, as discussed in Section 2.3.1, while it is possible to assess externalities in a 
methodologically sound manner without stakeholder involvement, participation is an effective 
means of clearly and defensibly identifying which stakeholders are affected by which impacts. 

Bowers and Young (2000) use the concept of having both ‗tangible‘ and ‗intangible‘ impacts in 
their framework of urban water externalities. Intangible impacts are real but not amenable to 
economic valuation methods. For Bowers and Young, impacts such as potential loss of 
human life, potential increased human suffering, and aspects of lost biodiversity and wildlife 
are considered ‗intangible‘. The idea of having intangible impacts is linked to stakeholder 
identification because, while some impacts are intangible on moral grounds, others are 
intangible because the specific stakeholders affected are hard to identify and those affected 
are diffuse. 

The total economic value (TEV) framework is an alternative that is widely used for identifying 
the benefits of ecosystems, and how ecosystem values might be affected by policies and 
projects. It typically divides values into use and non-use values. TEV could be used for 
identifying how changes in environmental conditions resulting from urban water options have 
an impact on stakeholder values. This framework includes categories of values that extend 
beyond direct costs to include indirect values and values considered intangible. For example, 
Emerton and Bos (2004) describe how the TEV framework can be used to identify impacts to 
the ecosystem services associated with water catchments: 

 use values—direct use values (for example, timber, fuel and food products); indirect use 
values (such as flood control, carbon sequestration and climate regulation); option values 
(for future possible uses) 

 non-use values—existence values (intrinsic values irrespective of use, such as cultural, 
heritage and aesthetic values). 

In all cases, once externalities have been identified, including the source the biophysical 
change and the stakeholders affected, a process is then needed for measuring and valuing 
those sustainability impacts. 
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Box 2.3: Applying a ‗systems understanding‘ to urban water systems 

A systems understanding aims to synthesise all the relevant information that we have about 
a phenomenon or object so we have a sense of it as a whole. It also involves understanding 
that the system exists within other larger systems (Kay and Foster 1999). 

Applying a systems understanding to identifying sustainability impacts aligns with common 
understandings of sustainability. This is because of its environmental, social and economic 
dimensions, and the challenge of sustainability frequently being perceived as a systems 
problem. It also has the practical advantage of providing a means of systematically 
identifying impacts by considering the interaction of technical, environmental, social and 
economic systems. The temporal aspects or the life-cycle impacts on the system or the 
system components are an essential part of such holistic thinking. 

Systems understanding applied to identifying the sustainability impacts of urban water 
options would first involve the defining of the urban water system that the options would be 
part of and also the system boundaries. In the urban water context, a systems approach to 
assessment means that all relevant parts of the water supply chain (supply, wastewater, 
stormwater) receive adequate attention and that there is an understanding of the interactions 
at different scales (the allotment, subdivision/suburb and city/region) (Mitchell et al. 2007). 
Defining the system boundaries will also involve identifying the surrounding systems that 
could be affected: an urban water system exists within surrounding social, economic, 
ecological and geophysical systems. A systems perspective can also be utilised in placing 
boundaries on the analysis in terms of space, timeline and stakeholders. 

 

2.4.2 Estimation and measurement of sustainability impacts 

There are two steps to placing a dollar value on sustainability impacts: first, determining the 
physical magnitude of the impact; second, valuing those physical magnitudes (see 
Figure 2.2). 

Figure 2.2: Identification process suggests two steps in placing a dollar value on source of 
externality sustainability impacts 
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Measurement of biophysical changes 

Before non-market valuations can be applied, the changes in the biophysical environment that 
lead to sustainability impacts need to be measured or modelled in physical quantums. 
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Determining the physical magnitude of a change usually requires either direct measurement 
or estimates based on some form of modelling using the available physical or biophysical 
data. 

Within the framework of urban water externalities proposed by Bowers and Young (2000), the 
step of determining the physical magnitude of each externality is seen in terms of the 
application of a dose–response model: a physical change (the dose) leads to a particular 
externality (the response). This concept provides a quantitative link from the initial physical 
impact to the stakeholder affected. 

Other assessment techniques available for making the quantitative links from the initial 
physical impact include: 

 life-cycle analysis 

 ecological and chemical risk assessment 

 energy life-cycle analysis and carbon accounting for GHG impacts. 

The importance of quantitative assessment techniques that provide the linkages between the 
initial impact and the value of the externality needs to be emphasised. A lack of available data 
or robust estimates of biophysical parameters can be an area of weakness in the economic 
evaluation of sustainability impacts. 

Approaches to economic valuation of sustainability impacts 

The aim of economic valuation, or putting a dollar value on sustainability impacts, is to 
determine people‘s preferences for options and impacts. A wide range of literature exists 
concerning the techniques available to determine how much people consider various 
sustainability impacts to be worth. As shown in Figure 2.3, economic valuation methods can 
be broadly categorised into: 

 market prices methods: where the prices of marketed goods or services are directly 
affected, this can be used to value sustainability impacts. Proxy markets may also exist 
for some impacts (such as to value GHG emissions) 

 production function methods, which use dose–response relationships to estimate how 
changes in environmental or biophysical conditions would affect production and the 
profits from that production 

 surrogate market methods, which examine the ways in which the effect of sustainability 
impacts might be indirectly revealed by people‘s actions in other markets 

 (avoided) cost-based methods, which include the use of replacement costs, mitigative or 
aversive expenditures, or damage costs avoided by an option 

 stated preference methods, which ask consumers to state their preferences directly (for 
example, how much they are willing to pay to avoid sustainability impacts or whether 
they are willing to accept them for payment). 

An additional approach, benefit transfer, is not a valuation approach per se but involves taking 
monetary values derived in one context or study and transferring them for use in another 
context. Benefit transfer can be significantly quicker and less expensive than a new valuation 
study in the policy situation. However, for benefits transfer to be meaningful, the difference 
between contexts needs to be considered. Benefit transfer naturally works best when the two 
sites are similar, when the policy changes/development are similar, and when the valuation 
procedures at the original study site were analytically sound and carefully conducted (Pearce 
and Turner 1990). Box 2.4 provides the example of the Cabbage Tree Creek case study, in 
which benefit transfer and new valuation studies were combined. 

Each of these approaches has both advantages and disadvantages, and each has its own 
resource and time requirements to ensure validity in the estimations of costs and benefits. 
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Figure 2.3: Classification of valuation methods 

 

Source: Emerton and Bos (2004). 
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Box 2.4: An example of non-market valuations in options assessment for urban water—the 
integrated water management investment framework and Cabbage Tree Creek case study 

One of the subprojects of the NWC Urban Water IRP project was to develop an investment 
framework for discretionary expenditure in integrated water management. The framework 
incorporates direct option costs with non-market valuations of sustainability impacts to give 
an economic evaluation and comparison of a wide range of water cycle alternatives. These 
include options principally aimed at alternative supply (rainwater tanks, stormwater 
harvesting), healthy waterways (water sensitive urban design, streambank rehabilitation) and 
flood management (purchase of house with high flood-risk). The development of the 
framework and its application to a case study—Cabbage Tree Creek catchment in 
Brisbane—was undertaken by Marsden Jacob Associates with Brisbane City Council (BCC). 

The investment framework specifically addresses sustainability impacts (water quality, 
waterway health, recreational amenity etc.) in dollar terms via non-market valuations. Where 
reasonable, benefit transfer from previous studies is utilised. Where the existing studies 
could not adequately address Brisbane-specific waterways health and recreation impacts, a 
new contingency valuation study was commissioned by BCC. 

The investment framework involves an initial stage of policy and institutional assessment in 
order to determine what actions need to be considered within the baseline of existing 
regulation and which actions represent actual discretionary expenditure. It then involves a 
two-stage economic evaluation process combining a CBA of integrated water management 
objectives followed by CEA of options against the priority objectives. 

The Cabbage Tree Creek catchment case study was based on an earlier study, which used 
a multi-criteria approach to options assessment. Key findings from the new economic 
valuation case study included the following: 

 The earlier study recommended a number of investments that were not appropriate for 
discretionary funding because they were already required under other regulatory tools, 
planning strategies or service standards. 

 The earlier study recommended alternative water supply options; however, the cost of 
these options in the particular case study area did not exceed the estimated benefits 
even with local non-market benefits accounted for. 

 In this region, investments in waterways health provided the greatest net benefits, and 
the majority of those benefits were derived from non-market values for environmental 
protection and recreational amenity (Marsden Jacob Associates 2010a). 

The investment framework is relatively generic and could be suitable for use elsewhere. A 
spreadsheet model developed for the case study is also available and can potentially be 
adapted to other catchments. Furthermore, one of the two study reports, Integrated water 
management investment framework: background, context and technical information 
(Marsden Jacob Associates 2010b) contains valuation information collated from available 
previous studies. The framework, the case study and model, and the collation of information 
from previous studies should all be useful to urban water planners who are considering the 
monetary valuation of externalities. These resources can be found at 
http://urbanwaterirp.net.au.  
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2.4.3 Strengths and limitations of extending CEA via economic 
evaluation of externalities 

The key strength of extending CEA via economic evaluation of externalities is the advantage 
of incorporating sustainability impacts into options assessments in dollar terms. This allows 
the sustainability impacts to be compared to direct costs using the single metric of dollars. 
That metric also communicates the relative value of the urban water direct costs and 
sustainability impacts to the other costs and benefits of non-water policy goals. Economic 
evaluation of externalities allows options to be compared on unit costs ($/kL) and portfolios to 
be compared on their net present value, both with sustainability impacts included. 

The key advantage of CEA compared to CBA is that it fits with the existing IRP framework 
and avoids the issues inherent in valuing urban water service provision. 

The inherent limitation of extending CEA via economic evaluation of externalities also relates 
to the measurement of sustainability impacts in dollars. Although it is technically possible 
using various methods to calculate a monetary value for any kind of sustainability impact, 
there will be some types of values that stakeholders, decision makers or the wider community 
do not consider appropriate to measure and value in dollar terms. Linked to the issue of some 
impacts being ‗intangibles‘ is the concern stakeholders can have with the idea of ‗discounting‘ 
future sustainability impacts, as is the practice in economic evaluation (see Box 2.5). 

Plant et al. (2007) note that some people find it inappropriate, unethical or absurd to express 
the value of some impacts in monetary terms. Others argue that monetisation degrades 
strongly held ethical and moral values, and the variety of widely held motivations and beliefs 
regarding environmental issues (Hill and Zammit 2000). Stated preference methods such as 
contingent valuation, in particular, raise concerns when used to derive values for impacts that 
many consider intangibles. Spash et al. (2005) suggest that the theory underpinning 
willingness-to-pay studies is inconsistent with empirical evidence and lessons from modern 
psychology about behaviour and values. For example, it is well known that people are 
‗loss-averse‘—that is, they value gains and losses asymmetrically, which explains the 
differences between the monetary values they give for willingness-to-pay and willingness-to-
accept. Stated preference surveys also result in ‗protest bids‘ from respondents who do not 
wish to make a trade-off based on monetary valuations of the environment. By excluding 
those protest bids as anomalies or outliers, an analyst of a stated preference study is 
implicitly assuming that the rights-based system of values held by the protest bidders is 
invalid. 

One approach to including intangibles in a CEA was suggested by Mitchell et al. (2007). They 
proposed setting goals or limits for certain types of sustainability impacts and constructing the 
analysis so that all options must meet those goals. Such an approach is an explicit 
acknowledgment of the limits of extending CEA via economic evaluation of externalities. 
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Box 2.5: Issues arising from the discount rate in economic evaluations 

The rationale for discounting future streams of costs and benefits is the assumption that 
individuals prefer consumption now to consumption in the future. The valuation of costs and 
benefits can be sensitive to the choice of discount rate. For example, applying a higher 
discount rate results in a more favourable assessment of options if the costs are expected to 
occur further in the future but the benefits are more immediate. 

Discounting has been a topic of some controversy, particularly in the area of sustainability 
assessment. Although discounting is consistent with economic theory, some critics object to 
discounting of future costs or benefits on ethical or moral grounds when those costs or 
benefits represent sustainability impacts. Nevertheless, there is substantial evidence that 
individuals tend to discount their own future consumption. 

A further contentious issue lies in the selection of the discount rate, and whether typically 
applied discount rates are too high to assess future sustainability impacts. The conventional 
advice is to select a discount rate that is broadly based on the market rate of return (Harrison 
2007). The Australian Government‘s Office of Best Practice Regulation suggests an annual 
real discount rate of 7% with sensitivity analysis at 3% and 11% (Australian Government 
2007). The office publishes any updates to the suggested rate on its website 
(http://www.finance.gov.au/obpr/about). 

However, when attitudes to risk and other factors are taken into account, using such rates 
may overestimate the true social discount rate of some environmental and natural resources. 
To illustrate: at a real discount rate of 4%, environmental damage such as climate change 
100 years from now would be valued at just one-fiftieth of the value that would be assigned if 
the damage occurred today. Using another example, at a 7% discount rate, an environmental 
benefit such as a healthy river in 20 years time has just a quarter of the value it would have 
today. 

The best way to deal with this issue is to test at a range of discount rates, including lower 
discount rates. Where the ranking of options is sensitive to the choice of the discount rate, 
that should be highlighted for decision makers. 

2.5 Options and portfolio analysis using MCA 

MCA as a framework for decision making does not try to attribute dollar values to 
environmental or social impacts; instead, this approach involves using participatory processes 
of some form to rate each option against selected decision criteria. As Lundie et al. 
(2008a:10) are careful to note, the use of an MCA framework ‗does not inherently lead to a 
sustainable decision‘. Rather, it is the adoption of criteria that value sustainability as an 
outcome, along with the participation of stakeholders in the process, which can assist in 
making decisions that are more sustainable than those made on a business-as-usual 
cost-only basis. 

In a sustainability assessment, MCA will involve initially selecting the assessment criteria so 
as to cover the potential impacts on sustainability, and then designing and implementing 
appropriate processes to rate each option against the criteria. The decision-making metric in 
MCA is usually a normalised score for an option across each of the criteria. Normalisation 
converts criteria results, which may be qualitative or quantitative, with varying units, into a 
uniform dimensionless number for further analysis. Normalised scores can then be left to 
stand alone or they can be aggregated using a weighting process into a single index or 
multiple indexes. An example of using multiple indexes might be a study with ‗triple bottom 
line‘ scoring for economic, social and environmental impacts. 

MCA is a wide field, and numerous potential methods and techniques have been presented in 
the literature. This can be a problem for practitioners new to MCA. For an overview of the use 
of MCA for policy problems, the Multi-criteria analysis: a manual published by the United 
Kingdom Department of Communities and Local Government (DCLG 2009) offers useful 
advice. The manual provides a broad overview of MCA techniques for non-specialists, as well 
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as more detailed step-by-step guidance in applying a multi-criteria decision process to a 
specific decision-making problem. 

While Multi-criteria analysis: a manual provides excellent general guidance, more specific 
guidance in multi-criteria decision processes applied to sustainability in urban water planning 
in Australia is covered by the WSAA sustainability framework (Lundie et al. 2008a). The 
WSAA framework lays out a step-by-step procedure that focuses on opportunities for 
stakeholder involvement and aims to be applicable to decision making at a wide range of 
project scales. The framework provides detailed guidance on the many methodological 
decisions encountered in fitting the MCA approach to a particular decision-making context. 
Lundie et al. (2008a) also stress that the participation of stakeholders in the process is key to 
advancing sustainability. Both the DCLG (2009) and Lundie et al. (2008a) are included in the 
list of further resources on MCA in Section 2.8 at the end of this paper. 

The material covered in this section includes the identification of sustainability impacts for 
urban water options, the selection of relevant criteria, the measurement of those impacts, and 
an introduction to MCA techniques for discriminating between options. A subsection then 
addresses the question of how MCA might be utilised within the existing IRP framework. The 
section concludes by outlining some of the strengths and limitations of an MCA approach. 

2.5.1 Identifying sustainability impacts 

Incorporating sustainability into an MCA decision-making framework requires the designer of 
the process (in this case, a water planner) to give ‗adequate attention to frame the problem 
and objectives for its solution [from a sustainability perspective] so that all stakeholders are 
willing to buy into and hence be able to achieve the broader policy goal of sustainability‘ 
(Lundie et al. 2008a:18). 

Once decision objectives are agreed to, they need to be translated into specific and 
measurable criteria for assessing the consequences of each option. The DCLG (2009:32–39) 
provides detailed guidance on identifying criteria and subcriteria. The DCLG (2009:58) also 
gives guidance on organising criteria by clustering them under higher and lower level 
objectives in a hierarchy. The DCLG argues that, as well as providing clarity, this structuring 
can lead to better criteria by highlighting conflicts and overlaps between criteria. 

In many cases the objective of the study may be relatively broad, for example, ‗minimising the 
economic, environmental and social cost of the urban water options selected‘. In such cases, 
a good way of incorporating the range of sustainability impacts into the MCA process is to 
start with a generic set of sustainability criteria for urban water. Those criteria can then be 
adapted to suit the specific circumstances of the decision to be made. 

Sets of sustainability criteria for urban water have been defined by various authors. 
Considering the needs of the Australian water industry, Lundie et al. (2008a) provide 
examples of primary and secondary criteria for sustainability assessment in terms of 
economic, human health, environmental, technical and social criteria (see Table 2.3). In an 
earlier guide for the British water industry, Ashley et al. (2004) also defined a set of economic, 
environmental, technical and social criteria. Alternative sets of sustainability criteria for urban 
water can be found in the literature, for example Hellström et al. (2000) and Balkema et al. 
(2002). 

The identification of externalities by mapping them from their source through to the 
stakeholder who is affected (as shown in Figure 2.1) could also be used to help define 
sustainability criteria in a specific situation. The big difference, however, is that sustainability 
criteria can be defined at the source of the impact (Step A) or the change in the environment 
(Step B) if determining the impact on stakeholders (Step C) is too difficult. 

Whether the investigation starts from a generic set of sustainability criteria or develops them 
from scratch, the criteria should ideally be based on a systems understanding of urban water 
(as described in Section 2.2.3 in terms of a characteristic of good practice and expanded in 
Section 2.4.1). This involves seeking to establish the potential impacts of alternative options 
on the urban water system and surrounding systems. 

Once criteria have been selected, a process is then needed for scoring each option against 
the criteria. 
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Table 2.3: Primary and secondary criteria 

Primary criteria Secondary criteria 

Economic Life-cycle capital expenditure 

 Life-cycle operational expenditure 

Human health Risk of infection (DALY—e.g. years of life loss) 

 Exposure to harmful substances (e.g. toxic, carcinogenic or endocrine-
disrupting substances) 

Environmental Extraction of fresh water and groundwater 

 Land-use disturbance 

 Resource input [t/year] 

 Biodiversity 

 GHG emissions 

 Eutrophication [potential] 

 Photochemical oxidant formation 

 Ecotoxicity [potential] 

Technical  Performance (potable water and wastewater quality) 

 Reliability 

 Resilience/vulnerability 

 Flexibility 

Social Affordability 

 Employment generation 

 Acceptability to community 

 Distribution of responsibility 

 Organisational capacity and adaptability 

 Public understanding and awareness 

Source: Lundie et al. (2008a). 

It is useful to note that Lundie et al. (2008a) include equity concerns such as affordability, governance concerns such 

as distribution of responsibility and organisational capacity, and technical concerns such as performance in their 

suggested criteria. These concerns would not be directly represented in an extended CEA framework. However, 

affordability issues are handled in the existing IRP framework in terms of a ‗cost test‘ for customers. Some technical 

concerns such as the relative performance will also come up elsewhere in the IRP framework. Section 2.5.4 

addresses the question of how MCA might be utilised within the existing IRP framework. 

2.5.2 Measuring sustainability impacts of options 

As outlined in the WSAA sustainability framework (Lundie et al. 2008a), performing a detailed 
assessment of each option in order to generate normalised criteria scores is a three-step 
process: 

1. Generation of a performance matrix 

2. Normalisation of performance scores 

3. Weighting for primary and secondary criteria. 

These steps and the methodological decisions involved are discussed in detail in the WSAA 
sustainability framework. The steps are expanded on briefly below to introduce the approach 
and enable comparison with the CEA framework. 

The physical measurement of impacts 

Physical impacts are measured or estimated and a ‗performance matrix‘ is generated. The 
quantitative assessment techniques used to physically measure or model sustainability 
impacts as part of valuing externalities in a CEA framework (see Section 2.4.2) can also be 
used to provide data on impacts covered by criteria in the MCA framework. However, one 
advantage of using an MCA framework is that it can also incorporate qualitative assessments 
of sustainability impacts where physical data is unavailable. 
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With an assessment based on sustainability criteria, it may be sufficient to demonstrate the 
linkages between the impact of an option and a measurable indicator. Depending on systems 
boundaries, MCA does not always explicitly identify which individual or group is affected, 
unlike in the externalities approach. (This is addressed in Section 2.5.1 with references to 
Figure 2.1.) For example, rather than demonstrating that reduced sediment pollution in a river 
due to reduced pumping will improve bass fishing for anglers by a specific amount through a 
linkage of pollution load to macro-invertebrate numbers to bass numbers to anglers, an MCA 
criterion could simply be the level of total suspended solids released to waterways due to 
various options, with the implicit qualitative knowledge that this had associated benefits for 
bass fishing. 

Lundie et al. (2008a:37) recommend deciding upon one level of depth for assessment of all 
options and criteria under study where possible. However, they acknowledge that in practice 
such consistent data quality may not be available. If that is the case, they recommend that 
differences in data quality and uncertainty be flagged in the final reporting document. 

Normalisation of performance scores 

The indicator results for each criterion should be normalised (with regard to a reference point) 
before ranking the criteria and/or adding weighting factors to them. The main aim of 
normalisation of criteria results is to better understand the relative importance and magnitude 
of their effects. Normalisation converts the criteria results with their varying units into uniform, 
dimensionless numbers for further analysis. 

Three approaches to normalisation are outlined in the WSAA framework: the min–max 
approach, the ranges approach, and the distance to target approach. 

Weighting for primary and secondary criteria 

Criteria-based approaches as used in practice can be characterised according to their 
methodology for criteria score aggregation. Processes used for aggregation include those that 
aggregate criteria scores into: 

 a single index using a form of weighted sum aggregation, such as the Gold Coast 
Waterfutures project (Lundie et al. 2008b) 

 multiple indexes (economic, social, environmental, technical etc.), by keeping cost and 
other criteria separate for assessment alongside one another, such as in the Eurobodalla 
IWCM Strategy (DPWS 2003). 

Regarding aggregation, Lundie et al. (2008a:46) recommend that, if criteria scores are to be 
aggregated into a single score, that should occur during the final decision-making stage so 
that decision makers can access both levels of results and understand the aggregation 
process. 

They argue that aggregating scores into multiple indexes (which they call primary criteria) is 
preferred if the total number of primary criteria is relatively small. If there are many indexes, 
they argue that a form of weighted sum aggregation should be performed so that the value 
preferences underlying the decision are transparent to observers. They note that the 
shortcoming of aggregating scores into a single index is that it: 

assumes that all criteria scores are directly substitutable. This assumption is rarely held in 
environmental projects (e.g. that a project that is highly flexible may cancel out a bad 
performance in risk of infection), which is a shortcoming of this simplified methodology 
(Lundie et al. 2008a:46). 

In the wider MCA literature, there are various formal MCA techniques that attribute relative 
weights to criteria in order to differentiate between options. The DCLG (2009) gives a broad 
overview of the full range of MCA techniques, including direct analysis of the performance 
matrix; multi-attribute utility theory; linear additive models; the analytical hierarchy process; 
outranking methods; procedures that use qualitative data inputs; MCA methods based on 
fuzzy sets; and other less common MCA techniques. 
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2.5.3 Using MCA as part of the existing IRP framework 

This section addresses the question of how MCA might be utilised within the existing IRP 
framework. In doing so, it also considers how the IRP framework and the sustainability 
framework described by Lundie et al. (2008a) might be used together in selecting a group of 
options as part of a long-term urban water strategy for a region. 

As a starting point, there are several decision points where MCA techniques could be used: 

1. The first screen-level assessment of options 

2. Comparing and ranking options 

3. Developing alternative portfolios 

4. Comparing portfolios. 

These various decision points are considered below. 

Screen-level assessment of options 

If used only to remove particularly poor performers (a first screen-level assessment), an MCA 
before a CEA could be beneficial. This would involve using the MCA to limit the options that 
are included in the CEA. The approach has similarities to the potential way of treating 
intangibles in a CEA discussed in Section 2.4.3. 

Comparing and ranking options 

Using MCA to directly rank options is an approach likely to be inconsistent with the IRP 
framework. This is because if an MCA is used to compare and rank options then it will be 
particularly difficult to maintain the IRP objectives associated with ‗least cost‘ and thereby 
demonstrate that the final strategy is cost-effective. Another IRP principle is equal treatment 
of demand- and supply-side options. If MCA is used for options assessment, there is a danger 
that highly cost-effective demand-management options may be missed if only water 
conservation options popular with stakeholders, such as reuse and rainwater tanks, are 
compared to large-scale supplies. 

Developing alternative portfolios 

Starting from the existing IRP framework, White et al. (2008) suggest using MCA in a 
participatory approach to create portfolios. The IRP process outlined in the Guide to demand 
management and integrated resource planning for urban water (Turner et al. 2010) shows 
how to combine options into a single least-cost portfolio, but it does not show how multiple 
portfolios might be constructed. In this method, portfolios are created by modification of the 
least-cost portfolio based on environmental, social and technical indexes using multiple 
criteria. MCA techniques are used to screen in and out individual options from the least-cost 
portfolio. This creates a number of new portfolios that have different characteristics (for 
example, with the poorly performing options on the environmental, social or technical index 
excluded). Those portfolios could then be compared to the least-cost portfolio on net present 
value. 

Comparing portfolios 

Lundie et al. (2008a) illustrate the sustainability framework using the example of a 
hypothetical town planning for long-term future water needs. This aims to show that the 
step-by-step approach to multi-criteria decision-making is applicable to decisions of this scale. 
The hypothetical planning situation uses MCA to decide between four ‗water future scenarios‘, 
each with different options. The development of portfolios of options for the water future 
scenarios is not addressed in the example. This issue is noted by Carden (2006), who 
examined the possibility of using the Lundie et al. framework for urban water planning in 
south-east Queensland. While Carden found the framework appropriate for the many different 
objectives in that region, it did not help to answer the question of how to develop portfolios of 
options. 
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One approach that could be taken is to develop a number of different portfolios for a water 
strategy, each of which meets slightly different objectives. Each portfolio would be developed 
based on the IRP process outlined in Turner et al. (2010) and each would meet the primary 
objective of securing water supplies. Different portfolios would also meet different secondary 
objectives. For example, one portfolio might meet a wastewater reuse target, a second might 
provide drought-proof water supplies to key recreation fields, a third might improve 
stormwater quality and a fourth might meet all of those objectives. The portfolios could then 
be compared on net present value, and an MCA approach could be used to select between 
them. 

As Lundie et al. (2008a) illustrate, using MCA to compare portfolios can make sense. This is 
because portfolios can be compared on net present value together with other criteria. 
Alternatively, as White et al. (2008) show with their methodology for developing alternative 
portfolios within an IRP framework, MCA can be utilised in developing alternative portfolios. 
Furthermore, using MCA for a screen-level assessment before CEA may also be helpful in 
some situations. 

2.5.4 Strengths and limitations of using an MCA framework 

The key strength of MCA is that it explicitly acknowledges that complex decisions are rarely 
made by one person or on the basis of a single metric. MCA recognises that decision making 
may involve multiple objectives and multiple viewpoints, and that trade-offs will need to occur 
between objectives. The DCLG (2009:21) argues that MCA is preferable to less formal 
decision-making unsupported by structured analysis for the following reasons: 

 It is open and explicit. 

 The alternative criteria that any decision-making group may select are open to reanalysis 
and to change if they are felt to be inappropriate at a later date. 

 Scores and weights, when used, are also explicit and are developed according to 
established techniques. They can also be cross-referenced to other sources of 
information on relative values, and amended if necessary. 

 Performance measurement can be subcontracted to experts, and so need not 
necessarily be left in the hands of the decision-making body. 

 MCA can provide an important means of communication within the decision-making body 
and sometimes, later, between that body and the wider community. 

 When scores and weights are used, they also provide an audit trail. 

For advocates of MCA, a further strength is its potential for stakeholder participation in both 
the selection and the valuation of criteria. Participation is central to the sustainability 
framework outlined by Lundie et al., who describe moving towards sustainability in urban 
water as requiring ‗a paradigm shift among all water users‘ (2008a:14) that is both cognitive 
and behavioural. From this viewpoint, stakeholder participation throughout the assessment 
process is very important because it ‗forms part of a broad mobilisation of understandings and 
practices among both users and providers‘ (Lundie et al. 2008a) regarding the potential for 
sustainable water planning. 

A key limitation of MCA approaches is their reliance on good criteria selection and the risk 
that interrelationships between criteria can lead to double counting. For example, 
paradoxically, some water industry practitioners have noted that MCA decision frameworks 
commonly lead to traditional water and wastewater solutions, instead of leading to a paradigm 
shift in water planning. This is likely to be because non-traditional alternatives will tend to 
score poorly on a range of criteria such as ‗technical risk‘, ‗organisational capacity‘ and ‗social 
acceptability‘, which are all linked to the alternative‘s novelty. 

Caution should also be applied in the treatment of cost as a criterion. In his criticism of MCA, 
Bennett (2005:258) singles out a concern about weights being used to combine values for 
market (costs) and non-market criteria. There is a possibility that the inclusion of costs in this 
way may double count other impacts that are already factored into the cost assessment, such 
as the costs of meeting health regulations. For this reason, the DCLG (2009) offers guidance 
on assessing the rigour of the selected criteria. The final list of criteria should be assessed for 
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completeness, avoiding redundancy, operability, double counting, conciseness and scale (for 
example, including impacts that occur over time). 

While stakeholder involvement in the selection of criteria is seen as a strength by some, it 
leads to the potential for stakeholder gaming of the selection of criteria, as discussed in 
Section 2.3.1. While gaming can be a problem in any assessment that involves stakeholders 
in scoring or valuing impacts, in MCA stakeholder involvement in selecting criteria can create 
a tendency to use criteria that overlap and do not form a coherent set. This problem arises 
due to pressure to meet the interests of particular stakeholders who want to see ‗their‘ criteria 
represented, even if the sustainability impact is covered by existing criteria. Some critics 
argue that MCA is illegitimate precisely because of the participation of stakeholders in the 
design of the framework of analysis (Bennett 2005). Such criticisms tend to come from strong 
advocates of CBA. However, as is discussed in Section 2.3.1, care is needed in structuring 
any stakeholder participation, whether for CBA, CEA or MCA. 

2.6 Incorporating the results back into the 
planning process 

This section outlines the issues that need to be considered when integrating the results of 
sustainability assessments back into an urban water planning process. It covers the important 
issues of analysing and communicating the level of uncertainty that exists within the results of 
a sustainability assessment. It also raises the need for transparency in reporting, particularly 
in relation to trade-offs that are made between sustainability impacts when assessing options 
for urban water. 

2.6.1 Treatment of risk and uncertainty 

When planning for urban water service provision, decision makers are faced with many 
unknowns, both current and future. It is not possible to know with certainty the influence of 
factors such as population growth, weather, climate, industry demand, people‘s behaviour 
and responses, or people‘s attitudes and values. Assessment of sustainability impacts 
introduces further factors. Uncertainties may exist in each link in the chain, from an option as 
a potential source of an impact to valuing a particular externality or sustainability criteria. 
Some of these unknowns are quantifiable, and there are risk assessment methods for them. 
However, it is likely that significant uncertainty will remain in the measurement and valuation 
of some impacts. 

It is good practice to separate those uncertainties that can be dealt with via risk assessment 
from other forms of uncertainty where the unknowns are greater. The differences between 
‗risk‘ and other forms of ‗uncertainty‘ have been detailed elsewhere (Wynne 1992, Mitchell 
et al. 2007). Put simply, the concept of risk can be applied to situations in which probabilities 
can be assigned or quantified, whereas uncertainty relates to unknowns that cannot currently 
be measured or reasonably estimated. 

Risk can be addressed analytically because both the magnitude and the probability of impacts 
are known or can be estimated. Common methods for the analysis of risk are Monte Carlo 
analysis and Bayesian approaches. The distinction between risk and uncertainty is not a 
precise one because there are degrees of subjective judgment about whether unknowns can 
be quantified or estimated. For example, risk assessment commonly rests on assumptions 
that future probabilities will replicate past patterns, or that the expert judgments used in 
Bayesian approaches are reasonable estimates. 

Where probabilities, magnitudes or both are simply not known and cannot be estimated, ‗real 
uncertainty‘ exists. Some types of real uncertainty can be dealt with analytically by conducting 
sensitivity analyses or scenario analysis. But for those analyses to be meaningful, an 
understanding of the boundaries of that uncertainty is necessary. For scenario analysis, an 
understanding of how uncertain parameters are correlated is also required. In the end, if even 
the boundaries of an uncertain parameter are not known, then the only option for an analyst is 
to acknowledge the uncertainty. 
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How to treat uncertainty and risk is an important consideration for any analysis, particularly 
one such as a sustainability assessment. The danger is that taking a deterministic view and 
omitting the mention or analysis of uncertainty and risk from the assessment could lead to 
conclusions that do not take into account society‘s preferences and attitudes towards 
uncertainty. More specifically, failing to acknowledge the uncertainty about key decision 
variables will lead to decision makers having a false idea of the degree of precision involved 
in an analysis and its results. 

By analysing uncertainty where possible, and then acknowledging the uncertainty that 
remains in their results, water planners do what they can to promote the best environmental, 
economic and social outcomes. Furthermore, where uncertainty exists there is always the 
potential to obtain more information for future analysis, and that is recommended. The 
potential may also exist to design an adaptive management response that allows for flexibility 
and is adjusted as time passes and more data or information comes to light. 

2.6.2 Transparent reporting 

Irrespective of the choice of sustainability frameworks and methods, clear and comprehensive 
reporting of the sustainability assessment process is crucial to ensuring transparency of the 
overall decision process. Transparent reporting seeks to present the objectives, assumptions, 
methods and uncertainties in a coherent and systematic way. The appropriate level and 
presentation of detail will depend on the intended audience (Mitchell et al. 2007), but all 
reports should provide sufficient information, either in appendixes or in links to other reports, 
for someone else to be able to replicate the analysis. 

For sustainability assessment, a critical aspect of transparency is to show how values have 
been assigned to impacts, and therefore how environmental, social and economic impacts 
have been weighed against one another. Ideally, transparency in valuation will go further, 
demonstrating what trade-offs have been made between different sustainability impacts and 
between sustainability impacts and direct costs for specific options. Transparency should also 
mean acknowledging whose values (stakeholders, survey participants etc.) and what type of 
values (consumer or financial values in a CEA, stakeholders‘ or citizens‘ interests in an MCA) 
have been included in the sustainability assessment. 

With an extended CEA framework, it is critical that monetisation of externalities is conducted 
in a way that is transparent, and that the methods and assumptions used (and the 
consequences for the degree of certainty of the results) are made explicit. An extended CEA 
framework should also acknowledge the existence of impacts for which no meaningful 
monetary valuation was deemed possible. 

Many weighting techniques exist in MCA, and the detail of the processes can potentially 
obscure the overall framework, so it is important to state whose values are being incorporated 
and why. In MCA, techniques vary in the way they incorporate criteria, the application and 
weights given to criteria, the mathematical algorithms used, the structures used to describe 
preferences, the level of uncertainty embedded in the process and the opportunity for 
stakeholders to participate (Dodgson and Spackman 2000). 

It is important to be explicit about the assumptions that are embedded in the valuation method 
chosen. This allows both the analyst and a reviewer to consider whether the valuation method 
is consistent with the stated goals of the decision-making process. 

For any sustainability assessment, a transparent report should include: 

 the objectives and context of the study, including how the assessment informs the overall 
decision, and the system boundaries (space, time and stakeholders) 

 the key assumptions, including evidence of their validity 

 research and analysis methods, including data sources, approaches to obtaining data 
(including stakeholder consultation and participation), and valuation methods used 
(justification of the methods chosen might include detailing of resource constraints, but 
an assessment of the overall validity of the results is still required) 

 uncertainty analysis, clearly documenting how ranges and probabilities affect the results 
and recommendations. 
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Transparent reporting is important because it allows organisations that are making decisions 
about investments of public money for urban water outcomes to demonstrate, and be held to 
account for, the reasons for those decisions. Transparency in reporting is a key application of 
corporate social responsibility principles, which are often found in the enabling legislation and 
strategic direction statement of water authorities and other organisations undertaking urban 
water IRP (Mitchell et al. 2007). More generally, it is important in order to ensure the 
credibility and defensibility of the recommendations and results of the sustainability 
assessment and of the broader water planning process. 

In this relatively new area, comprehensive and publicly available reporting of sustainability 
assessments in the urban water planning field will also make a significant contribution to the 
information and knowledge base of the Australian water industry. 

2.7 Conclusions 

This resource paper has discussed two broad assessment frameworks: extending CEA via 
economic evaluation of externalities and MCA. It has examined methods for using those 
frameworks to inform urban water planning. It has aimed to fill some of the more significant 
gaps that exist in sustainability assessment in urban water, particularly in relation to options 
and portfolio assessment in IRP studies. This has meant providing water planners with 
enough background on how to incorporate sustainability impacts into water planning so that 
they can make decisions about which methods best suit their situations and take the next 
steps towards conducting sustainability assessments of options for urban water. 

The paper has set out six common steps that should be discernible in any sustainability 
assessment of options for urban water: 

1. Drawing boundaries and establishing a baseline 

2. Recognising that there are impacts of options not represented in the analysis of direct 
costs that require further assessment 

3. Identifying the impacts to include in a broader assessment 

4. Estimating the magnitude of each impact 

5. Placing a value on each impact 

6. Interpreting and communicating the results. 

The paper has also set out the characteristics of good practice: 

1. An approach aligned with the governance situation in the region 

2. A structured assessment framework 

3. A method appropriate to the circumstance and scale of the decisions 

4. The application of a systems understanding when identifying impacts 

5. The use of robust estimates of the magnitude of impacts 

6. Clarity in the treatment of uncertainty 

7. Transparent valuation and reporting. 

These six common steps and seven good practice characteristics can be used together as 
initial checklists when planning a sustainability assessment of urban water options and then 
as a check throughout the process as the inevitable iterations occur. 

In conclusion, conducting a sustainability assessment of urban water options and 
incorporating the results faithfully into decision making is always likely to be difficult work due 
to the varied objectives and stakeholder interests involved. It is, however, important work. 
Ideally, the outcome of a sustainability assessment will be a plan for an urban water system 
that has all the characteristics of good practice and can be implemented with the support of 
the local community because it reflects their values. Finally, this is an emerging field with a 
limited pool of comprehensively documented examples. The authors encourage practitioners 
to share their experiences with others in the profession. 
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2.8 Resource list 

This section lists key resources for further information on this topic. References for this paper 
not included in this list are provided in the Section 2.9. 

2.8.1 State-based urban water planning guidelines 

IWCM resources are at http://www.dwe.nsw.gov.au./water_urban/utilities_cycle.shtm. 

Victoria has regional ‗sustainable water strategies‘ that plan for long-term water supply across 
Victoria. See http://www.ourwater.vic.gov.au/programs/sws. 

2.8.2 Water industry guidance documents 

Ashley R, Blackwood D, Butler D and Jowitt P (2004). Sustainable water services: a 
procedural guide, IWA Publishing, Milton Keynes, United Kingdom. 

Lundie S, Ashbolt N, Livingstone D, Lia E, Karrman E, Blaikie J and Anderson J (2008a). 
‗Part A: Methodology for evaluating the overall sustainability of urban water systems‘, in 
Sustainability framework: methodology for evaluating the overall sustainability of urban water 
systems, occasional paper no. 17, Water Services Association of Australia. 

Mitchell C, Fane S, Willetts J, Plant R and Kazaglis A (2007). Costing for sustainable 
outcomes in urban water systems: a guidebook, research report 35, Cooperative Research 
Centre for Water Quality and Treatment. 

Turner A, Willets J, Fane S, Giurco D, Chong J, Kazaglis A and White S (2010). Guide to 
demand management and integrated resource planning for urban water, prepared by the 
Institute for Sustainable Futures, University of Technology Sydney, for the National Water 
Commission and the Water Services Association of Australia, Inc. 

2.8.3 Guidance on economic analysis 

Bowers J and Young M (2000). Valuing externalities: a methodology for urban water use, 
CSIRO Urban Water Program, CSIRO Policy and Economic Research Unit, 45. 

Queensland Treasury (2002). Guidelines for financial and economic evaluation of new water 
infrastructure in Queensland, Queensland Government. 

NSW Treasury (2007), Guidelines for economic appraisal, Office of Financial Management, 
NSW Treasury. 

United States Environmental Protection Agency (2008). Guidelines for economic analyses, 
EPA Science Advisory Board, latest revision EPA 240-R-00-003 September 2000 and latest 
update September 2008 draft, available at 
http://yosemite.epa.gov/EE/epa/eerm.nsf/vwRepNumLookup/EE-0516?OpenDocument. 

2.8.4 Guidance on multi-criteria analysis 

DCLG (Department of Communities and Local Government) (2009) Multi-criteria analysis: a 
manual, DCLG, available at 
http://www.communities.gov.uk/publications/corporate/multicriteriaanalysismanual. 

2.8.5 Resources for public participation 

Carson L (2008). ‗The IAP2 spectrum: Larry Susskind in conversation with IAP2 members‘, 
The International Journal of Public Participation, 2(2). 

IAP2 (International Association for Public Participation) (2007). IAP2 spectrum of public 
participation, IAP2, available at http://www.iap2.org/associations/4748/files/spectrum.pdf. 
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2.8.6 Examples of urban water planning applications of 
multi-criteria analysis 

DPWS (Department of Public Works and Services) (2003). Eurobodalla Integrated Water 
Cycle Management Strategy, DPWS, Sydney. 

White S, Fane S, Giurco D and Turner A (2006). ‗Putting the economics in its place: decision 
making in an uncertain environment‘, Ninth Biennial Conference of the International Society 
for Ecological Economics, New Delhi, India, available at 
http://www.isf.uts.edu.au/publications/Whiteetal2006economicdecisionmaking.pdf. 

Lundie S, Peters GM and Ashbolt NJ (2008b). ‗Part B: A review comparing the WSAA 
Sustainability Framework to the Gold Coast Waterfutures process‘, in Sustainability 
framework: methodology for evaluating the overall sustainability of urban water systems, 
occasional paper no. 17, Water Services Association of Australia. 

Water Corporation (2008c). Water Forever: sustainability assessment, Water Corporation, 
available at http://www.thinking50.com.au/go/publications. 

2.8.7 Examples of urban water planning applications including the 
monetisation of externalities 

Hatton MacDonald D, Barnes M, Bennett J, Morrison M and Young M (2005). ‗Using a choice 
modelling approach for customer service standards in urban water‘, Journal of the American 
Water Resources Association, 41:719–728. 

Marsden Jacob Associates (2010a). Integrated water management investment framework: 
framework summary and case study for Cabbage Tree Creek, prepared for Brisbane City 
Council and the National Water Commission. 

Marsden Jacob Associates (2010b). Integrated water management investment framework: 
background, context and technical information, prepared for Brisbane City Council and the 
National Water Commission. 

The two reports and other resources from the integrated water management investment 
framework and Cabbage Tree Creek case study can be found at http://urbanwaterirp.net.au. 
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Summary 

What is the purpose of this paper? 

A key aim of the Australian IRP framework described in the Guide to demand management 
and integrated resource planning for urban water (Turner et al. 2010) is to ensure that water 
service providers forecast water demand as accurately as possible for their specific region, 
taking into consideration available resources such as staff time and data availability. 
Combined with a detailed knowledge of the yield, this helps to clarify the supply–demand gap 
for a specific area, ultimately assisting decision makers, as part of their strategic planning, to 
determine the best portfolio of options to fill the supply–demand gap in the coming years. 

The Guide to demand management and integrated resource planning for urban water (Turner 
et al. (2010) details how to forecast water demand using a hybrid sector and end-use based 
analysis, which is considered best practice internationally and is currently being used by 
leaders in the Australian water industry. However, to successfully undertake this form of 
analysis, various other techniques should also be used to ‗unpack‘ how historical water 
demand has been affected by various factors and how those factors should be considered in 
demand forecasting. 

The purpose of this resource paper is to examine the various other techniques available for 
urban water demand analysis. It aims to provide existing and potential users of the Australian 
IRP framework, the associated explanatory Guide to demand management (Turner et al. 
2008b) and the updated Guide to Demand management and integrated resource planning for 
urban water (Turner et al. 2010) with a broader understanding of the various analytical 
techniques available to inform detailed demand forecasting. 

Why is the paper needed? 

Demand forecasting is required by every urban water service provider in Australia, whether a 
large coastal water utility responsible for millions of people or a small council providing 
services to inland remote communities. In either case, the water service provider needs to 
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project how much water must be provided over the coming years in order to service those 
needs. 

Many water service providers are now recognising the importance of understanding how 
water is used and that sector and end-use based analysis methods are the key. Details to aid 
analysts on how to conduct sector and end-use based approaches are provided in Turner 
et al. (2010). 

There are a wide range of other analytical techniques available to further unpack historical 
demand. Some techniques are more useful than others in informing demand forecasting, 
some need significant amounts of data and data processing, and others require an in-depth 
understanding of statistics to enable interpretation. While there is significant literature on 
these other techniques, there is no single place to obtain an overview of the range of 
techniques available, examples of their use, their potential limitations, or guidance on which 
techniques make sense to use. This paper aims to fill that gap. 

Will this paper be useful to me? 

The resources developed as part of the NWC Integrated Resource Planning for Urban Water 
project are intended to aid those individuals in the water industry focused on urban water 
planning and management. This audience is very broad, ranging from large water utilities 
dealing with billions of dollars of investment to small councils potentially with limited 
resources, skills or both. The resources developed as part of this project generally aim to 
focus on the core group of organisations and practitioners in the middle of that spectrum. 

Hence, the intended audience for this resource paper is those individuals and teams 
responsible for water service provision and management who are involved in demand 
forecasting. That group will have varying knowledge and skills in demand forecasting using 
sector and end-use analysis and the complementary techniques identified in this paper. 
Therefore, this paper aims to provide both a broader and a deeper perspective on analytical 
techniques available and how they can be useful to demand analysts. Many of those 
responsible for demand forecasting may contract out all or part of the task, so this paper also 
aims to provide sufficient background on the various techniques available for them to engage 
more effectively with the package of work contracted and the resulting output. 

Where to look in the paper? 

This resource paper contains 10 main sections, of which seven are dedicated to addressing 
different types of analyses of urban water demand. Each section addresses the various 
techniques used, provides examples of their application and common pitfalls and analytical 
limitations with, where available, potential solutions. 

 Section 3.1 provides an overview of the current challenges in demand forecasting, the 
key techniques considered in the paper and a summary of how they can best be used by 
water practitioners. 

 Section 3.2 examines the modelling techniques used in correcting demand for weather 
and climate effects (climate correction). 

 Section 3.3 provides guidance on analysing water demand data to identify trends. 

 Section 3.4 looks specifically at the techniques employed to distinguish base and 
seasonal demand from available demand data. 

 Section 3.5 covers forecasting of near-term and seasonal demand peaks. 

 Section 3.6 reviews the various methods employed for determining price and other 
elasticities (econometric estimation). 

 Section 3.7 looks at demand analyses performed through the lens of demographic and 
land-use information. 

 Section 3.8 looks at attempts to incorporate behavioural responses to water planning 
policy into demand forecasting. 
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 Section 3.9 considers how the complementary analytical techniques described in the 
paper should be incorporated in integrated resource planning (IRP) demand forecasting. 

 Section 3.10 provides references. 

All readers are advised to read the summary and Section 3.1 for an overview of why they 
need to read this resource paper and the specific techniques discussed. Section 3.1 includes 
a summary table of the approaches and techniques, which gives guidance on which 
technique may be of most use under particular circumstances—for example, demand analysis 
and forecasting as part of a strategic plan conducted by a mid-size utility as a rapid appraisal 
with limited time and budget, versus a detailed supply–demand plan conducted by an 
experienced large utility that already has a detailed sector and end-use demand forecasting 
model. Having this overview, the reader can then delve into specific sections to gain a deeper 
insight into the techniques of interest. 

Scope of the resource paper 

Some of the techniques identified are already used by practitioners in the water industry. 
Some come from other disciplines and may or may not be useful to unpack how water is used 
and therefore ultimately how demand can be forecast. Hence, this paper aims to identify 
many of the key techniques available for analysing water demand, provide examples of their 
application, explore how they could be used to aid demand analysis and forecasting, and 
clarify some of their key strengths and weaknesses. 

The paper considers empirical analysis techniques that can be used to inform and support the 
sector and end-use based forecasting described in Turner et al. (2010). End-use modelling 
and other deterministic methods are explained in detail in the guide and are therefore not 
covered in this paper. 

What are the take-home messages? 

Water demand analysis and forecasting are conducted by all water service providers across 
Australia with varying degrees of rigour. It is now recognised that an appreciation of historical 
demand is essential to all levels of planning, from operational to strategic planning, and that 
conventional forecasts that do not take into consideration the range of factors that influence 
demand are no longer appropriate. This paper is designed to aid practitioners in 
understanding and adopting analytical techniques that may be useful in unpacking how water 
has been used in their service area to then inform demand forecasting. 

3.1 Introduction 

3.1.1 Current challenges in demand forecasting 

Urban water usage in Australia is continually changing due to increased attention to system 
leakage and pressure management; changing customer behaviours; new appliances and 
technologies in both the residential and the non-residential sectors; alternative water supplies; 
and other key drivers, such as population growth and urban consolidation. In addition, recent 
droughts affecting many cities and regional centres across the country led to the application 
of water restrictions in many regions and the implementation of major demand management 
and source substitution initiatives. Those initiatives will have affected demand, but it is often 
uncertain to what extent, especially in the case of restrictions for which ‗bounce back‘ 
(demand returning to pre-restrictions levels once restrictions have been lifted) has been 
observed in the past. 

With these dynamics in play, the task of developing an understanding of the following 
questions is becoming increasingly complex: 

 How has water been used historically and how is it being used now? 

 How can we more accurately forecast water demand (to understand the supply–demand 
balance into the future)? 
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 How can we design programs to tap into the conservation potential and fill the supply–
demand gap? 

3.1.2 Primary demand forecasting methods 

The primary methods used for water demand forecasting include: 

 The simple litres per capita per day (LCD) method of analysing historical bulk 
(aggregated) water demand to determine an overall LCD figure, which is then multiplied 
by the projected population. In more recent times historical demand is occasionally 
corrected for the influence of climate and weather using various regression techniques to 
obtain a ‗climate neutral‘ average LCD demand for forecasting (as discussed in this 
paper). 

 A sector-based approach, which at minimum investigates residential demand (single and 
multiresidential properties), non-residential demand (commercial, industrial and 
institutional sectors and subsectors) and non-revenue water (real and apparent losses). 
With a better understanding of how water is being used, demand is then projected 
according to population growth or other sector-specific base units (for example, the 
number of properties or utility accounts, employment, floor space), as deemed 
appropriate. 

 An end-use analysis, which uses a ‗bottom-up‘ approach to explain historical demand 
(predominantly in the residential sector) associated with typical end uses such as toilets, 
washing machines and evaporative air conditioners. The demand for that end-use is 
translated into aggregate demand by multiplying an individual end-use demand by 
frequency of usage, projected demographic growth (population, single and 
multiresidential dwelling numbers, and occupancy as appropriate), and functions that 
reflect changes in the efficiency of the technology and mix of stock over time. 

Residential end-use analysis is typically combined with a sector-based approach for the 
non-residential and non-revenue water sectors to obtain a forecast for total demand, and the 
historical portion is calibrated against climate-corrected bulk water demand. This hybrid 
demand forecasting method is currently emerging both nationally and internationally as best 
practice (Turner et al. 2006, 2008c) and is detailed in Turner et al. (2010). 

However, a complete picture of urban water demand includes other factors that are not 
directly addressed by the above analyses. Figure 3.1 depicts the complex array of factors that 
may need to be accounted for when generating a demand forecast. The simple LCD and 
sector analysis forecasting methods on their own rely on a historical average to generate 
forecasts and generally do not allow for the impacts of structural (for example, growth in more 
efficient stock such as toilets) or other changes to the urban water system (for example, 
increased dependency on source substitution, such as rainwater and major reuse). End-use 
analysis can accommodate changes in demographics and land use, changes associated with 
improving the efficiency of water-using appliances and, to a limited extent, changes in the way 
people use those appliances. 
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Figure 3.1: Typical factors affecting demand 
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Source: Turner et al. (2010). 

The primary forecasting methods described are of limited use when they are applied in 
isolation. This is due to their limited ability to adequately account for changes in demand 
caused by external factors such as climate, economic and sociocultural factors, and 
regulation. The advent of water restrictions, volumetric and inclining block tariffs and structural 
and behavioural demand-management initiatives complicates matters even further. Hence, it 
is necessary to complement these primary forecasting methods with other analytical 
techniques that adequately investigate and reflect the impacts of the additional factors. 
Typically, an empirical approach of formulating statistical models that describe historical bulk 
water production and customer meter demand is employed to understand the effect of 
external factors on demand over time. This can reveal the demand response to changes in 
particular conditions to provide further insight into how water is used, how its use can be 
forecast more accurately and, ultimately, how demand can be reduced by multiple 
instruments and measures in both the short and long terms. 

3.1.3 Complementary techniques and the IRP framework 

Analyses and forecasts of urban water demand are undertaken in a variety of contexts and for 
differing purposes, ranging from specifically tailored peak daily demand models for short-term 
supply system optimisation to studies investigating the influence of household characteristics 
and behaviour on demand for long-term supply–demand planning. 

Figure 3.2 illustrates the various forms of analyses that can be used to complement the three 
primary forecasting techniques and the role of the complementary analyses in the IRP 
process (see Appendix 3A for a more detailed depiction of the complete IRP process). These 
approaches are often employed from differing perspectives or disciplines (engineering, 
planning, economics etc.). However, they all embody some form of historical demand analysis 
and share the ultimate goal of obtaining a stronger understanding of demand drivers. 
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Figure 3.2: Complementary demand analysis techniques and their potential roles in the 
IRP process 
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Note: Measuring the impacts of water conservation programs and water restrictions is not addressed in this paper. 

See Chapter 5,Techniques for estimating water saved through demand management and restrictions (Fyfe et al. 

2010a). 

The analysis results obtained from these different techniques can, to varying extents, be used 
to inform water supply–demand forecasting and planning in the short, medium and long term. 
Significant care needs to be taken, however, before adopting any of these complementary 
techniques, to determine the primary aim of the data collection and analysis. For example, will 
the outcomes of the analysis adequately inform the demand forecasting exercise or merely 
provide a limited snapshot of demand of an unrepresentative sample that is not statistically 
valid and therefore cannot be used for a broader population? Consideration of the aim of the 
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analysis, the resources and time needed, the costs of data collection and analysis, and the 
eventual benefits is essential. 

3.1.4 Summary of complementary techniques 

Each of the analytical techniques identified in Figure 3.2, excluding ‗Measuring the impacts of 
water conservation programs and water restrictions‘, is explained in detail in the following 
sections of this resource paper. Each section includes examples of their application from the 
literature (where available), an overview of their pitfalls and limitations, and potential solutions 
to those problems. Detailed coverage of ‗Measuring the impacts of water conservation 
programs and water restrictions‘ is not provided in this paper. Step 5 in the Guide to demand 
management and integrated resource planning for urban water (Turner et al. 2010) and 
Techniques for estimating water saved through demand management and restrictions (Fyfe 
et al. 2010a, Chapter 5) provide specific details on the techniques used for gauging the 
impacts of water efficiency initiatives after implementation. 

Table 3.1 summarises the techniques considered in this paper, their purpose in relation to 
demand forecasting, data requirements, guidance on experience needed (for example, their 
suitability for experienced versus inexperienced practitioners) and the stage of the planning 
process at which they are most useful (such as high-level strategic versus detailed planning). 
While categories of analyses developed for the purposes of this paper were designed to 
provide clarity, the reader will find that there is much overlap in purpose and approach 
between many of the analyses described. Hence, readers are encouraged to view the 
categorisation as a guide only and to select and cross-match techniques as they see fit for 
their purposes. 

The final section of this paper examines more closely how the various techniques can be 
used within a broader framework to forecast water demand. 
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Table 3.1 Summary of analytical techniques 

Technique Purpose Reference / 
base case or 
options 
projection 

Data needs High-level 
strategic 
planning 
versus 
detailed 
planning 

Experience 
level / 
expertise 

Link to 
primary 
forecasting 
techniques 
and/or 
options 
model 

Climate 
correction 

Removing 
the influence 
of weather to 
provide a 
reference 
case for 
forecasting. 

Revealing 
changes to 
the demand 
regime. 

Tracking 
demand 
against 
consumption 
targets. 

Reference / 
base case 

Minimum: 
reservoir 
corrected 
BWPD and 
standard 
BoM data 
(i.e. rainfall, 
evaporation, 
temperature). 

Advanced: 
BWPD + 
binned 
CMDD, BoM 
data 

Historical 
demand 
should 
always be 
climate 
corrected. 

Basic 
analysis for 
strategic 
planning. 

In-depth 
analysis for 
detailed 
planning. 

Advanced Calibration of 
end-use 
models, 
starting point 
for LCD / 
sector-based 
forecasts 

Trend 
identification 

Informing 
further 
analysis and 
forecasting. 

Reference / 
base case 

BWPD 
and/or 
CMDD 

Strategic and 
leading in to 
detailed 
analysis 

Basic–
medium 

LCD and 
sector-based 
projections 

Differenti-
ating base 
and seasonal 
demand 

Informing 
end-use 
models and 
peak 
demand-
management 
options. 

Reference / 
base case 

BWPD 
and/or 
CMDD 

Detailed Basic–
medium 

End-use / 
sector-based 
hybrid 
forecasts. 

Options 
development. 

Forecasting 
peak 
demand 

System 
optimisation 
and 
investigation 
into 
constraints. 

Reference / 
base case 

BWPD, BoM, 
population 

Detailed 
operational 

Medium–
advanced 

Describing 
the peaks for 
LCD, sector-
based and 
end-use 
forecasts. 

Determining 
price, income 
and other 
elasticities 

Under-
standing the 
historical 
effect of 
price, income 
and other 
socio-
economic 
factors. 

Developing 
options and 
associated 
policy. 

Options Basic: 
BWPD, price, 
BoM data 

Advanced: 
CMDD, 
socio-
demographic 
data, 
household 
data. 

Detailed Advanced Design of 
options. 

Setting 
end-use 
model 
parameters. 

Demographic 
and land use 
analyses 

Under-
standing the 
context of 
demand. 

Investigating 
specific 
subsectors. 

Reference / 
base case 

Options 

CMDD, 
socio-
demographic 
data, 
planning 
data, spatial 
data. 

Detailed Basic—
advanced 

Informs 
sector 
breakdowns, 
end-use 
models. 
Development 
/ design of 
options 
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Technique Purpose Reference / 
base case or 
options 
projection 

Data needs High-level 
strategic 
planning 
versus 
detailed 
planning 

Experience 
level / 
expertise 

Link to 
primary 
forecasting 
techniques 
and/or 
options 
model 

Modelling of 
behavioural 
responses to 
water 
planning 

Investigating 
options 
scenarios. 

Options CMDD, 
behavioural, 
sociodemo-
graphic, 
market 
segment-
ation, end 
use 

Detailed Advanced Options 
modelling 

BoM = Bureau of Meteorology; BWPD = bulk water production data; CMDD = customer meter demand data; 

LCD = litres per capita per day. 

3.2 Climate correction 

Climate correction is used both to describe the seasonality of the water demand profile of a 
given area or sector and to explain weather-induced temporal variability of that profile.

1
 This 

aids in determining the extent to which observed departures from the typical seasonal profile 
are driven by weather fluctuations or other factors, such as water restrictions or changes in 
pricing regimes. Correction for climate- and weather-driven fluctuations in demand is 
fundamental to understanding historical demand and to forecasting future demand (Step 2 of 
the IRP process, ‗Analyse the situation‘), as the use of uncorrected demand data can lead to 
misinterpretation of observed shifts and trends in demand and grossly inaccurate forecasts. 

Primarily, climate correction models are used to establish an appropriate starting point for 
demand projections, ensuring that the starting point for a forecast is based upon a figure for 
demand that is representative of typical seasonal demand and not influenced by atypical 
weather (Beatty et al. 2007b). In an LCD- or sector-based forecast, this amounts to correcting 
for weather and climate to then extrapolate current demand based on population (or other 
base unit) growth. When employing an end-use forecasting approach, climate correction will 
involve identifying weather-neutral per capita demand against which the weather-sensitive 
components of an end-use model can be calibrated. 

While climate correction is critical to developing an accurate forecast using any of the three 
primary forecasting techniques, it also underpins or is an important secondary step to all the 
complementary demand analysis techniques discussed in this paper. Trend analysis 
(Section 3.3) and demographic and land-use analysis (Section 3.7) should ideally be 
performed on climate-corrected demand, or at least interpreted with direct reference to 
corresponding climatic conditions. Estimation of the split between base and seasonal demand 
(Section 3.4) and modelling of water user behaviour (Section 3.8) should also incorporate 
some form of climate correction. The methods used in econometric estimation (Section 3.6) 
and peak demand forecasting (Section 3.5) are indeed founded upon the relationship 
between weather and demand. 

When undertaking monitoring and evaluation (Step 5 of the IRP process), climate correction 
may be used to track water use against consumption targets (Maheepala and Roberts 2006). 
Like econometric estimation, regression approaches to the evaluation of water restrictions 
and conservation programs have climate correction at their core. Other evaluation techniques 
must either be applied to climate-corrected demand or accommodate variation associated 
with climate in some other way, such as by employing appropriate statistical controls. 

                                                 
1
 The distinction is made here between the recurring patterns of climate that drive seasonality in water 

demand and the fluctuations in weather that produce departures from long-term seasonal averages. 
While the primary purpose of climate correction is to factor out the ‗noise‘ of weather, the term ‗climate 
correction‘ is meant to encompass the dual functionality that the analysis has in terms of explaining both 
seasonal and stochastic (weather) variability. 
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Adjusting for weather and climate is addressed in more detail in Techniques for estimating 
water saved through demand management and restrictions (Fyfe et al. 2010a, Chapter 5). 

An ancillary use for climate correction models is their application in assessing the impacts of 
climate change on urban water demand. Some examples of this are presented in Box 3.1 in 
Section 3.2.2. 

3.2.1 Techniques 

Correcting for climate and or weather typically involves generating a statistical model using 
ordinary least squares (OLS) regression, the output from which is then used to normalise 
observed demand against weather-related fluctuations. The regression model describes the 
empirical relationships between aggregate water demand for a particular region or sector (the 
dependent or response variable) and corresponding meteorological data (the independent, 
explanatory or predictor variables).

2
 A climate correction model is effectively a statistical 

interpretation of the way a given population (residential or other) changes the amount of water 
it consumes in response to changing weather conditions. Central to this analysis, whether 
implicit in the regression modelling or performed as a separate preliminary procedure, is the 
process of generating a seasonal profile of demand. By correcting observed demand for 
weather-induced fluctuations, one can thus identify departures from typical seasonal water 
demand patterns and discern underlying trends that are driven by other factors (changing 
demographics, water restrictions etc.). 

The formulation of a climate correction model typically involves performing a multiple 
regression on water demand in a selected ‗baseline‘ period. Outside of this baseline period, 
there is no certainty that the derived relationships will hold. Therefore, climate correction 
models are not used to generate demand forecasts directly, but rather to inform other 
forecasting techniques (such as end-use modelling). Once a regression model has been 
formulated, climate-corrected demand can then be determined using one of a number of the 
techniques described under ‗Determining climate-corrected demand‘ in this section. The 
following sections discuss the considerations that inform a climate correction analysis. The 
key considerations in developing an OLS regression model for climate correction and other 
forms of urban water demand analysis are presented in Appendix 3B. 

Data types and correction approach 

The type of data used in a climate correction model will depend on the purpose of the 
correction and availability. Most commonly, climate correction is applied to (reservoir-
corrected) bulk water production data (BWPD) normalised to the population (that is, 
expressed as LCD), as this is the most readily available and easy to process (a single time 
series with frequent readings). Indeed, this is a straightforward and valid approach to tracking 
performance in meeting demand reduction targets. However, when seeking to generate 
climate-corrected demand figures against which to calibrate end-use models, a method of 
apportioning the climate correction between the different sectors is preferred because the 
influence of climate will differ among single residential, multiresidential, commercial, industrial 
and other non-residential sectors. 

One approach is to apply the corrections derived from modelling BWPD to the aggregated 
customer meter demand data (CMDD) from climate-sensitive sectors. Such an approach was 
reportedly used in an analysis by Beatty et al. (2007b), in which the outputs from a climate 
correction model on BWPD were used to generate a lagged index of climate influence. The 
index was then applied to aggregate CMDD from individual sectors to generate climate-
corrected demand for those sectors. That approach assumes a constant climate effect across 
sectors. A more discriminating alternative is to identify a particular year in the recent historical 
bulk water production records that most closely approximates climate-normalised demand 
(that is, the year that requires the smallest climate correction). Demand forecasts for those 
sectors with seasonal water-use profiles are then calibrated to the sectors‘ respective CMDD 

                                                 
2
 Other variables may be necessary when there are additional underlying factors that influence demand, 

such as significant changes to the pricing regime or the introduction of or changes to water restrictions. 
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from that year. Another alternative is to correct historical CMDD, expressed on a per active 
billing account basis, for each of the sectors that is climate sensitive. 

The main limitation with the first alternative is that there may not be a particularly ‗climate-
neutral‘ year within the recent past to calibrate from, especially one that is not affected by 
other complicating factors, such as water restrictions. There is also a degree of uncertainty 
related to how best to identify a climate-neutral year. The second approach introduces the 
complexity of aggregating and generating a seasonal profile from CMDD that is made up of 
individual meter readings taken at less frequent (typically quarterly) and varying (between 
users) time intervals. To overcome this, individual customer meter records may be ‗binned‘ 
(see Appendix A in Turner et al. 2010) and then aggregated into a uniform time step. The 
choice between the two approaches will depend on: 

 the availability and quality of BWPD and CMDD 

 the customer billing interval (ideally quarterly or more frequently) 

 the technical capacity for developing a binning algorithm 

 the complexity of the historical demand record. 

Selecting a baseline calibration period 

The selection of an appropriate baseline period against which to calibrate a climate correction 
model is critical to the proper interpretation of the outputs and their integration with other 
demand analyses and, ultimately, a demand forecast. The key considerations that inform the 
selection can sometimes be in conflict, in which case a judgment based on an understanding 
of the system will be necessary. 

First, the calibration period should be as long as possible to maximise the variation in the 
response data to be modelled and thus help derive a more robust model. Weber (1989) 
suggests a three-year calibration period as a minimum for regression models of monthly data, 
while DEUS (2002) recommends at least one year for calibration of a daily time-step 
regression. 

In selecting the time window for the baseline period, it is advisable that the calibration 
encompass or be as close as possible to the period to be corrected. It is also essential to 
recognise the potential effect of changes to the underlying demand regime that might be 
caused by factors such as: 

 changing community attitudes and behaviour under conditions of water scarcity 

 widespread adoption of new water-efficient practices and technologies 

 new water restrictions 

 major changes to the pricing regime. 

Such factors fundamentally inform the manner in which consumers use water (particularly 
discretionary use) and, consequently, the manner in which they adjust their water use in 
response to seasonal and stochastic weather variation. 

Two main methods of accommodating shifts in the demand regime when selecting a baseline 
period are reported in published literature. Maheepala and Roberts (2006) recommend that 
the baseline calibration period be the same as (or encompass) the period to be corrected to 
ensure that the demand regime for both the calibration and the correction are the same. 
Water demand trend tracking and climate correction (DEUS 2002) describes a method of 
adjusting a climate correction to allow for changes in the demand regime. Essentially, a 
quadratic relationship between the observed demand to be corrected and the demand 
predicted using a regression model (calibrated to an earlier period) is derived, the equation for 
which is used to quantify any shift in the demand regime. 

While both techniques ensure that the climate correction adequately reflects the prevailing 
demand regime of the time, they do not account for changes to the demand regime that may 
occur over the course of the baseline calibration period. This suggests that, in selecting a 
baseline period, the analyst must choose a time window in which the factors that can affect 
the demand regime remain constant. In times of dynamic shifts in water policy, it may not 
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always be possible to ensure that the baseline demand regime is stationary, particularly 
where the Maheepala and Roberts (2006) method of recalibrating the regression model to the 
period being corrected is adopted. To overcome this, it may be possible to utilise regression 
variables that account for the effect of factors that shift the demand regime (see ‗Explanatory 
variables‘, below). In doing so, however, the analyst must consider how those variables are 
then handled in the subsequent correction process (see Section 3.2.3). 

Explanatory variables 

Air temperature, rainfall and evaporation are typically the focus of climate correction models 
because they are considered to be the measurable climatic factors that water users respond 
to either directly or indirectly. Temperature and rainfall are tangible factors that people might 
respond to directly when using water—for example, someone may decide to water their 
garden in hot, dry weather or not to do so when it is raining. In terms of residential demand, 
evaporation could be considered a less tangible variable and could be considered a proxy 
variable for demand from gardens, swimming pools and evaporative cooling. 
Evapotranspiration might be used in place of (pan) evaporation where irrigation demand is the 
primary driver. Appendix 3B provides a discussion on the specification of meteorological 
variables in regression models of water demand. 

As mentioned in the previous section, a climate correction model is ideally calibrated to a 
baseline period over which there are no significant changes to pricing, regulation and other 
factors that influence underlying water usage patterns. This ensures a simple model and 
produces more reliable empirical relationships between demand and weather. However, if the 
historical record that is to be analysed unavoidably encompasses significant changes to those 
factors, variable specifications that adequately explain the effect of the changes must be 
developed. Specifications of the main non-climate variables that may be relevant in a climate 
correction model are discussed below. 

Trends associated with behavioural and technological change 

In areas where changing water-use behaviours and technology among consumers are 
contributing to a gradual change in average water demand, the inclusion of a trend variable in 
a climate correction model may be warranted. A linear or non-linear trend can be specified as 
a function of time (Weber 1989). To accommodate more complex non-stationary trends, 
Billings and Jones (2008) suggest using a centred moving average of observed demand (see 
Section 3.3.1) as an explanatory variable. However, that variable is not truly independent, 
raising questions about the validity of this specification. Readers are advised to refer to texts 
on time series analysis for more detailed treatment of handling trends in regression analysis. 

Water restrictions 

The introduction, adjustment or retraction of water restrictions can dramatically alter the 
seasonal demand peak and in some cases also affect base demand. The simplest variable 
specification that may be used to explain the effect of restrictions is a dummy variable—a 
binary expression of the presence or absence of a given state of restrictions. Where there are 
multiple changes to the restrictions regime, additional dummy variables may be required, 
although it is sometimes possible to lump different restrictions levels into the one variable. 

A simple dummy specification, however, will only shift the intercept of a regression model; it 
does not accommodate the fact that the relationship between weather variables and demand 
may also change under changes to restrictions. Where a dummy specification is not 
adequately explaining the effect of a change to restrictions, it may be helpful to introduce 
interaction terms between the dummy variable and the weather variables being used in the 
model. Essentially, such interaction terms allow the model to adjust the relationship between 
demand and a weather variable when restrictions change. The interaction term in this case is 
defined as the cross-product of the mean-centered

3
 weather variable of interest with the 

restrictions dummy variable. Analysts with limited OLS regression experience are advised to 
consult statistical modelling texts before attempting to use and interpret interaction terms. 

                                                 
3
 The variable mean is subtracted from each data point. 
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Water price 

The effects of price changes are more complex and are often the focus of dedicated analyses 
as described in Section 3.6. However, it is inadvisable to use the sophisticated variable 
specifications and estimation techniques from price analysis in climate correction modelling. 
However, where a large change to the water tariff or tariff structure results in an observable 
change in the demand profile, the effect may be modelled using a simple dummy variable to 
represent the presence of the new tariff and, where the effect appears to be more pronounced 
on peak demand, interaction terms between weather variables that inform peak demand 
(temperature, evaporation) and the dummy variable. 

Determining climate-corrected demand 

Once a climate correction regression model for water demand is finalised, the output of the 
model is used to generate a ‗climate-corrected‘ demand figure or series. There are a number 
of techniques available to undertake this. Common to most is the formulation of a demand 
‗hindcast‘—a synthetic historical time series of predicted demand that essentially represents 
the spectrum of demand that would theoretically have been observed in the calibration period 
had the range of past climatic conditions occurred in that period. The hindcast is generated by 
applying the equation from the calibrated regression model to the longest available record of 
historical weather data. It is used as the basis for determining demand under ‗normal‘ weather 
conditions, which in turn is the basis for correction of observed demand. 

DEUS (2002) describes a climate correction method that can accommodate shifts in the 
underlying demand regime, thereby negating the need to recalibrate the model at critical 
junctures such as the introduction of water restrictions. Climate-neutral base and seasonal 
demand are first calculated from the demand hindcast from a regression model of demand 
that uses temperature, rainfall and soil moisture as predictors. Base demand is assigned to 
be the minimum demand in the hindcast record. Seasonal demand is calculated as the 
difference between a frequency-weighted average of the hindcast demand estimates and 
base demand. Observed demand from the period to be corrected is then plotted against 
predicted demand for the correction period. Any fundamental change in the relationship 
between weather and demand (the demand regime) over that period is signified by a 
divergence away from the line of direct equality (that is, the line y = x). A polynomial curve is 
fitted to this plot, the equation for which is used to calculate the percentage change in both 
fixed and seasonal demand relative to the baseline period at any given day or month. The 
climate-corrected demand at time t is then calculated as: 

  











tMABttMA DDD ,, D%1  1 

where 

%Dt = Percentage change in seasonal demand over the past year (relative to the 
baseline) at time t 

DB = Long-term average demand calculated from hindcast 

DMA,t = 1-year prior moving average (see Section 3.3.1) of observed demand at time t 

tMA,D


 = 1-year prior moving average of predicted demand at time t 

The term ( tMABD ,D


 ) in the above equation represents the raw climate correction. Any 

necessary adjustments for shifts in the underlying demand regime are defined by the change 
in seasonal demand as reflected in the preceding term. The need to select a calibration 
period that is itself unaffected by shifts in the demand regime is not stated but is presumed 
implicit to the process. 

The method proposed by Maheepala and Roberts (2006) also makes use of a demand 
hindcast to define climate-neutral demand. As in the DEUS (2002) method, the hindcast is 
generated by feeding 30 or more years of historical weather data into a regression model 
fitted to daily or monthly water use. Climate-normalised demand for a given period (say, a 
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year or month) referenced to the baseline calibration period is interpreted to be the 
corresponding median or 0.5 probability (yearly or monthly) demand from the hindcast record. 
The climate correction for the period of interest (relative to the chosen baseline period) is 
simply the difference between the predicted demand (using the regression model) and the 
climate-normalised demand. As mentioned above, shifts in the underlying demand regime are 
accounted for by recalibrating the model to reference the period that the climate correction is 
to be applied to. 

The Water resources planning manual (Maddaus 2007) presents a different methodology 
again for determining climate-corrected demand. Deseasonalised monthly demand data is 
used to fit a regression model with normalised explanatory weather variables. The resulting 
model coefficients represent the change in demand associated with departures from 
long-term monthly averages. Corrections to observed demand for weather-induced fluctuation 
are calculated as the differences between observed and long-term average weather (for 
example, temperature and rainfall) multiplied by the corresponding model coefficients. A 
13-month centred weighted moving average can then be applied to deseasonalised, weather-
corrected data to track trends and cycles that reflect changes to the demand regime. 

3.2.2 Examples 

In developing a demand forecast for metropolitan Adelaide, Turner et al. (2008a) recognised 
that a correction developed from BWPD is not necessarily applicable to individual sectors 
(residential, commercial etc.). Accordingly, they sought to identify a relatively climate-neutral 
year in the available historical customer meter record that could be used to calibrate the 
outdoor residential component of an end-use forecasting model. The climate correction 
approach devised by Maheepala and Roberts (2006) was thus adapted, a monthly regression 
model was calibrated and validated on four and two years of BWPD, respectively, and the 
median annual demand from the 30-year model hindcast was taken as climate-normalised 
annual demand. The year of the production record that required the smallest climate 
correction relative to climate-normalised demand was then selected as the calibration year for 
the end-use model. 

Beatty et al. (2008) used a climate correction and trend tracking approach similar to that 
described by DEUS (2002) to explore the impacts of the introduction of volumetric pricing and 
water restrictions on residential and non-residential demand in Melbourne. This form of 
climate correction was also applied to annual demand data (per property) from utilities around 
Australia to investigate trends in residential demand under recent drought conditions (Beatty 
et al. 2006). Similar approaches have been taken to: 

 track trends in production data from Rous County in northern New South Wales 
(Australian Water Technologies 2002) 

 examine demand trends in south-east Queensland (Beatty et al. 2007b), Dubbo (Beatty 
et al. 2007a) and Melbourne (Beatty et al. 2008) 

 gauge the change in consumption following the introduction of a demand-management 
program in Kalgoorlie–Boulder (Sarac and White 2001) 

 measure the impacts of water restrictions in Sydney (White et al. 2000). 

Table 3.2 summarises a number of climate correction studies reported in Australia. 
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Table 3.2: Australian examples of climate correction analyses 

Author Location Type of data Baseline 
calibration 

Time step Correction method 

Turner et al. 
(2008a) 

Adelaide BWPD 4 years, no 
restrictions 

Monthly Selection of a climate-neutral 
year based on smallest 
correction using difference 
between predicted annual 
demand and median annual 
demand from hindcast 

Beatty et al. 
(2008) 

Melbourne BWPD 1 year Daily and 
monthly 

Seasonal climate correction 
index generated from BWPD 
model applied to CMDD. 
Correction based on 
difference between 1-year 
moving average of predicted 
demand and hindcast 
average demand, adjusted for 
changes in the demand 
regime 

CMDD 4 years, no 
restrictions 

Quarterly 

Beatty et al. 
(2007a) 

Dubbo CMDD Unknown Quarterly Unknown 

West 
Melbourne 

BWPD   Daily Difference between 1-year 
moving average of predicted 
demand and hindcast 
average demand, adjusted for 
changes in the demand 
regime 

Beatty et al. 
(2007b) 

South-east 
Queensland  

BWPD 6.5 years Monthly Lagged correction index 
generated from BWPD model 
applied to CMDD. Correction 
based on difference between 
1-year moving average of 
predicted demand and 
hindcast average demand, 
adjusted for changes in the 
demand regime 

Maheepala & 
Roberts 
(2006) 

Yarra Valley 
Water 
(Melbourne) 

BWPD Year to be 
corrected 

Daily and 
monthly 

Difference between predicted 
demand and median (or 0.5 
probability) demand derived 
from hindcast 

Beatty et al. 
(2006) 

Australian 
capital cities 

Annual 
consumption 
data reported 
by WSAA 

Unknown Annual Unknown 

Australian 
Water 
Technologies 
(2002) 

Rous County 
(northern 
NSW) 

BWPD 1 year Daily Difference between 1-year 
moving average of predicted 
demand and hindcast 
average demand, adjusted for 
changes in the demand 
regime 

Sarac & White 
(2001) 

Kalgoorlie–
Boulder  

BWPD 1 year Daily Difference between predicted 
demand using the equation 
derived from the calibration 
year and observed demand 

White et al. 
(2000) 

Sydney BWPD 1 year Daily Difference between 1-year 
moving average of predicted 
demand and hindcast 
average demand, adjusted for 
changes in the demand 
regime 

BWPD = bulk water production data; CMDD = customer meter demand data; WSAA = Water Services 

Association of Australia. 
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Box 3.1: Modelling the effects of climate change on urban water demand 

Regression models of the form used for climate correction have also been used to model the 
impacts of climate change on urban water demand. Maheepala (2003) used regression 
modelling on a monthly time step to predict changes in mean bulk annual per capita 
consumption under various 2030 climate change scenarios in Benalla, Victoria. The model 
used rainfall and evaporation as predictor variables and produced strong fits to observed 
data in both the calibration period and the validation period. Similarly, Moglia et al. (2009) 
formulated monthly regression models for particular sectors within various water supply 
zones of Sydney for the purpose of exploring climate change scenarios. Their modelling 
approach produced strong fits for single and multiresidential, government and primary 
producer sectors. It was less effective for predicting demand in commercial and industrial 
sectors, presumably due to the lack of responsiveness to climatic conditions within those 
sectors. The use of regression modelling to assess climate change impacts on water 
demand has also been reported (Beatty and O‘Brien 2007). For a discussion on 
incorporating climate change into the IRP process, refer to Chapter 4, Incorporating climate 
change into urban water IRP (Fane et al. 2010, in this document). 

3.2.3 Pitfalls, limitations and potential solutions 

While the three climate correction methods described above under ‗Determining climate-
corrected demand‘ can accommodate shifts in the demand regime outside the baseline 
calibration period, they do not address the case of having to use a baseline period that 
encompasses a shift in the demand regime. While in the past this may have been a highly 
unusual situation, the dynamic nature of drought response in urban water planning has meant 
that water restrictions in many urban centres have been adjusted several times in a single 
year. The longer this state of affairs continues, the more distant—and therefore less viable for 
model calibration—unrestricted years become. 

Calibrating a climate correction model to a year in which the demand regime is in flux would 
require a set of variables to reflect the changes that are taking place (as described under 
‗Determining climate-corrected demand‘). This in turn introduces the problem of defining 
climate-neutral demand, as the analyst must choose how to set the non-climate explanatory 
variables when generating the hindcast. That choice will be informed by the purpose of the 
correction and the demand regime that the correction is intended to represent. For example, if 
the correction is intended to provide a climate-normalised figure to base a forecast upon, then 
the forecaster may have to decide whether or not future demand is to be constrained by 
permanent water saving rules (similar to low-level restrictions), or whether the current or the 
previous pricing regime will be in force. The corresponding variables in the regression model 
must then be set to reflect those preferences in the hindcast used to derive climate-neutral 
demand. 

Shifts in the demand regime can be demonstrated by selecting a stationary period as a 
baseline reference and revealing the divergence between observed demand and predicted 
demand (see for example Beatty et al. 2008). In such analyses, inferences about departures 
from predictions should always be made with reference to prediction intervals of the simulated 
demand, not confidence intervals (see Box 3.2). Moreover, it is important to be aware of the 
limits of extrapolating regression model outputs beyond the calibration period. The reliability 
of a regression model theoretically extends only as far as the bounds of its calibration data 
domain. For example, if temperature only ever reaches 30°C in the calibration period but rises 
to 32°C outside the calibration, caution should be exercised when making inferences related 
to the prediction because the real demand response may become magnified (non-linear) 
above 30°C. For this reason, DEUS (2002) recommends selecting a baseline year that has 
the widest possible variation in weather conditions to ensure that the form of the relationships 
between the independent and response variables will hold when applied outside the 
calibration window. 
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Box 3.2: Model uncertainty: confidence intervals versus prediction intervals 

When making inferences about shifts in the demand regime based on climate correction 
modelling, it is worth noting the distinction between confidence intervals for the mean and 
confidence intervals for the prediction (or confidence intervals and prediction intervals). It is 
not uncommon for 95% confidence intervals (for the mean) to be stated as the measure of 
uncertainty against which the significance of trends in observed data away from predictions 
is assessed. That measure actually overstates the strength of the predictions, as it signifies 
the range of values within which one can be 95% sure that the mean for all observed values 
corresponding to a given set of predictor data will lie. The confidence intervals for the mean 
are calculated according to the equation 
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The 95% prediction interval, on the other hand, is the range within which one can be 95% 
sure that an individual observed value corresponding to a given set of predictor data will lie. 
The formula for confidence intervals of prediction is 
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Prediction intervals are used to measure the uncertainty of model predictions outside the 
calibration period, and accordingly are always wider than confidence intervals. So when 
making inferences about a departure of a particular observed data point or series of points 
from predicted values, one should be noting the significance of the departure using the 
prediction interval rather than the confidence interval. 

 

Overspecification or overfitting occurs when the number of predictor variables is high relative 
to the number of data points, causing the degrees of freedom of the model to be low. This is a 
trap that is easy to fall into, as an overspecified model can produce fits that appear to be very 
strong. The ramification is that the model becomes incapable of generalising beyond the 
fitting period; that is, it cannot be expected to produce reliable outputs when applied to data 
outside the calibration window. An example of this would be using dummy variables to 
represent every month of the year within a regression model based on a few years of monthly 
data. Having a justifiable rationale for the inclusion of all variables used in the model will 
provide a sound basis from which to avoid overspecifying a model. 

Other known problems associated with climate correction modelling and potential solutions 
are given in Table 3.3. 
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Table 3.3: Other limitations of climate correction modelling and potential solutions 

Limitation Potential solution 

High level of analysis leading to guesswork of 
the details 

Further disaggregation wherever possible 

Assumption of stationary climate Consider using stochastically generated synthetic 
climate data based on different climate change 
scenarios (see Maheepala 2003) 

Incomplete or poor-quality weather data 
records 

Obtain a SILO
a
 climate data drill for the demand- or 

population-weighted centroid of the area 

Spatial variability of weather Use smaller supply zones or customer meter groups 
for the analysis 

Obtain a SILO climate data drill for the demand- or 
population-weighted centroid of the area 

Bias in models using BWPD caused by 
particular users or sectors (e.g. large industry) 

Use smaller supply zones or customer meter groups 
for the analysis 

Subtract CMDD record of trouble users/sectors from 
bulk record of users/sectors causing the bias 

BWPD = bulk water production data; CMDD = customer meter demand data. 

a See http://www.bom.gov.au/silo for details. 

3.3 Trend analysis 

Analysis of trends in urban water demand is a simple and essential first stage in Step 2 of the 
IRP process (‗Analyse the situation‘). Trend identification can provide an indication of 
long-term changes in water demand on an aggregate or per capita (or household, building, 
employee, production) unit basis. That information can then be used to focus analysis on the 
factors that might be contributing to the changes. However, it is critical that analyses of trends 
are adjusted for weather effects (climate corrected), or at least interpreted with reference to 
climate and weather fluctuations, to ensure that any trends identified are not mistaken for 
events such as heat waves and floods or for climate variability, such as shifts in and out of 
drought. 

Trend analysis is often performed on BWPD at a broad strategic level of planning. However, it 
is also valuable to look at trends within sectors and subsectors to gain an understanding of 
which sectors are contributing to trends at the broader level. Trend analysis by sector is also 
useful in developing projections of demand for LCD or sector-based forecasts. The 
techniques employed in this type of analysis are relatively simple and not widely reported in 
published materials. Accordingly, to avoid repetition, the following discussion on techniques is 
merged with the few reported examples of their application. 

3.3.1 Techniques and examples 

Moving averages 

The most straightforward means of identifying longer term trends in demand is to apply a 
moving (or running) average to time-series CMDD or BWPD, thereby smoothing the ‗noise‘ in 
the data to reveal the more general direction of demand over the period of interest (Billings 
and Jones 2008). Moving averages essentially de-emphasise short-term fluctuations by 
consolidating data points into longer units of time. There are several different types of moving 
average: 

 Prior moving average—calculated from the mean of a specified number of previous data 
points. This is useful for viewing current demand in relation to recent historical demand 
(for example, monthly demand averaged over the past year using demand in the current 
month and the 11 months prior). 
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 Centred moving average—both past and future data are used to calculate the moving 
average so as to improve the timeliness in detecting a trend signal. For example, a 
13-term centred moving average for a given month takes the mean of the previous 
6 months‘ data, the figure for the month of interest and the following six months‘ data, 
thereby ensuring that there is no lag in picking up new trends in demand. 

 Weighted moving average—also helps to address the delay of a trend signal by placing a 
greater emphasis on more recent data points. Weights can be applied to prior or centred 
moving averages. The relative magnitudes of the weightings are selected at the 
discretion of the analyst and may be defined by a linear or non-linear function. 

Figure 3.3 demonstrates the different smoothing effects and timings of trend signal detection 
associated with the different forms of moving averages to historical data described above. 

Figure 3.3: Different forms of moving averages and smoothing applied to time-series demand 
data 
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Seasonality and weather effects tend to be the primary forms of noise that need to be 
removed from urban water demand data. Smoothing using moving averages is a means of 
reducing that noise to allow examination of underlying average monthly, seasonal or annual 
fluctuations. In this sense, using an appropriate size for a moving average window—the 
number of data points used to calculate each average—is critical to the analysis. For 
example, a moving average using 365 or 12 data points can be applied to daily or monthly 
demand data, respectively, to smooth out seasonality and look at trends occurring over 
several years. Similarly, a moving average window equivalent to a month or a quarter 
(season) applied to daily data (say, 30 or 90 days) can remove the noise of weather 
fluctuation to provide a clearer indication of the seasonal nature of demand over a period of a 
year or longer (see, for example, Skene et al. 2009). 

Moving averages are a fundamental component of the climate correction and trend tracking 
model described in DEUS (2002). In this approach, the climate correction at each time step is 
calculated from the change in seasonal demand over the (immediate) year past, relative to a 
climate-neutral seasonal demand (derived from a hindcast of demand as described under 
‗Determining climate-corrected demand‘). This correction is then applied to the year-
equivalent (for example, 365 days for a daily time step) prior moving average of observed 
demand. The output of this process is a smoothed time series of demand that shows shifts 
and trends that are not related to weather or climate variability. 
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Peaking factor analysis 

Another useful technique for the identification of trends is to look at the change in peak 
demand and peak-to-average demand ratios over time (Billings and Jones 2008). The 
peak-to-average ratio (otherwise referred to as the ‗peaking factor‘) for a given period is 
calculated by dividing the peak daily demand by the average daily demand for the period. 
Examination of the dynamics of this ratio can provide insight into changes in the seasonality 
of demand and the impacts of demand-management programs targeting peak water demand 
reduction (such as discretionary outdoor usage). Changes in the peak-to-average ratio also 
have significant implications for the design of water infrastructure and the potential to defer 
related capital expenditure. 

As part of drought response planning for Sydney, Sarac and White (2001) analysed BWPD 
for changes over a 10-year period in average peak day, ultimate peak day and peak week 
demands and associated peaking factors. By using figures calculated from hindcasts of 
climate correction models for the years of interest, the analysis effectively accounted for the 
influence of weather on peak demand. The WaterTrac model described by Beatty et al. 
(2008) also uses climate-corrected BWPD to calculate current peaking factors. Skene et al. 
(2009) performed an analysis of peaking factors to reveal the effect of water restrictions on 
peak demand on the Gold Coast in Queensland. The analysis considered inter-annual 
variation of mean day maximum month (MDMM) and maximum day (MD) peaking factors 
between 2001 and 2008; however, the data used to generate the peaking factors was not 
climate corrected. 

3.3.2 Pitfalls and limitations 

While the above analyses can provide some insight into the presence of trends in water 
demand, they cannot provide explanations for why the trends are occurring. Trends in water 
demand can be related to a variety of factors, such as: 

 natural attrition of inefficient stock—transition from inefficient to efficient fixtures and 
fittings over time 

 changing customer attitudes and behaviour 

 demand-management programs with educational and/or structural components 

 water restrictions 

 price changes 

 adoption of new technologies that may be more or less efficient 

 urban consolidation and gradual shifts to smaller lot sizes 

 reducing occupancy ratios 

 rezoning from non-residential to residential land uses 

 growth in source substitution (such as water reuse schemes and lot-scale rainwater 
tanks). 

Moving averages cannot unpack the root causes, but they can help to identify which to 
investigate further using the analytical techniques described in the following sections. As 
such, they are most useful in the preliminary stages of Step 2 of the IRP process (‗Analyse 
the situation‘). 

3.4 Analysing base and seasonal demand 

A simple form of demand analysis that can be useful to aid demand forecasting is to estimate 
the split between base demand and seasonal demand. In the residential sector, base demand 
is the component of demand that is considered to be fairly constant year round (toilet flushing, 
clothes washer use etc.), while seasonal demand is typically associated with discretionary 
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water usage, such as outdoor watering and the use of evaporative coolers.
4
 Thus, in Australia 

seasonal demand is generally observed in the summer months and winter demand is largely 
associated with base demand. 

While metering by property facilitates sector-based analysis, information on specific end-uses 
is virtually impossible to gather without the aid of detailed smart metering technology. Thus, 
from an end-use perspective the most that can be extracted from standard CMDD, read 
typically on a quarterly basis, is an approximate apportionment between base demand and 
seasonal demand and in some cases, by extension, a split between discretionary and 
non-discretionary demand and indoor and outdoor demand. Such estimates can be used to 
inform and calibrate end-use models, which use a ‗bottom-up‘ approach to developing an 
average demand profile. The split between base and seasonal demand is also useful in 
helping to develop options for demand management. 

The techniques employed in this type of analysis are relatively simple and often specific to the 
region and available data. Accordingly, to avoid repetition the following discussion on 
techniques is merged with descriptions of their reported application. 

3.4.1 Techniques and examples 

A simple approach to making the distinction between base demand and seasonal demand is 
to subtract average low period (winter) demand from peak period (summer) demand (Billings 
and Jones 2008, Danielson 1979). In their model of daily demand in Melbourne, Zhou et al. 
(2000) estimated base demand by fitting a polynomial to the time series of BWPD (normalised 
to population and averaged by month) in the lowest months of water consumption through the 
year. DEUS (2002) and White et al. (2000) both determined fixed (base) demand using the 
hindcast from a climate correction model fitted to LCD BWPD. After fitting a regression model 
to a particular ‗baseline‘ period, indoor demand was taken to be the lowest daily production in 
a demand hindcast (historical time series prediction) based on historical climate data. 

Water resources planning (Maddaus 2007) suggests using the month of the year with the 
lowest seasonal demand index (refer to Appendix 3B) as the indicator for base water 
demand. Base demand is then calculated on monthly BWPD or CMDD by multiplying the 
weighted moving average for each month by the selected base month index. Seasonal 
demand is estimated using the difference between the calculated base demand and observed 
total demand. 

An alternative approach works on the principle of making the distinction between 
non-watering days where there is limited demand variability and days of high variability 
associated with watering and other seasonal uses (Roberts 2009). Daily BWPD is ranked and 
indexed to generate a plot that provides a graphical indication of the variability of demand 
over a year. Base demand is interpreted as the average of the lowest 90 days, as illustrated 
in Figure 3.4. Daily demand figures from different years can be overlaid on the plot to indicate 
the reproducibility of the result. 

                                                 
4
 Evaporative coolers are physically an ‗indoor‘ end use. However, unlike other main indoor end uses 

their water use and bleed-off does not go to sewer. Hence in many publications they are categorised in 
a similar way to outdoor watering to clarify the component of indoor water demand going to sewer from 
a household. 
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Figure 3.4: Estimation of base demand using ranked and indexed daily consumption 
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Source: Roberts (2009). 

Gato et al. (2007a) considered the month of the year with the lowest total water use to be 
representative of base demand in East Doncaster, Victoria. Using daily BWPD from 
lowest-use months between 1991 and 1999 as the dependent variable, they produced a 
regression model to describe base demand with explanatory variables including maximum 
daily temperature, rainfall, a weekend dummy variable and an underlying trend variable. It 
was concluded that base use was weather-dependent because of winter irrigation. 

In a separate paper, Gato et al. (2007b) determined threshold values for rainfall and 
temperature above or below which observed water demand was unaffected by fitting 
quadratic curves to plots of demand against the two variables and finding their respective 
maxima or minima. They then applied those thresholds to ‗heat‘ and ‗effective rainfall‘ 
functions in a regression model of base demand, again using daily BWPD from the month of 
lowest water use for each year as the response variable. This generated an expression for 
weather-independent base water use that was subsequently contrasted with the weather-
sensitive regression equation for base demand described in the first paper (Gato et al. 
2007a). 

3.4.2 Pitfalls, limitations and potential solutions 

It is important to recognise that, while some texts such as Water resources planning 
(Maddaus 2007) use base residential water use as a proxy for indoor demand, making such a 
link may not always be appropriate. Base residential demand as identified using the 
techniques described above does not necessarily directly correspond to indoor residential 
demand because, as Gato et al. (2007b) recognise, garden watering may be occurring even 
during periods of minimum demand. And despite peak seasonal use generally being 
associated with discretionary uses, such as watering and evaporative cooling, the assumption 
that residential base use directly reflects non-discretionary use is also confounded by winter 
watering. Similarly, the (indoor) evaporative cooling component of seasonal demand (where 
such appliances are prevalent) prevents us from simply using the difference between peak 
seasonal and base use as a proxy for outdoor demand. Thus, close attention must be paid to 
the distinction between base, non-discretionary and indoor demand and between seasonal, 
non-discretionary and outdoor demand when interpreting the seasonality of water use in a 
specific region. 
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There are a number of ways to further isolate the indoor and non-discretionary components of 
demand, including: 

 analysis of sewer flows when/where infiltration/exfiltration are not significant 

 smart metering of residential dwellings 

 submetering of multiresidential blocks 

 considering only minimum daily (winter) demand figures that coincide with significant 
rainfall 

 analysis of night flows in small metered zones to detect the occurrence of night-time 
irrigation. 

3.5 Forecasting peak demand 

Analysing seasonal peak demand and forecasting short-term peak demand are common 
tasks in water planning and management. Understanding peak demand is essential for 
determining constraints in the system, understanding what can be done to relieve constraints 
and optimising the system in both the short and long terms. Analysis of near-term demand 
(measured days or hours) is typically used for supply system optimisation, maintenance 
scheduling and the identification and quantification of peak demand. It may be applied in the 
planning and design of water treatment and distribution infrastructure or, by forecasting, 
inform day-to-day operations. Analysis of seasonal peaks in demand may be used to inform 
medium to longer term planning and management of the supply–demand balance. Cutting 
peak demand through water efficiency initiatives can defer infrastructure investment, 
providing significant avoided capital and operating costs. 

Near-term peaks in water demand are generally closely aligned with local weather 
fluctuations. In Australia, the combined effects of high temperatures, evaporation and lack of 
rainfall tend to generate the largest daily loads on water supplies. Seasonal peaks in water 
demand are similarly closely aligned with local climate, generally occurring in the height of 
summer in Australia. 

Peak demand in the residential sector is typically associated with outdoor activities such as 
garden irrigation and pool and spa use, and with cooling using evaporative coolers in specific 
locations. In the non-residential sector, irrigation is a large contributor to peak and seasonal 
demand, as is water use associated with cooling towers. Demand seasonality is also evident 
among industries in which activity is cyclical, such as food processing and commercial 
tourism. 

Section 3.4 explored ways of separating the base and seasonal components of demand, 
including analysis of peaking factors. This section deals more specifically with understanding 
the seasonal demand profile and near-term forecasting. 

3.5.1 Techniques 

A simple means of analysing daily peak demand is to generate a statistical description of the 
historical record of peak-to-average day demand ratios, including average, range, percentile 
ranks, distribution, frequencies and trends. This approach can provide an indication of the 
variability of daily demand, but does not link it to any driving factors and provides very limited 
forecasting ability. 

Empirical modelling approaches are the preferred means of predicting near-term demand. 
Typically, a forecast model of daily (or even diurnal or hourly) demand uses recent historical 
demand and/or weather and other short-term forecasts as a predictive basis. A range of 
approaches have been employed in near-term forecasting, including various permutations 
and combinations of OLS regression, univariate time series, state space and artificial neural 
network (ANN) modelling. (Billings and Agthe 1998, Billings and Jones 2008, Bougadis et al. 
2005, Maddaus 2007). These models tend to be fitted to BWPD, as this is the only form of 
data recorded at a sufficiently high resolution. Because they are customised to specific water 
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supply networks, each model has its own unique structure, predictor variables and variable 
specifications and transformations. 

Seasonal fluctuation in water demand is typically forecast in larger sub-annual time steps 
(typically monthly). Approaches to analysis of seasonality include seasonal decomposition 
and regression modelling. Multiple regression modelling is generally the preferred approach in 
developing a forecast that reflects demand seasonality—indeed, seasonal demand models 
are functionally identical to climate correction and econometric models. Although regression 
models alone have in the past been used to generate demand forecasts for an entire service 
area, they are now seen more as a complementary technique to end-use and sector-based 
forecasts, and are used to predict the pattern of seasonal variation rather than outright gross 
demand. However, where data is not available for informing an end-use model for a particular 
season- or weather-sensitive sector (usually non-residential sectors such as primary 
production and public open space irrigation), a regression modelling approach may be 
preferable to a simple trend-based or demand per projected base unit forecast. 

The more common techniques employed in near-term and seasonal peak modelling are 
briefly discussed below. 

Seasonal decomposition 

Average monthly demand indexes (see Appendix 3B) can be applied to long-term annual 
forecasts to estimate the seasonal peaks in those years. However, this technique can be 
confounded by the influence of extreme climate in the historical record used to generate the 
index (particularly when less than 10 years of historical record is used to generate the index), 
demographic shifts, and changes to pricing, water restrictions and other factors. 

Univariate time series models 

The premise of time series analysis is to develop a model of demand informed solely by 
historical demand. A common type of univariate model is the autoregressive moving average 
(ARMA) model, which is made up of two main parts: an autoregressive component and a 
moving average component. When the demand data is non-stationary (the mean and 
variance change over time), an autoregressive integrated moving average (ARIMA) model is 
generally applied. These two types of models may be developed using the Box–Jenkins 
methodology. In the first step of that methodology, the data is analysed for stationarity and 
seasonality to determine the need for either autoregressive or moving average components in 
the model. Model parameters are then estimated, using least squares or maximum likelihood 
estimation. As a final step, model residuals are often tested for independence to ensure that 
the assumption of stationarity is not violated. These models are most appropriate to near-term 
forecasts of peak demand at an hourly or daily time step. 

Regression models 

As mentioned above, near-term demand models developed for particular water supply 
networks tend to have diverse, unique and sometimes complex specifications that are not 
generally transferrable to other situations. However, the principles that guide the modelling 
exercise are generally the same as those described in the sections on climate correction 
(Section 3.2) and determining price and income elasticities (Section 3.6) and in Appendix 3B. 

Short-term forecasting regression models tend to explain demand variability using weather, 
seasonal adjustment and prior demand (lag) variables. Often these variables are subject to 
transformations, the functions for which are derived specifically to reflect the local conditions. 

Regression models designed to examine seasonal peaks are essentially the same as climate 
correction models in both intent and purpose. Because daily and seasonal peak models are 
calibrated to, and operate on, a relatively short timeframe, other factors that may influence 
demand (such as water restrictions) are effectively considered to be constant. In this sense, it 
is wise to regularly recalibrate these models using the latest data available. 
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Artificial neural network models 

Artificial neural networks (ANNs) are a class of models inspired by the functioning of the 
brain. Based upon massive parallel processing, they are capable of modelling complex, 
non-linear relationships without prior specification of the functional form. This has led to their 
use in many water resources applications, including near-term water demand forecasting. 
Readily attainable climatic variables typically used in regression models are also used to 
construct ANN models capable of forecasting peak demand. ANN models have been used to 
formulate daily peak demand models, but there are no known examples of ANNs being 
applied to longer time steps in urban water demand. 

3.5.2 Examples 

Near-term peak forecasting 

Three separate articles by Zhou and various colleagues (Zhou et al. 2000, 2001, 2002) 
present short-term forecasting models for predicting daily bulk water demand (based on 
BWPD) in Melbourne. In the 2001 study, base consumption was initially removed from the 
dataset using a third-order polynomial function calibrated on the winter months. The 
remaining climate-dependent consumption was then modelled during the summer months 
with a regression model using temperature and precipitation as explanatory variables. In the 
2001 study, base water use was once again removed using a polynomial function, and three 
separate components were then combined to predict seasonal water use: the seasonal cycle, 
the climatic component, and the persistence component. The seasonal cycle was modelled 
using a Fourier series, while the climatic component was modelled using a linear regression 
based upon transformations of climatic variables including temperature, evaporation and 
rainfall. Finally, the persistence component used an autoregressive procedure on the time 
series of residuals to account for short-term memory within the system. The last study by 
Zhou et al. (2002) extended the work from the previous study to forecast hourly water 
demand using daily demand. 

Using daily production data, Gato et al. (2007b) adapted a regression model for predicting 
base use water demand developed by Miaou (1990), by incorporating threshold effects 
associated with both rainfall and temperature. They then separated seasonal demand into 
three components as in the Zhou et al. (2002) study and constructed a linear regression 
predicting the seasonal component using the heat function (a linear regression predicting the 
climatic component using temperature), rainfall, a variable indicating the day of the week, and 
an autoregressive technique predicting the persistence component. Gato et al. (2007a) also 
separated water demand into base and seasonal components. However, they applied a linear 
regression to predict base demand using rainfall, temperature, a dummy variable indicating 
the day of the week (that is, weekday or weekend) and a time variable. 

Feedforward backpropagation (FFBP) ANN models have been applied to forecast short-term 
water demand in studies by Bougadis et al. (2005), Jain et. al (2000) and Zhang et al. (2006). 
The three studies typically predicted weekly water demand (production data) using a 
combination of significant climatic variables such as temperature and rainfall, combined with 
prior water demand. The ANN models were subsequently compared to simple linear 
regression models constructed using comparable independent variables, autoregressive time 
series models and/or persistence models. In general, it was found that the ANN models 
consistently outperformed the other models. However, only the study by Zhang et al. (2006) 
measured the predictive performance of the final ANN model on an independent validation 
set. Ghiassi et al. (2008) used a newly developed dynamic artificial neural network (DAN2) 
model to forecast short-term water demand for the city of San Jose, California. Hourly and 
daily demand were primarily forecast using past water demand data, but a temperature 
variable was also trialled in the hourly models with limited success. Overall, the DAN2 models 
were found to be superior to traditional FFBP, ANN and ARIMA models. 

Coombes et al. (2000) took an unusual approach to developing a model to simulate daily 
outdoor water use that attempted to reflect behavioural responses to weather conditions. 
Rather than adopt an empirical modelling approach, they developed a model based on a set 
of conditional probability functions. The functions described household reaction to the 
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occurrence and depth of rainfall in terms of outdoor water use on the day of the rainfall event 
and on subsequent days. Water use was in turn described as a function of daily maximum 
temperature or rainfall, and monthly average daily outdoor usage. The model was fitted to 
monthly aggregate consumption data from nine discrete supply zones in the lower Hunter 
region of New South Wales and was shown to effectively reproduce the strong seasonality 
evident in the data. 

Table 3.4 summarises the key features of the near-term demand forecasting studies 
described above. 

Table 3.4: Examples of near-term demand forecasting models 

Author Location Type of data Method 

Gato et al. (2007a) East Doncaster, 
Melbourne 

Daily production Linear regression 

Gato et al. (2007b) East Doncaster, 
Melbourne 

Daily production Regression, 
autoregressive 
procedure 

Zhou et al. (2002) Melbourne Hourly production Linear regression, 
autoregressive 
procedure, polynomial 
function, Fourier series 

Zhou et al. (2001) Melbourne Daily production Regression model, 
polynomial function 

Zhou et al. (2000) Melbourne Daily production Linear regression, 
autoregressive 
procedure, polynomial 
function, Fourier series 

Ghiassi et al. (2008) San Jose, California Hourly and daily 
production  

ANN (DAN2) 

Zhang et al. (2006) Louisville, Kentucky Weekly production FFBP ANN 

Bougadis et al. (2005) Ottawa, Ontario, 
Canada 

Weekly production FFBP ANN 

Jain et al. (2000) Kanpur, India Weekly production FFBP ANN 

Coombes et al. (2000) Lower Hunter region, 
NSW 

Daily production Probabilistic model 

ANN = artificial neural network; DAN2 = dynamic artificial neural network; FFBP = feedforward backpropagation. 

Seasonal peak forecasting 

Regression modelling by sector is the fundamental forecasting approach of the Institute for 
Water Resources—Municipal and Industrial Needs (IWR–MAIN) Water Demand Analysis 
Suite. The IWR–MAIN software uses multiplicative or additive (user-selected) regression 
models to generate demand forecasts for six residential subsectors that are based on a 
standardised set of weather, dwelling characteristic and demographic explanatory variables 
(similar to time series econometric estimation—see Section 3.6). Coefficients used in the 
models can either be derived by the user or taken from a selection of default values derived 
from meta-analyses of previous studies that generated empirical estimates for demand 
equations (Baumann et al. 1997). These residential models are specifically designed to 
generate a seasonalised demand profile for the sector that is then extrapolated over time. 

Ghiassi, Zimbra and Saidane (2008) developed ANN models to predict water demand two 
years and six months ahead of time to achieve cost savings through operational optimisation 
of a water distribution network and for capacity and financial planning purposes. The models 
were found to exhibit strong predictive power; however, because they exclusively used 
previous water demand data as inputs, they were highly site-specific and potentially 
insensitive to changes occurring in the system. 
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3.5.3 Pitfalls, limitations and potential solutions 

Despite their perceived advantages, ANNs are subject to a number of specific limitations. 
Foremost, they are significantly more time intensive to apply compared to more basic 
techniques such as regression models, requiring trial and error optimisation of important 
network parameters and topology. Second, the risk of ‗overfitting‘ is generally greater than for 
regression modelling, due to the increased number of calibration coefficients, otherwise 
known as ‗network weights‘. The risk of overfitting may be minimised through the application 
of more rigorous stopping criteria, which determine when exactly to cease network training. 
For example, an independent test set may be used to determine when to cease network 
training, with the optimum number of iterations defined as the number corresponding with the 
minimum test set error. However, the use of a test set in this manner means that it is no 
longer completely independent of model training, so another ‗validation‘ should be set aside to 
determine the true predictive performance of the final model. 

Table 3.5 lists the potential pitfalls and limitations associated with short-term demand models, 
along with potential solutions to the problems. 

Table 3.5: Pitfalls, limitations and potential solutions associated with short-term demand 
models 

Pitfalls and limitations Potential solutions 

Models are typically only valid in the short term, 
due to changing domains linked to changing 
demographics, water restrictions etc. 

Continual recalibration of models on recent data 

Difficultly in capturing stochastic variability Highly optimised model specification 

Models using lead variables are subject to 
limitations associated with climatic forecasts and 
their interpretation 

More thorough understanding of the manner in 
which climatic variables influence demand 

Regression models are constrained to the 
assumed functional form anticipated by the 
modeller 

Intricate knowledge of the service area, or 
thorough optimisation of model 

3.6 Determining price, income and other 
elasticities 

These forms of analysis, broadly classed as the field of econometric estimation, attempt to 
quantify the relationships between water demand and characteristics that describe particular 
water-using strata (water utility service areas, land-use sectors, individuals or geographically 
defined areas such as suburbs) and the conditions that inform the water use behaviour of 
those strata. Typically, econometric estimation of urban water demand utilises OLS 
regression to formulate a model of demand in a similar fashion to climate correction. Common 
to most econometric models are various permutations of variables representing weather or 
climate (typically some form of temperature, rainfall and/or evaporation) data that are included 
to ‗factor out‘ their effect on demand. 

The key variable of interest in econometric models, however, tends to be price, because 
analysts seek to determine a demand response to changes in price (price elasticity) so as to 
inform pricing policy. Other variables that tend to be the subject of elasticity analyses are 
typically demographic variables such as income, occupancy and household composition, or 
dwelling characteristics such as lot size, dwelling age and type, garden size, number of 
bathrooms, water-using appliance stock, pool ownership and so on. These variables apply to 
the residential sector—indeed, that sector has been the focus of the large majority of 
econometric studies. Where non-residential demand is to be considered, variables reflecting 
land use, specific types of industries served and employment levels might be investigated. 

The main characteristics and considerations of econometric estimation are summarised 
below. Comprehensive reviews of the techniques and applications of econometric analysis of 
water demand are presented in Arbués et al. (2003) and Worthington and Hoffman (2008). 
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3.6.1 Techniques 

The principles of econometric estimation are generally the same as those underlying 
regression modelling for climate correction and seasonal demand forecasting. However, the 
critical difference between econometric estimation models and other regression models is in 
the forms of data used to generate the models. Aggregate water demand time-series data 
(BWPD or CMDD) has been used in econometric studies in the same manner as climate 
correction. However, the majority of studies have used cross-sectional or pooled time-series 
cross-sectional data. The differences between these forms of data and the associated 
modelling techniques are described below under ‗Data types‘. 

Also discussed in this section is the specification of the principal econometric variables—price 
and income. A number of complexities in the use of those variables cause econometric 
modelling to be generally more involved than climate correction. Specification of these 
variables, along with other variables commonly used in econometric estimation, is addressed 
below under ‗Variable specification‘. The complexities of specifying the price variable in 
particular also have ramifications for the modelling technique that is employed, such that 
basic OLS regression is in some cases not capable of producing a reliable estimate of price 
elasticity. Alternative estimation techniques are briefly touched upon under ‗Estimation 
techniques‘. 

Data types 

Three forms of data may be used in econometric models of water demand. The first is time-
series data that is representative of the area or group under analysis as a discrete whole. 
Time series of explanatory variables are regressed against the corresponding time series of 
aggregate demand for a particular group or stratum, usually expressed as average volumetric 
consumption per connection or person per unit of time. The climate correction models 
discussed in Section 3.2 are forms of time-series regression models. 

Time-series analysis is best applied to smaller segments of a utility‘s service area, in which 
household characteristics that influence demand such as lot size or income are relatively 
homogeneous. When considering larger, demographically and economically heterogeneous 
areas, cross-sectional data that differentiates households or other classifications of service 
area strata may need to be analysed. A simple cross-sectional analysis slices through a point 
in time and considers demographic and household/strata variables that give rise to variations 
in the dependent variable across different households or strata. 

For example, the demand of discrete local council areas (geographical strata) may be 
modelled using demographic and other descriptors such as average lot size, income, age etc. 
(Beatty et al. 2007a, Beatty and O‘Brien 2008, Gaudin 2006). Alternatively, individual 
household characteristics determined through a survey may be used to model demand on a 
household-by-household basis (IPART 2004a, Turner et al. 2008a, Turner et al. 2009), 
although this requires high-resolution data from household surveys, which is generally not 
readily available. This form of analysis can be a powerful tool for understanding specific 
end-uses and assisting in targeting demand-management programs, as it can be used to 
extract the relative influence of specific end-uses such as pool ownership. 

Models using a combination of the above two types of data—termed ‗panel‘ data—are 
referred to as pooled time-series cross-sectional analyses. Here, time-series demand data for 
individual or discrete groups of users is regressed against continuous variables that explain 
longitudinal variability as well as cross-sectional variables that characterise the individual 
users or groups. In detecting the influence of particular variables, pooled time-series cross-
sectional analyses are the most powerful because of the large sample size and the 
associated variance of the response variable. The large sample allows the use of numerous 
explanatory variables without compromising the degrees of freedom of the model and 
provides a larger response variance against which to fit explanatory data, which theoretically 
produces a more stable model estimate. There is a plethora of published materials describing 
various applications of this type of analysis. Some examples are Hanke and de Maré (1982), 
Hoffmann et al. (2006), Pint (1999), Schneider and Whitlatch (1991) and Worthington et al. 
(2006). 
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Variable specification 

The manner in which variables of interest within an econometric estimation are specified can 
have a bearing on the result obtained from the analysis. This section discusses specification 
of the more commonly used variables in urban water econometrics. Specification of weather 
variables is addressed in Section 3.2.1, under ‗Explanatory variables‘. 

Price 

Water demand is universally regarded to be inversely proportional to water price. The effect of 
price on water demand, however, is most likely to be measurable when there is significant 
variability in the price data. If an aggregate time-series dataset is the subject of the analysis, 
the price variable may only be significant if there is a pricing policy shift within the modelling 
period that results in a notable change to the rate schedule or a restructuring of the tariff. 
Gradual changes in line with the local consumer price index are not likely to have a 
statistically significant influence on water demand (Weber 1993). Cross-sectional and panel 
data analyses can benefit from variability across strata in rates and/or tariff structure—for 
example, in studies covering an area with multiple water retailers, such as Taylor et al. 
(2004)—although when block tariffs are in place sufficient variability in price is likely to come 
from strata movements between blocks over time and any incremental price rises. 

However, block tariffs on volumetric use complicate price effect estimation in two ways. First, 
the price paid for water under a block tariff is determined by consumption and is therefore no 
longer independent of the response variable. This problem of simultaneity is addressed by 
using alternative estimation techniques (see ‗Estimation techniques‘, below). Second, 
changes in intramarginal rates are considered to introduce an ‗income effect‘ (Arbués et al. 
2003), whereby changes to a block rate above that corresponding to current consumption will 
potentially inform a consumer‘s choice as to whether or not to allow their consumption to 
enter the next block. A marginal specification of price (the unit price a user would pay for an 
additional unit of water in the applicable rate block) can only indicate the demand response to 
rate changes within the block corresponding to the current level of consumption. 

The intramarginal rate income effect may be addressed by using an average price 
specification, defined as the total bill for the given period (including fixed and volumetric 
charges) divided by the volume consumed. An alternative (Nordin) specification uses a 
marginal price variable along with a second variable that expresses the income effect as the 
difference between the total bill and what the users would have paid if all units were charged 
at the marginal price. Various other specifications of price have also been explored, such as 
the price perception model and different combinations of the above specifications 
(Worthington and Hoffman 2006). Weber (1993) suggests that (at least) both average and 
marginal price should be evaluated in any price elasticity study. Indeed, where price is the 
critical focus of the study it may be necessary to explore a range of specifications. 

Water charging structures in Australia differ between urban and rural water sectors (NWI 
Steering Group on Water Charges 2007). Urban jurisdictions use different combinations of 
fixed and variable charges within a two-part tariff structure. The variable (volumetric) 
component is charged by most jurisdictions according to an inclining block tariff (of between 
two and eight steps) that is set generally according to the long-run marginal cost of supply. 
The fixed charge is often determined as the residual component to be recovered after the 
revenue from water usage charges has been estimated. In the rural sector, charges generally 
comprise one or more of a wholesale water charge (where applicable), an infrastructure 
access fee, a usage charge and an account fee. In both the urban and rural cases, 
accounting for intramarginal price changes is likely to be an important consideration. 

Average or marginal price may be adjusted for inflation using the consumer price index (or 
similar) so that it reflects the real price in the analysis. The significance of the price variable 
for an inflation-adjusted model can be compared with that from a model using nominal price to 
assess which form of price change consumers actually respond to (see, for example, Agthe 
and Billings 1980). Dummy variables are sometimes introduced as part of a price 
specification, for example to indicate when the marginal price of water is zero—that is, 
consumption falls within a flat fee threshold (for example, Dandy et al. 1997, Gibbs 1978). 
Structural tariff changes (over time or between cross-sections) may also be indicated by 
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dummy variables and interaction terms (dummy multiplied by the price variable) where 
necessary. 

A host of other considerations related to price specification may be relevant to an econometric 
model, including: 

 aggregation of demand data compromising the specification of price 

 the use of a lagged price variable to reflect the fact that many consumers would not keep 
up to date with the latest price schedules (Arbués et al. 2003) 

 the fact that price may be more influential on outdoor demand than indoor demand, 
requiring separate models for each or some form of seasonal interaction term (Danielson 
1979) 

 a similar dichotomy between discretionary and non-discretionary use, causing price 
responsiveness to be lower in low-income houses (Worthington and Hoffman 2006). 

Household income 

Historically, water demand has been thought to be positively correlated with income, 
particularly as higher income households are more likely to have luxury end-uses such as 
pools and spas. Indeed, Beatty et al. (2006) found income to be a strong influence on 
demand (positive elasticity) in a cross-sectional analysis of the suburbs of Brisbane. However, 
with increased public awareness of water resource scarcity and the value of water efficiency, 
it is also thought that income may now be increasingly correlated with the purchase of water-
efficient appliances, fixtures and irrigation systems and thus negatively correlated with 
demand (Turner et al. 2009). Whatever the case, income elasticity is best measured with 
more disaggregated cross-sectional or panel data that encompasses a wide range of income 
levels, as its effect on aggregate demand is likely to be difficult to separate from other factors. 

Income data for geographical strata of interest can be obtained from Australian Bureau of 
Statistics (ABS) figures. On a household level, household value has been used as a proxy for 
income (Danielson 1979, Dandy et al. 1997) where actual data was not available. 

Other variables 

Household characteristics such as occupancy, composition, lot size, irrigable (or permeable) 
area, number of bathrooms, pool ownership and water-using appliance stock become 
increasingly important with increased disaggregation in cross-sectional and panel data 
studies. Demographic data from planning authorities and the ABS will provide household 
occupancy and composition and housing stock figures for geographically defined strata. 
Occupancy can also be calculated from population and the number of billing accounts 
(Schneider and Whitlatch 1991). More detailed household data is generally not readily 
available and has to be collected through household surveys. Dummy variables for 
geographic location may be used where such specifics are not available or to represent broad 
features of a locality, such as housing density, soil type and local garden aesthetics. 

Econometric models comprising time-series data invariably include weather variables to 
account for the seasonality and weather sensitivity of demand, in the same vein as climate 
correction models. Similarly, it may be necessary to account for the effects of changing 
technology and behaviour, particularly in response to water restrictions (see Section 3.2.1, 
under ‗Explanatory variables‘). 
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Variable elasticity 

The elasticity of a given explanatory variable is defined as the percentage change in the 
response variable divided by the percentage change in the explanatory variable. In terms of 
outputs from a linear regression model, the expression is 
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dy  =  the change in water demand 
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For double logarithmic (Cobb–Douglas function) models (see Appendix 3B), the regression 
coefficient for the variable directly corresponds to its elasticity. For example, a coefficient of 
0.5 means that a 10% change in the variable would result in a 5% change in demand. 
Log-linear (Stone–Geary utility function) models generate elasticity figures that vary with the 
average value of the variables themselves, such that higher prices imply greater elasticity. 
They also allow for a subsistence level of demand irrespective of price, unlike linear models, 
which implicitly assume that demand will cease beyond a certain threshold in price. 

Elasticity is typically classified as in Table 3.6. Price and income have almost universally been 
found to be relatively inelastic (Arbués et al. 2003, Worthington and Hoffman 2008). 
Consideration might also be given to distinguishing long-run and short-run elasticities. Prima 
facie, this distinction could be considered to represent the difference between immediate 
behavioural water-saving responses to changes in price and longer term structural responses, 
such as the installation of water-efficient fixtures and appliances (Arbués et al. 2003). 
However, caution should be applied when using a long-run price or income elasticity in a 
demand forecast, as the effect may be altered by new water conservation programs. 

Table 3.6: Elasticity classification 

Elasticity, ε 
(absolute value) 

Classification 

0 Perfectly inelastic (i.e. non-significant price variable) 

0 to 1 Relatively inelastic—the demand response is less than the corresponding change 
in the variable of interest 

1 Unitary elastic—equal percentage changes in price and demand 

> 1 Relatively elastic 

 

Estimation techniques 

OLS regression is the most common estimation technique used in econometric analysis 
(Worthington and Hoffman 2008). However, a range of alternative techniques have been 
employed, primarily to overcome the complication related to block tariff pricing of water. 
Under block tariff pricing, the price of water both determines, and is endogenously determined 
by, demand. This feedback relationship can cause OLS regression models to yield biased 
and inconsistent estimates of the effect of price. To overcome this difficulty, various forms of 
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two- and three-stage least squares regression with instrumental variables have been 
employed. Details of these alternative forms of estimation are not discussed in this paper but 
may be found in econometric texts such as Greene (2008). Examples of alternative estimation 
techniques used in determining price elasticity may be found in Higgs and Worthington 
(2001), Nieswiadomy and Molina (1991), Hewitt and Hanemann (1995) and Barkatullah 
(1996). 

3.6.2 Examples 

There have been countless econometric estimations of urban water demand that both test 
different model specifications and estimation techniques and derive region- and period-
specific price and other elasticities. This section looks at a number of recent Australian 
examples that are probably more useful precedents in informing new econometric estimations 
in Australia. Table 3.7 at the end of the section summarises the studies reviewed. 

Barkatullah (1996) undertook a study on panel data to predict how changes in the tariff 
structure influenced water demand in households in the Sydney metropolitan and Wollongong 
areas. The multipart tariff structure for water price was specified using a marginal price 
adjusted with a Nordin difference variable. Other household information, such as income, 
property value, household size, bedrooms, number of bathrooms/toilets and household 
garden condition, was acquired through a survey conducted by the Independent Pricing and 
Regulatory Tribunal of NSW (IPART). Both a simple OLS regression model and a two-stage 
instrumental variable / maximum likelihood model were formulated to estimate household 
demand over a four-year period. The results revealed a significant bias in the marginal price 
coefficient from the OLS model. However, the instrumental variable technique was shown to 
overcome the problem of endogenous price variables and produced a reliable figure for price 
elasticity. 

Three separate studies evaluating the effect of price on demand have been conducted on 
panel data from Queensland. Higgs and Worthington (2001) evaluated factors influencing a 
household‘s conversion from a fixed rate to a volumetric, user-pays system under a voluntary 
parallel pricing scheme initiated by the Brisbane City Council. The probability of conversion 
was predicted using a logit model, based upon variables representing household 
characteristics including size, income, property value, lot size, the presence of various indoor 
fixtures, and the extent of outdoor water use. Data on these household variables was 
acquired from a survey of 350 households in the Brisbane City Council area, along with 
information indicating whether or not a household had converted to the user-pays plan. 
Property value was found to be the most significant variable influencing the decision to 
convert to volumetric charging—households with higher property values were more likely to 
make the switch. In addition to the logit model, a linear regression model was used to predict 
household demand, using the marginal price of water in addition to the same set of household 
variables used in the logit model. Due to the high multicollinearity between variables, 21 of the 
less significant explanatory variables were consolidated into 10 principal components 
(uncorrelated variables generated from transformations of the original variables), which were 
then used in the linear regression model. The final linear regression model was then 
optimised using least squares regression and a two-stage instrumental variable technique. 

Hoffmann et al. (2006) constructed regression models to predict residential demand for 
households in 53 Brisbane suburbs. Variables for marginal price, lagged consumption, a 
suburb‘s average income and a suburb‘s average household size were included in two 
separate regression models: a linear and a log-log model. The model coefficients were then 
used to determine short-run and long-run price elasticities. Worthington et al. (2009) used 
data from 11 local government areas in Queensland to predict monthly water demand. The 
tariff structures applied within the 11 areas varied considerably, so both marginal and average 
price specifications were estimated using common, fixed and random effects panel data 
models. The results indicated a very low price elasticity, perhaps due to suboptimal rate 
scheduling, and indicated that consumers responded to average price rather than marginal 
price, partly because of very high service access charges. 

Kemp (2004) constructed a regression model of water demand over a year for more than 
2600 individual residential customers in Sydney, the Blue Mountains and the Illawarra. The 
model used cross-sectional data acquired from a survey conducted by IPART in 2003 to 
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break up demand into component uses. The data included information on pool, spa and 
dishwasher ownership; the number of dual-flush toilets; garden watering hours; yard size; 
household size; income; geographical location; and whether the household was subject to 
volumetric charging. The regression model used two interaction terms to model the effect of 
income on discretionary use and of household size on non-discretionary use. Discretionary 
use was assumed to be predominantly associated with garden watering, so yard size and the 
number of garden watering hours were interacted with both income and a variable specifying 
whether or not the household paid water usage charges. Non-discretionary use was mostly 
incorporated into the model constant, except for contributions from single-flush toilets. Thus, 
household size was interacted with the proportion of single-flush toilets in the household. 
Household size was found to be a key factor influencing demand, with a second person 
adding 67% to total demand. Higher income was found to increase garden water usage but 
contributed to a reduction in overall water, an effect that was assumed to be related to 
willingness and ability to pay for water-efficient appliances. Households that were not required 
to pay usage charges were found to use more water than those that did pay volumetric fees. 

A time-series regression analysis of aggregate daily production data was undertaken by 
Grafton and Kompas (2007) to explore the possibilities of using pricing instruments to limit 
demand in Sydney. The price structure for the period (October 2001 to September 2005) was 
a constant volumetric charge, so price was simply specified in two separate models as 
nominal and real price. Other variables used in the model were temperature, rainfall and a 
dummy variable to represent the presence of water restrictions. The model was validated on 
an out-of-sample dataset, and the calculated price elasticity was then used to extrapolate the 
changes in price that would have been necessary to maintain water reservoir levels above 
certain thresholds. 

Beatty, O‘Brien and Beatty (2006) performed a cross-sectional analysis on consumption of 
single residential dwellings in Brisbane on a suburb-by-suburb basis. Intersuburb variations 
were explained using demographic variables including mean lot size, household income, age 
of the suburb population and household size. Categorical variables for climate zone and the 
age of the suburb (as a dummy variable indicating whether the suburb was developed in the 
past 10 years) were also included. The outputs of the regression were used to compare the 
relative influences of the independent variables on demand. Plots were generated for the 
demand response to percentage change of each independent variable and for the change in 
elasticities against percentage change in demand. The analysis found mean income and 
mean age to have higher elasticities than lot size and household size, although there is no 
reporting of testing for multicollinearity. Interestingly, the variable response plots indicated 
non-linear relationships for most of the predictors (income, in particular, exhibited a dramatic 
exponential effect on demand), which could suggest that the independent variables were 
transformed prior to the regression. 



NATIONAL WATER COMMISSION — WATERLINES          75 

Table 3.7: Australian examples of econometric estimations of urban water demand 

Author Location Type of data Price/income 
specification 

Method 

Worthington et al. 
(2009) 

Queensland Panel (region, 
consumption, 
monthly) 

Marginal price, 
average price 

Linear regression 

Grafton & 
Kompas (2007) 

Sydney Aggregate daily 
production 

Residential water 
price (definition 
not presented) 

Time series regression 

Beatty et al. 
(2006) 

Brisbane  Cross-sectional 
(suburb, 
consumption, 
quarterly) 

Average income OLS regression 

Hoffmann et al. 
(2006) 

Brisbane Panel (suburb, 
consumption, 
quarterly) 

Marginal price, 
average income 

Regression (linear and log-log) 

Kemp (2004) Sydney, 
Blue 
Mountains 
and Illawarra 

Cross-sectional 
(household, 
consumption) 

Income, income 
interaction with 
lot size and 
watering hours 

Linear regression 

Higgs & 
Worthington 
(2001) 

Brisbane Panel 
(household, 
consumption) 

Income, marginal 
price 

Logit and linear regression 
model (optimised using least 
squares regression and a 
two-stage instrumental variable 
technique) 

Barkatullah 
(1996) 

Sydney, 
Wollongong 

Panel 
(household, 
consumption, 
quarterly) 

Rate structure 
premium, 
marginal price, 
log(income) 

OLS regression model and a 
two-stage instrumental variable 
/ maximum likelihood model  

OLS = ordinary least squares. 

3.6.3 Pitfalls, limitations and potential solutions 

Econometric models are subject to the same problems that can affect climate correction 
models, including overfitting, multicollinearity and serial correlation of residuals. However, 
given that the main focus of these models is the elasticity of price and other socioeconomic 
drivers, the main source of difficulty is the appropriate specification of such variables and the 
inferences that can be made from the model outputs. 

Household income is often correlated with dwelling and lot size, which in turn are positively 
correlated with demand. Indeed Weber (1989) notes that income may be used as a proxy for 
lot size and landscaping design. For this reason, caution is essential when making forecasts 
using an income elasticity derived from an econometric estimation of demand that does not 
also include household and lot size. Misattribution of correlation is most likely to occur in 
cross-sectional analysis or in a pooled time-series cross-sectional analysis where a predictor 
varies over geographical space but is static over time. However, if sufficient data was 
available to allow a panel data analysis that incorporated a predictor as a time-series variable 
for each individual cross-section, then inferences regarding the elasticity of the predictor could 
be considered more reliable. On the other hand, when incorporating potentially correlated 
variables such as income, lot size and dwelling size in the one regression model, an 
assessment of multicollinearity and the stability of the model coefficients should be 
undertaken. 

When using elasticities to forecast demand, it is also important to consider the domain of the 
variables in the calibration period of the regression model. A relationship between an 
explanatory variable and a response variable is most certain within the ranges of the data that 
are used to calibrate the model. So, if a model calibration includes demand data that varied 
within the range 0 and 200 kL/household/quarter and price that varied between $0.50 and 
$1.50 per kL, then the estimated price elasticity is most reliable within the range of $0.50 – 
$1.50. Predictions of the demand response to a change in price outside that domain 
(extrapolation) must be treated with caution, as the relationship between price and demand 
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may no longer hold. Moreover, variable elasticities determined for a given calibration period 
may not hold outside that period, because the conditions under which they were derived are 
unlikely to be static (Weber 1989). 

The Water Supply Strategy Review undertaken for the Water Board of Sydney (now Sydney 
Water) (SMEC and SK 1991) provides an example of how extrapolating outside the domain of 
a model can produce misleading results. In a time-series regression model of annual per 
capita demand that also incorporated temperature, rainfall and water restrictions variables, 
(real) household income was found to be positively correlated with demand. When the 
projections for real income growth were applied to the model along with average rainfall and 
temperature to generate a long-term forecast, demand was predicted to rise to between 470 
and 485 LCD by 2004. In fact, observed demand in 2004 continued a downward trend that 
started around 1998, dropping well below 400 LCD. A number of errors could have 
contributed to this result, including misspecification of the income variable leading to an 
overstated elasticity and assumptions of static or no water restrictions and stationary climate. 
However, the assumption that the relationship between income and demand (regardless of 
how flawed the estimation) will continue to hold even a few years into the future is problematic 
in itself, and in this case led to a significant overestimation of future demand. 

The above may also be an example of misinterpreting a statistically significant estimate for a 
particular variable as an indicator of causality when it is not reflective of reality. As mentioned 
above, a causal relationship will often be signified by a correlation, but a correlation does not 
in itself necessarily indicate a causal relationship. For inferences to be made from a model 
estimate about the effect of a particular variable on demand, there must be an identifiable and 
(sound) logical relationship between the variable and demand to begin with. Thus, care must 
be taken to ensure that demand is indeed tied to the variables in question when projecting 
future demand based on the outputs of a regression model. 

3.7 Demographic and land-use analyses 

While the econometric analyses described in Section 3.6 can be used to quantify the 
influence of particular demographic factors (and, less commonly, land-use factors), they are 
not the only tool used in unpacking the complexities of urban water demand. Analysis of 
demographic and land-use data in connection with water demand data can provide useful 
insight in Step 2 of the IRP process (‗Analyse the situation‘), as well as helping to develop a 
targeted response plan in Step 3. Household-level residential demographic studies can 
provide data that can be used to populate end-use models. 

The methodologies used in these analyses are diverse. The main commonality between them 
is the linking of historical water demand data to demographic data (population characteristics, 
including age, household size, income level etc.) and land-use data (human and economic 
activities as defined by geographical boundaries) to tease out usage profiles of particular 
strata within a supply region. Hence, this section does not include a dedicated subsection 
covering techniques applied in these types of analyses. Instead, Section 3.71 summarises a 
selection of various demographic and land-use studies to indicate the range of methodologies 
that have been applied in the field. 

3.7.1 Examples 

Birrell et al. (2005) developed a model based on customised 2001 Census data and water 
utility data from the five major metropolitan centres in Australia to test the effect on demand of 
different scenarios of household change and urban consolidation. Assuming reduced 
household per capita water demand with increasing occupancy (second household members 
using 80% of the amount consumed by reference householders, all others using 50%), the 
analysis compared demand forecasts based on projections of changes in household structure 
associated with demographic shifts and urban consolidation with a static per capita forecast 
based on population growth alone. The study concluded that reduced household occupancy 
associated with current housing trends and planning is causing a rise in per capita demand 
and therefore in total residential demand. 
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Troy et al. (2005) analysed CMDD from 140 census collector districts in the Sydney region 
characterised according to housing density. They concluded that per capita consumption was 
‗for all practical purposes the same‘ between detached dwellings, semidetached dwellings 
and high- and low-rise flats. The implication of this finding was said to be that water 
conservation policies should seek to curb demand generated by indoor as well as outdoor 
end-uses. 

The East Bay Municipal Utility District (EBMUD) in Oakland, California used planning 
information as a basis for developing annual demand forecasts to 2040 (EBMUD et al. 2009). 
Historical water consumption data was entered into a geographic information system (GIS) 
database arranged according to current and projected land-use polygons (areas with distinct 
land-use profiles). Base-year land-use unit demands (LUDs) were calculated on a per acre 
basis from geographically referenced meter data that had been corrected for climatic, 
economic and demographic factors, and adjusted for unmetered demand. Future demands 
were predicted by applying adjustment factors to base-year LUDs to account for changes that 
are expected to occur in the future and multiplying the adjusted LUD by the acreage of land 
use. It was found that a transition to higher housing densities would result in a net increase in 
the demand for water. 

The above examples examined broader demographic and planning data to understand urban 
water demand, but it is also sometimes useful to dig deeper to understand demand at the 
micro level. The NSW Independent Pricing and Regulatory Tribunal regularly conducts 
demographic studies (based on extensive household surveys of residents in the main urban 
centres of New South Wales) that are cross-matched with demand data from the 
corresponding water utilities (IPART 2004b, 2007, 2008). The studies classify households 
according to their usage levels, geographic location and household characteristics, and 
identify characteristics, behaviours, fixtures and fittings that are most influential to demand. 
The analyses incorporate frequency analysis and cross-tabulation of the above elements to 
develop an understanding of water demand drivers in the residential sector. 

A study of high water users in south-east Queensland, which involved a detailed survey of 
70 000 households, also looked at household-level data to understand the factors that give 
rise to high water usage (Turner et al. 2009). Consumption data was linked to household 
characteristics such as pool ownership; business ownership; appliance and fixture efficiency; 
lot size; and number and age of occupants. Demographic data from the ABS was also 
incorporated into the analyses, which involved, among other techniques, frequency analysis, 
cross-tabulation analysis and sociodemographic profiling. The results were also used to 
determine water conservation options targeted at high water users to inform future water 
policy initiatives. 

3.7.2 Pitfalls, limitations and potential solutions 

When undertaking a demographic study to inform water planning, it is essential to establish 
clear objectives for how the findings will be incorporated into demand forecasting and options 
models. The data outputs should be readily transferrable to modelling inputs. 

As is the case with econometric estimation studies, demographic analyses are prone to the 
detection of spurious correlations and to mistaking correlation for causality. This is an artefact 
of examining aggregated data that can potentially conceal more relevant underlying causal 
factors. Hence, generating forecasts based on demographic projections alone can be a risky 
exercise. Given that demographics are only one set of factors among the multitude that 
influence demand, it is advisable that demographic analysis be used as one of a broader suite 
of analyses that inform a forecast. In particular, demographic data may be useful both for 
targeting demand reduction programs and for identifying potential mitigating effects on such 
programs. Similarly, land-use analyses provide the basis for sector-based forecasts but in 
isolation do not generate sufficient information upon which to base a forecast for an entire 
supply region. 

Both demographic and land-use analyses must be based on appropriately stratified samples 
to ensure that the findings can be extrapolated to the broader population. They should also 
incorporate some form of climate correction, particularly when the analyses could be biased 
by climatic variability associated with temporal or geographical differences. 
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3.8 Modelling of behavioural responses to water 
planning 

A significant gap in current demand forecasting approaches relates to the limited description 
of consumer behaviour. End-use models may have behavioural parameters built into their 
structure (for example, shower length or frequency), but there is limited scope for addressing 
behavioural change, and data for such parameters is limited. Agent-based social simulation is 
a newly developing field that represents a means to simulate consumer behaviour and 
responses to urban water planning policy and initiatives. The application of agent-based 
modelling to water demand forecasting is in its infancy, so there is limited precedent or 
literature to draw from. 

3.8.1 Techniques 

The goal of agent-based models is to simulate complex interactions between ‗agents‘ 
(entities) in an attempt to determine the overall effect on a larger system. Agent-based 
models have been used to simulate animal societies, physiological systems, social systems, 
organisations, economic systems, ecological systems, physical systems, robotic systems and 
transportation and traffic systems (Davidsson et al. 2007). Agent behaviours such as learning 
are defined using sets of rules, which can be adaptive or fixed, stochastic or deterministic, 
complex or simple (Billari et al. 2006). Such rules influence the interaction between agents 
during an iterative process that ultimately leads to system adaption. Computers have enabled 
agent-based models to simulate complex systems comprising multiple agents interacting with 
each other and the environment. Although agent-based modelling software packages have 
been developed, they have rarely been used for academic purposes. Instead, models have 
generally been constructed using an ordinary programming language (Davidsson et al. 2007). 

In the field of urban water planning, agent-based modelling has been used to simulate 
complex social interactions between consumers and demand-management policy instruments 
such as water pricing, public awareness campaigns and urban water trading. Agent-based 
models often require the input of other models (such as econometric, end-use and 
GIS models) and may form part of a broader modelling framework or decision support 
system. Essentially, they are an expansion of the ‗bottom-up‘ approach of end-use modelling 
in which demand is modelled at an individual level (rather than aggregated across a sector) 
and is determined dynamically by behavioural choices related to water use (for example, the 
installation and use of a particular type of water technology). Choice is driven by prevailing 
conditions (climate, price, regulations etc.), personal attitude and mechanisms of social 
interaction. 

Along with consumer agents, these models typically include agents to represent water 
utilities, water regulators and other stakeholders in the water industry. The means of defining 
agents vary with the purpose of the study and with data availability. Consumer agents are 
generally defined according to their attitude towards water conservation, their position within a 
social network and an initial demand profile (based on end-use and/or econometric analyses), 
which changes over the course of the simulation. Utilities have been characterised by such 
features as water availability and supply capacity, supply costs, and rules governing the 
setting of price. Meteorologist agents can be used to input climatic data into the model where 
there are elements of consumer or other agent behaviour that are weather-sensitive. 

3.8.2 Examples 

Rixon et al. (2007) explored the effects of tariff structures and water resource depletion on 
water demand using two separate agent-based models capable of representing social 
interactions and their influence on water conservation behaviour. The first model was 
relatively simple, exploring the effects of fixed and variable tariff structures on water demand 
and utility profits using both a randomly generated social network and a ‗real‘ social network. 
However, there were a number of perceived limitations associated with the simplistic model. 
Not only did it produce unrealistically low daily demands, it was also limited to small 
communities and failed to adequately define how beliefs may influence water conservation 
behaviour. 
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The limitations of the first model led to the construction of a second model, which used the 
concept of memetics to explore how imitation influences water consumption behaviour. In the 
model, water-saving devices and behaviours were represented by a total of 10 memes 
(cultural ideas, symbols or practices passed on through imitation). The memes were 
propagated within a hypothetical social network, allowing the effect of depleting water 
resources on water conservation behaviour to be evaluated. Unlike the simpler preceding 
model, the water memes model produced relatively realistic water demands, displaying the 
expected seasonal variability. However, future empirical studies on ‗imitation behaviour‘ were 
perceived to be necessary for more effective calibration and validation of this model. 

Athanasiadis et al. (2005) assessed the ability of a hybrid model, known as DAWN, to 
evaluate the effect of various water-pricing policies on residential water demand using data 
obtained from Thessaloniki, Greece. DAWN is a hybrid model, incorporating conventional 
econometric models with an agent-based social model. The agent-based component of the 
model effectively allowed the representation of social interactions between consumers 
deemed to significantly influence water conservation behaviour. Unlike the study by Rixon 
et al. (2007), the social interaction component of the model constructed by Athanasiadis et al. 
used results from a questionnaire to define parameters for the model. In particular, the 
proportions of four typical consumer types were calculated and subsequently used to 
determine the propagation of water conservation beliefs within a community. This was 
deemed to result in greater confidence in model forecasts, which were in fact comparable to 
both the conventional econometric approach and actual values. A similar approach was 
adopted by Perugini et al. (2008) in their analysis of the impact of urban water trading on 
households in Adelaide. 

Ernst et al. (2005) integrated an agent-based component within a large decision support 
system (DSS) used to manage water resources in the upper Danube basin. Five major 
components were incorporated in the DSS: atmosphere, land surface, river network, 
groundwater and actors, each of which was defined using as many as six different models. 
The actor component comprised models for households, water supply, the economy, 
demography and tourism. Domestic habitual water-related behaviour was initially modelled 
via a ‗shallow model‘, which used 25 different household types (separated based on income 
and household size) to model the 10 major end-uses (laundry machines, showers etc.). This 
model was then expanded to create a ‗deep model‘, which integrated the conscious decision-
making process behind water conservation behaviours with habitual water-use decision 
making. The population was first separated into 10 predefined social groups known as 
‗milieus‘, each having distinct beliefs and lifestyles. Agent-based modelling was then used to 
simulate the transfer of water-saving innovations throughout spatially constructed social 
networks in response to externalities, such as the environment. A scenario run was 
undertaken on a prototype model, simulating the response of two milieus (‗traditionals‘ and 
‗post-materialists‘) to the reporting of water scarcity under dry climate conditions over a 
projected 30-year period. 

Table 3.8 summarises the key features of each of the agent-based models described above. 
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Table 3.8: Examples of agent-based modelling of water demand 

Author Location Agents Consumer attitudes Demand profile 

Perugini et al. 
(2008) 

Adelaide Consumers, water 
authority 

High, medium and low 
water users 

Assumed 
elasticities 

Rixon et al. 
(2007) 

Australia, 
using artificial 
data 

Consumers, water 
utility 

Water savers, water 
utilitarians 

Assumed 
elasticities 

Athanasiadis 
et al. (2005) 

Thessaloniki, 
Greece 

Consumers, water 
utility, meteorologist, 
simulator 

Opinion leaders, 
socially apathetic, 
opinion seekers, 
opinion receivers 

Econometric 
model 

Ernst et al. 
(2005) 

Upper 
Danube 
Basin, 
Germany 

Consumers, water 
suppliers 

Milieus (10 sociological 
groups), (traditionals, 
post-materialists) 

End-use model 
with assumed 
price elasticity 

3.8.3 Pitfalls and limitations 

One of the main advantages of agent-based modelling is the capacity to incorporate 
behavioural information into a water demand modelling framework. In this manner, the 
effectiveness of various water conservation programs may be evaluated. One of the major 
disadvantages of agent-based modelling, however, is related to the collection of accurate 
behavioural data. Such data is generally not readily available, requiring potentially expensive 
market research studies to inform a given project. In the absence of such data, a variety of 
assumptions must be made during model development, leading to potentially erroneous 
models. As a result, agent-based models may be deemed to ‗provide a false sense of realism‘ 
(Rixon et al. 2007:79). 

To overcome this limitation, Rixon et al. (2007) suggest that models should remain as 
simplistic as possible in order to help locate potential sources of errors and evaluate various 
model assumptions. Indeed, simple micro-level dynamics are held to be capable of 
generating complex patterns at the macro level (Billari et al. 2006). In this vein, Perugini et al. 
(2008) used relatively simple demographic groups to define household consumer agents in 
their investigation of the complex interactions involved in urban water trading. Rixon et al. 
(2007) also contend that, while absolute validation of an agent-based model is virtually 
impossible, sensitivity analyses can be used to gain insight into the robustness of the model. 

Despite the various precautions that may be taken, it is often found that the use of agent-
based models in a predictive capacity is fraught with difficulties. For this reason, agent-based 
models have mainly been used to explore the implications of various water conservation 
scenarios (as by Ernst et al. 2005 and Perugini et al. 2008), rather than for generating 
accurate predictions of water demand. 

3.9 Building an integrated demand forecast 

While the analytical techniques outlined in the preceding sections are generally highly 
developed and widely used, it is not always clear how they might be incorporated into a 
broader demand forecasting process. Indeed, in many of the published studies that employ 
these techniques, particularly econometric analyses, they are reported in isolation and only 
limited reference is made to the broader urban water planning process. However, a number of 
urban water planning frameworks being used in Australia locate complementary urban water 
demand analysis techniques within an urban water forecasting and planning framework. 

The Guide to demand management and integrated resource planning for urban water (Turner 
et al. 2010) describes an IRP framework (see Appendix 3A) for which there is a companion 
end-use and options development model called the integrated supply–demand planning 
(iSDP) model. The iSDP model, which was developed by Sydney Water Corporation and is 
now under the auspices of the WSAA, integrates end-use and sector-based demand 
forecasting techniques for the residential, non-residential and non-revenue water sectors, as 
well as incorporating the impacts of defined demand management, source substitution and 
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supply options. In the discussion on demand forecasting techniques, the guide points out the 
need to: 

 identify an appropriate climate-neutral year (not affected by climatic extremes) against 
which to calibrate the residential end-use component of the iSDP 

 incorporate some form of analysis (regression is suggested) to determine ‗how previous 
interventions such as user pays pricing, restrictions, a water efficiency program or 
replacement/calibration of bulk water meters‘ may have affected demand. 

There has been only limited discussion on the techniques available for performing these tasks 
(hence, the development of this resource paper). 

The Demand Side Management Decision Support System, or DSM DSS (DEUS 2006), was 
developed to ‗facilitate the rapid development of demand forecasts and preliminary evaluation 
of demand management measures‘ in regional New South Wales. It comprises an end-use 
model with simplified inputs and assumed breakdowns of particular end-uses, and is capable 
of performing a scenario-based analysis of demand-management options. The model 
requires inputs of current total and sectoral demand, and it is recommended that all data 
entered be ‗corrected for the influence of climate‘, using the IWCM Water Demand Trend 
Tracking and Climate Correction model (DEUS 2002). To simplify the process of developing 
forecasts, the DSM DSS uses in-built assumptions that are essentially designed to negate the 
need to perform the types of analyses described in this paper. The assumptions relate to the 
effects of a range of water conservation programs, including federal and state regulations 
related to water efficiency, residential retrofits, rainwater tanks, dual reticulation, community 
education, water restrictions, user-pays water pricing, leak detection and repair, non-
residential water audits, and audits of evaporative cooling units and cooling towers. For 
example, water restrictions are assumed to achieve a 10% reduction in external water use 
among participants, while water price is assumed to have an elasticity of –0.2. Assumptions 
used to generate the effects of the various demand-management options are not provided. 

The integrated water resources planning framework described in Beatty et al. (2007a) is a 
multitiered urban demand forecasting framework comprising climate correction of BWPD, 
sectoral analysis and cross-sectional analysis of customer meter demand, and end-use 
analysis. To generate a hydrologic water balance model, an OLS regression model of daily 
BWPD is used to generate a daily index. This, combined with a random noise component, 
forms the seasonal component of the forecast, while the non-seasonal component of demand 
is determined using the end-use model. Climate correction and sectoral and cross-sectional 
analysis are used to determine the impacts of water restrictions and pricing and the 
elasticities of other factors such as income and lot size, although no detail is provided on how 
those impacts are then incorporated into the ultimate demand forecast. 

While many of the analytical studies given as examples in the preceding sections did not 
extend to developing a long-term forecast of demand, there are examples of using climate 
correction-type regression models, econometric models and demographic and land-use 
models to generate long-term forecasts. Grafton and Kompas (2007) used a time-series 
model to determine a price elasticity for Sydney and explore the price rises necessary to 
maintain dam levels above a range of thresholds. The elasticity figure was then used to 
project dam levels under four scenarios of alternative supply and price controls assuming 
recent inflow patterns. EBMUD developed long-term forecasts based on land-use projections 
and climate-corrected demand figures (EBMUD et al. 2009). Athanasiadis et al. (2005) and 
Perugini et al. (2008) integrated conventional econometric models (for price elasticity) with 
agent-based social models to forecast water consumption under different policymaking and 
water-trading scenarios. Aside from the EBMUD study, however, these studies do not appear 
to directly contribute to water planning outcomes, but focus more on the exploration of policy 
options. And without accommodating the full spectrum of demand drivers in the analyses, the 
accuracy of the forecasts generated in these studies remains in question. 

In summary, there are a number of established demand forecasting frameworks that 
incorporate or accommodate complementary analyses in the forecasting process, but 
information on the methods, application and integration of those analyses is limited. There 
have also been attempts to use some of the complementary analytical techniques described 
in this paper to develop long-term forecasts of demand that sit in isolation from urban water 
planning, strategic or otherwise. This paper aims to provide the necessary information to 
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understand and piece together the various analytical techniques available and how and where 
they have been or can be used to inform demand analysis and forecasting. Many of the 
techniques described use standard BWPD and/or CMDD as well as BoM data. However, 
some require more detailed data that may be difficult or prohibitively expensive to obtain. 

Before embarking on any data analysis exercise, it will be essential to understand the quality 
of the data at hand, what additional data is needed, and the skills and time available. Above 
all, it will be essential to clarify the purpose of the analysis and which technique is most 
appropriate given other constraints and fits best with the planning framework being used. 
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Appendix 3A The IRP framework 

 
Source: Turner et al. (2010) 
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Appendix 3B Regression modelling of water 
demand 

Ordinary least squares (OLS) regression is one of the most widely used techniques in the 
analysis of historical water demand. It is a tool used in climate correction, short-term 
forecasting, econometric estimation and evaluations of water conservation programs and 
other demand reduction strategies. With water demand being the response variable, the 
independent variables common to most regression models are various forms of and 
combinations of meteorological variables, such as temperature, rainfall and evaporation. 
These variables are primarily used to describe weather-induced variability in demand, but 
they are also able to describe the underlying seasonality of water demand. However, other 
variables such as Fourier series and monthly or seasonal dummy variables may also be 
employed to describe seasonality. Other non-climate factors that are typically incorporated 
into water demand regression models include water price, water restrictions, water 
conservation programs and various sociodemographic and household data. The following 
discusses some of the main considerations that should be addressed when embarking on a 
water demand regression modelling exercise. 

3B.1 General form of regression models 

The simplest regression model used to estimate water demand is the basic linear regression 
model. An OLS regression model takes the general form: 

t

n

i

tiit xy   
1

,0
 2 

where 

yt = the response variable at time t 

xit = the i
th
 explanatory variable at time t 

n = the number of explanatory variables (weather/season, water restrictions, water 
price etc.) 

 = the regression coefficient associated with the i
th
 explanatory variable 

0 = the intercept 

 = the error term at time t. 

Other methods may be used to derive the coefficients of simple linear regression models, 
such as generalised least squares regression. Alternatively, variables may be transformed 
and nonlinear models constructed (see Section 3B.8). 

3B.2 Explanatory variable selection 

There are potentially a large number of variables capable of explaining variation in water 
demand. However, many of those variables may be classified as ‗secondary variables‘ not 
capable of directly defining fundamental processes. Furthermore, many variables are 
potentially correlated with one another, describing similar portions of variability in the 
dependent variable. As a result, it may be possible to derive numerous, comparably valid 
regression models, using different combinations of explanatory variables. 

A number of approaches may be used to select a set of explanatory variables for a linear 
regression model. Some models will have default variables that are the focus of the analysis, 
such as price or water conservation program participation. Weather/seasonal variables tend 
to be universal inclusions to demand models, although the selection of an appropriate 
combination of those variables is not always straightforward. In the first instance, a modeller 
may select a set of variables based upon a theoretical understanding of the factors that may 
influence water demand. In many situations, however, the effect of weather variables on 
water demand will be highly dependent on the data domain (that is, the region) analysed. For 
example, rainfall can be highly influential in some areas and have very limited effect in others. 
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Therefore, a strong understanding of the regional context is important in setting up the 
analysis. 

Correlation between variables such as temperature and evaporation can lead to a situation in 
which a variable that appears highly correlated with water demand may not explain additional 
variability in water demand (that is, variability not previously explained by variables already 
included in the model). This problem may be overcome by viewing a correlation matrix to 
avoid using multiple combinations of highly correlated variables in a model, or by using 
automated techniques for entering variables into a linear regression model, such as forwards, 
backwards and stepwise regression. When using automated techniques for entering variables 
into linear regression models, it may be important to view the signs of the associated 
regression coefficients to ensure that the final model is ‗intuitively correct‘. This helps to 
ensure that variables do not model sporadic variability in the dependent variable. 

A selection from the variables mentioned above will often be sufficient to build a satisfactory 
time series regression model. When undertaking cross-sectional or pooled time series cross-
sectional regression modelling, the variables that may be included will vary depending on the 
strata used to define cross-sections and may include such factors as income and other 
household characteristics, such as occupancy and lot size. When looking at the individual 
household level of strata, more detailed characteristics such as appliance and fixture 
ownership and behavioural variables might be included. Essentially, the availability of data will 
ultimately determine which variables are included in these more detailed models. 

3B.3 Data preparation 

Regression models of water demand typically use demand data normalised by population, 
number of dwellings or another demographic unit appropriate to the sector. This obviates the 
need to use an independent variable to represent population growth within the model (Weber 
1989). Demand data is also often expressed on a per day basis to remove the effect of 
different lengths of months and leap years. 

Processing of data for other variables will depend on the variable specification and the quality 
of the data. Meteorological data often contains missing or poor quality data. Price variables 
tend to have to be calculated when the tariff includes a volumetric component. 
Sociodemographic data to be used in cross-sectional and pooled time series cross-sectional 
analyses may need to be linked to the strata of interest, distributed across the time steps of 
the model, or both. 

3B.4 Data screening 

It is not uncommon for demand records to contain erroneous data, whether from 
measurement error or inaccuracy or from incorrect data entry. Simple tests can be applied to 
identify bad data points. BWPD can be compared with the physical capacity of the water 
treatment plants that supply the water or the pumping capacity of the distribution network. 
Logical outlier thresholds can be set, such as daily production exceeding average monthly 
production or quarterly metered consumption exceeding average annual consumption. 
Alternatively, statistical tests can be applied to identify outliers, such as those points that are 
2.5 times the standard deviation above the mean (for normally distributed or log-transformed 
data) or 1.5 times the interquartile range above the third quartile. 

The supplier of the data should be consulted to identify the source of the errors and to make 
an appropriate choice between eliminating, adjusting or imputing the data in question. A 
balance also needs to be found between the potentially competing needs of eliminating bias 
from an analysis and retaining sufficient data to perform the analysis. 

3B.5 Model time step and data binning 

Regression models predicting water demand are most often based on time series data. Thus, 
the time step associated with each data point is a critical consideration. Using daily data has 
the twofold advantage of providing more data points and greater variance to fit the model 
against (that is, a broader range against which to fit explanatory variables). The difficulty with 
daily data is that it can be less reliable (in terms of integrity) and that the multitude of other 
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factors that influence demand on a day-to-day basis contribute to significant data ‗noise‘, 
which is difficult to capture in a model limited to broad explanatory variables. Larger 
sub-annual time steps (for example, fortnightly or monthly) work on data with less noise and 
thus tend to produce stronger fits that are easier to interpret graphically. However, the smaller 
number of data points constrains the number of variables that can be used in the regression, 
and additional care must be taken to avoid model overspecification. 

The attempt to capture the effect of weekends and holidays on demand provides an 
illustrative example of the relative advantages and disadvantages of different modelling time 
steps. Residential demand has been observed to increase substantially over weekends and 
holidays. A daily time-step model calibrated to a year of data will have adequate data points 
and thus degrees of freedom to allow a variable or set of variables to account for this. 
However, weekend or holiday demand responses may not be consistent over time and the 
variable may only explain some of the observed variability associated with weekends and 
holidays. Moreover, only BWPD records are available at a daily time step, meaning that the 
climate correction formulated from the model outputs may not be directly applicable to the 
residential sector.

5
 A weekly time-step will effectively smooth out the effect of weekends, but 

may require a variable or a set of variables to take account of holidays, and again can only be 
applied to bulk water data. A fortnightly or monthly model will generally smooth out both 
weekend and holiday effects. The reduced number of data points for each, however, may 
require a longer calibration window, especially if other factors such as restrictions need to be 
accommodated. 

Ultimately the time step used in the model is governed by the time step of the available 
demand data. Production data is often recorded daily, while customer meter data is usually 
recorded on a quarterly or six-monthly basis. A monthly model is generally the finest 
resolution of time step that can be applied to quarterly data, assuming an appropriate binning 
technique is applied (see Appendix A of Turner et al. 2010), although attempts have been 
made to produce finer time steps from customer meter data (Moglia et al. 2009). Daily 
production data can be used in a daily model directly or can be binned to create larger time 
steps if desired. Table 3B.1 lists the data and time steps used in various time series 
regression models of aggregate water demand. 

                                                 
5
 An artificial daily time series could theoretically be generated from quarterly customer meter data (as 

suggested in Moglia et al. 2009), although the smoothing effect of this process will render weekend and 
holiday variables ineffectual. 
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Table 3B.1: Examples of types of data, time steps and model forms and used in regression 
modelling of water demand 

Study Demand data Time step Model form 

Anderson, Miller & Washburn 
(1980) 

Total daily production Daily Linear 

Hansen & Narayanan (1981) Monthly production expressed as volume 
per active service connection per day 

Monthly Log-log 

White, Lovell & Young (2000) Daily production per capita Daily Linear 

Sarac & White (2001) Daily production per capita Daily Nonlinear 

Maheepala (2003) Summed daily production per capita Monthly Linear 

Kidson, Spaninks & Wang 
(2006) 

Total production Monthly Linear 

Maheepala & Roberts (2006) Daily production per capita  Daily Linear 

Beatty, O‘Brien & Beatty 
(2006) 

Annual consumption per property  Yearly Nonlinear 

Grafton & Kompas (2007) Total daily production Daily Nonlinear 

Beatty et al. (2007b) Quarterly customer meter per account 

Monthly production expressed as volume 
per capita per day 

Quarterly 

Daily 

Nonlinear 

Beatty, Roberts & Beatty 
(2008) 

Quarterly customer meter per account 

Daily production per capita 

Quarterly 

Daily 

Nonlinear 

Moglia, Grant & Inman (2009) Quarterly customer meter per property Monthly 
(binned) 

Linear 

 

3B.6 Specification of explanatory variables 

The way an explanatory variable is specified will in part determine its effect on the final model. 
For example, temperature may be expressed as daily maximum, minimum or mean 
temperature, or as the number of days within a time step above or below a certain threshold. 
The simple occurrence of rainfall has been observed to be more influential on demand than 
the magnitude of the rainfall (Maidment and Miaou 1986) and hence the number of rain days 
may be more significant than the amount of rain. The selection of a particular specification of 
a variable will be region-specific, and several options may need to be explored to find the 
variable with the most explanatory power. It should be noted too that some weather variables 
are likely to be highly correlated (for example, temperature and evaporation). Inclusion of 
correlated explanatory variables in a regression model leads to problems of multicollinearity 
(see Section 3B.9). In this case, it may be necessary to exclude one or more correlated 
variables from the analysis or to consider alternative specifications of those variables. 

Independent variables may be normalised against the long-term average (by subtracting the 
long-term average and dividing by the standard deviation—similar to calculating the z-score) 
so as to model the effect on water demand of departures from average conditions. 
Normalising the data allows direct comparison between the regression coefficients so as to 
determine the relative influence of each variable on demand. Most contemporary statistical 
packages used to perform linear regression modelling provide an option to determine 
standardised model coefficients along with conventional coefficients. Standardised 
coefficients are derived using normalised data; however, in this case the data is normalised to 
the average within the modelling period rather than a long-term historical average. It is also 
possible to normalise weather variables to monthly long-term averages (as opposed to a 
single long-term average). This approach to normalisation effectively removes the seasonality 
of weather variables. Therefore, a subsequent model is best formulated with some form of 
seasonal adjustment as described in Section 3B.7. 

Climate correction regression models will generally produce strong results with a minimum 
number of variables (no more than four or five for a baseline period unaffected by restrictions 
or other demand management), as much of the variation observed in water consumption 
(more than 80%) can be explained by variables that reflect seasonality, such as temperature 
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(Weber 1993). It is common, however, and particularly so in Australia, for demand to have a 
particular seasonal profile that is not adequately explained by weather variables alone. To 
overcome this, some studies have developed separate equations (models) for distinct 
seasons, for example growing and non-growing periods (Hansen and Narayanan 1981). 
Alternatively, the response data or the regression model may be adjusted for seasonality (see 
Section 3B.7). 

Ultimately the selection of the explanatory variables and their respective forms should be 
guided by a logical interpretation of the relationship between the variable of interest and water 
demand, or at least justified by such reasoning. Table 3B.2 lists the weather variable 
specifications previously used in regression models of water demand. 

Table 3B.2: Examples of specifications of weather variables used in regression models of 
water demand 

Explanatory variable Form Example references 

Temperature (T) Mean daily maximum 

 

Maheepala & Roberts (2006) 

Kenney et al. (2008) 

Kidson et al. (2006) 

Dziegielewski et al. (1992) 

Grafton & Kompas (2007) 

Anderson et al. (1980) 

Hansen & Narayanan (1981) 

Danielson (1979) 

 Broken-line function using daily 
maximum 

Maheepala & Roberts (2006) 

 No. days above a threshold Turner et al. (2008a) 

 No. of cooling degree days Dziegielewski et al. (1992) 

Rainfall or precipitation 
(P) 

Sum or total Hansen & Narayanan (1981) 

Kenney et al. (2008) 

Kidson et al. (2006) 

Renwick & Archibald (1998) 

Dziegielewski et al. (1992) 

Grafton & Kompas (2007) 

Maheepala(2003) 

 No. of days above a threshold Dziegielewski et al. (1992) 

 Average (where time step > 1 
day) 

Danielson (1979) 

 Effective precipitation 

ER1 = Pt–0.1 (0.1<Pt<0.6) 
inches 

ER2 Pt+(1- )Pt-1 (  = 0.4, 
Pt<1, ER2 t>0) inches 

Anderson et al. (1980) 

Solar radiation or 
sunshine hours 

Solar radiation (S) Anderson et al. (1980) 

 Daylight hours Hansen & Narayanan (1981) 

Evaporation (E) or 
evapotranspiration (ET) 

Modelled using T and S Anderson et al. (1980) 

 Modelled using P and T DEUS (2002) 

 Sum or total Maheepala (2003) 

Kidson et al. (2006) 

Combined E or ET and 
P 

Difference between E and P Anderson et al. (1980) 

 Difference between ET and P Agthe & Billings (1980) 

Anderson et al. (1980) 
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Adjusting for seasonality 

Urban water demand in Australia, particularly that of single residential households, often 
exhibits a strong seasonal pattern that is not adequately reflected in the seasonality of 
weather variables alone. Most probably, this will be due to a strong dichotomy between 
summer and winter demand responses and an inability of weather variables to efficiently 
describe associated spring and autumn transition periods (Weber 1989). When this is the 
case, an underlying seasonal profile of demand can be derived, such that weather variables 
act to explain departures from typical seasonality rather than directly describe the seasonality. 
The seasonal profile of demand can either be removed from the response variable prior to 
performing a regression analysis, or it can be incorporated into the regression model using 
explanatory variables. 

The first technique, typically called ‗deseasonalisation‘, involves deriving an additive or 
multiplicative index for each calendar month (seasonal effect) based on a constant average or 
yearly averages where there is no discernible trend in demand over time, or a moving 
average where a trend is apparent (see Bowerman et al. 2005, Chatfield 2004 or other time 
series analysis texts for details). The 12 indices are then applied to the time series of 
observed demand by dividing each month‘s observed demand by the corresponding seasonal 
index, effectively eliminating the seasonal component. A subsequent regression model of the 
deseasonalised data thus considers only the variability associated with atypical weather and 
other non-seasonal factors. Before performing a regression on deseasonalised demand data, 
however, a test for stationarity (for example, the augmented Fuller–Dickey test) should be run 
to ensure that the data will produce meaningful sample statistics such as means, variances, 
and correlations with other variables that would inform a regression model. 

Alternatively, seasonality effects can be expressed in an explanatory variable in the 
regression model itself. The seasonal index described above can be used as a continuous 
explanatory variable in the regression (Dziegielewski et al. 1992, Maddaus 2007) instead of 
for transforming the demand data. Another specification of seasonality is to use a set of 
dummy variables that represent the month, the bimonthly period or the season. This 
specification requires a reference case, meaning that only n – 1 dummy variables need be 
specified, where n is the number of monthly, bimonthly or quarterly periods (using n dummies 
will result in perfect multicollinearity). A Fourier series specification of seasonality is a set of 
sine and cosine terms that generates a sinusoidal function (see Dziegielewski et al. 1992; 
Gato et al. 2007a; Zhou et al. 2002). Typically a Fourier series of water demand needs to use 
only two or fewer harmonics, although up to six may be used on an annual cycle reflecting 
monthly variation. Care should be taken when using multiple seasonal effect variables so as 
to not overspecify the regression model, particularly when using monthly data. 

The seasonal index approach is perhaps the most elegant of the abovementioned options for 
seasonal decomposition. It minimises the number of explanatory variables needed in the 
regression and effectively detects nuances such as constant demand over winter or spikes or 
dips in particular months of the year. However, ideally at least 10 years of data is required to 
formulate a reliable index (Maddaus 2007). Moreover, the index should be derived from 
historical data that is relatively unaffected by other factors, such as price regime changes, 
water restrictions and other demand-management actions. Using monthly dummy variables in 
a regression model produces essentially the same result as a seasonal index generated from 
a static net average; however, it reduces the power of the regression by adding explanatory 
variables. Hence, using dummy variables to indicate season (rather than month) may be more 
appropriate when using dummy variables in a monthly time-step model. A comparison 
between demand predictions using different seasonal adjustment techniques is presented in 
Figure 3B.1. 
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Figure 3B.1: Seasonal adjustment using different forms of seasonal indexes and Fourier 
series 
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Non-linear relationships 

Almost universally, urban water demand data is not distributed normally; it typically displays a 
positive skew, bounded by zero to the left and a large tail to the right. When non-normality is 
also apparent in the residuals of a regression model, one of the fundamental assumptions of 
linear regression is violated (see Section 3B.9). Also problematic to linear regression is the 
fact that relationships between demand and meteorological conditions are often non-linear. 
Generally, the problems of non-normally distributed residuals and non-linear relationships are 
overcome by log transforming the demand data, or by using a multiplicative model form, 
which involves applying a log transformation to both the demand (the dependent variable) and 
the independent variables. 

The functional form of the log-log regression model is as follows: 
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Retransforming equation 3: 
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where 

t,1x  = the 1
st
 explanatory variable at time t 

t,2x  = the 2
nd

 explanatory variable at time t 

t,nx  = the n
th
 explanatory variable at time t 

1  = the regression coefficient associated with the 1
st
 explanatory variable 

2  = the regression coefficient associated with the 2
nd

 explanatory variable 



NATIONAL WATER COMMISSION — WATERLINES          95 

n  = the regression coefficient associated with the n
th
 explanatory variable. 

The residuals of the log-log model are assumed to be multiplicative, allowing for the 
commonly observed phenomena in which the errors associated with predictions of water 
demand increase as water demand itself increases. This helps to limit the leverage effect of 
outliers and to produce constant variance in the residuals to ensure that the fundamental 
assumption of homogeneity of residual variance is not violated. It is important to be aware, 
however, that a limitation of log-transformed models is that they tend to underpredict higher 
values. 

Alternatively, just the response variable may be logarithmically transformed and linearly 
regressed against the untransformed explanatory variables to form a semi-log model. 
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The advantage of these two types of models is that simplistic linear regression procedures 
may be applied once the data has been transformed. 

It is widely acknowledged that relationships between weather variables and demand are often 
non-linear, causing models using raw weather data to perform poorly or even violate the 
critical assumptions of regression modelling (see Section 3B.9). To overcome this problem, 
variables can be transformed to better reflect their relationship with demand. For example, 
temperature might not trigger an observable demand response unless it climbs above a 
certain threshold. Conversely, the response to rainfall could be curvilinear up to a certain limit 
and constant above it. To account for such non-linear relationships, a range of 
transformations may be employed, such as step, broken-line (see Zhou et al. 2001), 
logarithmic (select individual explanatory variables as opposed to all), asymptotic, power and 
arctan (see DEUS 2002) functions. The regression model equation then becomes: 

  t
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where 

Yt = observed demand at time t 

0 = model intercept 

i = regression coefficients 

xi,t = explanatory variable at time t 

fi(xi,t) = non-linear function of xi,t 

or 

fi(xi,t)  = xi,t (when linear) 

 = error term. 

DEUS (2002) developed a synthetic variable called the soil moisture index (SMI) that was 
calculated from rainfall and evaporation data to describe the condition of the soil in residential 
gardens. It acts as a proxy for irrigation demand by providing a ‗memory‘ for previous rainfall 
and evaporation, to help better characterise demand response to weather. The variable is 
essentially an approximation of plant-available soil water that acts as a storage reservoir for 
recent rainfall. The parameters of the variable are determined through a least squares fit prior 
to the variable being used in a regression. Zhou et al. (2000) also incorporated model effects 
for soil water storage into a daily demand regression model. They specified a variable for the 
number of days since the previous rainfall event and an antecedent precipitation index (a 
variable representing net rainfall that includes a lag term and an assumed corresponding loss 
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factor). Variables that attempt to capture the soil reservoir effect are generally only applicable 
to daily time-step models. The error associated with the fitting parameters to these 
(semi-)synthetic variables should also be reported and incorporated into the final model. 

Caution should be exercised when applying transformations that create additional fitted 
parameters (that are used to optimise the transformation function), as it can lead to model 
overspecification. For simplicity, the more general log-log or log-linear transformations, which 
can accommodate a wide range of non-linear relationships, may be preferable because they 
do not require fitting of transform function parameters. 

3B.7 Checking model assumptions and validity 

There are four key assumptions behind any regression model, all related to the model 
residuals (the difference between predicted and observed response data): 

 zero mean 

 constant variance 

 normal distribution 

 independence. 

Essentially, the variance and distribution of residuals may be considered to be indicators of 
the level of bias within the model. If a model is sound, its residuals should reflect the random 
‗white noise‘ of the data and show no discernible pattern, trend or constancy. 

The first assumption requires the mean of the residuals to be equal to zero for all values of 
the independent variable/s, while the second assumption requires the variance to be constant 
for all these values. The validity of the second assumption may be checked by viewing plots 
of residuals against independent variables, predicted values and time (for time series data). If 
the assumption holds, the plotted residuals should fluctuate within a constant band either side 
of zero. Fanning out to the right indicates increasing error variance, while funnelling in to the 
left indicates decreasing error variance. Both of these types of fluctuations negate the ability 
to make statistical inferences from the model. Non-constant variance, or heteroscedasticity, 
can sometimes be overcome by transforming the response variable using a logarithmic or 
power function. Alternatively, non-constant variance may suggest that the functional form of 
the model is incorrect, indicating the need for an additional variable in the regression model or 
a suitable transformation of one or more explanatory variables already included in the model. 

Adherence to the assumption of a normal distribution of residuals may be determined by 
simply viewing a stem-and-leaf display or histogram of the residuals. Normality is deemed to 
hold when these plots appear bell shaped and centred about zero. Alternatively, more 
rigorous statistical tests may be performed on the normal probability plot of residuals to 
determine whether the residuals satisfy the assumption of normality. 

Time series regression models can be prone to producing residuals that are autocorrelated, 
which violates the assumption of independence of residuals. Serial correlation of error terms 
indicates inefficiency of OLS estimation and a probable bias in the estimation of sampling 
variances (Hansen and Narayanan 1981). It may also suggest the absence of a significant 
variable from the model (Billings and Jones 2008). Tests such as the Durbin–Watson can be 
used to assess serial correlation. Durbin–Watson results vary from 0 to 4, with results in the 
range 1.7 to 2.3 indicating minimal autocorrelation (Weber 1989). Billings and Jones (2008) 
suggest that serial correlation can sometimes be overcome by the addition of a suitable 
explanatory variable. Alternatively, an autoregressive term could be introduced to the model. 
Where this does not produce a satisfactory result, the Cochrane–Orcutt estimation procedure 
can be used to adjust the model for serial correlation of residuals. 

The seasonality of water demand is one of the main causes of autocorrelated residuals. 
When the explanatory variables of the model do not sufficiently explain the seasonal variation 
in demand, this causes the autocorrelation to be passed on to the residuals. As mentioned 
above, autocorrelation of model residuals is often a symptom of an inadequately specified 
model, so the first step when attempting to address this problem should be to revisit the 
seasonal explanatory variables and identify missing variables. If it has not already been 
performed, seasonal adjustment of the model may provide a solution. Other options include: 
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 including an autoregressive or ‗lag‘ term (demand at the previous time step) as an 
explanatory variable (Moglia et al. 2009, Weber 1993) 

 using first differences of the response and (selected) explanatory variables in place of 
actual values in the model (Billings and Jones 2008); a formalised application of this is 
the Cochrane and Orcutt (1949) iterative procedure. 

Multicollinearity in a multiple regression model occurs when two or more explanatory 
variables are highly correlated with one another. Perfect multicollinearity occurs when two 
independent variables have a correlation of 1 or –1, or when ‗the sum of several variables is 
exactly equal to another variable‘ (Billings and Jones 2008). Perfect multicollinearity must be 
avoided because it makes it impossible to calculate the regression model. High 
multicollinearity should also be avoided, as it may decrease the precision of the associated 
regression coefficients, making it difficult to compare the relative significance of explanatory 
variables (Hansen and Narayanan 1981). The concept of parsimony also suggests that only 
one of a set of highly correlated variables should be included in a regression model. However, 
this may result in the inclusion of a less relevant explanatory variable over a more relevant 
one, particularly if they are secondary variables. Principal component analysis may also be 
used to overcome problems associated with multicollinearity. However, it generally makes the 
interpretation of the final model more difficult. The simplest way to check for the presence of 
multicollinearity in a dataset is to view a correlation matrix. There are also statistical tests, 
such as the variance inflation factor, that can be used to detect multicollinearity in a model. 
However, it can also be indicated by unstable regression coefficients and a high R value 
accompanied by low t-statistics (Hansen and Narayanan 1981). 

3B.8 Model testing and inference 

A number of methods may be used to determine the validity of a multiple regression model, 
such as the overall F-test, the coefficient of determination (R

2
) and the adjusted R

2
. The 

adjusted R
2
 is generally preferable to the R

2
, since it takes into account the degrees of 

freedom. The relative significance of each explanatory variable used in a regression model 
may also be evaluated using the change in R

2
 or adjusted R

2
 after the addition of an 

explanatory variable. However, this method tends to measure the amount of ‗new‘ variation in 
the response variable explained by the additional explanatory variable. In this manner, the 
modeller may determine when to cease entering variables into a model. However, this 
method does not quantify the ‗total‘ variation in the response variable explained by the 
additional variable, making it difficult to compare the relative significance of variables 
exhibiting high multicollinearity. Other statistical outputs used to determine the relative 
significance of explanatory variables include p-values, standardised regression coefficients 
and the confidence intervals associated with regression coefficients. In general, explanatory 
variables with lower p-values, standardised beta coefficients with larger absolute values, and 
regression coefficient confidence intervals not bounding zero are deemed more significant. 
Confidence intervals and predictions intervals may also be generated for a particular model, 
with smaller intervals implying better fits. 

As with any modelling exercise, limited dataset sizes combined with large numbers of 
potential explanatory variables can lead to the problem of data overfitting. For this reason, it 
may be desirable to validate a constructed model using data not used for calibration, in what 
is known as an ex-post forecast. Models with poor predictive performance on the validation 
dataset are potentially deemed to be overfitted. The predictive performance may be evaluated 
using any number of statistics, such as the mean square error, Theil‘s U statistic and the 
average absolute error (Hansen and Narayanan 1981). Hansen and Narayanan (1981) also 
devised a method to test for regression coefficient instability related to multicollinearity using a 
reduction in dataset size. A total of 12 observations were removed from the dataset and the 
model was recalibrated. The unchanged regression coefficients were considered to suggest 
that they were stable. 
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Summary 

What is the purpose this paper? 

The purpose of this paper is to provide urban water supply–demand planners with 
background information on the implications of climate change for urban water supplies and 
water demand. The aim is to inform decisions about how water utilities might manage risks 
posed by climate change. To do this, the paper provides information on: 

 existing climate change projections and current knowledge of expected climate change 
impacts in Australia 

 the risks posed by climate change to urban water supplies and water demand 

 the points in an urban water supply–demand planning process where climate change 
needs to be considered and incorporated 

 current thinking on developing climate change scenarios and incorporating them into 
supply–demand planning 

 the changes in approach and types of available responses that can manage uncertainty 
about future climate. 

The paper seeks to scope out the problem of climate change from an urban water supply–
demand planning perspective and introduce potential approaches and methods that might be 
useful when incorporating climate change into urban water supply–demand planning in 
Australia. 

From the perspective of an urban water planner, current knowledge about climate change 
leaves significant areas of uncertainty. The models available for projecting climate change 
commonly produce a wide range of potential future climates. The Australian climate is noted 
for its marked climate variability, and how human-induced global warming will interact with 
natural variability remains unclear. 

This paper does not provide a step-by-step ‗how to‘ guide for urban water planners, but 
background information on climate change impacts and risks as well as a consideration of the 
issues. In addition, the paper discusses available approaches for intergrating climate change 
into integrated resource planning (IRP) at each step of the IRP framework. 

Why is the paper needed? 

Climate is a major factor in determining available water supply for most towns and cities in 
Australia, and also influences urban water demand. Human-induced climate change is 
projected to increase global average temperatures and alter critical climate variables, 
including rainfall and evaporation, over the coming decades. Extreme events, such as floods 
and drought, are projected to increase in some regions. Human-induced climate change will 
also interact with natural climate variability. 

In many locations, climate change has the potential to dramatically reduce supplies available 
from traditional water sources in coming decades. However, there is significant uncertainty 
about future climate, and some regions may see increasing levels of available supply. In 
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general, in the face of climate uncertainty, supply–demand planning will need to become 
more adaptive while also working towards reducing the vulnerability of urban water systems 
to climate change. 

Because of the risks posed, dealing with the implications of climate change for urban water 
systems has become a central concern for urban water supply–demand planning. The risks to 
water utilities and communities from climate change include direct risks to water supply, such 
as reduced yields from surface water storages, increased customer demand and more 
frequent water restrictions. They also include financial and institutional risks, such as 
overinvestment in large supply augmentations and lack of certainty in water licences. Further 
risks are associated with community perceptions and expectations in relation to providing a 
reliable water supply and not increasing the greenhouse gas (GHG) intensity of water 
services. 

Will this paper be useful to me? 

The intended audience for this paper is urban water planners who are involved in developing 
supply–demand plans for cities or towns in Australia. However, it should also inform a wider 
audience that is interested in how urban water planning can be undertaken in the face of 
climate change. The paper has assumed a readership that is not completely new to this area 
and will have some knowledge of urban water issues. While the paper takes the IRP 
framework as its context, it is intended to act as a resource more generally for incorporating 
climate change into supply–demand planning. 

How does climate change alter the planning and scoping steps in 
supply–demand planning? 

The initial steps in any supply–demand planning process will include developing a picture of 
the supply–demand balance and establishing what the significant issues for the given region 
are. These are the planning and scoping steps of the process. The significant issues identified 
may include challenges, such as population growth or unsustainable use of groundwaters, but 
in many regions supply–demand planning is increasingly charactoristed by climate change 
and uncertainty about future climate. 

Meeting the challenges that climate change poses will mean altering the analysis of supply–
demand balance, changing supply–demand planning objectives, and reconsidering the 
process of supply–demand planning. 

Analytically, best estimates of climate change should be incorporated into projections of 
long-term available supply and into demand forecasts (that is, yield estimates from rainfall-
dependent supply sources and demand estimates for climate-dependent water demands, 
particularly irrigation and cooling). Uncertainties about future climate can be represented by 
high and low cases, representing wet and dry extremes. 

Various methods that generate climate change scenarios for assessing urban water supply–
demand planning are available. In Australia, the most widely accepted approach is to base 
climate change scenarios on global climate model (GCM) simulations and then to ‗downscale‘ 
the simulations to a regional level by various means. In the absence of GCM-generated 
climate data, hypothetical and analogue climate change scenarios may be used to examine 
the sensitivity and relative hydrological impact of changes in climate. 

This paper argues that an objective incorporating the implications of climate change into 
supply–demand planning needs to be added to other planning objectives. Furthermore, the 
paper argues that this objective has at least two component objectives: 

 adaptation of urban water systems to the expected impacts of climate change and 
associated climate uncertainty 

 mitigating the impacts of climate change through reducing the GHG emissions 
associated with the provision of urban water services. 

However, supply–demand planners need to be cognisant of the various perspectives that can 
be brought to the question of planning for urban water in the face of climate change. For 
example, to manage uncertainty about future climate, strategies can be aimed at either 
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decreasing the vulnerability of urban water systems to climate change (a climate change–
resistant strategy, such as increasing the buffer between available supply and project 
demand) or by both decreasing vulnerability and increasing adaptive capacity (a strategy of 
climate change resilience, such as developing readiness options, the diversity of sources, or 
both). 

Even in regions where water planning is conducted with a strong climate change–resistant 
stance, the uncertainties associated with climate change mean that planning is likely to 
become more adaptive. This will see (to at least some extent) a reconsideration of supply–
demand planning processes. For example, an adaptive planning approach aims to be flexible 
so that it can respond to a range of possible futures, and is also responsive in that new 
information is sourced and fed back into future responses. An adaptive planning approach 
would also incorporate incremental responses to emerging uncertainties. This avoids the risks 
of making infrastructure investments now in anticipation of future climate scenarios that may 
not emerge. 

In some regions in the future, climate change may result in a deeper reconsidering of supply–
demand planning processes and deliberate policies that accommodate supply augmentations 
and demand-management programs triggered by drought events rather than projected growth 
in demand. However, without defined governance and public engagement in demand–supply 
planning, any moves towards more adaptive approaches for urban water are unlikely to be 
effective. 

What responses are available? 

In many industries, the first step in managing climate change will be to look at the mitigation 
of GHG emissions. In urban water, however, adapting to climate change will also be crucial. 
Important elements of a response to climate change and climate uncertainty include a 
diversity of water supply and conservation options, the development of contingency 
measures, and adaptive management, including ongoing monitoring. 

Accounting for emissions 

GHG emissions from water supply are generated directly via surface emissions from water 
storage reservoirs and indirectly from the use of energy from non-renewable carbon-based 
sources. Energy is used in treating water to a potable standard and in pumping to deliver the 
water. Energy is also used by customers for heating water, which accounts for approximately 
one quarter of all residential energy consumption in Australia. Wastewater treatment also 
generates direct and indirect releases of GHGs due to energy use. Compared to overall 
energy-related emissions, emissions from the urban water industry as a whole are currently a 
small but rapidly growing contributor to Australia‘s total. 

Developing more climate change resistant or resilient 
portfolio 

Responding to climate change will mean developing more climate change resistant or resilient 
portfolios of options. The full extent of this in practice, and how to assess it, are likely to 
remain contested for some time. This paper outlines two key elements that will certainly be 
core to climate change responses around the country: increasing portfolio diversity and 
developing adaptive measures. 

A greater role for monitoring, evaluation and review 

In general, there will be an increasing role for monitoring and evaluation in the face of climate 
change. This is both a mechanism to measure the effectiveness of the implemented 
responses and to manage uncertainties associated with climate change. 

Where to look in the paper? 

Some parts of the paper might be of interest to particular reader groups: 
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 Section 4.2.1 covers the projected impacts of climate change across Australia and the 
interaction of climate change with natural climate variability. 

 Section 4.2.3 summaries some of the risks posed to urban water supply by climate 
change. 

 Section 4.3.1 discusses how climate change will affect planning objectives for urban 
water. 

 Section 4.3.2 describes moves towards more adaptive planning, and the role of adaptive 
management and adaptive measures. 

 Section 4.4.1 details methods for generating climate change scenarios. 

 Section 4.4.2 outlines considerations for selecting climate change scenarios. 

 Section 4.5.1 addresses accounting for GHG emissions and mitigation. 

 Sections 4.5.2 and 4.5.3, respectively, cover the development of diverse portfolios and 
adaptive measures, such as readiness options. 

What are the take-home messages? 

The core messages that should be taken from this paper are as follows: 

1. Accounting for the implications of climate change should be an integral part of urban 
water supply–demand planning. 

2. The mitigation of GHGs needs to be a parallel objective to climate change adaptation in 
urban water supply–demand planning. 

3. Demand-management programs that increase water-use efficiency help to meet both 
climate change mitigation and adaptation objectives. 

4. The ‗best estimate‘ of expected climate change should be included in calculations of the 
longer term supply–demand balance, as well as in yield estimates for new climate-
dependent options. 

5. Uncertainty about future climate due to climate change can be managed. This can occur 
either via a strategy aimed at decreasing vulnerability to climate change or by both 
decreasing the vulnerability and increasing the adaptive capacity of the urban water 
system. 

6. Important questions remain about how best to manage climate uncertainty, including 
‗How are we to to differentiate climate change from natural climate variability?‘, ‗What 
represents a ―reasonable‖ worst case climate change scenario?‘ and ‗How can we assess 
whether a portfolio of options is the most cost-effective and sustainable means of 
providing resistance, resilience or both to climate change?‘ 

4.1 Introduction 

Climate is a major factor in determining available water supply for most towns and cities in 
Australia, and also influences water demand. Human-induced climate change is projected to 
increase average global temperatures and alter both rainfall and evaporation in the coming 
decades. In addition, climate extremes are expected to increase, with more severe droughts 
and floods. This comes on top of natural variability in inter-annual and longer term climate 
patterns in Australia. Urban water systems are vulnerable to changes in climate, and concern 
about climate change has already influenced major decisions in the urban water sector in 
Australia. What the risks are for the sector and how best to manage them remain topics of 
ongoing discussion. 

The interaction of climate change and urban water planning is a wide and emerging topic 
area. It spans the linkages between climate science and hydrology, hydrology and urban 
water supply, climate and water demand, and aspects of the water–energy nexus. It draws on 
systems concepts such as ‗resistance‘, ‗resilience‘ and ‗adaptive capacity‘ in relation to water 
systems and ‗complexity‘ and ‗step change‘ in relation to the climate system. Information 
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about climate change impacts in Australia, particularly at the regional level, leaves significant 
uncertainty about the expected extent and timing of potential impacts. That uncertainty is a 
particular challenge for urban water planning. For urban water planners, climate change 
therefore creates a complicated picture that this paper seeks to clarify, based on the current 
state of knowledge in the field. 

Taking the existing Australian IRP framework (Turner et al. 2008) as its context, this paper 
scopes the major risks that climate change poses for urban water supplies and demand, and 
the implications for supply–demand planning. It aims to provide an introduction and 
background to the approaches and methods that could be used in managing urban water 
systems in the face of climate change in Australia. The paper addresses the issues and 
available approaches at each step of the IRP framework. 

4.1.1 Outline of this paper 

Apart from this introductory section, this resource paper has six main sections: 

 Section 4.2 provides background and answers three questions: what are the potential 
impacts of climate change in Australia? what risks are posed to urban water supplies by 
climate change? how have Australian water utilities responded to climate change? 

 Section 4.3 addresses Step 1 of the IRP framework, which covers planning the overall 
process. This includes the consideration of planning objectives for an urban water 
system. For many regions, assuring the supply of water to urban areas in the face of 
climate change will be the foremost objective. However, alongside this ‗adaptation‘ 
objective there must also be an objective of mitigating the GHG emissions that result 
from water service provision. These mitigation and adaptation objectives have 
implications across the IRP process. This section also discusses how dealing with the 
uncertainties associated with climate change requires more adaptive approaches to 
planning. 

 Section 4.4 focuses on Step 2 of the IRP framework, which involves analysing the 
existing water supply and demand situation in a given region. It covers methods for 
developing regional climate change scenarios and the application of those scenarios in 
estimates of available supply and forecast demand. It also addresses the selection of 
scenarios that can represent a ‗worst case‘ for testing supply–demand plans. 

 Section 4.5 focuses on Step 3 of the IRP framework (‗Develop the response‘). This step 
includes designing individual supply- and demand-side options, assessing options 
against each other, and developing a suite or portfolio of options that will secure water 
supplies into the future. The first issue addressed by this section is accounting for the 
GHG emissions in order to manage and mitigate the GHG impact of any response. The 
two further areas discussed are the development of diversity in the portfolio of options 
and approaches for managing climate uncertainty. 

 Section 4.6 considers how climate change and climate uncertainty increase both the 
range of parameters that water utilities and water planners need to monitor and evaluate 
and the frequency of review. This aligns with Step 5 of the IRP framework. 

 Section 4.7 draws conclusions from the paper and sets out key considerations for 
prospective water planners dealing with the question of climate change. 

A collection of further resources that are relevant to the topics covered in the paper is 
included in Section 4.8. 

4.1.2 Scope of this paper 

The purpose of this paper is to provide background information for the Australian water 
industry on approaches to incorporating the potential impact of climate change into urban 
water supply–demand planning. As climate change is an evolving area of science, this paper 
does not aim to prescribe particular methods but instead aims to canvass useful approaches. 
As far as the authors are aware, there is no common understanding of the uncertainties in 
climate change projections and how those uncertainties should be incorporated into urban 
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water supply–demand planning across Australia. The paper‘s goal is to provide sufficient 
information to map out that space, based on current knowledge. 

The intended audience for this paper is urban water supply–demand planners working at the 
scale of a single utility‘s area of operations or planning for a particular water system, although 
it will also interest others in the urban water and water policy fields. It is assumed that readers 
are not completely new to this area and will have some knowledge of urban water planning. 
While the paper takes the IRP framework as its context, it is intended more generally to be a 
resource for incorporating climate change into urban water supply–demand planning. 

This resource paper should be read in conjunction with other resources that relate to aspects 
of urban water supply–demand planning and climate change, including Water Services 
Association of Australia (WSAA) occasional papers and National Water Commission (NWC) 
publications. Some state government departments have already compiled, or are currently 
compiling, guidelines for incorporating climate change into urban water supply–demand 
planning. Those guidelines should be sought out and adhered to as required. The guidelines 
and other resources are listed in Section 4.8. 

4.2 Background 

4.2.1 What are the potential impacts of climate change in 
Australia? 

Projected impacts of climate change across Australia 

In its fourth assessment report, the Intergovernmental Panel on Climate Change (IPCC) 
presented a substantial body of research that supports a picture of a warming world and 
significant changes to regional climates across the globe (IPCC 2007). The report also states 
that further global warming and regional climate change can be expected because of 
projected increases in GHG concentrations in the atmosphere. The projected increases vary, 
based on different assumptions about human activity, including assumptions about the 
demographic, economic and technological factors that will influence future emissions. The 
IPCC has therefore developed and analysed a range of potential emissions scenarios for this 
century (IPCC 2000), which form the basis for developing global projections of human-
induced climate change. 

The development of regional climate change projections in Australia is facilitated by the use of 
global climate model (GCM) simulations. In the absence of regional climate modelling studies, 
GCMs are the most credible tools for estimating the response of regional climates to 
enhanced GHG (and aerosol) emissions. In 2007, the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) and the Bureau of Meteorology (BoM) used 23 GCMs to 
project the impacts of climate change in Australia; the results of those simulations are 
presented in CSIRO and BoM (2007a). Overall, climate change projections were found to 
vary between regions and with different emissions scenarios. On average, the 50th percentile 
estimate of annual warming over Australia by 2030 (relative to 1990) was about 1°C for 
mid-range emissions scenarios. This varied between a little less in coastal areas and a little 
more inland. Unlike temperature, the rainfall projection decreases or increases depending on 
location (CSIRO and BoM 2007a). Over the period to 2030, the average annual rainfall is 
projected to decrease in southern regions but will vary in other regions. In some parts of 
Australia, regional climate change studies projected slight increases in rainfall and runoff—a 
regional study of the Hunter region in New South Wales being one example (Blackmore and 
Goodwin 2009). Annual potential evapotranspiration is projected to increase across the 
country, with the largest increases in the north and east. 

Human-induced climate change is projected to have impacts not only on the mean climate but 
also on climate extremes, such as droughts and extreme precipitation. Drought occurrence is 
projected to increase in the south of Western Australia and eastern Australia and remain 
relatively unchanged in other regions, such as north-west and north Queensland (CSIRO and 
BoM 2007b, Hennessy et al. 2008, Kirono et al. 2009). Extreme daily precipitation (highest 
1%) is projected to increase in the north, with widespread increases projected in summer and 



NATIONAL WATER COMMISSION — WATERLINES          104 

autumn. In the south, however, such extreme daily rainfall events are projected to decrease, 
particularly in winter and spring when there is a strong decrease in mean precipitation 
(CSIRO and BoM 2007b). 

Changes in either climate averages or climate extremes can have substantial implications for 
water supply in Australia‘s cities and towns. However, the impacts of climate change on 
rainfall and evaporation will vary across regions, so the impact on urban water systems will be 
different depending on location. Box 4.1 illustrates some of the broad regional differences in 
rainfall changes projected for Australian regions and selected cities. 
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Box 4.1: Examples of regional differences in projected climate change impacts 

Some of the projected regional impacts of climate change on rainfall are: 

 Queensland east coast: possible drying trend (CSIRO and BoM 2007a) 

 New South Wales coast: no change to slight reduction in eastern parts of the state 
(DWE 2008); slight increases in some mid-north coast regions (Blackmore and Goodwin 
2009) 

 Murray–Darling Basin: surface water availability likely to decline, particularly in the south 
of the basin (Chiew et al. 2008) 

 southern Victoria: decline in rainfall, particularly in winter and spring (CSIRO and BoM 
2007a) 

 south-west Western Australia: decline in rainfall, particularly in winter and spring 
(CSIRO and BoM 2007a) 

 tropical Australia: changes in rainfall pattern are unclear (CSIRO and BoM 2007a 

Projected rainfall changes for selected Australian cities 

Results in the table below are indicative, in that they are based on the results of coarse-grid 
GCM for the locations and do not take into account local topographical effects (CSIRO and 
BoM 2007a). A1B, B1 and A1F1 are emissions scenarios, while 10p, 50p, and 90p represent 
a range of projections from multimodel simulation (the 5th, median and 90th percentiles, 
respectively). 

 

Uncertainties in estimating climate change impacts for urban 
water 

Despite the work done to date on projecting climate change impacts, a number of 
uncertainties remain, including in relation to: 

 the future atmospheric GHG concentrations (emissions trajectories) 
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 how much the global average surface temperature will respond to increases in 
atmospheric GHG concentrations 

 how changes to the climate as a result of global warming will vary spatially, and hence 
how the climate of the region under consideration will respond to an increase in global 
surface temperature. 

The uncertainty is lower in regions where regional climate studies have occurred and where 
the projections from a range of GCMs are seen to converge. Multiple studies taking various 
approaches now exist for some Australian regions, giving increased confidence when the 
predicted impacts align. 

However, in general there is greater certainty about projected changes in temperature than 
about changes in rainfall. Additionally, for water planning the interactions of climatic and 
hydrologic variables depend on the local characteristics, such as soil type, vegetation and 
groundwater storage, which are unique to particular catchments. The rainfall–runoff issue 
therefore adds a further layer of uncertainty to estimating available water supplies under 
climate change. 

Significantly, the phenomenon known as ‗catchment drying‘ means that the decrease in runoff 
commonly exceeds the decrease in rainfall. This is due to increased evapotranspiration, 
which creates a greater soil moisture deficit that must then be satisfied before runoff is 
generated. One rule of thumb that has been suggested is that the rainfall elasticity of runoff is 
about 2 to 3.5 (Chiew 2006, Jones et al. 2006). This would mean that a 10% change in mean 
annual rainfall would lead to a 20%–35% change in mean annual runoff. A more robust 
approach is to use an appropriate hydrological model to estimate the impacts of climate 
change on runoff in a specific catchment. There are many different hydrological models; those 
commonly used in Australia are available from the Rainfall–Runoff Library (Podger 2004). 
Some differences in catchment runoff estimates can generally be expected when different 
hydrological models are used. This is due to the models‘ use of different approaches to 
transform rainfall into runoff. However, the impact on runoff of various local catchment 
characteristics is likely to be small compared to the range of runoff results that can be 
attributed to climate change projections from the different GCMs (Chiew et al. 2009). More 
discussion of climate change scenarios for use in supply and demand assessment is provided 
in Section 4.3.2. 

Natural climate variability and climate change 

In many regions, water planners are looking to differentiate the impact of climate change from 
the affects of an ongoing drought or extended dry period. However, that task is far from trivial 
due to natural climate variability in many regions of Australia. 

The Earth‘s climate is a complex system and is variable on a range of timescales. Variability 
obviously exists between seasons but is also inter-annual. Climate patterns also create 
decadal and multidecadal variability, and longer term variability also occurs. That variability is 
natural, in that it is not a result of human activity.  

The Australian climate is noted for its variability, and the inter-annual and decadal variability 
of Australian rainfall has been linked to several broadscale climate patterns. The El Niño – 
Southern Oscillation (ENSO) is a dominant driver affecting Australian inter-annual climate 
variability. At a decadal scale, the Australian climate also shifts between modes, including the 
oscillating El Niño – La Niña dominated phases of ENSO. This is influenced by the 
Interdecadal Pacific Oscillation (IPO), which lasts roughly 22 years. There are also oscillating 
modes of drought and flood-dominated periods that affect mean rainfall and rainfall intensity 
over several decades or more (Jones 2006). 

Changes between these different modes can be relatively abrupt. Significant changes from 
drought- to flood-dominated modes have been detected in Australian rainfall records in 
eastern Australia in 1946–48 and 1972 and from flood- to drought-dominated modes in 
eastern Australia in 1895 and south-west Western Australia in 1946 and 1965–67 (Vivès and 
Jones 2005, Li et al. 2005). Such changes in mode might be seen as a structural shift in the 
climate, as a number of key climatic and hydrological parameters will change together for a 
period. In water planning, such a shift would be seen as a sudden rather than gradual change 
in climate variables, particularly rainfall and runoff. 



NATIONAL WATER COMMISSION — WATERLINES          107 

The complex nature of the climate system means that human-induced climate change might 
force or exacerbate structural shifts in climate. In some regions of Australia, observed 
decreases in runoff in recent years and decades have now been interpreted by planning 
authorities as ‗step changes‘; some planning authorities have attributed the step changes to 
climate change. 

Perhaps the most well-known example in Australia is Perth, which experienced an eight-year 
sequence (1997–2004) of inflows to storages that was on average approximately 30% lower 
than the post-1974 average (Water Corporation 2005), which was approximately 50% lower 
than inflows over the entire historical record. This has been interpreted by water planning 
authorities as a step change in stream flows for water supply–demand planning in Perth. As a 
result, Western Australia‘s Water Corporation now applies the last 20 years of inflows as the 
baseline for projections to 2030.  

Another, more recent example is Melbourne, where inflows to storages appear to have 
dropped significantly over the past decade: average inflows from 1997 to 2006 dropped by 
approximately 35%, and inflows in 2006 were the lowest on record. This trend has also been 
treated as a step change in inflows by water planners in Melbourne (DSE 2007). Decision 
making in Melbourne Water will therefore use the last 12 years of inflow data (Moran 2008). 

A level of uncertainty remains as to whether these observed ‗step changes‘ in runoff are the 
result of human-induced climate change or are the impact of modal shifts. Even though they 
lie outside the historical record being used for urban water supply planning, there is 
speculation that they may be within the range of natural variability. For example, CSIRO has 
recently undertaken a study to characterise climate in south-east Queensland. The outcomes 
of the study so far indicate that the observed changes to climate in that region lie within 
natural variability (Cai et al. 2010). 

Separating human-induced climate change impacts from natural climate variability is not a 
trivial task. Existing attribution studies suggest that warming in Australia since the middle of 
the 20th century is likely to be mostly due to anthropogenic increases in GHG (CSIRO and 
BoM 2007b) (see Box 4.2). However, some recent studies have seen the drying observed in 
south-west Western Australia and south-east Queensland, for example, as the result of 
natural fluctuations in the climate (Ryan and Hope 2005 Cai et al. 2010). But, for others, 
increasing GHG concentrations are contributing to the observed rainfall decline (Timbal et al. 
2006). 

Significantly, while work is underway to improve the next generation of climate projections so 
they integrate natural decadal variability with climate change projections (Watterson and 
Whetton 2008, 2010), current projections for Australia do not include natural variability. In 
time, the management of water resources will require a ‗whole-of-climate‘ approach that 
integrates natural climate variability with climate change projections. One approach to 
incorporate climate variability (described in Section 4.3.2) is to include climate trends or 
different climatic modes as different baseline climate or hydrological data when estimating 
supply availability. 
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Box 4.2: Is observed climate change in Australia due to GHG emissions? 

The figure below is a comparison of Australia-wide observed continental-scale changes in 
surface temperature. The results were simulated by climate models using climate ‗forcing‘ 
due to natural factors only and using forcing due to natural factors plus human-induced GHG 
emissions. The figure shows observed Australia-wide changes in surface temperature (black 
line, decadal averages), with results simulated by climate models using only natural forcing 
(darker shaded band) and natural plus anthropogenic (human-induced) forcing (lighter 
shaded band). Changes are relative to the average for 1901–1950. Both the shaded bands 
show the 5%–95% range of values evident across GCM simulations.  

Observed and modelled surface temperature 

 

Source: IPCC (2007). 

In summary, the figure suggests that the observed increase in temperature cannot be 
explained by natural forcing alone. 

4.2.2 What risks are posed to urban water supply by climate 
change? 

A number of types of risk are evident in any consideration of how climate change might affect 
water service providers and water supply to a community. As well as the direct risks to urban 
supply, there will be financial and institutional risks and risks associated with community 
perceptions or expectations. Some examples of such risks are set out in Table 4.1. 

Formally, risk is characterised by a consequence or hazard with an attached likelihood. As 
used in this paper, however, ‗risks‘ refer specifically to possible adverse outcomes or 
consequences to water supplies due to climate change. This is an acknowledgment that 
uncertainty about climate change projections in many regions means that we are not able to 
reasonably estimate the probability of low probability (by high impact) events in many 
instances. However, that is not true for all risks. For example, a reasonable estimate of the 
likelihood that a water utility will not be able to maintain expected ‗level of service‘

1
 obligations 

with its existing supplies may well be possible by including the climate change projections for 
the region in both supply and demand forecasts. 

                                                 
1
 The ‗level of service‘ describes the frequency, duration and severity of water restrictions that can be 

expected from a given supply system over the long term (Erlanger and Neal 2005). 



NATIONAL WATER COMMISSION — WATERLINES          109 

Table 4.1: Examples of the risks posed by climate change to urban water supplies 

Risk How the water utility or community would be affected 

Direct supply system risks  

Reduced yields from surface water storages or 
river-drawn supply systems. 

Emergence of supply–demand tensions, resulting in 
water utility not meeting its level of service 
obligations. 

 
Increased variability in rainfall increases the 
frequency of water restrictions. 

Increased total or seasonal demand 
(e.g. outdoor water use, evaporative cooling). 

Damage to coastal groundwater supply from 
seawater intrusion caused by rising sea levels. 

Partial or total failure of that supply source. 

Failure of a particular surface water source due 
to prolonged low or no inflows. 

Decreased groundwater availability due to 
reduced recharge. 

Damage to assets (including distribution 
pipelines and other assets). 

Ground movement due to soil moisture changes and 
soil drying may damage pipelines. 

Lower flows and warmer temperatures may increase 
the corrosion of pipelines. 

Sea-level rise may inundate low-lying assets. 

Increased incidence of bushfires. Increased fire activity has the potential to damage 
water catchments, affecting both water quality and 
quantity. Ash and sediment may contaminate 
supplies, while vegetation regrowth after fire will 
decrease yields. 

Reduced water quality resulting from more 
frequent algal blooms and increased sediment 
loads. 

The frequency of algal blooms could increase due to 
a combination of low flows, elevated temperatures 
and higher contaminant loads. Soil erosion in 
catchments could increase from more intense 
rainfall events. 

Institutional and financial risks  

Overinvestment in supply-side resulting from 
planning augmentation to meet the ‗worst case‘ 
scenario. 

Significantly increased cost of water services. 

Reduced access conditions on water licences in 
response to reduced inflow to river systems. 

Partial loss of previously available supply. 

Increased competition for water resources. Increased cost for water or partial loss of previously 
available supply. 

Increased pipe breaks due to soil moisture 
change (damage to distribution assets). 

An increase in non-revenue water loss. 

Decreased revenue due to increased water 
restrictions. 

Financial pressure on water utility. 

Energy price increases under a Carbon 
Pollution Reduction Scheme or similar carbon 
pricing policies. 

Exposure to higher energy prices as a result of 
carbon emissions costs being passed through to 
water utilities in energy tariffs. 

Community perception and expectation risks 

Community expectation that the level of service 
of water supply should be maintained 
regardless of drought. 

Some customers will perceive ongoing water 
restrictions under extended drought periods as a 
failure by the water utility. 

Community expectation that drought restrictions 
should be maintained regardless of storage 
levels. 

When restrictions are eased, there is a risk that the 
community will perceive that the water service 
provider is not taking climate change seriously 
enough, although storages have risen above a 
predefined trigger level. 

Loss of trust in water utility‘s ability to provide a 
continuing water service. 

Net movement of people or industry from areas of 
perceived or actual water shortages. 



NATIONAL WATER COMMISSION — WATERLINES          110 

Risk How the water utility or community would be affected 

Low inflows may impair the water utility‘s ability 
to maintain the recreational and environmental 
benefits from water storages. 

Low water levels in reservoirs result in decreased 
environmental and recreation values of water 
storages to the community. 

Community perception that water utility has 
overreacted to climate change uncertainties, 
causing unnecessary costs for customers and 
damage to the environment. 

Community distress at significantly increased cost of 
water services. Loss of trust in water utility as a 
responsible environmental manager. 

Expectation that water utility must mitigate all 
GHG impacts of proposed supplies. 

Community expectation means that water utility will 
need to ensure that a new source is ‗carbon neutral‘ 
in order not to make the climate change problem 
worse. 

Perception that the water utility should be 
aiming to act sustainably in all its operations in 
the face of climate change. 

Community expectation that water utilities will act 
responsibly with regard to sustainability. This is 
complicated by the interconnections between water, 
energy and climate change issues. 

4.2.3 How have Australian utilities responded to climate change? 

In the mitigation of GHG emissions and adaptation to a changing climate, Australian water 
utilities have been at the forefront of the nation‘s response to climate change. Examples of 
mitigation and adaptation responses by utilities are described in this section. 

Mitigation responses 

Over the past decade and especially in the last few years, water utilities have been active in 
efforts to mitigate GHG emissions. Some utilities, such as Sydney Water Corporation and the 
water utilities in Melbourne, have announced plans to move towards carbon neutrality over 
the coming 10–15 years, and many others are also planning to make large GHG reductions 
over that period. 

Many utilities have pursued energy efficiency in their operations, developed processes to 
capture and utilise biogas from wastewater treatment, and worked to reduce fugitive 
emissions from wastewater treatment plants. More recently, some water utilities have 
purchased Green power or are building renewable energy generation capacity in order to 
power new energy-intensive supply infrastructure. Other utilities are looking at reforestation 
and purchasing carbon offsets. Some are considering the impact they can have through 
demand-management programs that reduce their customers‘ demand for hot water and 
therefore energy for water heating. 

Adaptation responses 

Drought restrictions have long been the major adaptive response of water utilities to handle 
Australia‘s variable climate. Despite the effectiveness of restrictions in managing climate-
related risks in the past, the perceived additional risks posed by climate change have already 
prompted large-scale investment in new water sources by many of the largest water utilities in 
the country. Five of Australia‘s largest cities (Sydney, Melbourne, the Gold Coast, Perth and 
Adelaide) have built or are building desalination facilities. Other significant supply-side 
responses being undertaken in Australia include the construction of an intercatchment 
transfer pipeline for Melbourne, large-scale wastewater reuse schemes in Brisbane and 
Sydney, and plans for major dam upgrades and construction to supply Canberra. As well as 
these large-scale supply-side augmentations, many smaller scale stormwater and wastewater 
reuse projects have been initiated in urban areas across the country. Planned expenditure on 
new urban water infrastructure in Australia will total $30 billion over the next 5–10 years 
(WSAA 2008). 

This investment in new water sources has already been accompanied by a rise in the energy 
intensity of urban water supplies in Australia. Kenway et al. (2008) showed that the energy 
intensity of water supplied in Adelaide and Perth doubled between 2001 and 2006, and 
quadrupled in Sydney over the same period. The energy intensity of water supply is set to rise 
further as new water infrastructure projects currently being completed come online. 
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Despite an apparent commonality in the response to climate change in Australian cities, 
indicated by the investment in new supplies, there are differences in supply–demand 
approaches. In 2007, a review by an independent working group of the Prime Minister‘s 
Science, Engineering and Innovation Council found significant variation in the supply–demand 
planning approaches adopted by the cities that were reviewed (Brisbane, Sydney, Melbourne, 
Adelaide and Perth) (PMSEIC 2007). These included different strategies for dealing with 
climate uncertainty and ‗sharply differing judgments about the acceptable degree of risk‘. 
Variations were also noted in: 

 reliance on or rejection of the past hundred years as the best indicator of future climate 
or inflows 

 the extent to which and the way that climate change projections and regional climate 
change scenarios were incorporated into estimates of available supply and demand 

 the levels of service that are considered to be acceptable to the community, and 
therefore the willingness to use drought restrictions as a mechanism to manage climate-
related risks 

 willingness to consider unconventional options, including decentralised supply options 
such as stormwater use and local recycling, indirect potable reuse etc. 

 the degree of reliance on (and confidence in) demand-management programs to achieve 
reductions in per capita water consumption 

 the degree of integration of ‗other‘ large supplies, such as groundwater and interbasin 
transfers 

 the extent to which explicit and specified ‗readiness options‘ and drought ‗contingency 
measures‘ were developed and would be triggered in the event of continued and/or 
extreme drought conditions. (See Section 4.5.3 for ‗drought planning‘ and ‗readiness 
options‘). 

It is not surprising that there have been significant variations in Australian water utilities‘ 
responses to climate change, as the industry has been at the forefront of the nation‘s 
response to this challenge. The water industry should expect to stay at the forefront, because 
even small increases in temperatures translate to less runoff and increased water demand in 
some regions. Also, new sources of water, such as desalination plants, are far more energy-
intensive than traditional supplies, and water utilities might expect the community to be 
concerned about the impact of rising energy use on the climate. 

Being at the forefront of GHG mitigation and climate change adaptation responses is 
challenging and, as these examples show, the water industry is still learning how best to 
balance the twin objectives of adaptation and mitigation. 

4.3 Planning the overall process 

This section is the first of four that address how climate change will affect the IRP framework 
steps. This section addresses Step 1 (‗Plan the overall process‘). This step includes 
establishing the significant water planning issues for a region, which should translate into the 
planning objectives for the urban water system in question.

2
 

This section first discusses objective setting and ‗framing‘ the challenges posed by climate 
change, covering both mitigation and adaptation. It then discusses ‗adaptive management‘ in 
more detail as a key approach in dealing with uncertainty about future climate. The section 
concludes by considering the points in the IRP process where climate change and climate 
uncertainty will need to be accounted for. 

4.3.1 Setting objectives in the context of climate change 

The primary objectives of supply–demand planning can generally be characterised as: 

                                                 
2
 Note that the specific planning objectives for an IRP study should also be reassessed once the supply–

demand situation has been established in the final stage of Step 2. 
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1. Ensure that the community has a safe and reliable water supply 

2. Provide water services cost-effectively 

3. Account for sustainability impacts. 

Each of these primary objectives has component objectives, which in turn might have 
subcomponents that are specific to the water planning situation in a given location. 

For Erlanger and Neal (2005), the principal objective of ‗ensuring that the community has a 
safe and reliable water supply‘ has components of ensuring: 

 that the supply system has the capacity to meet demand in most periods 

 that there is a drought response plan of implementing water restrictions to provide 
short-term protection against running out of water during a drought 

 in the case of an extreme drought, that there is a contingency or emergency plan to 
ensure that the basic water needs of the community can be met. 

From an IRP perspective, as detailed in Turner et al. (2010), ‗providing water services 
cost-effectively‘ might be seen to involve: 

 supply–demand planning based on a detailed demand forecast 

 considering the full range of demand-side options alongside supply-side options 

 assessing demand-side and supply-side options on an equal basis, in which conserved 
water is treated equivalently to new supply. 

As with the objective of ‗accounting for sustainability impacts‘, this will have economic, social, 
technical and environmental components. Sustainability assessment in urban water 
integrated resource planning (Fane et al. 2010, in this document) provides a detailed 
discussion on including sustainability into options assessment for urban water. 

Climate change and uncertainty about future climate have a bearing across each of the above 
objectives. A further primary objective of any supply–demand planning exercise for urban 
water might therefore be framed as: 

4. Incorporate the implications of climate change into urban water planning. 

As discussed in this section, incorporating the implications of climate change will have at least 
two component objectives: 

 mitigating the impacts of climate change by reducing the GHG emissions associated with 
the provision of urban water services 

 adapting urban water systems to the expected impacts of climate change and associated 
climate uncertainty. 

The mitigation objective 

The objective of climate change mitigation may include sub-objectives such as: 

 accounting for the GHG emissions of water demand- and supply-side options and 
conservation measures in decision making 

 managing urban water in a manner that minimises the GHG intensity of water service 
provision 

 moving water utility operations towards carbon neutrality. 

GHG emissions from water supply are generated directly via surface emissions from water 
storage reservoirs and indirectly due to the use of energy from carbon-based sources in 
treating and delivering potable water (Hall et al. 2009). Energy is also used by customers for 
heating hot water, which accounts for approximately one quarter of all residential energy 
consumption in Australia (Retamal et al. 2009). Wastewater treatment also generates direct 
and indirect releases of GHG emissions. 

In energy-related emissions alone, the urban water industry as a whole is currently a small 
but rapidly growing contributor to Australia‘s total. The energy used by the major water utilities 
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in Sydney, Melbourne, Perth, Brisbane, the Gold Coast and Adelaide has historically been 
approximately 0.2% of total urban energy use (Kenway et al. 2008). However, the objective of 
climate change mitigation needs to be viewed in the context of increasing GHG emissions as 
a result of the water industry in Australia. While urban water systems have not been major 
energy users in the past, several cities have more than doubled the energy intensity of their 
water supply systems in the past decade due to the incorporation of desalination plants and 
intercatchment transfers (Kenway et al. 2008). The energy intensity of water service provision 
is expected to increase further with new desalination plants, interbasin transfer pipelines and 
major recycling plants being planned or already under construction. 

Therefore, there are strong reasons why the water industry should continue working towards 
not increasing and, where possible, reducing direct and indirect GHG emissions from water 
supply. In particular, water utilities will require a level of community endorsement of their 
responses to climate change, and this creates community expectations that utilities will play 
their part in reducing GHG emissions. Like the need for climate change adaptation, the 
mitigation imperative associated with managing urban water systems is becoming more 
critical over time. 

The adaptation objective 

Adaptation is defined by the IPCC as ‗adjustment in natural or human systems in response to 
actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial 
opportunities‘ (IPCC 2007). The adaptation objective has impacts across the supply–demand 
planning process (see Section 4.3.2). However, different people and organisations will ‗frame‘ 
the problem of climate change adaptation in urban water quite differently. 

To illustrate the variation in perspectives, four that appear evident in discourse in Australia are 
characterised below and illustrated in Figure 4.1: 

1. Building a ‘climate-proof’ water system is a perspective that seeks to remove the 
vulnerability of the urban water system to climate change by building new centralised 
supplies. This perspective is characterised by: 

 planning to create a high degree of certainty about water supplies through significant 
supply augmentation 

 looking to climate-independent sources of water supply 

 planning supply capacity so that there is a significant buffer above forecast demand 

 aiming to remove or greatly reduce the need for water restrictions 

 using ‗worst case‘ climate change scenarios to determine the supply–demand 
balance. 

From this perspective, the adaptation objective might be seen as ‗building a climate-proof or 
drought-proof water supply system for the region‘. 

2. Fostering distributed water systems is a perspective that aims to increase the resilience of 
urban water systems by developing myriad distributed water systems, such as rainwater 
tanks, stormwater harvesting, and onsite or in-building wastewater reuse. These would be 
located throughout the city. This perspective is characterised by: 

 a long-term perspective and a goal of transforming urban water systems 

 making use of available local sources of water supply as the solution 

 having many sources of water within the city 

 moving away from urban water supplied solely by centralised water utilities 

 developing a broader goal, beyond water supply, of creating a water sensitive city. 

From this perspective, the adaptation objective might be seen as ‗encouraging and 
developing a diversity of sources of supply at various scales in conjunction with the existing 
centralised water systems in order to create a water sensitive city‘. 
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Figure 4.1: Differing perspectives on climate change adaptation in urban water 

 

3. Managing the risks of climate change is a perspective that aims to decrease the 
vulnerability in the portfolio of options through quantified risk management. It is 
characterised by: 

 an understanding of climate change in terms of a set of quantifiable risks with 
knowable likelihoods 

 applying a comprehensive risk-based planning and evaluation framework 

 incorporating risk analysis and risk management tools, such as financial portfolio 
theory and real options analysis 

 aiming to develop the optimal portfolio of options. 

From this perspective, the adaptation objective might be seen as ‗develop a risk-weighted 
portfolio that minimises the risks of climate change to our city‘s water supply system‘. 

4. Adaptive management of climate uncertainty is a perspective that increases the resilience 
of urban water systems through developing adaptive measures that can be deployed as 
the situation evolves. This perspective is characterised by: 

 an image of the future as being uncertain due to climate change 

 preplanning of potential supply- and demand-side readiness options 

 detailed analysis of storage drawdown curves and trigger points for the readiness 
options under various future climate scenarios 

 holding off decisions to build new supplies until absolutely necessary, and 
understanding when that is 

 having a readiness strategy in place and monitoring the emerging scenario. 

From this perspective, the adaptation objective might be seen as ‗developing options that will 
allow us to adapt in a severe drought and identify when we will need to trigger those options‘. 

It is important to recognise that the four perspectives are simplified here and that, in practice, 
they overlap. What is important for a water planner is awareness that different stakeholders 
will bring a range of perspectives to the question of climate change adaptation in urban water 
planning. Furthermore, it is useful to reflect on the fact that, if a single stance comes to 
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dominate the planning process in a region, that will strongly influence the eventual outcomes 
and preclude consideration of the full range of options. 

One distinction used throughout this paper is between the ‗climate change resistant‘ and 
‗climate change resilient‘ stances to adaptation: 

 A climate change resistant stance focuses on reducing the vulnerability of the urban 
water system to the impacts of climate change. Vulnerability can be defined as ‗the 
degree to which a system is susceptible to and unable to cope with, adverse effects of 
climate change, including climate variability and extremes‘ (IPCC 2007). For example, a 
climate change resistant stance will promote the development of climate-independent 
sources of supply, an increase in the ‗buffer‘ capacity between supply estimates and 
demand forecasts, or both. It may also look at demand-side measures that could reduce 
the supply volume required in an extreme drought. A climate change resistant stance 
might also risk-weight options in order to develop a portfolio that is less vulnerable to any 
changes in climate. 

 A climate change resilient stance will try to reduce the vulnerabilities of urban water 
systems but also focus on increasing their adaptive capacity. Resilience can be defined 
as ‗the capacity of a system to absorb disturbance and reorganize while undergoing 
change so as to still retain essentially the same function, structure, identity, and 
feedbacks‘ (Walker et al. 2004). A climate change resilient stance will promote the 
development of a diversity of supply sources as well as the range of available demand-
side measures. It will also increase the adaptive capacity of the urban water system 
through means such as developing readiness options and drought contingency 
measures. These are measures that can be initiated at a predetermined point in a 
continuing drought. Both diversity and adaptive measures increase the flexibility of urban 
water systems faced with climate uncertainty. 

These two perspectives should not be considered in ‗either/or‘ terms, as both provide insights. 
They exist on a continuum, and the appropriateness of a particular stance will depend on the 
circumstances in the region. 

4.3.2 Towards more adaptive planning 

Even in regions where water planning is conducted with a strong climate change resistant 
stance, the uncertainties associated with climate change mean that planning is likely to 
become more adaptive. 

Moves towards a more adaptive planning approach include considering: 

 adaptive management 

 developing adaptive measures 

 more monitoring and evaluation 

 reconsidering planning periods 

 better integration of short-term (drought) and long-term planning 

 governance for adaptive planning. 

Adaptive management 

Uncertainty about future climate creates a push towards adaptive management, which 
describes approaches that are flexible in their response to a range of possible futures, and 
are responsive in that they enable new understandings about uncertain conditions to feed 
back and determine the appropriate response (Jiggins and Röling 2000). 

Adaptive management is likely to be valuable in urban water planning for regions where both 
the potential for climate extremes as well as the expected averages for climatic and 
hydrological variables are in doubt. It allows for measures to be initiated in response to an 
emerging and uncertain future. In urban water, this may involve having planned adaptive 
measures ready for ongoing droughts or extreme events. It can also mean incrementally and 
routinely adjusting the portfolio of supply- and demand-side options as the future unfolds. 
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Adaptive management is facilitated by having options that can be implemented in increments 
and timing that can be varied. Demand-side options are incremental by their nature, as they 
are implemented house by house or business by business. On the supply side, this means 
modular treatment technology such as desalination or potable water recycling plants, which 
can be initiated with relatively short lead times in order to meet the demand for water when 
the need occurs. Through the use of incremental and modular options, adaptive management 
can avoid the financial and other risks that are associated with decisions to build large-scale 
infrastructure based on anticipated climate change scenarios or demand forecasts that might 
not eventuate. 

Developing adaptive measures 

The preplanning of measures that can be deployed as events unfold is necessary to allow for 
adaptive management. Adaptive measures in the form of water restrictions are commonly 
used in water supply management. Contingency measures for emergency drought situations 
are also adaptive measures. Such measures are discussed in Section 4.5.3 under ‗Drought 
planning‘. Taken a step further, readiness options are supply- and demand-side options that 
are preplanned and are triggered at particular storage levels (much like restrictions). 
Readiness options are also discussed in Section 4.5.3. 

More monitoring and evaluation 

An adaptive approach to planning will require increased monitoring and evaluation of a range 
of parameters. It will also require more regular reviews of supply–demand plans, leading to a 
reconsideration of planning periods. These issues are addressed in Section 4.6. 

Reconsidering planning periods 

There is a need to reconsider long-term planning periods in the light of climate uncertainty. 
While a traditional urban water planning paradigm aims to plan up front for many decades, 
uncertainties about future climate render that aim less appropriate. Analysts may continue to 
forecast out many decades, but uncertainties amplify in the later years. Supply–demand plans 
that allow for changes as the future unfolds, rather than looking to meet community needs 
projected 50 years forward, will therefore prove advantageous in the long run. 

Better integration of short-term (drought) and long-term 
planning 

There is the potential to make appropriate short-term decisions that also align with long-term 
supply–demand goals. This would mean more integration of drought or contingency planning 
and long-term supply–demand planning. For example, a readiness option developed as an 
adaptive measure for drought, once implemented, may become the new long-term supply for 
a given urban area. In some locations, increased climate variability and an adaptive approach 
to supply–demand planning may even shift the planning paradigm. Instead of traditional 
supply–demand planning aimed at balancing supply and demand for many decades, an 
adaptive paradigm with supply- and demand-side options triggered by a series of droughts 
may emerge as a way in which the supply–demand gap is filled over time. 

Governance for adaptive planning 

Decision makers and the public commonly perceive adaptive management and the use of 
adaptive responses, particularly readiness options, as risky strategies. This is despite the 
potential of an adaptive approach to avoid the financial and other risks that are associated 
with a decision to build large-scale supply infrastructure based on an expected climate 
change scenario that may not eventuate. For this reason, well-defined and well-
communicated governance arrangements and public engagement in planning and ongoing 
management are keys for success. 

The community needs to be engaged with the planning processes. At least, the public must 
be kept informed about the existence of planned adaptive measures, such as readiness 
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options. It also needs to know what to expect in planning decisions in particular 
circumstances, and also what will be expected of community members as water consumers in 
terms of water restrictions under particular conditions. Ideally, this community engagement 
will go further, to include a level of participation in planning decisions that builds trust. Without 
an engaged public that has been part of and trusts the planning process, a climate change 
response based on adaptive management and readiness options is likely to fail in the face of 
calls for new large-scale supply to ‗secure‘ water supplies. An engaged public that 
understands the issues and uncertainties associated with climate change could potentially 
tolerate more regular drought response measures, as it will more clearly identify with the need 
for the response and understand the effects of its actions. Some of the issues involved in 
public participation in IRP are covered in Fane et al. (2010, in this document). 

In addition to the challenge of public engagement, other challenges in relation to governance 
of adaptive planning in urban water include: 

 decision makers‘ and some stakeholders‘ initial lack of understanding of adaptive 
planning approaches 

 different jurisdictions‘ control over different aspects of the water cycle, making 
coordination difficult 

 lengthy, complicated processes ‗fleshing out‘ roles and responsibilities among involved 
jurisdictions and stakeholders 

 the need to justify resourcing in terms of preparedness planning and the need for 
ongoing monitoring, rather than a capital works budget 

 the availability of the required skills. 

The potential for decision makers and stakeholders to change over time means that the 
communication of an adaptive approach to planning in a region is likely to be an ongoing 
process for the water planners involved. 

4.3.3 Implications of climate change across the IRP process 

As illustrated in Figure 4.2, climate change and the associated uncertainty about future 
climates have implications across the IRP framework. Those implications will need to be 
recognised in Step 1 (‗Plan the overall process‘) in particular, so that stakeholders involved in 
the IRP process are aware of the full extent of the issues that climate change raises for 
supply–demand planning. 
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Figure 4.2 Implications of climate change across the IRP framework 

 

In Step 1, climate change recasts the planning objectives in relation to urban water supply 
and demand. In many regions, water planning will be defined in terms of ‗water security‘ in the 
face of climate change. However, supply–demand planners will need to consider both the 
mitigation and the adaptation aspects of climate change. They will also have to be cognisant 
of the various perspectives that they and other stakeholders bring to the process, as well as a 
potential need to be more adaptive in order to manage climate uncertainty. 

In Step 2, climate change adaptation requires accounting for expected climate change 
impacts in projections of the long-term supply–demand balance. This involves incorporating 
the ‗best estimate‘ climate change scenario into both the system yield and the demand 
forecast. Uncertainties about future climate can then be represented by high and low case 
climate change scenarios. These issues are addressed in Section 4.4. 

A climate change resistant stance in Step 2 would be to take conservative baseline system 
yields and high demand, resulting in an increased buffer capacity. Naturally, this raises 
questions about the risk of overinvestment and system ‗gold plating‘. The selection of 
conservative baselines can have major implications for the level of financial investment and 
the timing of and need for supply augmentations. These implications should be made 
explicitly clear to stakeholders and decision makers. 

In Step 3, responding to climate change will mean developing a more climate change 
resistant or resilient portfolio of options. What this means in practice is likely to remain 
contentious for some time. For example, each of the four perspectives outlined in Figure 4.1 
would lead to different conclusions about the most appropriate response. This paper outlines 
two elements that are relevant to various perspectives: increasing portfolio diversity and 
developing adaptive measures. However, it is evident that there is more work to be done on 
the question of determining the most appropriate response to climate change for a given 
region. 

Step 4 of the IRP framework (‗Implementing the response‘) is not specifically covered by this 
paper, but Step 5 (‗Monitoring, evaluation and review‘) is discussed in Section 4.6. In general, 
in the face of climate change there will be an increasing role for monitoring and evaluation. 
This is a mechanism both for measuring the effectiveness of the implemented responses and 
for managing uncertainties associated with climate change. 
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4.4 Analyse the supply–demand situation 

Step 2 in the IRP framework is ‗Analyse the situation‘. It involves making an assessment of 
the yield of the existing water supply and a forecast of future water demand, and is the crucial 
point in developing a picture of the long-term supply–demand balance for a region. Figure 4.3 
presents a hypothetical regional supply–demand balance and the impacts of projected climate 
change. The indicated 20% decrease in available yield could be considered minor compared 
to the forecast decrease in some regions. 

Figure 4.3 Illustration of a regional supply–demand balance 

 

Generating climate change scenarios and incorporating them into forecasts of supply and 
demand are a key analytical means by which climate change can be incorporated in the IRP 
process. A range of methods exist for this. The available approaches and the questions 
raised by them are discussed below, along with the selection of scenarios and specific issues 
associated with demand forecasting. 

4.4.1 Generating climate change scenarios 

The three main bases that can be used for generating climate change scenarios for use in 
urban water planning are listed in Ashbolt and Maheepala (2008): 

 scenarios based on GCM simulations and regional ‗downscaling‘ 

 hypothetical scenarios of postulated changes in specific climate variables or extensions 
of current climate trends 

 analogue scenarios, which can be based on selected parts of the historical climate 
record or may utilise climate records from a different location. 

The most rigorous and widely accepted approach is to base climate change scenarios on 
GCM simulations and to downscale the global climate projections to the regional level by 
various means. Where downscaled data is unavailable or does not appear to represent local 
conditions very well, an approach based on a hypothetical or analogue scenario may need to 
be considered. 
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Scenarios based on GCM downscaling techniques 

GCMs generate a set of global climate data based on an understanding of physical 
atmospheric–oceanic processes. The models represent various Earth systems, including the 
atmosphere, oceans, land surface and sea-ice. From 1880 to 2000, the models simulate the 
climate, including forcing from observed atmospheric levels of GHGs and aerosols. After 2001 
and up to 2100, simulations are based on the range of future GHG and aerosol emissions 
scenarios described in IPCC (2000). 

The grid size of a GCM is coarse (~100 to ~400 kilometres) compared to the regional and 
local catchment scales at which urban water planning is carried out. Therefore, various 
extensions of GCM techniques (downscaling) have been developed to improve the resolution 
of the climate data generated, usually down to 10–20 kilometres. Major downscaling methods 
include: 

 statistical downscaling, the simplest method of which is to perturb historical climate data 
series by change factors obtained from a GCM; other methods are to apply relationships 
between the large-scale atmospheric variables (predictors) obtained from GCM and the 
local or regional climate variables (predictands) 

 dynamical downscaling, which refers to the use of regional climate models that are run 
with large-scale and lateral boundary conditions from GCMs to produce higher resolution 
outputs. 

See Fowler et al. (2007) for a review of downscaling methods and Box 4.3 for details of 
simplified downscaling approaches that can be applied only to rainfall and runoff data. 

The advantages of statistical downscaling are that it is computationally efficient and therefore 
relatively cheap compared to other downscaling techniques, and that it can provide point-
scale climate variables from GCM outputs and directly incorporate observations (historical 
climate data) into the method (Ashbolt and Maheepala 2008). Its disadvantages include its 
requirement for a long and reliable observed historical data series for calibration, its 
dependence on the choice of predictors; and the potential non-stationary nature of the 
relationship between predictors and predictands. The performance of statistical downscaling 
will vary with grid size, climatic region and season. 

The advantages of dynamical downscaling include its ability to produce an output based on 
physically consistent processes. Its disadvantages include its computational intensity, the 
limited number of scenario ensembles that are available, and its strong dependence on GCM 
boundary forcing. 
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Box 4.3: Simplified downscaling approaches for rainfall and runoff 

Hydrological models used to estimate climate change impacts on runoff commonly require a 
daily rainfall series. Future rainfall series, informed by GCMs, can be generated in a number 
of ways, including statistical and dynamical downscalling. However, the application and 
calibration of statistical downscaling methods can be fairly laborious, and dynamic 
downscaling can be very computationally expensive. Another method, which is simpler and 
cheaper to run, is the empirical scaling method. This has been widely used in studies on the 
effect of climate change on runoff (Fowler et al. 2007), including the latest CSIRO Murray–
Darling Basin Sustainable Yields Project (Chiew et al. 2008) and the Northern Australia 
Sustainable Yields Project (CSIRO 2009). There are three simple empirical scaling methods: 

 Constant scaling. The historical daily rainfall series is scaled by the relative difference 
between the GCM simulations of future climate and the historical climate. All the daily 
rainfall in a given season is scaled by the same factor for that season. Thus, constant 
scaling assumes that there is no change in the future daily rainfall distribution. 

 Daily scaling. As in constant scaling, the historical daily rainfall series is scaled by the 
relative difference between GCM simulations for the future and historical climates. 
However, daily scaling takes into account changes in daily rainfall amounts differently. 
First, for each season the daily scaling factors are applied to scale the different daily 
rainfall amounts for a future climate relative to a present climate. The entire series is 
then scaled, using a different constants factor for each of the four seasons, to ensure 
that the mean rainfalls in the four seasons are the same as those in constant scaling 
(see Chiew et al. 2008 for details). 

 Daily translation. The GCM future daily rainfall series is translated to the observed 
fine-resolution grid rainfall series using the relationship established between the 
historical-scale rainfall and the observed fine-resolution grid rainfall (Mpelasoka and 
Chiew 2009). 

Because these methods are simple to use, they can be easily applied across large regions, 
for different GCMs, and for various GHG emissions scenarios. They can therefore take into 
account the large uncertainties associated with global warming and local climate projections 
(see Section 4.4.2 for details about how to represent the uncertainties). Mpelasoka and 
Chiew (2009) have found that the difference between mean annual runoff simulated with 
future daily rainfall series obtained using the constant versus daily scaling methods is 
generally less than 5%. This is relatively small compared to the range of runoff results from 
the different GCMs (30%–40%). 

Hypothetical and analogue climate change scenarios 

Downscaling of GCMs provides the most comprehensive and physically based approach to 
understanding the impacts of climate change on water supply and water demand. However, 
there are no comprehensive GCM studies across all parts of Australia, and the approach 
requires a relatively data- and time-intensive exercise for smaller water utilities. 

In the absence of GCM-generated climate data, hypothetical and analogue climate change 
scenarios may be used to examine the sensitivity and relative hydrological impact of changes 
in climate (Ashbolt and Maheepala 2008). Hypothetical scenarios may take the form of 
extrapolations of historical trends, simplified proportional changes in local climate variables 
(for example, plus or minus 10%) based on global climate change forecasts, data sourced 
from various climate models, or other expert judgment. Analogue scenarios use data from a 
part of the historical climate record, from other locations or from the deep past (such as 
paleoclimate analogues) as proxies for future climate change. Critically, either hypothetical or 
analogue climate change scenarios need to represent a plausible trajectory for future climate 
and hydrological variables. 

Lacking comprehensive GCM studies across Australia, in recent years some utilities have 
incorporated climate change impacts directly as hypothetical scenarios at the yield forecasting 
stage. In these cases, supply system yields have been reduced and supply systems de-rated 
from levels indicated by the historical record. Adjustments have been stepwise or linear 
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adjustments to the baseline yield forecast (that is, a percentage decrease or a yearly 
percentage reduction in the forecast yield, relative to the historical record). The bases for 
these hypothetical scenarios are expert judgment that recent observed streamflows represent 
step changes in runoff or that current trends represent the trajectory for future system yield in 
the region. 

Notwithstanding these examples, hypothetical and analogue climate change scenarios are 
probably best made at the level of the climate data because climate change will affect climatic 
variables, and therefore the plausibility of climate scenarios will be more easily assessed at 
this point. The affect of the hypothetical or analogue climate data can then be modelled in 
terms of effect on runoff and streamflow into water storages or replenishment of 
groundwaters. On that basis, the impact on system yields can then be analysed. 

A risk with hypothetical and analogue scenarios is that, without a basis in physical 
atmospheric processes, they can be unrealistic and not represent a reasonable trajectory for 
future climate. Planning to meet an apparent supply–demand gap based on incorporating a 
hypothetical climate change scenario into the supply and demand forecast therefore creates a 
significant risk of overinvestment. As more GCM studies are conducted across Australia, it is 
expected that hypothetical climate change scenarios will not be incorporated into the 
base-case forecasts of the supply–demand balance. However, they are likely to continue to 
have a role in exploring the sensitivity of urban water systems to climate change and in 
scoping the impact of possible changes in climate. 

4.4.2 Selecting climate change scenarios 

Climate change is expected to affect both sides of the supply–demand balance, although the 
impacts on demand are likely to be less than the impact on supply in most regions. For 
example, the climate change impact study carried out in Melbourne (Howe et al. 2005) 
showed that, for a medium emissions scenario, the expected increase in urban demand in the 
Melbourne region was about 3% compared to the expected reduction in system inflow of 
about 20%. To estimate the impact of climate change on supply and demand, most studies 
use a predictive approach. This means taking a climate change scenario in which climate 
variables have been generated and feeding the synthesised climate or hydrological data into 
water system models. Depending on the water planning context, this may be a single-
component model or a model using a series of components (Ashbolt and Maheepala 2008). A 
single-component model will use the data from a climate change scenario in order to quantify 
a particular impact; for example, a rainfall–runoff model is used to quantify the potential 
impact of climate change on streamflow. In another context, the scenario data will be used to 
quantify a series of impacts, such as impacts on rainfall–runoff, future demand and system 
yield in different models (Maheepala and Perera 2003, Maheepala et al. 2003). 

In either case, the uncertainty about future climate as a result of climate change will need to 
be represented through the selection of a set of climate change scenarios. This can be done 
via the selection of high and low case climate change scenarios, as well as a medium case 
scenario (Howe et al. 2005). The medium case scenario should represent the best estimate of 
climate change for the region in question and be included in the base-case forecasts of 
supply and demand. The high and low cases should represent wet and dry extremes for 
future climate. These cases can be used for testing longer term water planning. 

As well as the impacts of climate change on the longer term supply–demand balance, water 
planners should also consider how climate change may affect planning for adaptive 
measures, whether those measures are readiness options or drought contingency measures. 
In some studies, a distinct worst case scenario may therefore be considered alongside the 
other climate change scenarios to test adaptive planning. In other instances, the worst case 
scenario will be the low case (dry extreme) climate change scenario. 

Table 4.2 summarises the different types of climate change scenarios and indicates their 
recommended use in supply–demand planning. 
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Table 4.2: Climate and climate change scenarios 

Type of climate change scenario Recommended use in supply–demand planning
a 

Medium or ‗best estimate‘ climate change 
scenario 

To represent the most likely climate change scenario 
for the supply–demand balance 

Extreme wet and dry future climate change 
scenarios 

To test high and low cases in the supply–demand 
balance to account for uncertainty in climate change 
projections 

Worst case climate change scenario To test adaptive planning, including readiness 
strategies and drought contingency plans 

a These recommendations were one outcome from a workshop held in November 2008 with leading water industry 
supply–demand planning practitioners. 

In some regions, natural climate variability is also a major factor. The potential for shifts in 
climatic mode can be analysed by selecting different climate baselines to represent 
alternative climate modes. Climate change scenarios are then overlaid on top of the different 
baselines. 

Representing the uncertainty in climate change projections 

As discussed in Section 4.2.1, there are three main sources of uncertainty in projections of 
climate change: future GHG emissions, the sensitivity of the global climate to GHG 
concentrations, and how changes at a global level will translate to changes at the regional 
level. 

The first uncertainty can be addressed by considering possible future emissions trajectories 
and the resulting GHG concentrations, as presented in the IPCC‘s special report on 
emissions scenarios (IPCC 2000). The second can be addressed by considering the rate of 
warming in different climate models. The third can be addressed, at least in part, by 
considering the differing spatial patterns of climate change in multiple climate models. 

As an illustration, CSIRO Murray–Darling Basin (MDB) Sustainable Yields Project (Chiew 
et al. 2008) used three GHG emissions scenarios for ~2030 relative to ~1990: high emissions, 
medium emissions and low emissions. The three trajectories were inferred from the IPCC‘s 
fourth assessment report (IPCC 2007) and the latest climate change projections for Australia 
(CSIRO and BoM 2007a). Archived monthly simulations from 15 IPCC GCMs were then 
analysed to estimate change in rainfall and other climate variables per degree of global 
warming. Daily rainfall simulations from the 15 GCMs were also applied. The result was 45 
plausible climate change scenarios. 

From the 45 climate change scenarios, uncertainty about future climate was then represented 
by selecting three scenarios. These were the best estimate, an extreme dry case and an 
extreme wet case. The best estimate was the median result across the region from the 15 
GCM results for the medium GHG emissions scenario. The extreme dry case was taken to be 
the second driest result from the high GHG emissions scenario, and the extreme wet case 
was taken as the second wettest result from the high GHG emissions scenario. Box 4.4 
provides further details on scenario development in the MDB Sustainable Yields Project. 

A similar approach was used in the climate change impact study carried out by the CSIRO for 
the Melbourne region (Howe et al. 2005), which used 11 GCMs and three GHG emissions 
scenarios (that is, 33 plausible climate change scenarios). Maheepala and Perera (2003) also 
used a similar approach to quantify the potential climate change impacts on the Benalla water 
supply system in north-east Victoria. They used eight GCMs and four GHG emissions 
scenarios (that is, 32 plausible climate change scenarios). 

This approach aligns to common practice to date, which has been to define the best estimate 
as the median results from a range of GCMs based on the medium GHG emissions scenario 
and the extreme dry and wet estimates as the second driest and second wettest results from 
the range of GCMs for the high GHG emissions scenario (for example, Chiew et al. 2008). 
However, since we are tracking on or above the IPCC‘s high GHG emissions scenario, it may 
be more reasonable, as Moran (2008) suggests, to take medium results from the high GHG 
emissions scenario as the best estimate in water planning. 
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It is worth noting that for the next 20 years or so the uncertainties in projected regional climate 
change will be dominated by the differences between the results from the various climate 
models, rather than differences between emissions trajectories, whereas beyond 2030 there 
is greater uncertainty about the emissions trajectory. 

Worst case scenarios 

A worst case scenario is by definition a low probability event. Traditionally, a worst case 
climate scenario would be defined by an annual exceedance probability and calculated using 
a stochastic approach based on historical hydrological data. Under climate change the nature 
of extreme events is likely to alter, and historical climate data can no longer provide a direct 
indication of the extreme events that may occur in the future. 

Choosing a worst case scenario under the uncertainty associated with climate change is 
therefore more difficult, and there is no clear consensus within the water industry on what 
represents a reasonable worst case. There is also disagreement about the role of worst case 
scenarios in supply–demand planning. The question remains a significant issue, as the 
results of worst case scenario modelling have the potential to play a major role in driving 
responses to climate change in the water industry. 

This paper strongly recommends against the use of worst case climate change scenarios in 
establishing a supply–demand balance. What it recommends is to use worst case scenarios 
in testing adaptive planning, including readiness strategies and drought contingency plans. 

Some of the approaches used by Australian water utilities to develop worst case climate 
change scenarios have included using: 

 a repeat of the climate sequence of the worst drought on record for the region 

 a repeat sequence of the worst year on record 

 the climate sequence of the worst drought on record, with a medium or extreme dry 
climate change prediction overlaid. 

Another method that has been used for defining worst (and best) case scenarios is a 
probabilistic risk analysis of changes to a variable of interest (such as runoff) using a range of 
climate scenarios applied to a range of baselines. As an example, Jones and Page (2001) 
considered the long term (1890–1996), a drought-dominated period (1890–1947) and a flood-
dominated period (1948–1996) to assess the risk of climate change for the water resources of 
the Macquarie River catchment in New South Wales. Their results showed that a combination 
of drought-dominated conditions and climate change produced worst-case outcomes for 
streamflow in the Macquarie Basin. 

When establishing a worst case climate change scenario, necessary considerations include 
the following: 

 The worst case will vary across regions. This requires an acknowledgment that the 
historical climate record and experience in the location still have much to tell us. They 
need to be considered together with the climate change projections. 

 Care must be exercised to preserve the internal consistency of scenarios within climate 
model projections. Because climate variables such as temperature, rainfall, evaporation 
and humidity are highly interactive, one cannot use the most pessimistic rainfall 
projection from one climate model and pair it with the most pessimistic temperature 
projection from another to identify the worst possible outcome from a hydrological impact 
model. Instead, estimates of impacts should first be calculated independently for each 
climate model under consideration. The results can then be used to identify the worst or 
best outcome.  
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 There are likely to be ‘critical thresholds’ for the system in question. A critical point is that 
point at which an activity or system faces an unacceptable level of harm (Jones and 
Page 2001). By delineating the coping range of climates (that is, the range of climate 
variability that is considered manageable, given the current system and current adaptive 
planning) from that part of the range in which the system is vulnerable. The question can 
then be asked, ‗Do climate scenarios within the vulnerable range represent reasonable 
worst case scenarios for climate change?‘ 

Representing uncertainty due to climate variability 

In some regions of Australia, the continuing pattern of lower than average rainfall and inflows 
to storages has led to supply systems being de-rated based on the extrapolation of current 
trends. However, it remains unclear whether the observed drying trend over the past decade 
in particular regions is part of natural climate variability, the result of human-induced climate 
change, or a combination of the two. 

As discussed in Section 4.2.1, the Australian climate naturally shows modes of decadal and 
multidecadal variability, and that variability results in a level of uncertainty about recent 
observed climate trends. Significantly, the different modes within this variability can have a 
large influence on the water supply systems (Vives and Jones 2005). The choice of the 
climate or hydrological baselines used in constructing the supply–demand balance is then 
critical. 

The selection of a conservative baseline which assumes that the observed drying trend will 
continue will have major implications for the need for supply augmentations and the timing of 
any augmentation, and therefore the level of financial investment required. Where a 
conservative baseline is selected, the potential financial and community perception risks of 
that choice should be made explicit to stakeholders and decision makers, together with the 
potential direct supply system risks. For example, selecting a 10-year period of lower than 
average rainfall or inflow data as a baseline carries a risk of overinvestment if rainfall were to 
increase again in coming decades. Some experts consider that 30 years should be the 
minimum length for a historical baseline climate or hydrological scenario (see also Hulme 
et al. 2009 for a review of statistical and social constructions of ‗normal‘ climate). 

In situations of potential modal shift, it will be prudent to consider a range of baseline periods 
in the analysis of the supply–demand balance. Each baseline should be based on a period of 
historical data. Climate change scenarios (medium, extreme and potential worst case) can 
then be overlaid. Such an approach accounts both for uncertainty linked to natural climate 
variability and for uncertainty linked to climate change. 
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Box 4.4: Estimating the impact of climate change on water availability—an example from the 
Murray–Darling Basin Sustainable Yields Project 

The MDB Sustainable Yields Project included the most comprehensive hydrologic modelling 
undertaken for the entire MDB to date. The project included modelling of rainfall–runoff and 
groundwater recharge across the MDB and fully linked modelling of all major MDB river 
systems and their connections to groundwater systems. The aim of the project is to estimate 
current and likely future (~2030) water availability in comparison to that required to meet the 
current levels of extractive use. 

The resource development and climate change scenarios considered were as follows: 

1. A baseline scenario (for comparison with other scenarios). This was the historical climate 
from mid-1895 to mid-2006, and the current level of water resource development. 

2. A scenario based on the climate of 1997 to 2006 and current resource development. This 
scenario was used to evaluate the consequences of a long-term continuation of the 
recent severe drought in south-eastern Australia and to provide a reference point for the 
climate change scenarios. 

3. A scenario based on future climate (~2030) and current resource development. This 
encompassed the range of possible future climates based on three global warming 
scenarios or emissions trajectories (low, medium, and high) and 15 of the GCMs 
included in the IPCC‘s fourth assessment report. Forty-five future climate change 
scenarios, each with 112 years of daily climate sequence, were then used for the 
rainfall–runoff modelling. The climate change scenarios came from scaling the 1895 to 
2006 climate data to represent the climate around 2030 relative to ~1990. The approach 
adopted was to use both seasonal and daily factors to scale historical daily data, in order 
to account for changes in the future mean and changes in future daily rainfall distribution. 

4. A scenario based on future climate (~2030) and future resource development. 
Development includes growth in farm dam capacity, expansion of commercial forestry 
plantations and increases in groundwater extraction. 

All four scenarios assumed the continuation of the existing surface and groundwater sharing 
plans implemented by states. 

The reporting focused on: 

 the median of the range, which is median results from the 15 GCMs for the medium 
global warming scenario 

 the uncertainty, which is reported as a ‗wet extreme‘ and a ‗dry extreme‘ in the range 
(the wet and dry extreme estimates are the second wettest and driest results from the 
high global warming scenario). 

Key results included the following: 

 The south of the MDB was in severe drought from 1997 to 2006, and the catchment 
runoff in the southernmost parts of the MDB was the lowest on record. This event would 
occur only once in more than 300 years without climate change. Such conditions will 
become increasingly common. 

 The impacts of climate change by 2030 are uncertain, but surface water availability 
across the entire MDB is more likely to decline than to increase. A decline in the south 
of the MDB is more likely than in the north. In the south, a very substantial decline is 
possible; in the north, significant increases are possible. 

Source: Chiew et al. (2008). 
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4.4.3 Specific issues for demand forecasting 

Climate change will be likely to affect demand, although the magnitude of any change in 
demand will depend on a number of interconnected factors. Impacts on demand will depend 
on a combination of climatic variables, including temperature, rainfall, humidity and 
evaporation, as well as current patterns of water use. 

The sensitivity of future demand to climate change can be gauged from the current 
seasonality of demand. End-use based analysis is one approach for understanding the effects 
that climate change may have on water demand because certain end-uses will be particularly 
affected. Such an approach would involve considering how climate change will affect 
particular water-use components and the impact that would have on the overall urban water 
demand picture. For example, in the residential sector the two key areas will be seasonal 
demand for outdoor water use and evaporative air conditioner use. Similarly, in the 
non-residential sector, outdoor water use and water use in cooling towers and evaporative 
coolers could be expected to increase under climate change in regions where current summer 
demand is high. Table 4.3 summarises the end-use components of residential and 
non-residential demand that could be affected by climate change. 

Table 4.3: Residential and non-residential water demand affected by climate change 

Sector and end-use component Potential reasons for change 

Residential sector 

Outdoor demand Outdoor water demand could increase in the absence of temporary 
or permanent water restrictions due to increased irrigation resulting 
from increased evapotranspiration and reduced soil moisture in drier 
climates. 

Outdoor water demand could also increase because of an 
increasing number of pools and increased evaporation losses. 

Outdoor demand could potentially decrease in regions that become 
wetter or have high levels of humidity due to climate change, 
particularly if increased rain and humidity correspond to current 
periods of high use. 

Evaporative air conditioners Increased average daily temperature in summer and/or increased 
number of days above 30°C will lead to increased evaporative air 
conditioner use in the regions where they are prevalent. 

Non-residential sector 

Outdoor water use As for residential outdoor demand, non-residential outdoor demand 
could increase or decrease. 

Cooling towers Increased average daily temperature in summer could lead to 
increased use of cooling towers in non-residential properties. 

Evaporative air conditioners In smaller non-residential properties, increased average daily 
temperature and/or increased number of days above 30°C will lead 
to increased evaporative air conditioner use in the regions where 
they are prevalent. 

 

The effect of climate change on water demand will vary between locations (for example, 
impacts in inland regions can be expected to be higher than in coastal regions). Some utilities 
have investigated the changes in the demand profile that might be expected from climate 
change in their jurisdictions. For example, the Victorian Department of Sustainability and the 
Environment expects demand increases across Victoria of 1%–6% due to climate change. 
Sydney Water has estimated demand increases of approximately 1% relative to current 
consumption, although there can be differences between coastal and inland suburbs in a 
region as large as Sydney. Significantly, the influence of climate variables other than rainfall 
and temperature can be important. In some regions, humidity will offset some demand caused 
by increased temperature. 

Total water demand is influenced by a range of other factors, including demand-management 
programs, urban consolidation and land-use changes. Therefore, in any particular jurisdiction, 
demand impact assessment needs to be based on a local end-use profile and expected 
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region-specific climatic changes. Even though the percentage changes may be relatively 
small, it will be prudent in most locations to consider the impacts of climate change on 
demand because the volumes could be significant, especially during drought periods. 
End-use analysis can provide a basis for such investigations. 

In inland regions, the impacts of climate change on agricultural water demand might also 
become a factor for urban water planners. While agricultural allocations are set by a 
government department separately from urban water planning, changes to agricultural 
allocations in response to changing watering requirements could affect the supply available 
for urban water needs. 

4.5 Developing the response 

‗Develop the response‘ is Step 3 in the IRP framework. It involves not only the design of 
individual supply-side and demand-side options and their assessment, but also the 
development of a suite or portfolio of options that can ensure that the community has a safe, 
reliable, sustainable and cost-effective supply. 

Climate change and uncertainty about future climate have significant implications both for the 
options that should be considered and for how options and portfolios are assessed. First, the 
mitigation imperative means that the response developed must take into account the GHG 
emissions that could be expected to result from implementation. Second, the objective of 
climate change adaptation requires the development of more resistant or resilient portfolios. 
Two aspects of this goal are discussed below: increasing portfolio diversity and developing 
adaptive measures. 

Although not discussed in this paper, in the same way that best estimate climate change 
scenarios are included in the supply–demand balance, expected changes to climatic and 
hydrological variables should be factored into the yield estimates for options such as new 
storages, rainwater tanks and groundwater. In many areas, the climate change scenarios 
developed for establishing the supply–demand balance (discussed in Section 4.4) may be 
appropriate for that task. In others, regional differences, particularly between coastal areas 
and inland catchments, will need to be accounted for. 

4.5.1 Accounting for greenhouse gas emissions 

To meet an objective of mitigating the GHG impacts of urban water services requires an 
understanding of the energy use in current service provision and the likely emissions that 
would result from potential demand- and supply-side options. It also includes considerations 
in relation to Green power as a means of avoiding energy-related emissions. 

Energy used in existing urban water supply 

Urban water service provision requires energy for water supply (treatment and distribution), 
and wastewater disposal (sewage collection, pumping and treatment). The energy intensity of 
water services in a selection of major Australian cities is given in Table 4.4. The energy 
intensities will increase in the future as new energy-intensive supplies are brought online. 

Table 4.4: Summary of the energy intensity of water supply and wastewater disposal in 
Australia cities in 2006–07 (MWh/ML) 

 Sydney Melbourne Brisbane Gold Coast Perth Adelaide 

Water supply 1.03 0.09 0.68 0.21 0.98 1.84 

Wastewater disposal 0.47 1.13 0.57 1.00 0.71 0.69 

Total for water service 
provision 1.49 1.22 1.25 1.21 1.70 2.52 

Source: adapted from Kenway et al. (2008). 

Even before the latest supply augmentations, a rising trend in the energy intensity of water 
supply was evident in Australia. Table 4.5 shows the increase in energy intensity of water 
supplies in Sydney, Perth and Adelaide in recent times. 
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The increasing energy intensity of water supplies highlights the need to account for energy 
use and subsequent GHG emissions when developing a portfolio of supply- and demand-side 
options. It also points to the need for new water infrastructure to be designed with energy 
efficiency in mind. 

Table 4.5: Change in the energy intensity of water supply in Sydney, Perth and Adelaide 

City Year Energy intensity (kWh/kL) Comments 

Sydney 2000–01 0.25  

 2006–07 1.03 Interbasin transfer (Shoalhaven River) 

Perth 2001–02 0.56  

 2006–07 0.98 First desalination plant  

Adelaide 2005–06 0.85  

 2006–07 1.84 Interbasin transfer (Murray River) 

Source: Retamal et al. (2009), adapted from Kenway et al. (2008). 

Alongside the energy used by water utilities in providing water services, substantial energy is 
used in water heating. Recently published work by Kenway et al. (2008) found that residential 
water heating used on average 6.5 times the energy used to deliver urban water services. 
This ratio varied between cities, from 4.7 in Adelaide to 11.2 in Melbourne. As a result, 
measures reducing demand for hot water (for example, targeting showers or clothes washers) 
will have large energy-saving benefits relative to the energy used by utilities. Helping 
customers reduce energy use through demand-management programs aimed at hot water 
usage is an excellent opportunity for water utilities to contribute to GHG mitigation. However, 
it should not be viewed as an alternative to addressing the rising amounts of energy used in 
the provision of water services. 

Energy use and GHG emissions for different options 

Different types of supply-side and demand-side options will have different ramifications for 
energy consumption and GHG emissions. In general, supply-side options will increase energy 
demand and GHG emissions. Some source-substitution options that are usually considered 
as demand-side, such as rainwater tanks and non-potable effluent reuse, will also have an 
energy demand and associated GHG emissions. Demand-management measures that 
reduce the amount of water consumed (that is, water efficiency options) will save energy and 
reduce greenhouse gas emissions. Measures that reduce hot water consumed will have the 
most substantial energy and GHG savings, as outlined in the previous section. Table 4.6 
gives indicative energy consumption figures for various types of supply- and demand-side 
options. 



NATIONAL WATER COMMISSION — WATERLINES          130 

Table 4.6: Indicative energy consumption/savings from different options 

Type of option Energy use Indicative energy 
intensity

a
 

Data 
source 

Comments 

Supply-side 

Desalination Increase 3.5–4.0 MWh/ML Kenway 
et al. 
(2008) 

This figure was given in the 
source document in GJ/ML. 

Intercatchment 
transfer pipeline 

Increase 0.07–1.75 MWh/ML Kenway 
et al. 
(2008) 

Energy demand due to pumping.
b
 

Need to assess unit energy 
demand in each specific context, 
as this figure will vary depending 
on factors such as topography 
and length of pipeline. 

New dam Increase Varying – Potential energy demand due to 
pumping. 

Need to assess in each specific 
context. 

Direct reservoir surface emissions 
are likely to be more much 
significant than increased energy 
use. 

Demand-side 

Demand 
management 

Saving Approx. 1.21–
2.52 MWh/ML (not 
including water 
heating) 

Kenway 
et al. 
(2008) 

Energy saving from energy used 
by the water utility 

Rainwater tanks Increase 0.9–4.9 MWh/ML Retamal 
et al. 
(2009) 

Energy for pumping water from 
tank to household. 

Non-potable 
water reuse 

Increase 1.6–2.9 MWh/ML
c
 Kenway 

et al. 
(2008) 

This figure was given in the 
source document in GJ/ML. 

a The figures provided here are indicative only; practitioners should familiarise themselves with the assumptions and 
limitations described by the original authors. 

b Estimated, based on energy intensity range for conventional water pumping given in source document. 
c Including both tertiary treatment and reverse osmosis processes. 

The GHG emissions (or avoided emissions) of potential options can be calculated from the 
expected energy consumption or saving. Electricity supplies vary in greenhouse gas intensity 
(kgCO2-e/kWh) across the country. Greenhouse gas intensities are published by the 
Australian Department of Climate Change in National Greenhouse Accounts (NGA) factors 
(DCC 2008) and are given in Table 4.7. 

The significant GHG savings that result from avoided customer water heating can be 
quantified by calculating the energy required to heat water from an average supply 
temperature to an average hot water temperature used by customers.

1
 

                                                 
1
 From first principles, the energy to heat water from 20°C to an average usage temperature of 42°C is 

approximately 25.9 kWh/kL for electric water heating and 93.1 MJ/kL for gas water heating. Note that 
this does not account for water heating inefficiencies and energy losses. The different mixes of water 
heating systems (electricity, gas, solar) across different states and territories need to be accounted for. 
The average GHG intensity for electric water heating is the same as given in Table 4.5; for gas water 
heating, an average Australia-wide figure of 64.5 kgCO2-eq /GJ can be used. 
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Table 4.7: GHG intensities of electricity production across Australia 

State/territory Average greenhouse gas intensity of electricity (kgCO2-e/kWh) 

New South Wales 1.06 

Victoria 1.30 

Queensland 1.04 

South Australia 0.98 

Western Australia 0.97 

Australian Capital Territory 1.06 

Northern Territory 0.91 

Source: DCC (2008). 

Surface GHG emissions from water reservoirs are an issue for water supply planning that is 
becoming more widely acknowledged (St Louis et al. 2000, IPCC 2006ab). These emissions 
have been largely neglected in the past, although new research is indicating that the level of 
GHG emissions could be significant in some cases. As Hall et al. (2009) state in their study of 
energy and GHG emissions for the South East Queensland Water Strategy: 

Diffuse greenhouse gas emissions are potentially much greater than emissions from 
energy use for the [urban water] sector—although the data currently has a very high 
level of uncertainty. The main sources of diffuse emissions include reservoirs as well 
as wastewater treatment and handling. 

The extent of methane and carbon dioxide surface emissions from water storage reservoirs in 
Australia is currently unknown. Worldwide, however, reservoir surface emissions are 
considered a significant source, contributing approximately 7% of human-induced GHG 
emissions (St Louis et al. 2000). 

Methane and carbon dioxide emissions result from the decomposition of vegetation and soil 
carbon in the area inundated by the reservoir. More organic material can also be washed into 
the reservoir over time and this then also decomposes. A combination of carbon dioxide and 
methane is released from the surface of the water storage. Methane surface emissions are of 
particular concern because methane has a global warming potential 72 times that of carbon 
dioxide over a 20-year timeframe, and 25 times that of carbon dioxide over a 100-year 
timeframe (IPCC 2007). The IPCC provides a methodology for estimating reservoir methane 
and carbon dioxide surface emissions (IPCC 2006b). 

Only limited Australia-specific data exists on reservoir emissions, and the available data 
indicates a high level of uncertainty. For example, estimates for the reservoirs serving south-
east Queensland by Hall et al (2009) ranged from over 1 800 000 tonnes of carbon dioxide 
equivalent (t CO2-e) per year to approximately 100 000 t CO2-e per year. It is known that 
reservoir surface emissions will initially be higher from a new storage and then decrease with 
the age of the reservoir. Despite the uncertainty, reservoir surface emissions (particularly 
methane) are potentially a very significant source of GHG emissions for urban water. It is 
critical that the potential is assessed when new water supply dams are proposed in Australia. 

Using renewable energy or Green power 

Many water utilities that have recently proposed energy-intensive desalination plants have 
stated that they will purchase Green power or build renewable energy capacity to avoid the 
GHG emissions that would otherwise be generated. Green power involves paying a premium 
for electricity that is accredited as renewable. The additional cost will need to be paid over the 
operational life of the infrastructure. The additional cost of Green power reflects the value of 
the renewable energy certificates (RECs) that are generated when an accredited renewable 
energy scheme generates electricity. The RECs are surrendered when the Green power 
product is sold to a customer. Critically, a water utility that decides to build its own renewable 
energy scheme cannot sell the RECs generated and still claim the electricity generated as 
renewable. This would be a ‗double counting‘ of the renewable energy. 

For example, this problem has arisen in Perth with the renewable energy developed to power 
the Kwinana desalination plant. It was widely advertised that the desalination plant would be 
powered via the Emu Downs wind farm (Macgill et al. 2007). However, the RECs generated 
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by the wind farm were on-sold to an electricity supplier. The energy generated by the wind 
farm could not then be counted as new renewable power by the desalination plant, because if 
the electricity supplier had not bought RECs from the water utility it would have needed to 
generate other renewable energy to meet its statutory requirement under the Mandatory 
Renewable Energy Target. The RECs from the desalination plant wind farm have simply 
displaced other renewable energy that would have to have been built (Macgill et al. 2007). 

Organisations wishing to offset their electricity-related GHG emissions through the purchase 
of renewable electricity should do so in accordance with the National Carbon Offset Standard. 
The standard was released on 24 November 2009 and came into operation on 1 July 2010. 
Green power and other renewable energy purchases can be treated as zero-emissions 
sources of electricity under the standard. 

Aside from double counting, a major problem with using renewable electricity is that it can be 
used as justification for building infrastructure that is operationally energy intensive and will 
leave a legacy of high energy requirements. The implications for a water utility‘s future 
operational costs in a future in which rising energy costs are highly likely cannot be ignored. 
Even if Green power is not sourced from new supplies, under the Australian Government‘s 
proposed Carbon Pollution Reduction Scheme, or any similar scheme, GHG emissions incur 
a cost, which will be passed on from energy generators to energy consumers through 
increased energy tariffs (see Box 4.5). 

Where there is an intention to power new supply infrastructure with renewable energy, that 
decision effectively places a dollar value on GHG emissions and GHG abatement. In order to 
maintain an equivalent analysis of all options, that value should be translated through the 
options assessment. In other words, the value of GHG abatement that is included as a cost 
for the supply-side options should be carried through as a benefit for demand-side options. 
For example, a decision to power a desalination plant with renewable energy will increase the 
operating costs of that option. In contrast, demand-management measures such as 
household retrofits will reduce energy consumption and GHG emissions through avoided 
water and wastewater and avoided customer water heating. An options comparison including 
desalination and retrofits should give an equivalent value to the energy demand and GHG 
emissions avoided by one and abated by the other.  
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Box 4.5: The Carbon Pollution Reduction Scheme 

Under the Australian Government‘s Carbon Pollution Reduction Scheme (CPRS), as orginally 
proposed, GHG emissions from energy generation will incur additional costs. Carbon costs 
will be imposed on all generators fuelled by fossil fuels. Those costs will be passed on to 
consumers, including water utilities, through higher electricity and other energy prices. For 
example, the government estimates that household electricity prices will increase by around 
19% over the first two years of the CPRS (to 2012–13), with further small increases over 
subsequent years. 

Some water utilities pay lower than average rates for their electricity use. Under the CPRS, 
the cost of emissions is likely to be added to the price of electricity in a manner that is 
proportional to energy use. Therefore, the price increase that water utilities face for electricity 
under the CPRS might be expected to be marginally higher than those faced by the average 
customer. 

A CPRS would also change the prices of other goods and services, including construction 
materials and petrol. Carbon cost will be embedded in the prices paid for those goods. Goods 
that are emissions intensive to produce will generally become more expensive. It remains 
uncertain when, or whether, the CPRS as orginally proposed will be introduced; however, 
some form of Commonwealth scheme placing a cost on carbon pollution is likely. 

The Water Services Association of Australia (WSAA 2009) summarised the main impacts of 
the CPRS and related policies, such as the National Energy Greenhouse Reporting Scheme, 
on the water industry as: 

 higher energy prices 

 the need to purchase permits for fugitive GHG emissions from facilities emitting over 
25 000 tonnes of CO2-e per year (such as sewage transport systems and treatment 
plants) and treated-effluent disposal to receiving waters 

 uncertainty about carbon offsets, renewable energy and Green power, and what can be 
claimed about them. 

 

4.5.2 Developing a diverse portfolio 

Climate change and climate uncertainty bring to the fore questions of portfolio diversity. A 
diverse portfolio can spread the risk of climate change, provide flexibility for urban water 
systems to be more adaptive, or both. Diversity can mean developing climate-independent 
sources of supply alongside traditional supplies, having a variety of sources of supply spread 
geographically or across scales, having a range of supply-side and demand-side options, or 
any combination of those measures. Portfolio diversity, of various types, will be seen as 
valuable in both climate change resistant and climate change resilient stances in urban water 
planning. 

Diversity on the supply side 

It is generally recognised that there is a need to diversify the sources of water supply for our 
cities in the face of climate change. This can be seen as a need to move away from total 
reliance on a single or a few climate-dependent sources of water supply, particularly rivers or 
dams. As Erlanger and Neal (2005) noted, having a diversity of sources will reduce risks 
compared to relying on a single supply. Diversifying supplies can be seen as tapping sources 
in various catchments, particularly if those catchments are subject to varying rainfall and 
climate influences. 

A common approach to diversifying supplies includes tapping groundwater and desalinated 
seawater as well as new surface water sources. In the future, indirect potable water recycling 
could also play a role in some regions. These sources all have differing risk profiles that 
together reduce the combined risk of the portfolio. They also have the major advantage of 
being totally or partly climate independent, thus improving water systems‘ resistance to 
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climate change as well as increasing the diversity of sources. Moves to diversify supplies by 
introducing a climate-independent source are evident in the five largest Australian cities: 
Melbourne, Sydney, Brisbane, Perth and Adelaide are all developing desalination. 

Diversity on the demand side 

As well as diversity in the location and type of large-scale supply, from a climate change 
resilient stance at least, portfolio diversity is also promoted through having a range of smaller 
scale supplies in urban areas, through non-potable supplies, and through water utilities 
pursuing a suite of water efficiency measures. 

In IRP, small-scale and alternative supplies are usually both considered for analysis purposes 
to be on the ‗demand side‘, as they are measures that reduce demand on centralised potable 
supplies. Alternative water supplies include residential rainwater tanks, rainwater collection 
from large commercial roofs and local council stormwater harvesting schemes, as well as 
non-potable wastewater reuse at various scales. In coastal areas, localised rain-fed sources 
often have the advantage of different patterns of rainfall when compared to large surface 
water sources with inland catchments. In the same way, residential greywater systems, small-
scale wastewater reuse (commonly based on sewer mining) and large-scale non-potable 
recycling schemes provide alternative sources of supply and an increase in diversity. 

Smaller scale options such as rainwater tanks and reuse systems can provide a further step 
in diversifying urban water systems by diversifying ownership and control. Policies at the state 
and federal levels in Australia are currently geared to promoting such small-scale and 
alternative supplies (for example, in new developments through planning regulations and 
green building accreditation and in existing areas through stormwater grants and greywater 
and rainwater tank rebate schemes). The result of these government policies is to encourage 
the development of a wide range of supplies at varying scales, owned by a variety of entities. 
Policies that result in the widescale take-up of a range of small-scale distributed water 
supplies will certainly increase the resilience of urban water systems. However, further work is 
needed to determine how these policies should be assessed and managed as part of the full 
portfolio of supply and demand options. 

Demand-side diversity is also achieved by governments and water utilities developing water 
efficiency measures that target a wide range of end-uses as part of the supply–demand mix. 
This involves considering the conservation potential of the various non-residential end-uses 
by sector and subsector, as well as all major household end-uses (showers, clothes washers, 
toilets, taps, dishwashers and outdoor water use). In inland centres, water demand can be 
highly skewed to summer demand because of the large volumes of water used for outdoor 
irrigation and evaporative cooling. In those regions, in particular, demand-side diversity 
should involve targeting such seasonal end-uses. 

Water efficiency measures provide both GHG mitigation and climate change adaptation. From 
a mitigation perspective, water efficiency can substantially reduce energy use and GHG 
emissions. As discussed in Section 4.5.1, energy is saved through avoiding water and 
wastewater transport and treatment and to a greater degree through avoiding the need for 
water heating by customers. 

Water efficiency measures provide benefits for climate change adaptation by decreasing the 
overall water demand in a region and thereby increasing the buffer capacity between supply 
and demand for that area. Increased water-use efficiency can also be expected to reduce the 
minimum levels of supply that a community would require during a period of intense supply 
shortage, such as during extreme drought. Indoor plumbing products (showerheads, taps, 
toilets, urinals etc.) and indoor appliances (such as clothes washers and dishwashers) are of 
particular importance at those times, because water use in such fixtures is to a large degree 
non-discretionary and the volumes used will depend on the technical efficiency of the product. 
For example, toilet flush volume will be a limiting fact for a household‘s ability to minimise 
water use, and measures that increase toilet efficiency can reduce that limitation. Finally, 
water efficiency can also be a drought response measure if it is rolled out through an 
accelerated demand-management program (see ‗Readiness options‘ in Section 4.5.3). 

Because of the range of mitigation and adaptation benefits, responding to climate change 
should see an enlarged role for water efficiency in supply–demand planning. 
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Assessing portfolio diversity 

Taking a portfolio perspective provides a means of assessing the benefits of a diversity of 
water sources and the benefits of demand-side options alongside supply-side options. It 
involves assessing options according to how they will affect the characteristics of the whole 
portfolio: options are considered in terms of what they add to the group, rather than in 
isolation. 

Different combinations of options have different implications for an urban water system‘s 
vulnerability to climate change and, more specifically, its vulnerability to drought. Also, 
different combinations of options provide different levels of flexibility. That flexibility might 
arise because the options can provide additional yield for a period (for example, some 
groundwater sources can be ‗overdrawn‘ for a period). Alternatively, water might come from a 
range of different sources at a range of scales, reducing reliance on a single source (for 
example, new developments with household rainwater tanks, development-scale recycled 
water and potable supply). 

Quantitative analysis of portfolio characteristics, such as decreasing climate change 
vulnerability and increasing flexibility, has been developed to some extent. Wolff (2008) 
describes a risk-based method for calculating option cost-effectiveness based on a ‗constant-
reliability‘ unit cost. This method values the contribution of options in terms of the volume 
supplied or saved from an option during drought. This is in contrast to unit cost calculations 
based on the average annual yield supplied by an option, as is standard practice in IRP. The 
method accounts for the fact that some options are more reliable in their supply or savings 
than others, and also that options will vary in whether their yield is positively or negatively 
correlated to the existing system yield during drought. Wolf (2008) states that the method 
presented is a strong starting point for quantitative analysis of the cost implications of 
uncertainty in supply- and demand-side options. The importance of assessment on a portfolio 
basis rather than on an individual option basis is highlighted. However, the need for data to 
describe statistical distributions may hinder the method‘s application in practice. 

A portfolio-based assessment of options can also be qualitative. One approach would be to 
include portfolio performance criteria into a multi-criteria analysis. Options could then be rated 
on whether they are likely to improve the portfolio‘s overall performance on the set of selected 
criteria. Possible criteria include: 

 decreases the vulnerability of the portfolio to climate change impacts 

 increases the diversity of supply sources 

 increases the diversity of end-uses targeted by demand-side options 

 increases the portfolio flexibility to deal with future uncertainties. 

The application of multi-criteria analysis as part of IRP is described in Sustainability 
assessment in urban water integrated resource planning (Fane et al. 2010, in this document). 
A portfolio perspective can also align with moves towards more adaptive planning—the 
portfolio can be incrementally adjusted and readjusted as the future unfolds and situations are 
reassessed. 

4.5.3 Developing adaptive measures 

Probably the most significant implications of climate change for urban water supply–demand 
planning stem from uncertainty about future climate. For many regions, water planning will be 
conducted without strong confidence in projected climate parameters and with the potential 
for increased climate variability into the future. 

In such a context of climate uncertainty, moves towards adaptive planning can be expected. 
In some locations, this will mean that drought response planning and contingency measures 
may come to the fore. In other regions, moves towards adaptive planning will go one step 
further and include ‗readiness options‘ as part of ‗readiness strategies‘. Assessment methods 
such as real options analysis can be used to assess adaptive measures. 
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Drought planning 

In supply–demand planning for urban water in Australia, managing with climate uncertainty is 
to a significant degree about managing with drought. Drought response and contingency 
planning have always been critical components of supply–demand planning. However, as 
discussed in Section 4.2.1, for some regions climate change is likely to interact with natural 
climate variability, resulting in more frequent and more severe droughts. 

In Australia, planning for drought has always been an important aspect of urban water 
supply–demand planning. As well as a long-term plan to balance supply and demand, water 
utilities should have a drought response plan and a contingency or emergency plan (Erlanger 
and Neal 2005). When droughts occur, the drought response plan traditionally provides a 
short-term response in the form of water restrictions. In case of an extreme drought, a 
contingency plan with emergency measures is needed to ensure that basic water needs for 
the community can be met through the provision of a minimum level of supply at all times. 

Drought planning incorporates predetermined triggers, based on the level of storage in the 
existing system, for water restrictions and then for emergency measures. Where these trigger 
levels are set is a critical determinant of system yield. To date, the connections between 
drought response plans, contingency plans and long-term supply–demand planning have 
been consided predominantly in terms of these supply-side implications. 

The expected increases in climate variability in many regions mean that it is likely there will be 
a greater role for measures that are triggered during drought. As adaptive approaches are 
developed to manage urban water supply in the context of climate change, it is highly likely 
that long-term supply–demand planning and drought planning will become much more 
integrated. 

Readiness options 

Readiness options expand the idea of contingency measures beyond emergency situations to 
include options that are preplanned and triggered at a predetermined point during a drought. 
Readiness options can be supply- or demand-side options and ideally can be mobilised 
quickly when required. They are developed to provide a capacity to respond to a water 
shortage but are not implemented until predefined trigger levels are reached. Sources that 
have the potential to be used as readiness options include: 

 new or existing groundwater bores 

 new desalination capacity 

 intercatchment transfer pipelines or the activation of existing transfer potentials 

 indirect potable recycling. 

Readiness options provide some flexibility in timing and also, potentially, in the scale of 
implementation. 

Similarly to water restrictions in a traditional drought plan, readiness options are characterised 
by trigger points based on storage levels or supply allocations for the existing supply system. 
The trigger points reflect the lead-time for bringing particular water sources online. Developing 
a readiness option involves preparation as well as preplanning. This can include pilot plants, 
detailed design, approvals, site preparation and other relatively long lead-time but low-cost 
elements of implementation. 

The more preplanning and preparation work that can be done in developing a readiness 
option, the longer the critical storage-level trigger for construction can be delayed. This 
provides a significant benefit because delaying implementation means that a readiness option 
may not need to be triggered before a drought breaks. A major financial cost can then be 
avoided until it is needed at some future point. 

Large-scale accelerated demand-management programs also have the potential to be 
implemented relatively quickly during drought. Examples of demand-management measures 
that have been implemented on a large scale in response to water shortages include: 

 showerhead exchange programs 
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 residential household audits and retrofits 

 rainwater tank and washing machine rebates 

 enhanced leakage programs 

 enhanced non-residential audit and conservation programs. 

Large-scale demand-management options do not usually involve large irreversible capital 
investment. However, unlike other readiness options, they cannot be discontinued when they 
are no longer required. Nevertheless, many can be considered as ‗no regrets‘ or ‗few regrets‘ 
options because water savings benefits will persist into the future and their unit costs are less 
than, or not significantly greater than, the marginal cost of supply. Even with readiness supply 
options such as desalination, in many cases it is likely that they will not be switched off once a 
drought breaks, but an adaptive approach will see them incorporated into the longer term 
supply–demand balance. 

By staging readiness options, readiness strategies can be developed, first with ‗no regrets‘ 
accelerated demand management and followed by lower cost contingency measures such as 
new groundwater bores. These types of measure buy time during a drought and delay the 
arrival of critical storage trigger levels for the construction of more expensive supply, such as 
desalination or potable recycling. The use of adaptive measures in a readiness strategy 
reflects a desire to refrain from large capital investments during the current environment of 
climate change uncertainty, while also recognising that total water supply system failure is 
catastrophic and must be avoided. 

4.5.4 Assessing adaptive measures 

‗Real options‘ analysis is a risk-based method for assessing strategies or the alternative 
decision paths of an adaptive approach. The method factors the probability of future 
outcomes into an assessment that compares strategies on their risk-weighted costs. The 
method is drawn from the financial management sector, and variations on it exist. A detailed 
explanation of one real options methodology and an example application in urban water 
planning are given in Borison and Hamm (2008). 

Real options analysis is designed so that, as new data emerges over time, learning can occur 
and the new information can be incorporated into the analysis. New information can influence 
the choice about which strategy or decision path should be followed. Applied in urban water 
supply–demand planning, real options analysis has the potential to be used to develop risk-
weighted cost comparisons of readiness strategies. It can also be used to compare these 
more flexible strategies to strategies that aim to provide drought security based on building 
additional supply capacity in the near term, before drought occurs. 

As with other quantitative risk-based analyses, real options analysis is characterised by a 
need for data on, or assumptions about, the probability that particular future outcomes will 
occur. In urban water planning, the uncertainties most easily accounted for will be decision 
path uncertainty (the decision path is the likely sequence of decisions made in response to 
situations in the future) and financial uncertainties associated with the costs of options. In 
some locations, historical records may be able to provide climate and hydrological variable 
probabilities. However, in many regions the uncertainties associated with climate and 
hydrology may be difficult to determine. A possible analytical approach for dealing with 
climate uncertainty would then be to combine real options analysis with scenarios analysis 
based on a range of climate change scenarios. 

Whether as part of real options analysis or a separate piece of analysis, ‗drawdown‘ curves 
are likely to be an important piece of analysis for any region considering a readiness strategy. 
Drawdown curves show the number of years or months that the region‘s storages and other 
sources can continue to supply a restricted water demand under the worst case scenario. The 
worst case scenarios need to account for historical droughts as well as climate change (see 
Section 4.4.2). Such curves will commonly start from existing supply levels and illustrate how 
long a restricted demand could be drawn under worst case conditions. Because the worst 
case scenario will determine the trigger levels for the readiness strategy, it needs to represent 
a ‗reasonable‘ worst case estimate. What that is can only be judged on a region-by-region 
basis. 
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Significantly, the length of time available for a readiness strategy, as illustrated by drawdown 
curves, will vary between regions. It will be critically influenced by the size of the available 
storages, as well as the worst case scenario selected. For example, in high-rainfall regions 
where storages are typically smaller, the drawdown under a worst case scenario will be 
relatively fast, perhaps over a year or less. In low-rainfall areas with relatively larger storages, 
the drawdown will take multiple years if it starts from full storages. 

Even if quantitative analysis is considered unfeasible, real options principles can be applied to 
water planning in the face of climate uncertainty. Those principles include: 

 recognising the importance of delaying large irreversible investments as long as possible 

 promoting flexibility through the explicit definition of a range of decision paths that can be 
taken into the future 

 designing options (such as desalination, groundwater and indirect potable recycling) so 
that they are modular and might therefore be staged 

 learning from new information as it emerges. 

4.6 Monitoring, evaluation and review 

Step 5 of the IRP framework involves monitoring, evaluation and review. In the Guide to 
demand management and integrated resource planning for urban water (Turner et al. 2010), 
this covers: 

 the monitoring and evaluation of individual demand-management measures 

 the monitoring and evaluation of the suite of options in relation to the planning objectives 

 the review of the whole IRP process. 

Climate change and climate uncertainty increase the range of parameters that need to be 
regularly monitored and evaluated by water utilities and water planners. In the context of 
climate change, many water utilities have already started monitoring the energy and GHG 
emissions implications of their water supplies and demand-management programs. Adaptive 
approaches to managing climate uncertainty require a wide and ongoing monitoring of key 
climate and hydrological variables, as well as constant monitoring of the conditions of the 
existing system. Even in locations where a more climate change resistant approach has been 
taken to planning, enhanced monitoring should be targeted at key areas of known uncertainty, 
such as how supply catchments are responding to changes in rainfall and temperature 
patterns. With significant levels of uncertainty in some areas and our knowledge about climate 
change rapidly evolving, there is also a need for regular review of supply–demand planning 
processes in all regions. 

This section first addresses the monitoring and evaluation of energy and GHGs. It then 
discusses monitoring and evaluation as part of an adaptive approach to managing climate 
uncertainty. Finally, it considers the climate change implications for the ongoing review of 
supply–demand plans and planning processes. 

4.6.1 Monitoring and evaluation of energy and GHGs 

Monitoring and reporting on the energy use and GHG emissions associated with water supply 
are a critical step in mitigating of the impacts of climate change by reducing GHG emissions. 
The energy use of infrastructure across the urban water system should be measured and 
evaluated. This includes pumping stations, desalination plants, water recycling facilities and 
household rainwater tanks. The energy use of that infrastructure can be measured directly or 
as part of a monitoring and evaluation study (for example, for rainwater tanks). Similarly, the 
direct GHG emissions from infrastructure such as recycled water plants and new dams also 
need to be monitored. 

As discussed in Section 4.5.3, demand-management measures can be expected to result in a 
net reduction in energy use. This is due to the reduced energy use associated with water 
supply, wastewater treatment and customer water heating. Techniques for estimating water 
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saved through demand management and restrictions (Fyfe et al. 2010, in this document) 
addresses the methods for evaluating of water and energy savings from demand-
management programs. 

4.6.2 Monitoring and evaluation in managing climate uncertainty 

Monitoring and evaluation become increasingly important in the context of climate uncertainty. 
Adaptive management is premised on responding to information about the current situation as 
it emerges. The monitoring and evaluation process develops that information. 

For example, ongoing monitoring of both current water demand and available supply (dam 
levels and inflows or river or groundwater levels) is needed to develop a picture of the current 
situation. However, supply and demand data can only be evaluated in the context of the 
seasonal outlook and an understanding of historical water demand and supply trends. This, 
together with information on the level of preplanning and preparedness of readiness options, 
is necessary to inform alternative decision paths. 

Monitoring and evaluation can also be targeted at areas of known uncertainty, such as the 
relationship between rainfall intensity and runoff and seasonal influence on catchment 
responses. Soil moisture changes are expected in some catchments because of changed 
seasonal rainfall and evapotranspiration patterns, and this could result in drier catchments 
and substantially less runoff generation due to non-linear rainfall–runoff responses. These 
types of effects may be both context- and time-dependent. Hence, a case can be made for 
collecting more rainfall, runoff, temperature and evaporation data in catchments to better 
understand catchment drying. This includes the rainfall–runoff effects in specific regions and 
how system yields will be affected. As part of adaptive management, the additional monitoring 
data will be fed back into water planning and also inform an unfolding understanding of future 
climate. 

4.6.3 Ongoing review of the supply–demand plan and the IRP 
process 

Knowledge about climate change at global, national and regional levels is evolving relatively 
quickly, and new knowledge (for example, new regional climate change downscaling studies) 
can alter the context of water supply–demand planning for a given urban area. Frequent 
reviews of supply–demand plans will be necessary. 

Furthermore, there is a need for ongoing review of how the IRP process is being applied in 
each regional context and at the state government or Australian Government policy level. 
Both reviews will be in the context of our evolving understanding of climate change and its 
impact on water resources and water demand. 

4.7 Conclusions 

The principal message of this paper is that the impact of climate change on both supply and 
demand needs to be accounted for and should be integrated into urban water supply–demand 
planning. 

Four additional core messages should be taken from this paper: 

 The mitigation of GHGs needs to be a parallel objective to climate change adaptation in 
urban water supply–demand planning. 

 Demand-management programs that increase water-use efficiency help to meet both 
climate change mitigation and adaptation objectives. 

 The best estimate of expected climate change should be included in calculations of the 
longer term supply–demand balance, as well as in yield estimates for new climate-
dependent options. 
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 Knowledge of climate science is evolving, and there is a significant amount of uncertainty 
in the current knowledge. However, the uncertainty about future climate due to climate 
change can be managed either by strategies aimed at decreasing vulnerability to climate 
change or by both decreasing vulnerability and increasing the adaptive capacity of urban 
water systems. 

In relation to the mitigation of GHGs, the key points raised in the paper are as follows: 

 Energy use in water supply has historically been low. New water sources, however, tend 
to be more energy intensive, so the energy intensity of water supplies is rapidly 
increasing. 

 Surface emissions from water storage are highly uncertain but could be an important 
GHG source. While little can be done about existing storages, because reservoir surface 
emissions may be so significant it is critical that they are fully assessed for any new 
water supply dams proposed in Australia. 

 The positive and negative GHG implications of all supply- and demand-side options, not 
just energy-intensive new supplies, need to be accounted for in options analysis. 

 Helping to reduce customer water-heating energy consumption through demand-
management programs targeting hot water usage can have a large mitigation outcome. 
However, such actions should not be viewed as an alternative to addressing the energy 
used in the provision of water services. 

On the role of water-use efficiency, the main points made in paper are: 

 demand-management programs that promote increased water-use efficiency will reduce 
the energy intensity of water service provision 

 by decreasing overall water demand through water-use efficiency, the buffer between 
water demand and supply is increased 

 increases in indoor water-use efficiency can be expected to reduce the minimum levels 
of supply that a community would require during extreme drought 

 accelerated demand-management programs can be considered as a drought response 
measure as part of readiness strategies. 

In relation to including the best estimate of expected climate change in the analyses, the main 
points made in the paper are as follows: 

 Various approaches exist for generating climate change scenarios for use in urban water 
planning. The most rigorous and, in Australia, the most widely accepted is to base 
climate change scenarios on GCM simulations, with the global climate projections 
‗downscaled‘ to a regional level. 

 Climate change is expected to affect both sides of the supply–demand balance. The 
impacts on demand are likely to be small compared to the impact on supply in most 
regions. 

 Both the supply and demand forecasts used to establish the base-case supply–demand 
balance and those in yield estimates for new climate-dependent options should 
incorporate ‗best estimates‘ for climate change in a region. 

 The high and low scenarios should also be considered in order to represent wet and dry 
extremes for future climate. 

On the subject of managing climate uncertainty, the main points the paper makes are as 
follows: 

 To manage uncertainty about future climate due to climate change, strategies can be 
aimed at either decreasing vulnerability to climate change (taking a ‗climate change 
resistant‘ stance) or both decreasing vulnerability and increasing the adaptive capacity of 
the urban water systems (taking a ‗climate change resilient‘ stance). 
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 A move towards more adaptive planning requires adaptive management; the 
development of adaptive measures; increased monitoring and evaluation and more 
regular review of supply–demand plans; consideration of short planning periods; better 
integration of short-term (drought) and long-term planning; and a reconsideration of 
governance in the light of more adaptive planning. 

 Important questions remain about managing climate uncertainty, including ‗What 
represents a ‗reasonable‘ worst case climate change scenario?‘ and ‗How can we assess 
whether a portfolio of options represents the most cost-effective and sustainable means 
of providing resilience (or resistance) in the face of climate change?‘ 

4.8 Key resources 

4.8.1 Climate change assessments across Australia 

Chiew FHS, Teng J, Kirono D, Frost AJ, Bathols JM, Vaze J, Viney NR, Young WJ, Hennessy 
KJ and Cai WJ 2008, Climate data for hydrologic scenario modelling across the Murray–
Darling Basin, report to the Australian Government from the CSIRO Murray–Darling Basin 
Sustainable Yields Project, CSIRO, Australia. 

CSIRO (Commonwealth Scientific and Industrial Research Organisation) 2009, Water in 
northern Australia, summary of reports to the Australian Government from the CSIRO 
Northern Australia Sustainable Yields Projects, CSIRO, Australia. 

DWE (NSW Department of Water and Energy) 2008, Future climate and runoff projections 
(~2030) for New South Wales and the Australian Capital Territory, DWE, Sydney. 

4.8.2 Water supply–demand planning 

Borison A and Hamm G, Stratelytics LLC 2008, Real options and urban water resource 
planning in Australia, occasional paper no. 20, April 2008, Water Services Association of 
Australia. 

Erlanger P and Neal B 2005, Framework for urban water resource planning, occasional paper 
no. 14, June 2005, Water Services Association of Australia. 

Mitchell C, Fane S, Willetts J, Plant R and Kazaglis A 2007, Costing for sustainable outcomes 
in urban water systems—a guidebook, research report 35, prepared for CRC for Water 
Quality and Treatment, Institute for Sustainable Futures, University of Technology, Sydney. 

Turner A, Willets J, Fane S, Giurco D, Chong J, Kazaglis A and White S 2010, Guide to 
demand management and integrated resource planning for urban water, prepared by the 
Institute for Sustainable Futures, University of Technology Sydney for the National Water 
Commission and the Water Services Association of Australia, Inc. 

Turner A, Willetts J, Fane S, Giurco D and White S 2008, Guide to demand management, 
prepared for the Water Services Association of Australia by the Institute for Sustainable 
Futures, University of Technology, Sydney. 

4.8.3 Energy and GHG emissions 

Energetics Pty Ltd 2008, Energy and greenhouse mitigation strategies, occasional paper 
no. 19, February 2008, Water Services Association of Australia. 

Hall M, West J, Lane J, de Haas D and Sherman B 2009, Energy and greenhouse gas 
emissions for the SEQ Water Strategy, technical report no. 14, Urban Water Security 
Research Alliance. 

Riedy C and Atherton A 2008) Carbon Offset Watch 2008 assessment report, Institute for 
Sustainable Futures, University of Technology, Sydney. 
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Summary 

What is the purpose of this paper? 

A key aim of the Australian integrated resource planning (IRP) framework Guide to demand 
management and integrated resource planning for urban water (Turner et al. 2010) is to 
ensure that water service providers embed monitoring and evaluation (M&E) into the water 
planning and implementation cycle. Water efficiency programs, regulations, restrictions and 
other demand-management initiatives typically provide an extremely cost-effective means of 
minimising the supply–demand gap by reducing short- and/or long-term potable water 
demand. Indeed, in some locations across Australia specific demand-management targets 
have been set to capture such savings. However, while some water utilities routinely 
undertake internal evaluations of their programs, only a handful of such studies have been 
published, and the analysis techniques involved remain largely inaccessible to the broader 
industry (Turner et al. 2007). 

Turner et al. (2010) discuss the key dimensions of M&E, including the importance of 
measuring participation rates and customer satisfaction for specific implemented programs 
and comparing the anticipated outcomes. Turner et al. (2010) also provide guidance on 
determining cost-effectiveness, thus assisting water service providers to modify and improve 
programs where necessary. This resource paper deals with quantifying the water savings 
achieved in demand-management programs, similarly assisting water service providers to 
improve programs, but also enabling them to determine whether they have achieved their 
desired goal or target in reducing water demand in a cost-effective way. 

Why is the paper needed? 

Although there has been significant investment in demand management in Australia, there 
appears to be very little evidence of robust evaluation of the savings achieved. This paper 
therefore seeks to provide existing and potential users of the Australian IRP framework and 
the Guide to demand management and integrated resource planning for urban water with a 
broader understanding of the various analytical techniques that can be used depending on 
data availability. It also draws together some of the limited examples currently available and 
provides a case study documenting the application of two different analytical techniques in the 
evaluation of water savings from a residential water-efficiency program. 

Will this paper be useful to me? 

The resources developed as part of the National Water Commission‘s Integrated Resource 
Planning for Urban Water project are intended to assist individuals in the water industry who 
are focused on urban water planning and management. That audience is very broad, ranging 
from large water utilities dealing with large investments to small councils potentially with 
limited resources, skills or both. The resources developed as part of this project aim to focus 
on the core group of organisations and practitioners in the middle of that spectrum. 

Hence, the intended audience for this resource paper is those individuals and teams 
responsible for water service provision and management who are involved in or need to be 
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involved in monitoring the outcomes of implemented demand-management programs. 
Members of that group will have varying knowledge and skills, so this paper aims to provide 
both a broader and a deeper perspective on techniques available and how they can be useful. 
Many individuals and teams responsible for the M&E of implemented demand-management 
programs may contract out all or part of the work in their region. Therefore, this paper also 
aims to provide sufficient background on the various available techniques for practitioners to 
engage more effectively with the package of contracted work and the resulting output. 

Where to look in the paper? 

This resource paper contains eight main sections in addition to this summary: 

 Section 5.1 provides an overview of the current challenges in M&E of demand-
management programs and identifies some of the key techniques available. 

 Section 5.2 examines the kinds of data needed for the various analytical techniques. 

 Section 5.3 provides guidance on data processing, which is a critical component and 
often requires a significant proportion of the resources needed when undertaking M&E. 

 Section 5.4 outlines the array of techniques available. 

 Section 5.5 covers evaluating savings from water restrictions. 

 Section 5.6 highlights the general pitfalls and limitations of the various techniques 
described. 

 Section 5.7 provides some examples in which the identified techniques have been used. 

 Section 5.8 provides a case study example using one of the most robust and replicable 
techniques available and a new emerging technique, and compares savings results 
obtained using the two different techniques. 

 Section 5.9 contains a summary of useful references on this topic. 

Scope of this resource paper 

Monitoring and evaluation (M&E) covers many dimensions. This paper aims specifically to 
outline the various analytical techniques that can be used to measure water savings when 
implementing demand-management (DM) programs. It also draws together some of the 
limited examples currently available and provides a case study documenting the application of 
two different analytical techniques used to measure water savings from a residential water-
efficiency program. Other dimensions of M&E associated with the need to assess 
participation rates, customer satisfaction, savings from non-residential programs and cost-
effectiveness are covered to varying extents in Turner et al. (2010). 

What are the take-home messages? 

Even with significant expenditure on demand-management programs in recent years, there is 
little evidence of M&E of implemented programs, and when M&E are conducted the 
techniques used are often flawed, providing misleading results. This paper is designed to aid 
practitioners in understanding the techniques available and what kind of data and data 
processing are needed, and to provide examples and a case study of how various techniques 
have been used. This resource will enable water service providers implementing programs to 
embark on M&E of their programs with a greater level of confidence and understanding of 
what is entailed. 

5.1 Introduction 

5.1.1 The increasing role of demand management and restrictions 

Demand-reduction initiatives provide a relatively inexpensive means of closing the supply–
demand gap by providing short- and/or long-term potable water savings. The term ‗demand 
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management‘ is typically applied to water efficiency programs and regulations that effectively 
and permanently reduce demand. Alternative forms of supply, such as rainwater tanks and 
permanent water conservation rules, are also considered to be forms of demand 
management. Determining the impact of demand management is critical for establishing the 
efficacy of such measures as well as their costs, to enable comparisons with other options for 
closing the supply–demand gap. 

In recent years, a broad spectrum of measures have been used to play a critical role in many 
water management plans across the country, from emergency drought response through to 
long-term supply–demand planning. Such measures include: 

 short-term restrictions mainly affecting outdoor garden watering 

 medium-term water efficiency programs affecting both indoor and outdoor structures (for 
example, the fitting of efficient showerheads) and behavioural demand (such as having 
shorter showers) 

 long-term regulations forcing new and existing households to meet significant demand-
reduction targets (for example, through the 40% reduction target for water consumption 
in new dwellings as part of BASIX in New South Wales). 

Water restrictions are temporary measures used to achieve short-term reductions in water 
demand to ease pressure on supply during drought and other supply-constrained periods. 
They are considered supply-side options because they influence the yield (see Step 3b in 
Turner et al. (2010). Accordingly, they are not classified as demand-management initiatives or 
considered on the demand side in the IRP process. Nonetheless, their impact is often subject 
to evaluation both to gauge their effectiveness and to allow for corrections in evaluations of 
other demand-reduction measures. 

5.1.2 The importance of evaluation 

Despite significant investment in such initiatives, there has been relatively little evaluation of 
the actual water savings achieved after implementation (‗ex-post‘ assessment). Quantifying 
the savings arising from demand management is essential. In the IRP process it helps to 
ensure that demand-reduction targets, which use estimated savings based on theoretical 
savings or results borrowed from other areas—that is, predictions of savings (‗ex-ante‘)—are 
being met. In regions actively involved in demand management, evaluation assists in 
determining whether demand forecasts remain reliable over time. It also ensures that 
investment in demand management is cost-effective by informing decisions on how to take 
actions to improve the effectiveness of initiatives being implemented (Turner et al. 2007). 
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5.1.3 Techniques available 

This paper describes the various statistical evaluation techniques that may be used to 
measure the savings from demand-reduction measures after implementation (ex-post). The 
techniques discussed in Section 5.4 can be used (and in some cases have been used) to 
measure savings from demand-management initiatives, such as residential: 

 education programs

 indoor retrofit programs

 showerhead swap rebates

 washing machine rebates

 toilet retrofits

 outdoor garden tune-ups

 garden equipment and baskets of goods rebates

 rainwater tank and greywater system rebates

 household leak repair programs

 pressure-reduction programs affecting the customer side of the meter.

Techniques for estimating savings from water restrictions are addressed in Section 5.5. 
Techniques used to measure the savings associated with the non-residential sector are not 
covered by this paper. 

The kinds of techniques used include: 

 basic before–after tests

 various participant–control means comparison methods

 regression analyses, including time-series, covariate, cross-sectional and panel data
regression.

When using each of these methods, it is critical to take into consideration various potential 
limiting factors, such as: 

 the kind of data available (for example, bulk water production data, customer meter
readings, intervention records and climate data, and whether additional demographic,
end-use or behaviour survey data is available)

 the quality of the data, the duration (for example, three-, four- or six-month reads for
customer meter readings), the period available before and/or after the intervention, and
data processing limitations, including linkages to multiple databases

 the size of the sample or samples available

 the time, resources, skills and expertise available to do the analysis

 complicating factors (such as price changes, restrictions and multiple water efficiency
programs acting in parallel), which may make it more difficult to tease out the effects of a
specific program of interest.

The various techniques, types of data available, skills of the analysts and complicating 
factors all need to be considered before undertaking any M&E exercise. Indeed, before even 
embarking on the implementation of any demand-management initiative it is best to clearly 
identify what data needs to be collated, how and in what format, so that the M&E process is 
streamlined. Many evaluations are compromised because these issues were not considered 
early in the process, often limiting the techniques that can be used and the clearness with 
which savings can be discerned. 

It is also important to understand why the M&E exercise is being carried out. For example, is 
it to quickly check the level of estimated savings at the earliest possible moment for a pilot of 
the program when data and/or sample size allows, to reassure decision makers that the 
program should be implemented? Or is the M&E part of an ongoing program that attempts to 
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tease out the savings of individual programs that are being affected by restrictions, and any 
potential decay in savings? Again, the technique used will depend on why the evaluation is 
being conducted and the level of certainty and detail about savings that is required. 

A wide array of analytical techniques can be employed to measure savings. This paper 
describes a number of techniques reported in published documents. There are likely to be 
many more variations, hybrids and alternatives that can be adopted, depending on the 
objectives and circumstances of the evaluation task at hand. The evaluation technique 
adopted should be devised and tailored to suit the level of accuracy required and the 
expertise, resources and data available. Generally, the greater the accuracy sought, the 
higher are demands on time, cost and knowledge. Data is often a limiting factor in devising a 
methodology, and the type, detail, quantity and quality of data available are all considerations. 

It should be noted that data processing is often the most time-intensive stage of the 
evaluation process, as reliable data is critical to avoiding misinterpretation of results. A 
number of the techniques described in this paper involve complex data manipulation and 
analysis, which may be beyond the capacity of smaller water service providers. Hence, this 
paper is also useful as a guide to specifying, understanding and/or verifying evaluation 
studies performed by external consultants. 

5.2 Data needs 

The type of data required to evaluate water savings associated with demand-reduction 
programs depends upon the estimation technique. However, all empirical methods require, at 
a minimum, some form of customer meter demand data (CMDD) or bulk water production 
data (BWPD), as well as markers of the program commencement date and details of the 
interventions undertaken. Where a program affects individual users at different times, the 
commencement date is preferably broken down into individual intervention dates. Other data 
used in empirical analyses may include household characteristics (household size, income, 
appliance ownership, dwelling type etc.), local demographic data, meteorological data (for 
example, rainfall and temperature), and data on other influential external factors such as 
rollouts of other demand-reduction initiatives (particularly water restrictions) and changes to 
water pricing and regulation. 

5.2.1 Water demand 

The primary data used in empirical evaluation methods is BWPD or CMDD. Assessments of 
the impacts of water restrictions frequently utilise BWPD, as it is often easier to obtain and 
process and is normally available at a daily time step. Evaluation of residential water 
efficiency programs generally requires at least CMDD from participant water users, before 
and after program implementation. More rigorous methods tend to incorporate consumption 
data from customers not participating in the program of interest, which acts as a ‗control‘ or 
‗comparison‘ set. It may also be possible to use BWPD to evaluate residential water-efficiency 
programs. However, this is only viable where the data can be (largely) isolated to the 
residential sector. Where that is impossible, the analysis is less likely to produce reliable 
savings estimates because there is reduced scope to control for concurrent demand-
reduction measures and the data is subject to the influence of non-revenue water and system 
leaks. 

The length of the time series of BWPD or CMDD required depends on the method used to 
evaluate water savings. Around 12 months both before and after the program takes effect is a 
suggested minimum requirement, to determine potential seasonality in water savings. 
However, a longer time series is typically required, specifically where single years are atypical 
in terms of climate or other anomalies, which may produce non-representative water usage 
patterns. This is particularly the case for regression techniques, especially those based on 
climatic variables. A longer time series of consumption data after program implementation is 
also desirable, to be certain of potential seasonality in water savings, to determine whether 
savings are consistent in the longer term, and/or to detect decay in savings over time. 
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5.2.2 Program commencement and intervention dates 

The effects of demand reduction are almost always measured using a ‗before and after‘ 
comparison. When gauging the effect of restrictions, obviously the timing of the introduction of 
different stages of restrictions is critical. For water efficiency programs, the implementation 
occurs at a customer level and thus tends to occur on a rolling or sporadic basis over an 
extended period (rarely would a program engage all participants in one day, week or month). 
Therefore, evaluation of such programs tends to require data on when the program 
intervention occurred for each individual participant, details of the interventions undertaken in 
each property and the overall program commencement date. In a retrofit program, the 
intervention date might simply be the date of the retrofit visit in which water-saving fixtures 
and fittings were installed. The intervention date under a rebate program, however, may be 
less well-defined, as it could be indicated by the date the rebate was applied for or when it 
was paid. In rebate schemes that depend on the participant to install the product (such as 
showerhead programs), recorded dates may bear no relation to the date of the installation 
because the participant may take some time to install the device. Education or behaviour 
change programs may involve multiple interventions, in which case discretion is required in 
choosing how best to interpret intervention dates in the analysis. When multiple conservation 
programs have been initiated, intervention dates for each program are required in order to 
effectively isolate water savings from each program. 

In general, program intervention information will be located in a different database from the 
CMDD. As a result, the two data sources need to be linked for analysis. This process requires 
a common property identifier in both databases and can be complex when manipulating large 
datasets. 

5.2.3 Program details 

When evaluating large programs with multiple potential interventions, it is essential to collate 
and store accurate data on the actions taken for each household to assist in evaluating the 
effectiveness of savings from each component of the program being implemented. This 
enables the program to be assessed and reviewed, and any program component that does 
not appear to be contributing sufficiently to savings can be deleted or modified accordingly. 
Programs such as the original Sydney Water Every Drop Counts Residential Retrofit Program 
(now called ‗WaterFix‘), have various components, including installation of an efficient 3-star 
showerhead, tap flow regulators on kitchen and bathroom taps and a toilet cistern weight, as 
well as advisory services on efficiency tips and tricks around the home. This program, which 
has been implemented in Sydney for over 10 years in more than 500 000 households, has 
benefited from careful data collation of individual household modifications, enabling detailed 
and ongoing evaluation (Turner et al. 2005). 

5.2.4 Dwelling type 

The dwelling type is a fundamental consideration for evaluations of residential water efficiency 
programs. Most of the techniques described are best applied to individually metered 
properties, which in most cases tend to be single detached dwellings, as water savings are 
not diluted by the influence of other non-participant properties attached to the same water 
meter. As the number of individually metered multiresidential properties grows (due to 
changing building codes and other regulations that mandate submetering), so does the 
feasibility of evaluating water savings from the multiresidential sector. However, where 
individually metered multiresidential properties are not common, it is generally advisable to 
limit analyses to single detached dwellings in order to more clearly isolate the savings of the 
intervention. 

5.2.5 Household characteristics and demographic data 

A wide range of household variables, demographic data, or both may also be used to 
enhance the definition and richness of an empirical analysis of water savings. These might 
include: 

 local government area or other geographical grouping 
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 household size 

 age and/or condition of the house 

 property value 

 lot size 

 household income 

 age of the occupants 

 number and type of water-using appliances and plumbing fixtures 

 pool/spa ownership 

 other characteristics, such as whether the household includes a home business. 

Depending on the nature of the analysis, this data may be required at an individual or 
aggregate (for example, suburb or statistical district) level. The main limitations associated 
with the use of household characteristic and demographic data are the high cost of its 
collection and the added complexity it brings to the analysis. Demographic data from the 
Australian Bureau of Statistics (ABS) can be readily linked to consumption data by 
geographical area to inform cross-sectional and panel data regression analyses (see 
Section 5.4.3). However, when more detailed household data is sought, some form of survey 
is usually required, which tends to limit the reach and sample size of the evaluation and 
thereby compromises the statistical significance of the results. Hence, a balance must be 
found between limiting sample size and maximising statistical power. 

5.2.6 Meterological data 

Climate is one of the most influential factors on water demand because it dictates 
consumption through some of the more water-intensive end-uses, including irrigation, 
evaporative cooling and pool filling. Accordingly, the effects of season and weather must be 
accounted for in an evaluation of water savings, either in the interpretation of the results or by 
incorporating those effects into the analysis. At the time resolution typically considered in 
evaluations of demand-reduction initiatives, the influence of seasonal variation is of most 
concern, so a basic tenet of savings estimation is to compare demand figures only from like 
months. A number of the techniques described in this paper also make use of a control group 
to account for the effects of both climate and weather, including two-way analysis of variance, 
matched pairs means comparison or covariate regression. Other forms of regression 
analyses may incorporate dummy variables or Fourier series variables to explain seasonal 
variability (see Fyfe et al. 2010). 

However, when a finer explanation of seasonal and weather effects is required, 
meteorological data may be directly factored into a regression model. Most commonly, 
temperature, rainfall and evaporation data is used as variables in regression models. This 
data is relatively easy to obtain from the Bureau of Meteorology (BoM) at a small cost. Often, 
however, it contains numerous missing or poor-quality entries, which must be dealt with in the 
processing. Alternatively, patched point and data drill datasets may be purchased from SILO.

1
 

Patched point data provides long-term BoM station records that have been ‗patched‘ by 
infilling missing data with interpolated values. Data drills, on the other hand, provide complete 
long-term records of a comprehensive range of meteorological parameters for any point on a 
five-kilometre grid across Australia, based on the spatial interpolation of BoM records and 
some synthetic data. 

                                                 
1
 Part of the Australian Bureau of Meteorology, http://www.longpaddock.qld.gov.au/silo (accessed 

31 March 2010). 
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5.2.7 External factors 

Finally, broadscale external factors that could influence demand, but which are not part of the 
demand-reduction measure being assessed, may also be factored into savings evaluations. 
These might include changes to water policies and regulations, price, public awareness 
campaigns, changes to water restrictions (even when they are not the focus of the analysis), 
the introduction of alternative water sources and the rollout of other demand-management 
programs. 

At a minimum, dates when the changes or introductions occurred are required. Information on 
the nature of the factor in play is often necessary to further unpack its effect on water demand 
and on water savings from the demand-management program of interest. 

Water restrictions are most likely to interfere with savings estimates for outdoor demand-
management measures, as they directly influence outdoor demand. However, they can also 
influence evaluations of indoor programs both directly, by reducing indoor demand, and 
indirectly, by exaggerating or diminishing changes in demand associated with an indoor 
program. Information on which activities are restricted and at what times helps to interpret the 
intricacies of the effects of restrictions on demand and, when regression analysis is used, 
determines how to specify corresponding explanatory variables. 

Building codes are the main form of regulation that will influence water usage, and many 
states have adopted new standards that mandate water-efficient fixtures and fittings in new 
and renovated dwellings. When a participant–control or matched pairs means comparison 
method is adopted for the savings analysis (see Section 5.4.2), households that were subject 
to such codes should be excluded from the analysis. The national Water Efficiency Labelling 
and Standards (WELS) Scheme will also have influenced purchases of water fixtures and 
appliances in many households, and consideration should be given to how that may affect the 
analysis. However, like the effect of public awareness campaigns, the effect of WELS is 
difficult to gauge, so a discussion on its likely effect on the analysis may be the only option. 

Price should only be a significant factor when the tariff or its structure has undergone a 
significant adjustment that would elicit a discernible response from consumers (for example, 
the introduction of a new block tariff structure or large changes to intramarginal rates). 
Accommodating the effect of such adjustments can be as simple as utilising a dummy 
variable in a regression; however, the complexity of price effects sometimes warrants close 
attention and the reader is advised to consult Complementary analytical techniques for urban 
water forecasting in IRP (Fyfe et al. 2010, Chapter 3 in this document) for guidance. 

Alternative water sources such as bores or rainwater tanks can potentially have a large 
bearing on the outcome of a water savings analysis. At the very least, an attempt should be 
made to collect data on their presence and/or use in households to either rule out or flag such 
households in the analysis. Take-up of other demand-management programs can also bias 
results when it is not properly accounted for. Again, this needs to be handled by flagging (by 
date) or eliminating households that have been involved in other programs. 

5.3 Data processing 

Processing the data that is used to evaluate water savings can often constitute the bulk of the 
work. Primarily, this involves ensuring the reliability of the data, but it also often involves 
allocating CMDD into regular intervals (‗binning‘) and linking data from different sources. 

5.3.1 Segregating single and multiresidential dwellings 

The primary step in any evaluation involving CMDD is to segregate single detached dwellings 
from multiresidential dwellings. There are two reasons for doing this. First, multiresidential 
properties are generally not individually metered, meaning that any reductions in water usage 
from a particular flat, unit or apartment will be diluted by other non-participating residences 
connected to the same meter. For this reason, evaluation studies tend to focus exclusively on 
individually metered single detached dwellings. Second, single dwellings usually have a 
significant outdoor component to their usage profile, whereas higher density dwellings have 
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lower outdoor demand or none at all. Thus, comparing single and multiresidential households 
in a participant–control type method (see Section 5.4.2) to discern water savings from an 
indoor water-efficiency measure such as a showerhead replacement is likely to produce 
erroneous results. Differing occupancy ratios between dwelling types can also affect the way 
savings are extrapolated across residential sectors, as described in Box 5.1. 

 

Box 5.1: Extrapolating savings from single detached dwellings to multiresidential dwellings 

Where evaluations are performed on single detached dwellings only, it is often useful to 
extrapolate the results to multiresidential dwellings so as to calculate total savings from the 
program. In such instances, it must be recognised that the average occupancy ratio of single 
detached dwellings is typically higher than that of multiresidential properties. This has 
implications for extrapolating savings from single to multiresidential dwellings such that for 
most programs the savings will be slightly lower for multiresidential dwellings. Therefore, 
when evaluating the impact of a program as a whole, savings derived from an analysis of 
single dwellings that are to be extrapolated to the multiresidential sector should be adjusted 
according to local occupancy ratio figures. 

5.3.2 Removing properties that have changed ownership or 
tenancy 

Changes in property ownership or tenancy during the analysis period can potentially bias the 
outcomes of the analysis because the new household composition will inevitably cause a 
change in the water usage profile, rendering both before–after and participant–control 
comparisons untenable. This is particularly the case in evaluations that are performed on 
disaggregated (household) time series consumption data, such as matched pairs means 
comparison analyses and panel data regressions. 

In panel data regression analyses informed by survey data, data on ownership/tenancy 
changes can be collected through the survey and incorporated directly into the analysis by 
limiting the data associated with each household to the period of continuous 
ownership/tenancy around the program intervention. 

In matched pairs means comparison analyses of billing data, however, the effect of changing 
occupancy can be eliminated, or at least minimised, by removing from the analysis all 
households that undergo change of ownership during the analysis period and all rental 
properties (where this data is available). Where that is not possible, it simply must be 
assumed that the bias introduced by changing ownership/tenancy (inflating or deflating 
savings estimates) is self-cancelling, which is the unstated assumption of aggregate analyses 
anyway. 

5.3.3 Cleaning 

Data cleaning is an essential step to ensure a reliable, unbiased estimate of water savings. 
The data must be checked for anomalies such as negative, null or zero reads. Negative 
entries are often manual corrections to erroneous entries and unless the analyst is familiar 
with such data manipulation it is generally wise to remove records containing negative values. 
Null entries are mostly a problem when they create gaps in the record, while zeros may 
indicate inactive properties. When analysing data in time series, discontinuous records (that 
is, records with missing entries) might need to be removed to allow the data to be binned (see 
the following section). Tests for statistical outliers may also be applied to consumption data to 
reduce the bias associated with abnormally high (and potentially erroneous) records. 
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5.3.4 Binning 

An important characteristic of CMDD is the meter read frequency, as it can influence the 
selection of the method used to evaluate water savings. The frequency with which meters are 
read (monthly, quarterly, biannually or annually) can vary between different water service 
providers and different customers. It may be useful to aggregate or disaggregate the period 
over which the data is analysed into daily, monthly, quarterly or annual water use. Each has 
advantages and disadvantages. An annual average may be simplest, but several years of 
data will be required to assess the impact of the program and detect whether the savings are 
significant. 

Apportioning demand into uniform monthly timeslots can be particularly useful in revealing 
seasonal effects and savings that are obtained mainly in one season (such as savings from 
garden products or swimming pool covers). However, meter readings for residential 
customers are likely to be undertaken only quarterly (or less frequently). Furthermore, it is 
unlikely that all meters are read at the same point in time during a three-monthly interval 
because the walk route for all residential customers may take between one and three months 
to complete in any one billing cycle. This means that although all the CMDD for a given 
quarter was read within one billing cycle, say quarter 3 (January to March), the actual read 
dates could be, for example, anywhere from 31 January (recording the volume of water used 
from 1 November to 31 January) and 31 March (the volume of water used from 1 January to 
31 March). 

This misalignment of meter readings precludes grouping the data en bloc into distinct quarters 
or months. This can be overcome by ‗binning‘ CMDD for each individual customer into 
synthetic monthly reads, which align water usage, as far as feasible, with the months in which 
the water is actually used. Monthly binning helps to add resolution to the seasonal profile of 
demand, but it also has a smoothing effect because consumption apportioned to each month 
is informed by the other months that sit within the associated meter read period. In the 
absence of more sophisticated water metering such as automatic meter reading (AMR), now 
commonly termed ‗smart meters‘), which can record consumption data at a much higher 
resolution (such as hourly or daily), binning is the best technique available to allow direct 
comparisons between individual CMDD records and aggregations of CMDD on a universal 
time step. Details on the technique of data binning are provided in Appendix 5A. 

5.3.5 Linking datasets 

In evaluations of residential efficiency programs, data on program take-up must be linked to 
consumption data. Where cross-sectional analysis is employed (see Section 5.4.3), the links 
need to be extended to data on household characteristics. This typically requires a unique 
property identifier such as the billing account number, although such codes are not always 
common to all datasets. In such cases the analyst must resort to other identifiers, such as 
block and section numbers or addresses, to link the data. 

5.3.6 Separating different programs 

Where the aim of the evaluation is to show the effect of a particular program intervention (say, 
Program 1) and a non-regression methodology is to be adopted for the analysis, participants 
in multiple programs (for example Programs 1, 2, and 3) must be excluded from the 
assessment of Program 1 and assessed separately as participants in all three programs. This 
is because synergistic effects can produce higher combined savings, while competition 
effects can make combined savings lower (Billings and Jones 1996). A synergistic effect 
would be, for example, a behaviour change program influencing various end uses across the 
home combined with a structural change program such as a showerhead swap. An example 
of competing programs would be a retrofit program that included a showerhead component 
being run at the same time as a showerhead program administered by a different agency. 
Thus, it is possible that the savings from the combination of Programs 1, 2 and 3 are not 
necessarily equivalent to the sum of savings from Program 1 alone, Program 2 alone and 
Program 3 alone. The combined effects of multiple programs can potentially be explored in a 
cross-sectional or panel data regression analysis using interaction terms (see Section 5.4.3). 
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Note that households that have participated in one program cannot be used as controls for 
the evaluation of another program under a participant–control method, including the matched 
pairs means comparison approach (see Section 5.4.2). The exception to this rule is if the first 
program is implemented outside the study period of the other program. 

5.3.7 Segregating by demographics 

Households from different age, socioeconomic, ethnic and other groups are likely to 
demonstrate differing water usage profiles. Where data is available at sufficient resolution (for 
example, collector district data from the Australian Bureau of Statistics) and participant 
sample sizes are large enough, the data may be segregated into demographic categories to 
provide specific information on the relative effectiveness of the program in particular groups. 
This step may be performed in either pre- or post-processing (that is, before or after the 
analysis of water savings). 

A simple segregation that may generate useful information relating to program design and 
rollout is that between owner-occupied and tenanted properties data, which some utilities will 
already have at their disposal. Other forms of data segregation will generally require data 
from external sources or primary research. 

5.4 Techniques for evaluating savings from 
demand-management programs 

Techniques for estimating water savings from demand-management programs range from 
simple before–after comparisons of consumption figures to detailed regression modelling that 
attempts to explain household water demand using an array of time series and cross-
sectional variables. The most basic techniques, such as the before–after test, may only be 
applied when all external factors, such as climate and water restrictions, remain constant over 
the period being analysed. In most situations, however, external factors are variable, and 
more complicated techniques, such as matched pair means comparison or regression 
models, are required to produce robust savings estimates. 

As a first step in many water saving evaluations, aggregate CMDD can be plotted as a time 
series in order to help understand the influence of the initiative of interest, as well as the 
effects of various external factors (such as water restrictions). This can help the analyst 
understand the context and likely magnitude of the water savings and will aid in the selection 
of an appropriate technique to undertake a more thorough evaluation. It can also be helpful to 
employ simpler estimation techniques in a preliminary analysis to generate initial rough 
estimates of the expected savings. Those values may be used to validate the findings from 
the more complex techniques of the full analysis, helping to ensure that the techniques are 
applied correctly. 

As mentioned above, data availability can be a critical constraint on the analysis approach 
adopted for an evaluation. For example, without household and/or demographic data, 
complicated cross-sectional or panel data regression (see Section 5.4.3) are simply not 
possible. Indeed, the matched pairs means comparison was specifically developed to provide 
a powerful evaluation method in the absence of such data. However, expertise and resources 
may also be a limiting factor (pair matching requires significant programming and database 
manipulation skills). Where such expertise is unavailable, resources may be better directed at 
collecting the demographic data for regression modelling if the analytical team is more familiar 
with that approach. 

The following sections describe the principles behind the various techniques available to 
measure water savings from demand-management initiatives. The order in which the 
techniques are presented generally corresponds to the amount of data required to perform 
the analysis, beginning with the technique that requires the least data. 
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5.4.1 Basic before–after test 

A simple test may be performed to evaluate water savings from a residential demand-
management program using only water consumption data from participating households 
before and after the program‘s initiation. The difference between the participant‘s 
consumption before and after the program‘s initiation is used to approximate the water 
savings associated with the program. Water consumption may be compared at various time 
scales, including years, quarters and months. However, sub-annual before–after differences 
must be calculated from time intervals separated by 12 months (for example, 5 January to 
6 January, or quarter 1 2005 to quarter 1 2006) to attempt to reduce the potential effect of 
seasonality. 

The equation to determine water savings using the basic before–after test is: 
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where 

t  = the time interval of interest 

Pi,t,after  = the consumption of the i
th
 participant household at time t after the water 

efficiency program intervention 

Pi,t,before  = the consumption of the i
th
 participant household at time t prior to the 

water efficiency program intervention 

n  = the total number of participant households. 

 

The before period can be defined using just 12 months of data. When more than one year of 
post-intervention data is available, data from all years is compared to the same 12 months of 
pre-intervention consumption data. 

The statistical significance of the average savings estimate can be tested using a repeated 
measures t-test. To perform this test, the data is typically entered into a statistics software 
package as the two original sets of consumption figures (aligned by household) rather than as 
the calculated differences. The test calculates the differences as part of the routine to then 
examine whether the average of the differences is significantly different from zero. Unlike raw 
consumption data, the before–after differences that represent savings are likely to be 
normally distributed, allowing the use of this parametric test. However, where the distribution 
of savings is significantly non-normal, the non-parametric equivalent of the repeated 
measures t-test, the Wilcoxon signed-rank test, can be used. Methods for assessing the 
normality of a sample distribution are described in Box 5.2. 
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Box 5.2: Assessing the distribution of evaluation data 

Parametric means comparison methods such as t-tests and analysis of variance (ANOVA) 
work on the assumption that the data being tested is normally distributed. Such methods are 
accurate and powerful when the assumption of normality is satisfied, but can produce 
misleading results when it is not. The assumption is often violated when raw consumption 
figures are compared, as water-use distributions are typically positively skewed. Skewed 
distributions are less of a problem when analysing consumption differences, for example 
differences between before and after consumption or between matched participant–control 
pairs (see Section 5.4.2). Nevertheless, normality should be assessed prior to applying a 
parametric method to either form of data to ensure that the results from the analysis are 
reliable. Visual appraisal of a data distribution can be made using histogram, stem and leaf, 
and normal quantile plots. Numerical tests for normality include the Shapiro–Wilk test and the 
Kolmogorov–Smirnov test. 

 

The test of significance used in the analysis chosen depends on the assertion to be made. 
Two-tailed tests are used to test whether average post-intervention consumption was either 
lower or higher than average pre-intervention consumption, whereas one-tailed tests are 
typically used to test only whether post-intervention consumption was lower (Dziegielewski 
et al. 1992). A one-tailed test is generally used (Dziegielewski et al. 1992) because it is more 
important to determine whether there were legitimate savings from the water efficiency 
program and little importance is placed on determining anti-savings (that is, when the water 
efficiency program caused consumption to increase). If the mean after consumption is found 
to be significantly lower, it is inferred that there were actual savings from the program. 

While the simplicity of this technique may be appealing, it is subject to a number of major 
limitations. Foremost, it does not adequately account for external factors that could also 
cause household water usage to change over the intervening period and thereby bias the 
savings estimates, such as climatic variability or changes to water restrictions, price or 
regulations. To limit bias from such sources, comparisons should only be undertaken on time 
spans that do not encompass such factors, which may limit the analysis to a small segment of 
the sample or preclude it altogether. Alternatively, if the average effect on demand of the 
external factors is known, it can to some extent be factored into the savings calculation, 
although this is likely to be less reliable. 

The effects of weather-induced variability can be overcome by comparing periods of very 
similar weather conditions, which is difficult to verify, or by applying some form of climate 
correction to the CMDD (see Fyfe et al. 2010, Chapter 3 in this document). However, since 
climate correction can itself be a complex analysis, it is preferable to undertake a more 
rigorous savings analysis if the data is available, rather than to attempt to apply a separate 
climate correction. 

In situations in which only participant data is available, the basic before–after test is the only 
option available to estimate water savings. However, obtaining CMDD from non-participant 
households is generally encouraged so that participant–control methods (see below) may be 
employed to better account for external factors that may otherwise bias the results from the 
analysis. 

5.4.2 Participant–control means comparison methods 

Participant–control means comparison (PCMC) methods attempt to control for external 
factors by comparing changes in participant consumption over time with corresponding 
changes in consumption of a non-participant ‗comparison‘ or ‗control‘ group. Household 
savings are calculated at the aggregate level as the average of the differences between 
participant consumption before and after the intervention, minus the equivalent 
non-participant average. Statistical tests are used to determine the significance of any 
differences between the groups. The assumption is that both groups will be affected in a 
similar manner by any external factors (pricing changes, restrictions, climate etc.). In practice, 
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that assumption is not entirely valid, as participants are typically self-selecting, which 
immediately sets them apart from the broader population of water users. 

Ideally, participant and control households would be randomly selected before the program is 
initiated. This would constitute a statistically robust test of the program‘s effectiveness based 
on an experimental design that satisfies the assumption that all households in the analysis 
are randomly sampled from the same parent population. For water efficiency programs, 
however, such an approach is often not practical because the program is made available to 
all customers in the service area and participation is voluntary (thus self-selecting) and indeed 
is encouraged to maximise net water savings. Consequently, the identification of those who 
do not participate in the program as a basis for comparison occurs retrospectively. These 
non-participants are more accurately referred to as a ‗comparison‘ group rather than as a 
‗control‘ group, but the term ‗control‘ is often loosely applied (Dziegielewski et al. 1992). 

Fundamentally, a self-selected participant group and a control group that is defined (by 
default) as those who do not voluntarily participate in the program in question do not 
represent samples from the same parent population. More specifically, self-selection can lead 
to a bias towards participants who are to some extent already attuned to water efficiency and 
likely to exhibit lower average water usage. However, if such a design is used with sufficiently 
large samples, the method can produce informative, if not reliable, results (Dziegielewski 
et al. 1992). Moreover, it is possible to assess the similarity of participant and control groups 
by looking at the distributions of their respective consumption data in the lead-up to program 
implementation (see Section 5.4.2). 

The control group may comprise all non-participating households in the database, or a 
random sample of non-participating households. However, a sample of control households 
should be representative of the parent population that participants are drawn from. For 
example, if participants are known to be confined to a particular geographical area, the control 
group should be drawn from the same or an adjacent area. This assists in reducing the 
effects of geographically specific external factors, such as mains pressure and climate. 

Cross-referencing against demographic and household data may also help ensure that 
participant and control households used in the comparison respond to external factors in a 
similar manner. However, where such data is available, more sophisticated analyses should 
be considered, since simple grouping by demographics and household characteristics cannot 
account for variability introduced by attitudinal and behavioural differences. 

Alternatively, running a dedicated pilot evaluation as described in Box 5.3 would provide an 
opportunity to gauge the effectiveness of a program early on, with sufficient control to ensure 
the statistical robustness of savings estimates and eliminate complicating factors that could 
confound the analysis. 
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Box 5.3: Applying a statistically valid experimental design to evaluate water efficiency 
programs 

A potential solution to the problem of sampling participants and controls from different 
populations is to set up a pilot study that randomly selects both participants and controls from 
a self-selected subpopulation. That subpopulation is first identified through a broad survey 
asking households to nominate themselves as candidates for taking part in the water 
efficiency program. A fraction of the self-nominated households is then asked to immediately 
participate in the program; the remainder are left to act as the control group (and to receive 
the program intervention after the study is completed). By drawing participants and controls 
from the same self-selected subpopulation, the first fundamental assumption of the 
comparison of means tests is theoretically satisfied. However, close consideration must be 
given to managing the pilot so as to minimise the potential for voluntary structural and 
behavioural changes among the control group. 

To obtain significant results from such a study, a minimum sample size for the pilot should 
first be established using the following equation (Dziegielewski et al. 1992): 
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The difference between the expected average of the control and participant groups may be 
approximated from previous studies or by using a fixed parameter or end-use approach. The 
expected standard deviations of the control and participant groups may be assumed to be 
both equal to the standard deviation of all consumption figures in the utility database. 
Alternatively, average consumption can be used, which effectively assumes that the 
coefficient of variation of the entire population is equal to 1 (Dziegielewski et al. 1992). 

Comparing the participant and control sample distributions 

The main concern associated with applying participant–control methods to groups that, 
because participant self-selection, are not drawn from the same population is that the groups 
may respond differently to external factors such as water restrictions, thereby biasing the 
savings estimates. While the integrity of the assumption of a common parent population 
cannot be assured when an evaluation is not based on a randomised experimental design (as 
per Box 5.3), a number of diagnostic analyses can be conducted to assess the validity of the 
assumption. Simple box plots of participant and control consumption over the same time 
interval can give an indication of the spread of the data, while histograms of the same 
information can be used to compare the shapes of the data distributions. Table 5.1 presents a 
number of non-parametric statistical tests that can be used to directly compare participant and 
control consumption distributions before the intervention. While a result that indicates that the 
null hypothesis is true does not guarantee that the samples are from the same parent 
population, it does suggest that the self-selection has not generated an overtly biased 
participant sample and that therefore the ‗default‘ set of controls is a legitimate reference 
case. 
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Table 5.1: Non-parametric tests to compare the distributions of control and participant 
consumption before program commencement 

Test Null hypothesis 

Independent samples 
Kolmogorov–Smirnov test

a
 

The participant and control consumption samples have been drawn 
from the same population (or from populations with the same 
distributions). 

Independent samples 
Mann–Whitney U test 

The participant and control samples have been drawn from the same 
distribution (or from populations with the same distributions). 

Independent samples 
median test 

The medians of the populations from which the participant and 
control samples are drawn are the same. 

Independent samples 
Moses test of extreme reaction 

The range of consumption is the same across participant and control 
samples. 

a This test can also be used to compare a distribution with a theoretical (e.g. normal) distribution. 

Comparison of before–after differences between participants 
and controls 

The logical extension of the basic before–after test on participants is to compare the average 
of the before–after consumption differences with the average of before–after differences for 
the same timespan in a control group. The average before–after difference in participant 
consumption calculated using equation 1 is compared to the corresponding control average: 
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where  

Ci,t,after  = the consumption of the i
th
 control household at time t after the demand-

management program intervention 

Ci,t,before  = the consumption of the i
th
 control household at time t prior to the 

demand-management program intervention 

n  = the total number of control households. 

 

Net water savings are simply the difference between equations 1 and 2. 

While the consumption data within the participant and control groups is aligned by household 
(generating the before–after differences), there is no alignment in the data between the two 
groups. Hence the comparison of the two groups is based on the independent samples t-test 
(one-tailed) or its non-parametric equivalent, the Mann–Whitney U test, and the test is 
performed on the two sets of differences, not the original consumption data. The 
non-parametric test is only required in cases where the before–after differences are not 
normally distributed. 

Different forms of the independent samples t-test are applied, depending whether or not the 
before–after consumption differences are drawn from distributions of equal variances. 
Levene’s test for equality of variances may be used to assist in deciding which form of t-test 
to use. This test is predicated on the assumption that the samples are independent, which in 
this case is satisfied, given that there is no relationship between the control and participant 
groups that could influence water usage or the change in water usage over time. 

Two-way analysis of variance 

An alternative statistical analysis of before–after participant–control data is two-way (factorial) 
analysis of variance. The analysis of participant and control groups described in the previous 
section effectively reduces four separate datasets to two by taking the before–after 
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differences. In this way it can be considered to be a one-way analysis of variance (ANOVA) 
that looks at the effect of one factor (involvement in the program) on the before–after 
consumption differences. Two-way ANOVA can be used to perform the same comparison 
without having to calculate differences by considering the effect on water consumption of both 
the involvement and time factors (the main effects), the interaction between the two factors 
(interaction effect), and the variation within the treatment groups (the four combinations of the 
two factors) that constitute the error term. In this particular application of factorial ANOVA, the 
interaction effect is of most interest because it represents the change in water consumption 
relative to pre-intervention average consumption adjusted for control household demand. The 

analysis is set up as per Table 5.2, where  is the mean water consumption from participant 
or control groups in a specific period before or after the program intervention and a time step 
of one month is assumed. The levels of the ‗involvement‘ factor are ‗participant‘ and ‗control‘, 
while the levels for the ‗time‘ factor are ‗before (month t)‘ and ‗after (month t + 12)‘. 

Table 5.2: Factorial ANOVA of water consumption data for savings evaluation 

 Participant  Control 

Before (month t) µParticipant,Before µControl,Before 

After (month t + 12) µParticipant,After µControl,After 

The two-way ANOVA model is: 

x = µ + i + t + it + eit 3 

where 

x  = values of water consumption 

  = the grand mean 

i  = involvement effects 

t  = time effects 

it  = interaction effect 

eit  = error term. 

 

Factorial ANOVA is generally implemented through a general linear model (GLM) framework 
in standard statistical software packages such as SPSS or SAS. One advantage of ANOVA 
(when implemented through a GLM framework) over the t-test method is that it can 
accommodate an unbalanced design (that is, different sample sizes not only between groups 
but also across time). However, to ensure sampling integrity, a proportional design is 
recommended, in which the difference in the participant and control group sample sizes 
should be proportional between the participant and control groups. Another advantage of 
ANOVA is its ability to compare multiple programs (or subprograms) in the one analysis by 
assigning a level for each program of interest under the involvement factor. 

Like t-tests, ANOVA assumes independent samples and normal distributions. It also makes 
the assumption of homogeneity of variances between samples (see ‗Comparison of before–
after differences between participants and controls‘), which, along with the assumption of 
normality of distributions, will often not be satisfied when analysing water consumption data. 
Generally this is overcome by taking a logarithmic transform of the data prior to the analysis. 

Close attention must be paid to the definition and coding of the reference case, as this 
influences the sign of the interaction effect and thus the expression of the result as a rise or 
reduction in consumption. Where data is log-transformed, the calculation of savings changes 
with different coding of the factors. Generally, the reference case should be defined as the 
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treatment group in the period before the implementation of the water conservation program. 
When using raw consumption data, the water savings will be expressed directly by the 
‗interaction‘ term. If the value is positive, it will correspond to savings from the program, 
whereas if it is negative, savings were not achieved. When using logarithmically transformed 
data, the following equation can be used to calculate the percentage savings associated with 
the demand-management program: 
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where  

S  = the percentage reduction in consumption related to the demand-
management program 

0  = the intercept 

i  = the coefficient associated with the interaction term (between group and 
time period). 

Average savings can then be calculated as average participant ‗before‘ period consumption 
multiplied by the percentage reduction. In order to calculate the confidence interval 
associated with the savings, the upper and lower 95% confidence interval values for the 
coefficient associated with the interaction term should be substituted into the above equation. 

ANOVA relies on the assumption (discussed under ‗Comparing the participant and control 
sample distributions‘) that participant and control households are taken from the same 
population. In situations where the means from the two groups in the before period are found 
to be significantly different, an alternative sampling or analysis approach such as the matched 
pairs means comparison technique (see below) should be considered. 

Matched pairs means comparison approach 

While the basic participant–control methodology can potentially be applied to a select random 
subset of the population to insure against distributional bias, that might not be cost-effective 
or even possible if the program has already been initiated. In that case, the most effective 
way of overcoming problems associated with assigning an appropriate control group to 
self-selecting participants in an ex-post evaluation is to individually match pairs of similar 
households according to their water usage profile. Randomised sampling is effectively 
replaced by a statistically driven process of carefully constructing a control group to ensure 
that the characteristics of participant and control groups are similar. This is the basis of the 
matched pairs means comparison (MPMC) approach, which is arguably the most powerful 
technique for evaluating savings from demand-management programs when only program 
take-up and water consumption data are available. 

Residential water consumption is driven by factors external to the household (such as climate, 
weather and water restrictions) as well as internal factors (household occupancy, household 
type, installed appliances, behaviour etc.). Two similar households would theoretically be 
influenced in the same manner by all external factors. However, if an indoor structural change 
(such as the installation of a water-efficient showerhead) affects one household, that 
household will show a changed water consumption profile, reflecting the isolated impact of a 
single factor. Water savings can then be estimated from the observed difference between 
water-use patterns of households in a control group and patterns in a group of program 
participants. 

Under the assumptions that short-term water use dynamics are relatively constant, and that 
participation in demand-management programs does not substantially change a household‘s 
other water-use habits, a control group can be established by identifying a matching 
non-participating household for each participating household. Matches between individual 
participant and non-participant households are identified primarily using a comparison of 
water consumption patterns prior to the participants‘ involvement in the program. Water 
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consumption of the paired households can then be compared before and after the 
intervention (program implementation), with the divergence in consumption during the after-
intervention period representing the water savings resulting from the program. 

By identifying controls on a household-by-household basis, the process generates a control 
group of the same size as the participant group and allows savings to be calculated on an 
individual household level. This in turn reduces the test of statistical significance of savings to 
a simple repeated measures t-test. Moreover, the control group can be considered more 
reliable in controlling for the influence of external factors. Hence, under the assumption that 
the matched participants and controls respond equally to all factors influencing water 
consumption, the observed differences in water consumption between participant and control 
households following the initiation of the program are deemed to represent the isolated water 
savings associated with the program. 

Matching by household demand can be performed on monthly binned CMDD using a least 
squares approach to comparing participant pre-intervention consumption with the 
corresponding consumption of all candidate controls (see Section 5.8.2 for a detailed 
example). Following the matching of participant–control pairs, the baseline for each pair is 
established by calculating the monthly differences in consumption before the program 
intervention. These baseline differences should be close to zero if participant–control pairs 
are well matched. The same differences are also calculated for each month after the 
intervention. Monthly water savings are calculated as the change in the difference between 
participant and control consumption over 12-month periods spanning the intervention, as per 
Table 5.3. The average savings for each month are then tested using a repeated t-test in a 
similar manner to the before–after test (Section 5.4.1). 

Table 5.3: Calculation of net monthly average per-household savings using matched pairs 

 Monthly consumption (L/hh/d) Monthly savings (L/hh/d) 

 Before (baseline) period After period 

Pair 
ID 

Month j Month j+1 Month j Month j+1 Month j Month j+1 

1 (P1,C1)before,j (P1,C1)before,j+1 (P1,C1)after,j (P1,C1)after,j+1 (P1,C1)before,j 

– (P1,C1)after,j 

(P1,C1)before,j

+1 – 

(P1,C1)after,j+1 

2 (P2,C2)before,j (P2,C2)before,j+1 (P2,C2)after,j (P2,C2)after,j+1 (P2,C2)before,j 

– (P2,C2)after,j 

(P2,C2)before,j

+1 – 

(P2,C2)after,j+1 

… … … … … … … 

n (Pn,Cn)before,j (Pn,Cn)before,j+1 (Pn,Cn)after,j (Pn,Cn)after,j+1 (Pn,Cn)before,j 

– (Pn,Cn)after,j 

(Pn,Cn)before,j

+1 – 

(Pn,Cn)after,j+1 

     Average Average 

     Net Saving Net Saving 

Pair-matching considerations 

To incorporate seasonal variations in consumption, a minimum 12-month period prior to each 
individual household‘s intervention is required for the pair matching process. The period can 
be set to 24 months for better matching results. However, a longer baseline period demands 
greater computational effort for only a marginal increase in match quality. If the assumption 
holds that the control household will respond in the same manner to external influences, it can 
be assumed that a 12-month match in water-use behaviour will be sufficient. Matches should 
be as close to the intervention date as possible. Ideally, the matching window for each 
participant household is defined according to the household‘s specific intervention date (as 
opposed to single program commencement date). 

Datasets are often too large to be readily handled in standard spreadsheet software, requiring 
the process for matching to be automated either in the database itself, or using a statistical 
software package or a programming language capable of handling large arrays of data. 
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Secondary matching criteria can sometimes be used to both reduce the computational load 
and improve the matching process. Matching participant–control pairs from pools defined by 
criteria such as postcode (or other geographical boundary), occupancy, lot size or 
socioeconomic level reduces the processing time by limiting the bounds of the search for 
matches and helps to ensure that matched households have similar characteristics and/or 
water-use traits. However, with each additional criterion, the size of the pool of households 
from which controls can be drawn is reduced, potentially offsetting any improvements in 
match quality and increased processing speed. 

Therefore, the number of criteria and the closeness of match required should be tightened or 
relaxed according to the individual situation. For example, matching demands within a 15% 
tolerance could be tried initially. If this produces multiple matches per participant, additional 
matching criteria could be used or the tolerance criteria could be tightened to 5%. If it 
produces less than one match per participant, it could be relaxed to 25% or secondary criteria 
could be dropped. Generally, the larger the sample pool, the greater the scope for strict 
matching criteria. When the sample size is limited, fewer criteria and less stringent tolerance 
might be warranted to ensure that an adequate number of households are matched. 

It is reasonable to assume that, as with responses to other external factors, responses to 
restrictions would be the same between paired households and therefore should not affect 
savings estimates. Alternatively, where there are differences, they should average out in the 
overall estimate of savings. However, it has been observed that participant households can 
show a stronger conservation imperative than the broader population in response to 
restrictions, causing a bias in savings estimates when restrictions come into force after the 
program begins (Fyfe et al. 2009b). This effect can be overcome by analysing only those 
participants whose intervention occurred less than 12 months before or after (new) 
restrictions were introduced. 

5.4.3 Regression analysis 

Estimates of the impact of demand-reduction measures can also be obtained using 
regression modelling. In a similar fashion to econometric determinations of the elasticity of 
price and other factors (see Fyfe et al. 2010, Chapter 3 in this document), an independent 
variable (or set of variables) can be specified in a regression model of historical demand to 
represent the impact of a water efficiency measure (or suite of measures) (Dziegielewski et al. 
1992). The magnitude of the regression coefficient associated with the water efficiency 
take-up variable may then be used to quantify water savings associated with a particular 
water conservation program. 

Most commercial statistical packages can be used to construct regression models. All that is 
typically required is data preprocessing, in which data is aligned by time and/or household. 
This may involve data binning, depending upon the desired temporal resolution of the data. 

Time-series regression 

Time-series regression models, otherwise known as longitudinal regression models, typically 
predict aggregated (average) household water demand over time using weather and/or 
temporal variables and one or more variables defining the implementation of one or more 
demand-management programs. In this conventional form of water demand model, the 
climatic and temporal variables are used to define the observed seasonality in water 
consumption, allowing the remaining variation in water consumption caused by the demand-
management programs to be explained by their respective variables. Where water restrictions 
are in effect, the impact is typically represented using dummy variables, the magnitudes of 
which define the reduction in average water consumption caused by restrictions with respect 
to a base year not affected by water restrictions. Price effects may also need to be included in 
the model, although because the model considers aggregate demand, generally only the 
more dramatic (for example, structural) adjustments to price need be accommodated using 
simple dummy variables. 

Demand-management programs implemented in all participating households at a single point 
in time may also be defined using a single dummy variable, as for water restrictions. 
However, when a program is implemented in different households at different times, the 
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analysis becomes slightly more complicated. In that situation, the simplest approach is to 
remove a ‗block-out‘ period in which the program is implemented (Dziegielewski et al. 1992). 
Then the regression model may be calibrated using only data outside that period. The major 
limitation with this approach is the removal of potentially valid data in the block-out period, 
particularly when post-implementation data is limited and/or savings estimates are required 
soon after program implementation. A more refined approach is to create a continuous 
variable defining the cumulative number of households participating in the demand-
management program at sequential points in time. Average household water savings are 
obtained by multiplying the regression coefficient of the cumulative variable by the total 
number of participating households. 

A generalised form of a time-series regression model may be written as: 
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where 

yt  = average household demand at time t 

Wk,t  = a set of K weather and/or temporal variables that explain the effects of 
season and weather at time t (k = 1,2, … K) 

Rl,t  = a set of L variables that explain the water restrictions in force at time t 
(l = 1,2, … L) 

Pm,t  = a set of M variables that explain changes to the water price at time t 
(m = 1,2, … M) 

En,t  = the cumulative number of households participating in the n
th
 demand-

management program at time t (n = 1,2, … N) 

,0,1,…,4  = regression coefficients to be estimated 

t   = the error term. 

 

If program take-up variables (En,t) are closely correlated (primarily, that take-up starts around 
the same time), it is best to produce a separate model for each program to avoid the problem 
of the correlated variables interfering with one another in the regression (multicollinearity). 
Details on the specification of (time series) regression models of water demand, including 
adjusting for seasonality in time series models, are presented in Complementary analytical 
techniques for urban water forecasting in IRP (Fyfe et al. 2010, in this document). 

This form of analysis is best applied to aggregated demand from participant households only, 
so that the effect of the program of interest is not drowned out by the broader population. 
Thus the model is a form of before–after analysis that incorporates the effects of external 
factors. Despite the common use of BWPD in other forms of time series regression models for 
other forecasting and analysis purposes (Fyfe et al. 2010), it is generally not advisable to use 
BWPD for the analysis, to avoid diluting the effect of the demand-management program being 
investigated. The rare exception would be when there are very few non-residential customers 
in the bulk meter service area and the program has been taken up by the majority of 
households. 

Covariate regression 

Covariate regression models are a variation upon conventional time-series regression models 
that make use of a control (non-participant) group to help explain normal variability in demand 
instead of weather and temporal variables. The premise for the approach has been adapted 
from catchment water quality modelling (see Bishop et al. 2005, USEPA 1993) and expands 
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on the participant–control before–after principles of ANOVA described above by introducing a 
continuous time dimension. Thus, in covariate models, most of the variability in the aggregate 
participant water consumption is explained using a variable defined by corresponding 
aggregate non-participant water consumption. In this manner, virtually all external factors 
influencing participant consumption, aside from the water conservation measure of interest, 
are explained by the average water consumption of the non-participant group. Water savings 
associated with the demand-management program of interest are again determined from the 
regression coefficient derived for the variable reflecting the cumulative number of households 
participating in the program. 

This method acknowledges that the participant and comparison groups might not be drawn 
from the same parent population and allows for other variables to be incorporated into the 
model to account for differing responses to external factors between the groups. Thus, 
variables (typically dummy variables) can be used to explain divergence from the typical 
relationship between average participant and non-participant demand caused by water 
restrictions and significant changes to the price tariff structure. It is important to recognise that 
the variables used to represent water restrictions and price changes in covariate models are 
fundamentally different from those used in conventional time series models. The regression 
coefficients generated in covariate models do not represent the absolute effect of those 
external factors, but rather the effect on participant demand relative to non-participant 
demand. Hence those variables cannot be used to quantify the net effect of external factors in 
a covariate model. 

A generalised form of a covariate regression model may be written as: 
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where 

Pt  = average participant consumption at time t 

Ct  = average non-participant consumption at time t 

1  = the coefficient associated with average non-participant consumption. 

 

As in conventional time series models, collinear take-up variables should not be included in 
the same regression. However, the take-up variables used in the model determine the data 
used to generate the average participant consumption. Hence participant consumption data 
should be the average of the participants in only the programs being modelled. As for 
participant–control means comparison methods, average control data should not include 
consumption data from participants in any known demand-management programs. 

It is important to note that this method has had limited application to real data or comparisons 
with other benchmark methods (Fyfe et al. 2009abc). The case study presented in Section 5.8 
documents the application of covariate regression to estimate water savings from a retrofit 
and rebate program and compares the results with estimates from the MPMC method. 

Cross-sectional regression 

Cross-sectional regression models analyse demand over a particular period in time (a given 
month, quarter or year) across a sample of individual water users (households). Such models 
attempt to explain variability in demand as a (linear) function of involvement in the program 
and other defining characteristics that influence water use. 

In the most basic form of a cross-sectional regression model, water consumption would be 
predicted using only a single dummy variable indicating whether or not the program had been 
implemented at a given household. This form of model is analogous to performing an 
independent t-test between participants and non-participants on post-implementation data, so 
it is prone to the bias introduced by self-selection described above, as well as interference 
from external factors. 
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More powerful cross-sectional models incorporate additional household explanatory variables 
in order to build demand profiles of individual households. The variables may represent 
characteristics such as: 

 occupancy 

 income 

 plumbing fixtures and water-using appliances 

 ownership (number of toilets, showers, dishwasher, pool etc.) 

 type (dual- or single-flush toilet, front- or top-loading clothes washing machine etc.) 

 usage (length of showers, number of dishwasher loads etc.) 

 prevalence of leaks 

 lot size and garden watering habits 

 property value 

 age/condition of house. 

A generalised form of a cross-sectional regression model is: 
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where 

yi  = water consumption for the i
th
 household over a constant period 

Hj,i  = a set of J household and/or demographic variables for the i
th
 

household (j = 1,2,…J) 

En  = a set of K demand-management program variables (n = 1,2,…N) 

0,1,2  = regression coefficients to be estimated 

i  = the error term. 

 

Household variables need not be exhaustive in developing a complete demand profile, since 
the aim of utilising them is more to distinguish between households and explain 
interhousehold demand variability. Thus, the ultimate model specification may only require a 
handful of statistically meaningful household variables. Moreover, some variables can be 
considered proxies for others and care must be exercised to avoid multicollinearity (Fyfe et al. 
2010) where explanatory variables are potentially correlated. For example, lot size or 
appliance ownership could be reflective of income, and the use of both variables in a model 
could produce misleading results. 

It is worth noting that, unless the study area extends beyond the service bounds of a single 
water authority, variables for factors that are external to the household such as price and 
water restrictions are not necessary. Such factors apply to all households equally, and 
because cross-sectional models do not consider change over time there would be no 
variability in the factors that could be correlated with variability in observed demand. The 
same applies to weather variables in analyses of climatically homogeneous areas. Where the 
geographical bounds of the analysis extend across climate zones (for example, greater 
Sydney or south-east Queensland), weather variables may be required to explain differing 
underlying demand between zones. 

A key benefit of household-level cross-sectional modelling is the ability to explicitly 
accommodate known competing factors, such as other demand-management programs. 
Rather than having to exclude households involved in other programs, additional explanatory 
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variables can be incorporated into the model to explain the effect of competing programs. 
Similarly, multiple programs can be evaluated in the one analysis by including an involvement 
dummy variable for each program of interest. The model could be further extended to explore 
the synergistic or competing effects between pairs of programs by including interaction terms 
in the model, although the analyst is advised to consult specialised texts on regression 
modelling for guidance on the specification and interpretation of interaction terms. 

Cross-sectional models comprising household-level detail are more likely to detect and 
accurately estimate savings than simple participant–control methods, and provide an 
alternative to the computationally intensive MPMC approach. Surveying for data collection, 
however, tends to be time consuming and expensive—a consideration that is likely to affect 
the size of the sample to be analysed. Thus, the choice to adopt a cross-sectional regression 
approach may be informed by other factors, such as accessibility of CMDD (surveyed 
customers can be requested to grant permission to access their records at the time of the 
survey) or the presence of numerous competing programs/factors. 

Panel data regression 

Panel data regression models integrate cross-sectional and time series variables into a single 
model that predicts demand over time at a household (rather than aggregate) level. By 
encompassing both spatial and temporal dimensions, the number of observations and the 
potential degrees of freedom of the analysis are increased, allowing the construction of more 
complex models with numerous explanatory variables. Individual household consumption is 
typically predicted using a variety of climatic, demographic and household characteristic 
variables, along with variables indicating the participation in demand-management programs. 

A generalised form of a pooled time-series regression model may be written as: 
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where variable definitions are as previously described and subscripts i and t represent the 
household and the point in time, respectively. 

As with cross-sectional regression models, the collection of household and demographic data 
can be expensive and time consuming, potentially restricting the size of the sample of 
households and thereby limiting the degrees of freedom of the analysis. Therefore, model 
parsimony is encouraged so as to restrict the number of closely correlated variables entering 
the model and to avoid overspecification. 

The complexity of panel data handling, model specification and model estimation requires the 
use of powerful statistical software packages such as SAS, STATA and LIMDEP. The use of 
such packages, as well as the modelling task itself, requires a high level of expertise, and 
inexperienced practitioners seeking to analyse panel data are advised to refer to specialised 
texts on the theory of panel data regression. 

Panel data models may take a number of forms, each having fundamentally different 
specifications. An outline of the different forms of panel data models is given in this section. 

Constant coefficients models 

The constant coefficients model, sometimes referred to as the pooled regression model, is the 
most simple form of panel data regression in that it assumes no significant unexplained 
temporal or cross-sectional effects. The model maintains constant intercepts and slopes for 
all variables in an ordinary least squares regression model that is specified as per equation 8 
above. Since it is generally hoped that the independent variables selected for the analysis are 
sufficient for explaining the majority of observed cross-sectional and temporal water demand 
variability, a constant coefficient model would the preferred starting point for a panel data 
analysis. 
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Fixed effects models 

When there are known to be likely gaps in the model specification such that either cross-
sectional or temporal variation is not adequately explained, a fixed effects model may be 
employed. Group fixed effects models control for unobserved variables that differ between 
cross-sectional groups (households) but are constant over time. They allow the change in 
independent variables over time to explain the variability in the dependent variable by 
introducing dummy variables that change the model intercept for each group: 
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where 

Xi  = dummy variable representing the i
th
 household 

6,i  = regression coefficients to be estimated. 

 

Conversely, time fixed effects models assume that unobserved variables differ over time but 
are constant across households, and introduce dummy variables to change the intercept for 
each discrete time period. 
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where 

Ut  = dummy variable representing the t
th
 time period 

it  = regression coefficients to be estimated. 

 

It is also possible to control for both cross-sectional and temporal variability simultaneously, 
but the introduction of so many dummy variables starts to compromise the degrees of 
freedom of the analysis. Another form of fixed effects model varies the slopes of variables as 
well as the intercepts, although again this can have a negative impact on the degrees of 
freedom, particularly when applying this to both cross-sectional and temporal variables. The 
selection of the most appropriate fixed effects model is best informed by a hierarchical 
significance testing process, with the constant coefficients model as the baseline for 
comparison. 

There are two key limitations associated with fixed effects models. The first is that any cross-
sectional variables that do not vary over time (such as the number of toilets or showers) have 
to be excluded from a fixed group effects model because they will be perfectly collinear with 
the group dummy variables and thus inestimable. Likewise, time series variables that do not 
vary between households (such as weather variables) would have to be excluded from a fixed 
time effects model. Second, when there are a large number of cross-sectional variables 
compared to time series observations, or vice versa, fixed group and time effects models, 
respectively, start to suffer from compromised degrees of freedom as the number of dummy 
variables mounts. The first limitation is in many cases likely to apply to models of water 
demand, in which case a random effects model may be preferable. 
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Random effects models 

Like fixed group effects models, one-way random effects models are used to accommodate 
unexplained cross-sectional variability. However, instead of ascribing an additional dummy for 
every household, household-specific intercept terms are modelled as a random deviation from 
a mean. This essentially adds a cross-sectional specific component to the error term: 

t,iit,i u  11 

The generalised model equation then becomes: 
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Two-way random effects models divide the general error into cross-sectional specific, 
temporal, and individual error components such that: 

t,itit,i u   13 

The critical criterion that must be satisfied to use random effects models is that there is no 
correlation between the unobserved household- or time-specific random effects and any of 
the regressors. This assumption of orthogonality may be tested using the Hausman 
specification test, which has a null hypothesis that no correlation exists (that is, that the 
individual effects are orthogonal to the independent variables). Where there is no correlation, 
a random effects model is preferred to a fixed effects model because it is more powerful and 
efficient. Where the model specification fails the test, a random effects model would be 
inconsistently estimated and a fixed effects model is more appropriate to the analysis. 

5.4.4 Summary 

All of the approaches discussed in this section rely on CMDD from participant households in 
order to quantify savings from demand-management programs. Additional data requirements 
associated with each of the discussed techniques are summarised in Table 5.4. ‗Primary‘ data 
refers to the data that is essential to the analysis. ‗Secondary‘ data is that which can be 
directly incorporated into the analysis to improve and refine the savings estimates. Note that 
results from any analysis should be interpreted with regard to available climate, water 
restrictions, price, demographic or household data. Means comparison analyses can also be 
refined by targeting specific geographical areas or demographic groups. 

All approaches require data on other programs running concurrently with the program of 
interest, to either exclude those households that are involved in the other programs 
(participant–control methods) or to define additional variables in a regression model to 
account for the effect of those programs. Most evaluation studies of residential programs are 
best targeted at single dwellings, as measured savings are not prone to dilution from 
non-participating multiresidential properties that share a single meter. Due to the sheer size of 
CMDD sets, data processing prior to the calculation and testing of savings tends to be a 
significant component of the overall evaluation process. 
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Table 5.4: Data requirements associated with techniques quantifying savings from water 
efficiency programs 

Method Primary data
a 

Secondary data 

Basic before–after test Program intervention dates – 

Basic comparison of means Non-participant water 
consumption

b
, program intervention 

dates 

– 

Before–after comparison 
between participants and 
controls 

Non-participant water 
consumption

b
, program intervention 

dates 

– 

Matched pair means comparison Non-participant water 
consumption

b
, program intervention 

dates 

– 

Cross-sectional regression Program intervention dates, 
demographic or household data

c
, 

non-participant water consumption
d 

Climate data
e,f

 

Time-series regression Program intervention dates, climatic 
data

e
, water restrictions and price 

data 

Production data (instead of 
participant water consumption) 

Covariate regression Program intervention dates, 
non-participant consumption data

d 
Water restrictions and price 
data 

Pooled time-series regression Program intervention dates, climatic 
data

a
, water restrictions and price 

data, demographic or household 
data

c
 

Non-participant water 
consumption

d 

a To accompany participant consumption data. 
b Used to define ‗control‘ consumption. 
c Such as household size, dwelling type, local government area. 
d Used to establish the reference case for the demand management dummy variable. 
e Such as temperature, rainfall, evaporation. 
f Where modelling across different climatic zones. 

 

The selection of the most appropriate technique for evaluating savings associated with 
demand-management programs depends on a number of considerations. The simplest 
techniques are the before–after tests and the participant–control means comparison (PCMC) 
methods, which require only consumption and participation data and basic statistical 
knowledge. However, despite their simplicity, the techniques are fraught with limitations. 
Foremost, they do not adequately account for external factors, which may alter the 
consumption behaviour of the control and participant households, making it difficult, if not 
impossible, to isolate savings associated with the program being investigated. 

In the (common) absence of data on individual household characteristics, the MPMC 
technique is the most rigorous and powerful for quantifying savings from demand-
management programs. However, the development of an algorithm to conduct the MPMC is 
time consuming and requires a high degree of technical skill in computer programming. 
However, once the algorithm has been developed the technique provides relatively quick 
estimates of water savings after data preprocessing. 

Regression modelling typically requires a similar degree of data processing to the MPMC 
approach, and for cross-sectional and panel data requires information on individual household 
characteristics. Models based on time series data alone are the coarsest of the three forms of 
regression discussed and are the least likely to produce an accurate estimate of savings. 
Covariate regression is an alternative to conventional time series models based on weather 
variables that uses non-participant consumption as an explanatory variable to improve the 
accuracy of the time series approach without the need for household data. This form of 
model, however, has not been widely applied and remains a less proven methodology. 
Covariate regression can also be applied to matched pair data from MPMC analysis in order 
to determine whether the control and participant households are responding to price changes 
and water restrictions in a similar manner, thereby verifying the legitimacy of the pair-
matching process. 
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Cross-sectional regression models are able to discern subtle differences in water 
consumption between separate households using household and demographic data, which 
helps to isolate the effects of demand-management programs. The main limitation with this 
type of model, however, is the inability to consider changes to savings over time or to account 
for seasonality in water savings. Panel data regression models overcome this limitation 
through integrating time series data with cross-sectional data at the household level. Panel 
data models, however, demand a high level of expertise in model specification. Furthermore, 
data manipulation and model estimation require experience in using more sophisticated 
statistical packages such as SAS, STATA, R (PLM package), LIMDEP and SPSS (Advanced 
Statistics Module). 

5.5 Techniques used to evaluate water savings 
from restrictions 

The approach most widely adopted for evaluating water restrictions is time series regression 
modelling based primarily on weather variables. In a manner similar to regression analysis of 
demand-management programs, demand reduction related to restrictions is determined 
through examining the residual variance after the influence of climate (and other relevant 
broadscale variables, such as price changes) has been factored out. Effectively, it is a form of 
climate correction analysis (see Fyfe et al. 2010) that examines the change in the demand 
regime caused by the introduction of or change in water restrictions. However, unlike in 
analyses of demand-management programs, the effect of water restrictions is generally not 
explicitly modelled using an explanatory variable. Instead, the effect of restrictions is 
interpreted as the portion of water demand not explained by a model calibrated to a 
pre-restriction period when it is applied to the restricted period. In other words, water savings 
are calculated as the difference between what demand would theoretically have been if 
restrictions were not enforced and the pre-restrictions demand regime had remained, and the 
actual demand observed under restrictions. 

A typical regression model used for evaluating restrictions would take the general form: 
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where 

yt  = average household demand at time t 

Wk,t  = a set of K weather and/or temporal variables that explain the effects of 
season and weather at time t (k = 1,2, … K) 

,0,1  = regression coefficients to be estimated 

t   = the error term. 

The model would be calibrated to an unrestricted period of at least one year to capture 
seasonal variability. When using a monthly time step, a longer calibration period is desirable 
to ensure a robust model. The model equation produced by this calibration is taken to be 
representative of an unrestricted demand regime. The impact of restrictions is then the 
difference between observed demand over the restricted period and the corresponding 
predicted demand for the period calculated using the equation derived from the model 
calibration. This analysis assumes that all the variability not explained by the model is caused 
by restrictions. That assumption will never hold true in absolute terms, but it is considered a 
reasonable approximation of reality when the model adequately explains the variability 
observed in the pre-restrictions calibration period. 

Since water restrictions typically apply to the entire residential sector and some parts of the 
non-residential sector, BWPD can be used for the analysis. This facilitates modelling on time 
steps as small as a day and requires far less data handling and manipulation. On the other 



NATIONAL WATER COMMISSION — WATERLINES          173 

hand, this limits the analysis to quantifying the broad effect of restrictions, precluding analysis 
of the particular sectors subject to restrictions. However, if the analysis is conducted on a bulk 
water zone known to be predominantly residential, the findings can be interpreted to apply to 
that particular sector. 

While interpreting the restrictions effect from residuals is straightforward, it does not provide a 
direct means of evaluating the statistical significance of the savings estimates. Various 
techniques have been employed to gauge the significance of departures from predicted 
demand, such as checking whether observed demand falls within the confidence intervals of 
the model predictions or applying a t-test to compare residuals from the calibration period and 
the restrictions period (see Section 5.7.2). Alternatively, savings from water restrictions can 
be quantified by including restrictions as an explanatory variable (or set of variables) in a 
regression model that is fitted to a period that includes both restricted and unrestricted 
demand. In such a model, if the restrictions variable is appropriately specified and found to be 
statistical significant, the associated regression coefficient represents the savings achieved. 

The main problem with using an explanatory variable to gauge the effect of restrictions is that 
the result is heavily influenced by the way the variable or variables are specified. In most 
regression models of water demand, restrictions variables have been based on a simple 
binary specification whereby each stage of restrictions is represented by a separate dummy 
variable. However, that may not be adequate because savings arising from water restrictions 
will often exhibit seasonality, peaking in summer when restrictions have the greatest effect. 
Using a dummy variable specification effectively forces the effect of restrictions into a single 
constant value, which could produce an inaccurate savings estimate and even cause the 
variable to not be recognised as significant. To reflect seasonality in savings, water 
restrictions may instead be specified using separate dummy variables for each month or 
season, requiring up to three or 11 dummies for each stage of restrictions, respectively. 
However, the use of multiple dummy variables can reduce the degrees of freedom and power 
of the analysis where the number of demand observations is small. An alternative 
specification could be the use of single dummy variables for each stage, combined with 
interaction terms that combine the restrictions dummy variables with a variable that has a 
similar seasonal pattern, such as temperature or evaporation. The interaction terms change 
the slope of the model with the introduction of restrictions, thus allowing the effect of 
restrictions to be amplified as temperature or evaporation rises. 

5.6 Analytical pitfalls, limitations and potential 
solutions 

Determining water savings from demand-management initiatives, particularly water efficiency 
programs such as residential retrofits and showerhead swaps, generally requires analysis of 
CMDD. This means that some form of data binning technique has to be employed to 
accommodate the variable timing of meter reads. Data binning may also be required to more 
effectively account for seasonality when meters are read more infrequently. For example, 
Weber (1993) contends that monthly or bimonthly meter reads are essential to assessing 
demand-management programs using regression, to generate an accurate representation of 
seasonality. However, there are examples in which datasets with larger meter-read intervals 
are used. In these situations, a binning technique needs to be employed to apportion reads 
into smaller time steps (monthly for quarterly read data, quarterly for biannual data). 

One of the major limitations associated with the binning of long meter-read intervals into 
smaller consumption time steps is linked to the effect of ‗smearing‘. In this situation, seasonal 
peaks and troughs might not be adequately defined in the data. As a result, it may be more 
difficult to match pairs and to specify representative climatic variables. Another major 
limitation associated with infrequent billing is that demand-management programs are often 
implemented between successive meter reads. This makes it difficult, if not impossible, to 
quantify the water consumption prior to and after the implementation of the program during 
the time interval. To overcome limitations associated with infrequent billing periods, during 
planning of evaluations, water service providers should either undertake special reads for 
participants or (preferably) undertake increased meter reads across the board. Alternatively, 
this period should be avoided in the analysis. 
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Past examples using regression models to determine the effect of water restrictions have 
tended to specify the restrictions variable as a simple dummy variable, without considering 
the potential seasonal variation in the demand response to restrictions. Given that most 
restrictions regimes are designed to limit outdoor water use, it is reasonable to assume that 
restrictions will reduce demand more in summer irrigation months than in winter. Kidson et al. 
(2006) and Spaninks (2010) accommodated seasonality in savings by analysing the 
difference between observed and predicted demand in the post-restrictions period rather than 
using a single dummy variable in the model itself. This approach, however, assumes that the 
regression model successfully explains all the non-restrictions related variance and that the 
entire portion of the post-restrictions error terms is the effect of restrictions—a necessary but 
coarse assumption that generates reasonable estimates of savings but perhaps requires 
further substantiation. In adopting this approach, it may be possible to explain more of the 
non-restrictions related variability in demand, such as that caused by gradual efficiency gains, 
by modelling seasonal demand and base demand separately (see, for example, Zhou et al. 
2000). Alternatively, when specifying restrictions variables, consideration could be given to 
breaking up the effect into seasons (by using summer, spring, autumn and/or winter dummy 
variables) or interacting the restrictions variable with variables that are positively correlated to 
outdoor water use (primarily temperature and evaporation). 

When using the results of savings analysis, care needs to be taken when incorporating the 
savings identified into the options component of the end-use based model. Projected savings 
of options need to take into consideration ‗free riders‘ (the proportion of stock that would 
change over to more efficient stock through natural attrition anyway—especially in the case of 
rapidly changing technology such as washing machines). Hence, the interconnection of the 
end-use stock models with the savings models needs to be considered. 

Table 5.5 describes additional pitfalls and limitations, along with potential solutions. 

Table 5.5: Pitfalls, limitations and potential solutions associated with measuring the impacts of 
demand-management programs and water restrictions 

Pitfalls and/or limitations Potential solutions 

Analysis limited to participants who may 
represent very specific groups 

Actively select households participating in 
demand-management program. 

Analysis limited to single dwellings Submetering of multiresidential blocks. 

Weight the analysis by household size 
(occupancy). 

Analyses of indoor programs need to control 
for outdoor use and rainwater tanks 

Use strict matched pair validation criteria. Specify 
rainwater tanks and weather variables in a 
regression model. 

Interaction of programs targeting the same 
end-use 

Remove households participating in two programs 
associated with the same end-use. 

Short pre- and post-intervention periods may 
not reflect the true success of the demand-
management program 

Use a minimum of 12 months for the 
pre-intervention period. Undertake evaluations 
later than two years following intervention to 
assess the longevity of the savings. 

Analysis needs to take account of whether the 
fixture is a primary fixture (e.g. main or ensuite 
toilet) 

Careful collation of such data at the time of 
supplying/rebating the fixture . 

Results may be difficult to evaluate due to 
large variance in the signal 

Use the largest possible dataset. 

Difficulty separating the effect of water 
restrictions from demand-management 
programs if both are implemented at the same 
time 

For regression modelling, collect additional data 
from when similar water restrictions were in place 
in the past. 

Use a pair-matching exercise to factor out the 
effect of the water restrictions. 
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5.7 Examples 

This section summarises published examples of the application of some of the demand-
management program and water restrictions evaluation methods described in sections 5.4 
and 5.5. It provides an indication of the variety and complexity of numerical evaluation tasks 
and shows how the various techniques can be adopted and tailored for specific applications. 

5.7.1 Demand-management programs 

Matched pairs means comparison studies 

A number of recent evaluations in Australia have adopted the MPMC approach to quantify 
water savings associated with a range of demand-management programs. Turner et al. 
(2005) successfully used the MPMC approach to evaluate water savings from households 
participating in the Sydney Water Corporation‘s Every Drop Counts Residential Retrofit 
Program (now called ‗WaterFix‘), which over the past 10 years has been implemented in more 
than 500 000 households in the Sydney region. At the time of program evaluation, 
approximately 200 000 households had taken part. The program involved a qualified plumber 
visiting the home to install tap flow regulators on kitchen and bathroom sinks, install toilet 
cistern flush arrestors, replace inefficient showerheads, locate and repair leaks, and provide 
general water-saving advice. An overall reduction in water usage associated with the program 
was first determined using the MPMC approach on 17 000 participating households, 
producing a savings figure of 20.9 ± 2.5 kL/household per year. The participant group was 
then broken down into subgroups according to which specific program components they 
received to analyse the potential synergistic and competitive effects on water savings. As a 
final part of the study, an analysis was undertaken to examine potential relationships between 
the estimated water savings and various geographical groupings, socioeconomic categories, 
income categories and occupancy ratios. 

Kidson et al. (2006) used the MPMC approach to evaluate water savings associated with 
Sydney Water‘s 2003 washing machine rebate program, which later informed a revised 
program in 2006. Household water consumption records were first put through data 
processing to remove multiresidential households, households experiencing a change in 
occupancy and unoccupied households. Participant households were then matched to other 
households in the same suburb, thereby accounting for the widely varying weather conditions 
occurring over the greater Sydney metropolitan area. Out of a possible 6545 households 
participating in the program, 1365 were successfully matched. The results showed that the 
savings were related to the type of washing machine owned prior to participation in the 
program: larger savings were observed in households previously owning a top-loader rather 
than a front-loader. The effect of outliers was also analysed, and results appeared more 
robust in terms of confidence interval widths after outliers were removed. Taking outliers into 
consideration, the overall program achieved a saving of 23.2 ± 5.1 kL/household per year for 
households taking up the 4A washing machine rebate. However, those that already had a 
front-loading machine only saved 16.9 ± 9.3 kL/household per year, compared to 
29.8 ± 6.8 kL/household per year for those that originally had a top-loading machine. 

The MPMC approach was also used to estimate water savings from the Home WaterSaver 
Rebate Scheme run by Gold Coast Water (Snelling et al. 2006, Turner et al. 2007). Water 
savings estimates were obtained for a number of water-efficient products, such as rainwater 
tanks, washing machines, shower roses and/or water flow regulators, spa covers, dual-flush 
toilets, garden products and pool covers. It was found that actual savings from rainwater 
tanks and washing machine rebates were lower than theoretical estimates. It was also found 
that water savings were likely to be lower if rainwater tanks were not connected to indoor 
end-uses, which help to optimise the potential savings of tanks, or if rebates were not 
restricted to well-designed water-efficient front-loading washing machines. 

In an interesting extension of the MPMC approach, a mains supply pressure reduction 
program, also run by Gold Coast Water and designed primarily to reduce leakage and the 
impact of mains bursts, was evaluated in a separate study (Simard and White 2007) to 
determine the associated reduction in residential demand (that is, the effects of pressure 
reduction on the customer side of the meter). Individual households within the service areas 
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affected by the program were matched to households outside the affected areas to provide 
the comparison group. The average saving across 14 000 households was found to be 
16 kL/household per year. That figure was thought to be an underestimate of true savings 
because water restrictions and the Home Water Saver Rebate Scheme were in effect at the 
same time. Restrictions, in particular, are likely to deflate the savings observed because 
pressure reduction in a household is likely to achieve greater savings in large outdoor 
end-uses associated with flow rates (such as garden watering). With restrictions in place, less 
garden watering would be permitted and thus fewer savings would be achieved from a 
pressure reduction program. This demonstrates the complexity of evaluation studies and the 
need to always be mindful of other factors that may interfere with the analysis. 

Regression studies 

International papers published on evaluations of demand-management programs mostly 
describe regression methods. Morgan (1982) undertook a study to quantify water savings 
associated with the implementation of water conservation kits in Oxnard, California, using a 
pooled time series and cross-section regression analysis. Bimonthly water usage at individual 
residences was predicted using a combination of explanatory variables, including: 

 property value 

 number of years of residence 

 occupancy 

 house age and condition 

 age of the head of the household 

 the number of water-using appliances. 

Dummy variables representing each billing period were used to explain seasonal and 
weather-induced variation, and to quantify longer term, temporal trends associated with water 
conservation publicity and associated demand reductions, and/or a declining real price of 
water. Participation in the conservation program through retrofitting a toilet flush reducer and 
a showerhead flow restrictor, and detecting leaks in toilets, was indicated by another dummy 
variable. Once the regression model was calibrated, the coefficient associated with the water 
conservation kit variable was used to estimate savings in water usage. The study estimated 
an average saving of 22.1 kL/household per year, or an approximately 4.2% reduction in 
consumption. 

Morgan and Pelosi (1980) carried out another regression analysis on the dataset referred to 
above to account for the fact that participants tended to have higher average consumption 
prior to the program‘s inception. The difference in average (aggregate) bimonthly water usage 
between households that installed the kits and those that did not was predicted using a simple 
linear regression model incorporating a single dummy variable to indicate the period before 
and after the distribution of the kits. The coefficient associated with the kit installation variable 
was again used to determine the reduction in water usage. The 3.2% reduction in average 
bimonthly water usage was comparable to the 4.2% reduction obtained via the pooled time 
series and cross-section regression analysis described above. 

Renwick and Archibald (1998) undertook a regression analysis on data from two Californian 
communities to determine the effectiveness of technological change, non-price policy and 
price policy in reducing water demand. A total of five separate equations were developed. 
Technological change was specified through the use of four separate equations, capturing the 
adoption of different indoor and outdoor water-efficient technologies. Water demand was then 
linearly regressed against the outputs from the four previously specified equations modelling 
technological change and a variety of other variables, which quantified socioeconomic factors 
and climatic influences as well as the implementation of price policy and non-price policy 
(such as water restrictions). Due to the simultaneity inherent within the model, a two-stage 
least squares estimation procedure was used to calibrate the model. After calibration, the 
regression coefficients were used to calculate elasticities associated with the various 
demand-management variables to infer their relative effectiveness. 
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Kenney et al. (2008) carried out a regression analysis on data from Aurora, Colorado, to 
measure water savings from indoor and outdoor water conservation measures, water 
restrictions and price policy. The natural log of household demand was regressed against a 
variety of seasonal/weather-related variables, economic/demographic-related variables and 
variables indicating the implementation of demand-management techniques (that is, price 
policy, water restrictions and water conservation measures). Most explanatory variables were 
not transformed, aside from median household income and the CPI-adjusted average price of 
water, which were both logarithmically transformed. The logarithmically transformed average 
price of water was also multiplied by a dummy variable indicating whether water restrictions 
were in place, to account for the fact that households constrained by restrictions are less 
responsive to price changes. As a result, the final regression model effectively incorporated 
the interaction between water restrictions and price policies. 

5.7.2 Water restrictions 

To gauge resident response to water restrictions in the Rouse Hill development in 
north-western Sydney, Kidson et al. (2006) fitted a regression model with average maximum 
daily temperature and rainfall as independent variables to binned and seasonally 
decomposed CMDD in the period leading up to the introduction of restrictions. The 
percentage reduction in demand associated with restrictions was then calculated as the 
difference between the total predicted demand using the regression model (that is, demand 
expected without restrictions) and observed demand over the subsequent restrictions period. 
The same analysis was also performed for a control group outside the development to 
compare responses between residents with a third pipe water supply (Rouse Hill) and those 
with conventional reticulation. 

In a similar analysis of the impact of water restrictions on demand in greater metropolitan 
Sydney, Spaninks (2010) regressed temperature, rainfall and evaporation variables against 
monthly per capita demand derived from reservoir corrected BWPD and estimated population 
served. Demand was again adjusted for seasonality using seasonal decomposition, and the 
weather variables were normalised to the average for the period of analysis to represent 
deviations from average. The stepwise regression also included lagged weather variables, 
and generated a final model that used temperature, evaporation and previous day‘s rainfall as 
explanatory variables. As in the previous study, the water savings from restrictions were 
interpreted as the difference between observed and predicted demand during restrictions. 
The effect of concurrent demand-management programs on the results was explored but not 
explicitly quantified. 

Neal et al. (2010) performed a very similar analysis to gauge the effect of water restrictions on 
three towns in north-east Victoria. Raw monthly demand (not adjusted for season or 
population) from BWPD records was modelled using evaporation and rainfall as explanatory 
variables. Again, percentage reductions in demand caused by restrictions were calculated 
from the residuals when the model, calibrated to a pre-restrictions period, was used to predict 
demand under restrictions. The analysis took an additional step to verify the statistical 
significance of the observed reductions by comparing the pre- and post-restrictions residuals 
using an independent t-test. For one of the three towns considered in the analysis, the model 
was a relatively poor fit and there was no significant reduction in demand related to 
restrictions. This was thought to be an artefact of the demand profile of a small town, which 
may be prone to variability caused by factors not included in the model, including tourist 
numbers (particularly in winter). 

Morden et al. (2007) combined regression analysis with frequency analysis to reveal the 
changes in peak hourly demand associated with reductions in demand stemming from 
demand-management programs and restrictions in Melbourne. Regression analysis was used 
to describe the relationship between peak hourly demand and selected weather, water 
restrictions and trend variables. From this, two models for normalised peak hourly demand 
were developed: one based on current demand and a second calibrated to demand five years 
earlier. Frequency analysis was then used to generate 1 in 20 annual exceedance probability 
peak hourly demands from a time series of demand generated using historical weather data 
as inputs to the two models. The effect of water restrictions, expressed in terms of the 
percentage reduction in the 1 in 20 year peaks, was held to provide potential cost savings 
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through the delay and reduction of system augmentations and reduced infrastructure 
replacement. 

Beatty et al. (2008) applied climate correction to BWPD from Yarra Valley Water in Melbourne 
to reveal noticeable downward trends in production associated first with water pricing reforms 
and then with the introduction of water restrictions. Climate correction was also applied to 
CMDD from detached dwellings in Yarra Valley. A downturn in consumption following the 
introduction of restrictions was verified by demonstrating that the upper 95% confidence 
interval of the climate correction for the restrictions period fell below the lower confidence 
interval for the period leading up to restrictions. This approach was similar to that taken by 
Hansen and Narayanan (1981), who compared the observed demand with the predicted 
demand over a three-year period that included one restricted year. In this case, observed 
demand fell below the confidence interval of the predicted demand in the year of restrictions.

1
 

Roberts (2008) used aggregate weekly sewer flows from Yarra Valley Water to determine the 
impact of water restrictions on indoor water use. Dummy variables were used to represent the 
effect of two water restriction stages on sewer flows in a simple linear regression model also 
incorporating rainfall and a trend variable (representing the effect of other demand-
management measures) as independent variables. Savings associated with the restriction 
stages were gauged by the model coefficients associated with their respective dummy 
variables. 

Chapman, in White et al. (2000), took the climate correction and trend tracking approach 
described in DEUS (2002). First, predicted demand from a climate correction model was 
plotted against observed demand for both the period immediately prior to restrictions and the 
restrictions period. Polynomial curves were fitted to the plots to generate expressions for 
predicted demand in terms of observed demand. Savings were then calculated for in-house 
(weather-independent) and ex-house (weather-dependent) demand by inputting observed 
values for each month into the two polynomial functions and comparing the outputs. 

In a study conducted by Anderson et al. (1980), the effect of water restrictions on daily 
municipal water use in the city of Fort Collins, Colorado, was evaluated using multiple linear 
regression models. Various climatic variables, such as temperature, precipitation, solar 
radiation and evapotranspiration, were incorporated into the models, along with a maximum of 
three water restriction dummy variables. Two of the models only used one water restriction 
variable, which specified whether or not water restrictions were in place, whereas the third 
used an additional two dummy variables that reflected the proportion of the population 
affected by lawn watering restrictions on a given day. These additional water restriction 
variables led to more accurate predictions of daily water use by the third model. 

5.8 Case study 

This section documents the application of the matched pairs means comparison (MPMC) and 
covariate regression estimation techniques described above to evaluate water savings from 
two residential demand management programs: 

 household retrofits of water-efficient taps and showers, leak repairs and water-saving 
advice (home water retrofit, HWR) 

 rebates on the installation of a water-efficient Water Efficiency Labelling and Standards 
(WELS) scheme rated dual-flush toilets (DFTs). 

 

The case study first details the processing involved in preparing the data for the analyses, 
including the criteria and rationale behind quality screening. The principles underpinning the 
implementation of the two analytical techniques are then described, followed by a comparison 
of the water savings estimates from the two techniques. 

                                                 
1
 Prediction intervals would be more appropriate for these analyses; see Fyfe et al. (2010). 
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5.8.1 Data processing 

Intervention dates for each of the programs were first extracted from the program records. 
The toilet subprogram required that rebate applications could only be filed after the purchase, 
so the application date was used to indicate the intervention.  

The program participation data then had to be linked to CMDD supplied by the water utility. 
Most subprogram records included a billing account number. Where a billing number had not 
been recorded, block and section numbers were used to identify the participant household‘s 
consumption record. All remaining non-participant household consumption records in the 
utility database were ascribed to the pool of potential ‗control‘ households. 

While the program was available to the entire residential sector, only single detached 
dwellings could be used in the analysis. Multi-residential properties are generally not 
individually metered, meaning that savings estimates generated from multi-residential data 
would be diluted by other non-participant properties. It was also important to ensure that there 
was no misattribution of water savings between programs. Therefore, households 
participating in other known demand management programs were removed from the 
participant subsets. Note, however, that only participants in the HWR retrofit were eligible to 
be recipients of the DFT rebate. Hence the effects of the two programs were effectively 
lumped in the analysis of the DFT rebate. 

The participant and control datasets were then subjected to quality screening to remove 
households whose consumption records contained the following anomalous data: 

 null (empty) consumption readings 

 negative consumption readings 

 zero consumption readings 

 duplicate readings 

 misaligned meter-read dates or missing readings (discontinuous records) 

 statistical outliers 

 intervention dates well outside the bounds of the program 

 meter reads that occurred well outside the bounds of the analysis period. 

The removal of households with one or more zero consumption readings ensured that 
households that were vacant or inactive or that underwent a change in occupancy were 
removed from the dataset. Households with duplicate and misaligned reads were removed to 
allow the binning algorithm, which relies on continuous consumption records, to standardise 
the data to a monthly time step. Unusually high levels of consumption were deemed likely to 
bias savings estimates. Hence, statistical outliers were defined as readings that exceeded the 
threshold: 

 5.210 
 15 

where: 

 = the mean of the logarithmically transformed data 

 = the standard deviation of the logarithmically transformed data. 

This threshold is based on the understanding that in a lognormal distribution (which is typical 
of water consumption data) 99% of the data should be below this figure. 

After the elimination of problematic data, the quarterly consumption data was binned into 
monthly consumption figures using the method outlined in Appendix 5A. This aligns 
household records to a universal time step, which enables the use of common reference 
points in time and facilitates direct comparisons between households. The monthly demand 
figures were divided by the number of days in the month and converted to units of 
litres/household/day (L/hh/d) so as to allow direct comparison between months. 

 



NATIONAL WATER COMMISSION — WATERLINES          180 

 

5.8.2 Matched pairs means comparison analysis 

The primary method used to estimate water savings from the programs was the MPMC 
technique described in Section 5.4.2. That method was considered to be the benchmark 
standard of the two methods used in this case study, as it had been developed, tested and 
refined through the course of a number of other evaluations, including Fyfe et al. (2009abc), 
Lee et al. (2007, 2008), Simard and White (2007), Snelling et al. (2006) and Turner et al. 
(2005). It can also be considered to be the more powerful of the two methods, primarily 
because it calculates savings at an individual household level to generate a cross-sectional 
average at each time step. The method consists of four steps: 

 pair-matching 

 quality testing of pair matches 

 savings calculation 

 null hypothesis testing. 

Pair-matching 

The core of the methodology consists of matching each single detached household that 
participates in a program (‗participant‘) with a non-participating single detached household 
(‗control‘). This theoretically ensures that control and participant households are drawn from 
the same population, thereby avoiding the distributional bias discussed in Section 5.4.2. 

Using a linear search algorithm, matching can be performed on an exhaustive comparison 
between each participant and all controls (that is, no sampling is used). A control household is 
identified by the least squares differences between monthly water consumption levels over 
the pre-intervention matching period. Matched controls are removed from the database to 
ensure that a unique control is identified for each participant, preserving the independence of 
each matched pair for later statistical analysis. Participants are not necessarily matched with 
the ‗best possible‘ control but rather with the ‗best possible control still available‘. 

The pair-matching algorithm calculates a match value for each participant and potential 
control. That value is the squared sum of differences between water consumption in each 
month for the participant and control, and reflects the quality of the match. The matching is 
done by means of least squares analysis, using the square-root difference between monthly 
consumption between the control and participant (also known as the Euclidean distance): 

     23I3I
2

13I13I
2

14I14I PC...PCPC    16 

where 

P  = monthly demand of participant 

C  = monthly demand of associated control 

I  = the month of the intervention. 

 

To minimise the risk of other factors influencing water savings estimates, each participant was 
matched over the time period immediately prior to their participation in the program. Since 
water meters were read on a quarterly basis, the consumption values up to three months 
immediately before the intervention were in part influenced by the demand-management 
measure. For this reason, a period of between 14 and 2 months prior to the month of the 
intervention was used for matching. It should also be noted that the order of the participants in 
the database was randomised before matching to minimise any bias that may result from an 
ordered list of participants. 
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Any participant household that did not have adequate pre-intervention data to allow matching 
was eliminated. Then participants that did not have adequate post-intervention data were 
dropped from the routine. The savings calculation described below was applied to data from 
the third month after the intervention date onwards (because of the effect of binning quarterly 
data mentioned above). Therefore, only participants with at least three months of 
post-intervention data were retained. 

Within the matching routine, a number of criteria were applied to the control households. 
Before a least squares calculation was performed, each control was tested to ensure that it 
had sufficient data that corresponded to the pre-intervention data of the participant being 
matched (that is, 14 months of data prior to the participant intervention date). A pair of 
secondary criteria was then used to identify optimum matches following the least squares 
calculation. Where a participant household had more than 12 months of analysable 
post-intervention data, a control match identified by the least squares calculation must have 
had 12 months of corresponding data to analyse. Where a participant had less than 
12 months of data, the matched control must have had at least the same number of 
corresponding data points. 

Applying the above criteria to the control group effectively resulted in a trade-off on the quality 
of matches (a slight reduction), in that a sub-optimum match could be selected in favour of the 
strongest least squares match on the basis of making use of available participant 
consumption data. Therefore, it was possible that no match could be found for a participant 
because there was no control remaining (given the stepwise nature of the matching) that had 
sufficient pre- and post-intervention data. 

Quality testing of matched pairs 

A good match indicated that the households had similar water consumption characteristics. 
Once the match value was obtained, there needed to be a process to determine whether the 
match was at a level appropriate for the analysis. Assuming the match criteria was 
appropriate for the majority of matched households, only those pairs of properties for which 
the match was not as good were further investigated. For example, the match value for high 
water users was likely to be higher—which implied a poor match, but in fact the value was 
higher only because consumption was of a higher value. Because high water users are part of 
any population, a filtering process that treats all customers equally was used to ensure that 
high water users were not discriminated against in the sample. 

To ensure the statistical integrity of the matched pairs previously identified, they were 
validated using four tests: 

 spur test 

 mirror test 

 correlation test 

 variance ratio test. 

The spur test was used first, to eliminate pairs that were not sufficiently robust to withstand 
finer grained validation techniques. Pairs that passed the spur test were subjected to the 
three other tests, while those that failed the spur test were discarded. Pairs that failed all three 
of the subsequent tests were also discarded. Thus, pairs that were retained for the means 
comparison analysis were those that passed the spur test and one or more of the mirror, 
correlation and variance ratio tests. The rationale behind each test is described below. 

The spur test detected spurious consumption data points, which were defined as monthly 
consumption figures that were 12 times greater than a given participant household‘s 
long-term mean consumption. Thus, if a household used more water than its average annual 
consumption in a single month, that was considered to indicate a problem such as a meter-
read error or a significant leak that would bias the water saving calculations. It is possible to 
use other multiples of monthly demand to identify anomalies; however, care must be taken to 
ensure that a lower threshold does not cause the remaining sample size to become too small 
to allow statistical inferences to be drawn from the analysis. 



NATIONAL WATER COMMISSION — WATERLINES          182 

The mirror test was used to gauge the strength of the matches between participants and 
controls, placing a limit on the size of the match value of matched pairs. Since there is no 
absolute measure of the strength of a least squares result, the mirror test superimposes a 
normal distribution onto the histogram of match values from all the matched pairs. This 
defines a relative measure derived from the sample itself, against which to identify lower-
quality matches. The match value calculation generates a skewed (log-normal) distribution of 
results with a lower bound of zero and a large tail to the right. The side of the distribution not 
skewed is mirrored at the geometric mean (GM) to define an acceptable upper limit. Thus, 
poor matches were defined as those least squares results that sit outside the range: 

   

      
MINGMGM

iMIN

valueMatchvalueMatchvalueMatch

valueMatchvalueMatch
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where 

(Match value)MIN  = minimum match value 

(Match value)i  = match value of the ith pair 

(Match value)GM  = geometric mean of match values. 

When the minimum match value is zero, the upper bound becomes two times the geometric 
mean of all match values. To capture those matches where the match value is high relative to 
the consumption figures that it is calculated from, the quadrant test is also applied to the 
normalised match value results (that is, match value divided by the mean consumption of the 
matched pair control). The shaded section of Figure 5.1 represents the households that were 
next subjected to the correlation test. 

Figure 5.1: Geometric mean of a skewed probability distribution 

GM 

 

The correlation test uses Pearson‘s correlation coefficient as an indicator of the closeness of 
the match between the participant and control profile. The coefficient is a figure between –1 
and +1, with +1 signifying a perfect correlation. A negative value indicates negative 
correlation (that is, participant consumption goes up in months when control consumption 
goes down, or vice versa). Thus a higher positive correlation indicates greater confidence in 
the match. The correlation test adopted a threshold value of 0.96; pairs that had a correlation 
of less than 0.96 underwent further testing. 

The final test applied was the variance ratio test, which was used to account for the possibility 
that both the participant and the control had near-constant consumption over the matching 
period (that is, low variance), which would give a low positive correlation even though the 
match was of an acceptable quality. A high variance ratio can also indicate a poor match, 
particularly when combined with low correlation. If the variance of the participant‘s 
consumption was much larger than the variance of the control‘s consumption, or vice versa, 
then the consumption ranges would be different and the match may be unacceptable. Thus 
the variance ratio was set between 0.5 and 2 for cases where the correlation was smaller 
than 0.96. 
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Savings calculations and paired t-test 

Average monthly net savings were calculated using all active participants in each month. As 
per Table 5.3, the difference between the consumption of each participant and its 
corresponding control in the ‗before‘ period (which corresponds to the matching period) was 
taken as the baseline against which to compare the difference between participant and 
control consumption after the intervention. Again, the effect of quarterly meter reads had to be 
taken into account: consumption values up to two months prior to or following the month of 
the intervention were regarded as being (potentially) biased by pre- or post-intervention use, 
respectively. Therefore, the first two months immediately before and after the month of the 
intervention were excluded from the savings calculations. 

As a result of the various exclusions from the full set of program participants (due to both data 
cleaning and matched pair cleaning), varying proportions of the total participant population 
were used to calculate average savings across households in any given month. This implies 
that the pairs available for a given month represent a statistical sample of the participant 
population for that month. The participant population also varied over time depending on the 
take-up of the program. To determine whether the net savings estimated for a given month 
could be used in calculating the global average savings of the particular program, monthly 
savings estimates were tested using a two-tailed paired t-test. The global mean saving (and 
standard deviation) were then derived from the significant monthly savings estimates using a 
weighted analysis of variance calculation. 

The paired t-test evaluates the null hypothesis (H0) that the difference in the two groups of 
observations is the same. The alternative hypothesis (HA) is that the opposite is true; that is, 
that the groups are not equal. With a confidence of 95%, the null hypothesis can be rejected if 
the result from the t-test (the so-called p-value) is below 0.05. The null hypothesis (H0) for our 
case can be formulated as follows: 

The mean difference in water consumption between (actual) controls and (future) 
participants before program implementation, and the mean difference in water 
consumption between (extrapolated) controls and (actual) participants, are equal. 

If the null hypothesis could be rejected, the difference between the groups was statistically 
significant at the 95% confidence level. This meant that the net savings estimate for the 
month was valid and could be used in the calculation of the global average monthly savings of 
the particular program. 

The paired t-test described above was used to evaluate average monthly savings across 
households. In order to obtain a global savings and confidence interval across time as well as 
households, a weighted analysis of variance was necessary to account for changing variance 
over the period of analysis. Changing variance occurs due to the different number of 
observations in each month as the participant population changes. The global weighted 
average monthly savings (global monthly mean) was calculated by taking the sum product of 
monthly savings observations and the number of observations, and dividing it by the total 
number of monthly observations: 
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where i is the household index. 

The number of monthly observations for each participant varied depending on the length of 
participation, so the global monthly mean was weighted according to length of participation. 
The global monthly mean (expressed in L/hh/d) was multiplied by 365 and converted to 
kilolitres (kL) to obtain the global weighted annual mean (global annual mean) in kL/hh/year. 

The global weighted monthly standard deviation (global monthly SD) was calculated by taking 
the square root sum of monthly variances for all participants across all months of 
participation: 
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where N is the total number of participants (or matched pairs). 

The denominator of the equation is the degrees of freedom of the calculation. 

The global monthly SD was then used to calculate the global monthly standard error (global 
monthly SE), which is given as the global SD divided by the square root of the number of 
observations, N (total number of participant households): 

N

.D.SmonthlyGlobal
.E.SmonthlyGlobal   20 

The global monthly SE was multiplied by 365 to get the global annual SE. 

Confidence intervals for the global mean savings could then be calculated using the 95% 
confidence interval t-value for the sample, based on the degrees of freedom described above. 
The confidence interval for the global weighted mean is expressed: 

     
   .E.SmonthlyGlobalvaluet

meanmontlyGlobal.E.SmonthlyGlobalvaluet
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Results 

The global weighted annual mean savings and associated confidence interval for each 
program are presented in Table 5.6. Figures in italics indicate that the net savings are not 
statistically significant (that is, the variability observed in the savings estimates was too great 
to declare with 95% certainty that the global monthly means were not attributable to pure 
chance). 

Table 5.6: Water savings estimates from the MPMC analyses 

Subprogram Total sample of 
participants 

Total number of 
data points

a
 

Savings (kL/hh/year) 

Average Confidence 
interval 

WSH retrofit 2 581 41 390 23.6  4.3 

DFT rebate
b
 190 3 040 31.5  16.4 

a The number of all monthly savings from all households. 
b Includes HWR. 

The DFT program (which participants must enter in conjunction with the HWR program) 
reduced residential household water use by 31.5 ± 16.4 kL/hh/yr. Participants in the HWR 
retrofit who did not opt for the DFT rebate produced savings of 23.6 ± 4.3 kL/hh/yr.

2
  

                                                 
2 HWR refers to participants who did not participate in Dual Flush. 
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Time series plots of water savings by month are presented in Figure 5.2.. Both the HWR and 
the DFT rebate exhibit fairly consistent savings over time, which would be expected given the 
structural component of the programs. The initial decline in savings from the DFT rebate is 
more an artefact of the sample than the savings achieved. Evidently, the earliest adopters 
reduced their demand more than the broader sample. Figure 5.2 Time series plots of program 
participation and monthly average water savings for the WSH retrofit and DFT rebate 
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5.8.3 Covariate regression 

The second method used in the case study was the covariate regression modelling technique 
described in Section 5.4.3. Since the analysis is applied at an aggregate level and relies 
solely on changes in consumption over time to detect savings, it is considered less powerful 
than the MPMC method. Moreover, the method has not been widely tested. However, it offers 
a simpler alternative to the MPMC method that can be implemented using standard statistical 
packages with minimal expertise.

3
 Hence, this case study is effectively a demonstration of the 

potential of the covariate regression technique, using the MPMC technique as a benchmark 
against which to compare the outputs from the covariate regression analysis. 

Selection of a constant data domain 

In the covariate regression technique, household consumption records are aggregated by 
subprogram or control group to generate time series of average household demand for each 
group. A critical preparatory step in this process is to remove households that do not have a 
complete consumption record over the period to be analysed. This ensures that the aggregate 
consumption figures are derived from a constant data domain so that modelled relationships 
between the participant and control groups remain constant. If the domain is allowed to vary 
(that is, if the number of control or participant households used to calculate aggregate 
consumption is allowed to change with time), any relationship drawn between groups cannot 
be assumed to remain constant. The model specification is thus fundamentally flawed and the 
water savings obtained from the program take-up variable would be likely to be incorrect. 

Binned CMDD for the control and participant groups was first examined in order to select a 
timeframe in which most households had a complete consumption data record. Figure 5.5 
shows the number of households with a consumption figure in a given month for the control 
and HWR groups, along with the associated average household consumption time series. A 
large majority of the households in the samples had consumption data between October 1993 
and March 2007. Outside that time window, the number of households with consumption data 
dropped dramatically. Similar results were found for the other subprograms. Therefore, this 
time window was used to define the temporal data domain for all covariate regression 
analyses. 

                                                 
3
 Assuming that the CMDD used in the analysis is already binned to a monthly time step. 
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Figure 5.5: Number of control and participant (HWR) households with consumption data for a 
given month plotted with average household consumption for control and HWR participant 
groups 
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Figure 5.5 also shows how the number of households with data gradually increased with time 
due to the entry of new households. Because the new households did not have full records, 
they had to be removed from the dataset to ensure that the domain of the data used to 
calculate the aggregate consumption remained constant. 

Model specification 

As explained in Section 5.4.3, covariate regression models are formulated with a small 
number of variables. This is particularly beneficial when analysing shorter time series of 
monthly demand, since it limits the number of variables that can be used without 
compromising the degrees of freedom and thereby the power of the model. Average water 
consumption of the subprogram participant group of interest (that is, the response variable) 
was the variable to be estimated. Most of the response variability is explained by the average 
water demand of the control group, which should account for seasonal variability, a portion of 
demand reduction associated with the implementation of water restrictions and a variety of 
other external influences. 

The inclusion of additional dummy variable/s for water restrictions was designed to account 
for the fact that participant and control households may respond differently to water 
restrictions and consequently reduce their water consumption by different amounts. Similarly, 
a dummy variable indicating a major change in the pricing rate structure was used to account 
for the fact that participant and control households may respond differently to changes in price 
rate structure. 

Finally, if the variable indicating the percentage of households participating in a given 
subprogram was found to be significant, the savings could be directly estimated from the 
associated regression coefficient. The specifications of variables in the key categories are 
discussed below. 
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Water consumption 

Binned CMDD from the households retained in the data domain selection process were 
aggregated into control and participant groups to generate time series of average monthly 
demand, which were to be used as the response and explanatory variables in the regression 
modelling process. The average demand variables were named as follows: 

 DC = control group demand 

 DDF = DFT group demand 

 HWR = HWR group demand. 

Water restrictions 

Between November 2002 and March 2007, there had been seven different forms of water 
restrictions in force. In November 2005, a new regime was introduced that changed the 
definition of each of the stages of restrictions. The timings of the various forms of restrictions 
are summarised in Table 5.7. Because monthly CMDD was used in the analyses, restrictions 
dates were rounded to the nearest month in subsequent analyses. 

Table 5.7: Water restrictions in place over analysis period 

Water restriction Implementation 
date 

Acronym used in 
regression 

models 

Voluntary Restrictions 15/11/2002 WR0 

Stage 1 Restrictions  16/12/2002 WR1 

Stage 2 Restrictions  29/04/2003 WR2 

Stage 3 Restrictions  1/10/2003 WR3 

Stage 2 Restrictions  1/03/2004 WR2 

Stage 3 Restrictions 1/09/2004 WR3 

Stage 2 Restrictions  1/03/2005 WR2 

Stage 1 Water Conservation Measures (trial for Permanent 
Water Conservation Measures)  

1/11/2005 WR5 

Permanent Water Conservation Measures 31/03/2006 WR5 

Stage 2 Restrictions (new Temporary Water Restrictions 
Scheme introduced—this Stage 2 is equivalent to the old 
Stage 3) 

1/11/2006 WR3 

Stage 3 Restrictions (this Stage 3 is equivalent to the old 
Stage 4) 

16/12/2006 WR4 

 

Three separate covariate models were constructed to predict water savings from each 
program. The first model type did not include any water restrictions variables, which 
effectively makes the assumption that control and participant households generally respond to 
water restrictions in the same manner. This model was deemed parsimonious, and was 
essentially used as a basis for comparison with the models incorporating water restrictions 
variables. 

The second model type used separate dummy variables for each distinct stage of water 
restrictions. It should be noted that stages of water restrictions that had equivalent rules were 
defined using the same dummy variable. For example, Stage 3 Restrictions (old) and Stage 2 
Restrictions (new) were defined using the variable WR3, while Stage 1 Water Conservation 
Measures and Permanent Water Conservation Measures were defined using the variable 
WR5. The main limitation with using separate dummy variables for each distinct stage of 
water restrictions was the reduction in model parsimony. It also made it more possible for 
potentially superfluous variables with random correlations to water demand to be included in 
the model. 
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The third type of restrictions specification lumped similar (but not necessarily identical) stages 
of water restrictions into single variables. This specification was based on interpretation of the 
water restrictions criteria—specifically, the watering hours associated with various activities. 
Voluntary water restrictions were perceived to have little or no influence on demand. As a 
result, that stage of water restrictions was not used in any of the lumped variables. Stage 3 
Restrictions (old), Stage 2 Restrictions (new) and Stage 3 Restrictions (new) were perceived 
to be the most stringent stages of water restrictions. As a result, a single lumped dummy 
variable (WR34) was created using those stages of water restrictions. Stage 1 Restrictions 
(old), Stage 2 Restrictions (old), Stage 1 Water Conservation Measures (new) and Permanent 
Water Conservation Measures were perceived to be less stringent than the aforementioned 
stages of water restrictions. However, they were still assumed to influence water demand. As 
a result, those stages were also lumped together in a single dummy variable (WR125). 
Lumping similar stages of water restrictions into fewer variables was deemed to increase 
model parsimony, thereby leading to more robust models that are also easier to interpret. 

Following testing of the three types of specifications, the regression models using the lumped 
water restriction dummy variables were deemed to be the most valid. Not only did the models 
use fewer variables than the regression models based upon separate dummy variables, in 
most cases they preferentially entered the more stringent water restrictions variables over the 
less stringent, suggesting that the modelled effects were not sporadic. Furthermore, they 
were deemed more valid than the models using no water restrictions variables, factoring the 
difference in response to water restrictions between control and participant households. 
Without water restrictions variable/s, the effects associated with the water restrictions could 
potentially be incorrectly apportioned to the cumulative rebate count, resulting in model bias. 

Price variable 

As well as yearly variability in fixed and volumetric usage charges, there had been a number 
of changes to the tariff structure and intra-marginal rates. It was assumed that the control and 
participant households may have responded differently to changes in the tariff structure. As a 
result, a dummy variable was used to reflect the major change in rate structure, which 
occurred on 1 August 2004. 

In the majority of cases, the rate structure change variable was not found to be significant. 
However, when it was found to be significant, it adversely affected the water restrictions and 
demand-management program cumulative count variables. This was due to a potentially large 
correlation between the variables. Previous analyses of Melbourne CMDD (Fyfe et al. 
2009abc) indicated that changes in the price tariff structure generally had a much smaller 
influence on water consumption in covariate models when compared to water restriction and 
demand-management program variables. As a result, the price structure variable was not 
included in the final regression models. 

Program take-up variables 

The program take-up variables were specified as a cumulative percentage count of 
households participating in the subprogram, relative to the total number of participants. This 
meant that the variable coefficients derived in the models would directly reflect the savings 
associated with the subprograms. To ensure that the coefficient derived would have sufficient 
significant figures to report on, the variables were expressed as a percentage figure (as 
opposed to a decimal fraction). The coding of the program take-up variables used in the 
models was: 

 CDF = DFT rebate take-up 

 CHWR = HWR retrofit take-up. 

Results 

Stepwise regression analysis produced the final model equations presented in Table 5.8. 
Average control group consumption was the most significant variable in both models, 
explaining the greatest portion of variability. The cumulative count of participants in each 
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program was typically the second most significant variable, and the water restrictions dummy 
variables explained much smaller portions of variability.  

Table 5.8: Final covariate model equations 

Subprogram Model equation R
2

adj 

HWR retrofit HWR = –5.84 + 0.992*DC – 0.548*CHWR 0.999 

DFT rebate DDF = –16.4 + 0.984*DC – 0.782*CDF + 21.2*WR34 0.989 

 

Estimates of savings from the various rebate programs were derived from the regression 
coefficients associated with the cumulative take-up variable in the final covariate models. The 
regression coefficients (and associated 95% confidence intervals) need simply to be 
multiplied by 100 to obtain the average daily household water savings associated with a given 
program. They were then multiplied by 0.365 (365 days per year divided by 1000 L per kL) to 
calculate annual savings in kL.  The water savings estimates derived from the final regression 
models are presented in Table 5.9. Note that the method for deriving confidence intervals is 
based on the regression analysis alone. For a true account of the uncertainty of the savings 
estimates, the standard error of the aggregated participant demand should be incorporated 
into the calculation. 

Table 5.9: Water savings estimates from with the final covariate regression models 

 Average water savings (kL/hh/year) 

Subprogram Average Confidence interval 

WSH retrofit 20.1  1.8 

DFT rebate 28.5  5.8 
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5.8.4 Comparison of savings estimates from MPMC and covariate 
regression 

The water savings associated with demand-management programs derived using covariate 
regression models are compared with the MPMC results in Figure 5.6. In general, the savings 
derived using the two approaches were consistent with one another, as implied by the overlap 
between the confidence intervals. It is important to emphasise again that the confidence 
intervals on the covariate regression results do not express the full extent of uncertainty of the 
analysis. Hence, while the confidence intervals on the covariate regression estimates are 
narrower than the MPMC confidence intervals, they should not be interpreted as the covariate 
regression being a more precise method. Until a method of expressing the true uncertainty of 
the covariate regression technique is devised, the method should be viewed as less accurate 
than the MPMC approach. 

Water savings estimates derived using the covariate approach were lower for both of the 
programs investigated, implying that the covariate approach produced more conservative 
results. It could be inferred that this stems from the fact that the MPMC analysis does not 
explicitly account for the effect of water restrictions, but relies on the matching process to 
identify controls that exhibit responses to restrictions similar to their participant counterparts‘. 
However, inspection of the covariate regression coefficients for water restrictions variables 
reveals that participants actually reduced their water usage less than the broader population 
in response to restrictions. This suggests that savings would be underestimated by the MPMC 
analyses if the controls identified by the pair matching algorithm did not respond to restrictions 
in a similar fashion to participants. Hence, it is suggested that the covariate regression results 
are consistently lower because savings in the covariate analysis are calculated from 
aggregate consumption figures using a much broader control group. By calculating savings 
on a household basis, the MPMC approach works at a finer resolution and is thus capable of 
picking up savings that are otherwise lost in aggregation. 

Another limitation of the covariate regression technique is its inability to generate a time 
series of savings estimates. Because the method estimates savings based on change in 
aggregate demand over time, it can only produce a single average savings estimate, which 
means there is no ability to assess the consistency of savings over time or savings 
seasonality. So, while covariate regression offers a simpler means of evaluating water 
savings from a demand-management program, MPMC remains the more powerful method of 
analysing savings in the absence of detailed data on household characteristics. 
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Figure 5.6: Comparison of MPMC and covariate regression water savings estimates 
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5.8.5 Summary 

The MPMC and covariate regression analyses produced statistically significant estimates for 
the HWR program and the DFT rebate. MPMC produced robust savings estimates at a high 
resolution (household-by-household, month-to-month) with minimal data requirements. 
However, the method requires substantial computational effort and a high degree of expertise 
in programming and database interrogation to make it a manageable, automated process. 
The covariate regression models produced very similar results to the MPMC analyses, albeit 
consistently lower, most likely due to the coarseness of the technique. The method requires 
further development so that the uncertainty of savings estimates is properly accounted for in 
the confidence intervals. However, it appears to have the potential to provide a simpler 
alternative to the MPMC approach (and other regression techniques) that produces 
comparable savings estimates to the MPMC benchmark. 



NATIONAL WATER COMMISSION — WATERLINES          193 

5.9 References 

Anderson RL, Miller TA and Washburn MC 1980, ‗Water savings from lawn watering 
restrictions during a drought year, Fort Collins, Colorado 1‘, Journal of the American Water 
Resources Association, 16(4)642–645. 

Beatty K, Roberts P and Beatty R 2008, ‗Monitoring trends in water demand in metropolitan 
Melbourne—an essential component in the demand management effort‘, paper presented to 
the 3rd National Water Efficiency Conference, Gold Coast, Australia, 30 March – 2 April 2008. 

Billings RB and Jones V 1996, Forecasting urban water demand, American Water Works 
Association, Denver, Colorado. 

Bishop PL, Hively WD, Stedinger JR, Rafferty MR, Lojpersberger JL and Bloomfield JA 2005, 
‗Multivariate analysis of paired watershed data to evaluate agricultural best management 
practice effects of stream water phosphorus‘, Journal of Environmental Quality, 34:1087–
1101. 

DEUS (Department of Energy, Utilities and Sustainability) 2002, Water demand trend tracking 
and climate correction, DEUS, Sydney, 39. 

Dziegielewski B, Opitz EM, Kiefer JC and Baumann DD 1992, Evaluation of urban water 
conservation programs: a procedures manual, prepared by Planning and Management 
Consultants for California Urban Water Agencies. 

Fyfe J, May D, Glassmire J, McEwan T and Plant R 2009a, Evaluation of water savings from 
the City West Water Showerhead Exchange Program, City West Water Ltd, Sydney. 

Fyfe J, May D, Glassmire J, McEwan T and Plant R 2009b, Evaluation of water savings from 
the South East Water Showerhead Exchange Program, South East Water Ltd, Sydney. 

Fyfe J, May D, Glassmire J, McEwan T and Plant R 2009c, Evaluation of water savings from 
the Yarra Valley Water Showerhead Exchange Program, Yarra Valley Water Ltd, Sydney. 

Fyfe J, May D, Turner A and White S 2010, Complementary analytical techniques for urban 
water forecasting in IRP, prepared by the Institute for Sustainable Futures, University of 
Technology Sydney, for the National Water Commission. 

Hansen RD and Narayanan R 1981, ‗A monthly time-series model of municipal water 
demand‘, Water Resources Bulletin, 17(4)578–585. 

Kenney DS, Goemans C, Klein R, Lowrey J and Reidy K 2008, ‗Residential water demand 
management: lessons from Aurora, Colorado‘, Journal of the American Water Resources 
Association, 44(1)192–207. 

Kidson R, Spaninks F and Wang Y 2006, ‗Evaluation of water saving options: examples from 
Sydney Water‘s demand management programs‘, paper presented to Water Efficiency 2006, 
Ballarat, 13 October. 

Lee L, Plant R and White S 2007, Evaluation of savings from South East Water’s 
Showerhead Exchange Program, South East Water Limited, Sydney. 

Moglia M, Grant AL and Inman MP 2009, ‗How will climate change impact on water use?‘, 
paper presented to OzWater 09, Melbourne, 16–18 March 2009. 

Morden R, Chapman A, Payne E and Jordan P 2007, ‗Impact of demand management on 
peak demand‘, paper presented to OzWater 2007, Sydney. 

Morgan WD 1982, ‗Water conservation kits: a time series analysis of a conservation policy‘, 
Water Resources Bulletin, 18(6)1039–1041. 

Morgan WD and Pelosi P 1980, ‗The effects of water conservation kits on water use‘, Journal 
of the American Water Works Association, 72(3)131–133. 

Neal B, Meneses C, Hughes D and Wisener T 2010, ‗The impact of water restrictions on 
regional urban demand in the 2006/07 drought‘, paper presented to OzWater 2010, Brisbane, 
8–10 March. 



NATIONAL WATER COMMISSION — WATERLINES          194 

Renwick ME and Archibald SO 1998, ‗Demand side management policies for residential 
water use: who bears the conservation burden?‘, Land Economics, 74(3)343–359. 

Roberts P 2008, ‗Estimating the impact of drought restrictions on indoor use‘, paper 
presented to Water Efficiency 2008, Sunshine Coast, Queensland, Australia, 30 March – 
2 April. 

Simard S and White S 2007, Pressure and leakage reduction program: evaluation of 
customer water savings: final report, Gold Coast Water. 

Snelling C, Simard S, White S and Turner A 2006, Evaluation of the Water Demand 
Management Program, prepared by ISF for Gold Coast Water and Queensland EPA, Gold 
Coast. 

Spaninks F 2010, ‗Estimating the savings from water restrictions in Sydney‘, paper presented 
to OzWater 2010, Brisbane, 8–10 March. 

Turner A, White S, Kazaglis A and Simard S 2007, ‗Have we achieved the savings? The 
importance of evaluations when implementing demand management‘, Efficient 2007: 
Proceedings of 4th IWA Specialist Conference on Efficient Use and Management of urban 
Water Supply, Jeju, Korea. 

Turner A, Willetts J, Fane S, Giurco D, Chong J, Kazaglis A and White S 2010, Guide to 
demand management and integrated resource planning for urban water, prepared by the 
Institute for Sustainable Futures, University of Technology Sydney, for the National Water 
Commission and the Water Services Association of Australia, Inc. 

USEPA (United States Environmental Protection Agency) 1993, Paired watershed study 
design, USEPA, Washington DC. 

White S, Lovell H and Young E 2000, Drought response planning, Sydney Water Corporation, 
Sydney. 

Zhou SL, McMahon TA, Walton A and Lewis J 2000, ‗Forecasting daily urban water demand: 
a case study of Melbourne‘, Journal of Hydrology, 236(3–4)153–164. 

 

 



NATIONAL WATER COMMISSION — WATERLINES          195 

Appendix 5A: Data binning 

Individual customer demand data is typically only available at relatively infrequent intervals. 
Furthermore, customer meter data is typically recorded on different days in different districts. 
These potential limitations have given rise to the need for data ‗binning‘. Binning involves 
apportioning periodically recorded demand into shorter, consistent time periods, which aids in 
the direct comparison of usage profiles of individual customers and in data aggregation. An 
illustration of the binning process is presented in Figure 5A.1. 

Figure 5A.1: Illustration of apportioning demand into monthly bins of time 
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Generally, quarterly demand data is converted to monthly demands, as shown in Figure 5A.2. 
Average daily demands are first derived for each quarter by dividing total quarterly demand 
by the number of days in the quarter: 

1i,qi,q

i,q

i,d
dd

C
C


  22 

where 

Cd,i = the average daily consumption for the i
th
 quarter (kL/d) 

Cq,i = the total consumption for the i
th
 quarter (kL) 

dq,i = the last day of the i
th
 quarter (expressed as a Julian day) 

dq,i-1 = the last day of the (i-1)
th
 quarter (expressed as a Julian day). 
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Two equations are then used to calculate monthly demand from quarterly meter reads, 
depending on where the particular month lies in relation to the quarterly meter reads. If all 
days for a given month occur in a single quarterly interval, the following equation is used: 

 
i,d1j,mj,mj,m CddC   23 

where 

Cm,j = the binned monthly consumption for the j
th
 month (kL)

dm,j = the last day of the j
th
 month (expressed as a Julian day)

dm,j-1 = the last day of the (j-1)
th
 month (expressed as a Julian day).

Alternatively, if days for a given month occur in two quarterly intervals, the daily demand from 
both quarters is used: 

   
i,dj,mi,q1i,di,q1j,m1j,m CddCddC   24 

where 

Cm,j+1 = the binned monthly consumption for the (j+1)
th
 month (kL)

dm,j+1 = the last day of the (j+1)
th
 month (expressed as a Julian day)

Cd,i+1 = the average daily consumption for the (i+1)
th
 quarter (kL/d).

There are a number of limitations associated with the data binning process. The technique 
assumes that daily demand is constant over the given meter-read period, which is often not 
the case (Moglia et al. 2009). Furthermore, while binning helps to improve the seasonality 
profile of customer metered demand (more so after aggregation), there is a ‗smearing‘ effect 
(an artefact of subdividing quarterly data) whereby demand for any given month is in part 
determined by demand in the previous and following months. When using binned data in a 
time series regression, it may be necessary to use (demand) lag and/or lead terms as 
explanatory variables to account for this. 

Figure 5A.2: Division of quarterly consumption data into monthly consumption data via the 
binning process 
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