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Abstract

Open-sea stevedores of containers provide an
alternative way to avoid port congestion. This
process involves a mobile harbour equipped
with a crane which loads/unloads containers
from a large cargo ship. However, the presence
of ocean waves and gusty winds can produce an
excessive sway to the hoisting ropes of the crane
system. This paper presents a second-order
sliding mode controller for trajectory tracking
and sway suppression of an offshore container
crane. From the proposed control law, the
asymptotic stability of the closed-loop system
is guaranteed in the Lyapunov sense. Simula-
tion results indicate that the developed control
system can achieve high performance in trajec-
tory tracking and swing angle suppression de-
spite the presence of parameter variations and
external disturbances as in the case of offshore
cranes.

1 Introduction

The massive increase in shipping demand as well as the
prospect of having more larger mega container ships re-
sult immense pressure to ports to handle the surge in
cargos. However, many ports face that expanding out-
wards is not a feasible option to reduce the pressures due
to land constraints. As a result, they are examining al-
ternative ways to cope with the potential surge in cargo
handling demands. One possible option is to improve
the efficiency and productivity so that they not only can
handle the surge in cargos but also allow reduction in op-
erational cost to take place, which would enable the ports
to stay competitive [Yin et al., 2011]. One of the ways
to improve port efficiency is open-sea loading/unloading
of containers [Ngo and Hong, 2012]. In doing so, a rel-
atively small ship called the mobile harbour equipped
with a crane loads/unloads containers from a large an-
chored container ship called the mother ship. Figure 1

shows the typical arrangement of a mother ship and a
mobile harbour. As a result, port congestion due to the
increased of cargo ships traffic can be minimized.

From the crane control literature, various control
methods have been proposed for trajectory tracking and
sway suppression of gantry cranes [Abdel-Rahman et al.,
2003]. These methods include open-loop control, such as
input shaping [Blackburn et al., 2010]; and closed-loop
control, such as linear [Omar and Nayfeh, 2005], adap-
tive [Yang and Yang, 2007], fuzzy logic [Chang and Chi-
ang, 2008], and nonlinear controls [Almutairi and Zribi,
2009; Bartolini et al., 2002; Fang et al., 2003]. Re-
search on cranes’ control and automation has focused
on addressing challenges in their offshore operations
[Skaare and Egeland, 2006; Messineo and Serrani, 2009;
Küchler et al., 2011; Raja Ismail et al., 2012]. Ngo and
Hong [2012] introduced the model of offshore gantry
crane and its control strategy. However, obtaining a
quick response of load transfer remains a challenge due to
a heavier of container mass as compared to conventional
cranes payload. Besides, the control method proposed
in the study has considered the rope hoist length as a
constant.

Sliding mode control offers a good capability to deal
with uncertainties and nonlinearities of a plant. The
methodology is based on keeping exactly a properly cho-
sen dynamic constraint by means of high-frequency con-
trol switching, and is known as robust and very accu-
rate. Unfortunately, its general application may be re-
stricted, i.e., for an output sliding function to be zeroed,
the standard sliding mode may keep the sliding function
equal to zero only if the outputs relative degree is one
[Levant, 2007]. High-frequency control switching may
also cause the undesired chattering effect [Boiko et al.,
2010]. Higher-order sliding modes remove the relative-
degree restriction and, if properly designed, can practi-
cally eliminate the chattering.

This paper presents a second-order sliding mode con-
trol for an offshore container crane. At first, the offshore
crane is modeled as the extension of the proposed model
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Figure 1: Arrangement of mother ship and mobile har-
bour.

by Ngo and Hong [2012] by considering the rope length as
a variable due to load hoisting. Then a second-order slid-
ing mode controller is synthesized to control the gantry
crane which is located on a mobile harbour. The con-
troller is designed so that the crane trolley position and
hoisting rope length can track their respective reference
trajectories while the longitudinal and lateral sway an-
gles are suppressed. A stability analysis and simulations
are performed to prove the asymptotic stability of the
closed-loop system.

2 System Modelling

The offshore crane system considered in this study is a
crane vessel (mobile harbour) which loads/unloads con-
tainers from a large container ship (mother ship) [Ngo
and Hong, 2012] as shown in Figure 1. The coordinates
system of the offshore crane is shown in Figure 2 where
(x0, y0, z0), (xs, ys, zs), and (xt, yt, zt) are respectively
represent the coordinate frames of the mother ship, the
mobile harbour, and the trolley. mt and mp are respec-
tively the masses of the trolley and the payload, x and
y represent the position of the gantry and the trolley, h
is the crane height, l is the rope length, and θ and δ are
respectively the longitudinal and the lateral sway angles
of the load. The control forces fy and fl apply respec-
tively at the trolley and hoist. Since fy can only control
the longitudinal sway, a control torque τδ is applied to
the rope to control the lateral sway. Variables z, φ, and
ψ are respectively the heave, roll, and yaw of the mobile
harbour. By using the Langrangian formulation, he dy-
namic model of the offshore crane system can be cast in
the form of

M(q)q̈ + W0(q, q̇) = τ0, (1)

where M(q) is the inertia matrix while W0(q, q̇) is the
lump of centrifugal-Coriolis C(q, q̇)q̇, gravity G(q), and
disturbances f(q, q̇) components, such that W0(q, q̇) =

Figure 2: Motion of the crane on the mobile harbour.

C(q, q̇)q̇+G(q)+f(q, q̇). The matrices M(q), W0(q, q̇)
and τ0 are respectively defined as

M(q) =


m11 m12 m13 m14

m21 m22 0 0
m31 0 m33 0
m41 0 0 m44


W0(q, q̇) =

[
w1 w2 w3 w4

]T
τ0 =

[
fy fl τδ 0

]T
,

where

m11 = mt +mp

m12 = m21 = mp [− sinφ cos θ cos(δ − ψ) + cosφ sin θ]

m13 = m31 = mpl sinφ cos θ sin(δ − ψ)

m14 = m41 = mpl [sinφ sin θ cos(δ − ψ) + cosφ cos θ]

m22 = mp

m33 = mpl
2 cos2 θ

m44 = mpl
2,

and where in the case of no disturbances, i.e. f(q, q̇) = 0:

w1 = (mt +mp)
[
−xψ̈ sinφ− hφ̈− hψ̇2 sinφ cosφ

+(g + z̈) cosψ sinφ−
(
ψ̇2 sin2 φ+ φ̇2

)
y
]

+mp

[
2l̇δ̇ sinφ cos θ sin(δ − ψ)

+ 2l̇θ̇ sinφ sin θ cos(δ − ψ) + 2l̇θ̇ cosφ cos θ

+ l
(
θ̇2 + δ̇2

)
sinφ cos θ cos(δ − ψ)

−lθ̇2 cosφ sin θ − 2lθ̇δ̇ sinφ sin θ sin(δ − ψ)
]

w2 = mp

[
−2l̇θ̇ cos θ sin θ − l

(
θ̇2 + δ̇2

)
cos2 θ

− 2ẏφ̇ cosφ cos θ cos(δ − ψ)− 2ẏψ̇ sinφ cos θ sin(δ − ψ)

− yψ̈ sinφ cos θ sin(δ − ψ)− yφ̈ cosφ cos θ cos(δ − ψ)

+ y
(
ψ̇2 + φ̇2

)
sinφ cos θ cos(δ − ψ)
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− 2yψ̇φ̇ cosφ cos θ sin(δ − ψ)

− hψ̈ cosφ cos θ sin(δ − ψ) + hφ̈ sinφ cos θ cos(δ − ψ)

+ h
(
ψ̇2 + φ̇2

)
cosφ cos θ cos(δ − ψ)

+ 2hψ̇φ̇ sinφ cos θ sin(δ − ψ) + xψ̈ cos θ cos(δ − ψ)

+xψ̇2 cos θ sin(δ − ψ)− (g + z̈) cos θ cos δ
]

w3 = mpl
[
−2lδ̇θ̇ sin θ cos θ + 2l̇δ̇ cos2 θ

+ 2ẏφ̇ cosφ cos θ sin(δ − ψ)− 2ẏψ̇ sinφ cos θ cos(δ − ψ)

− yψ̈ sinφ cos θ cos(δ − ψ) + yφ̈ cosφ cos θ sin(δ − ψ)

− y
(
ψ̇2 + φ̇2

)
sinφ cos θ sin(δ − ψ)

− 2yψ̇φ̇ cosφ cos θ cos(δ − ψ)

− hψ̈ cosφ cos θ cos(δ − ψ)− hφ̈ sinφ cos θ sin(δ − ψ)

− h
(
ψ̇2 + φ̇2

)
cosφ cos θ sin(δ − ψ)

+ 2hψ̇φ̇ sinφ cos θ cos(δ − ψ)− xψ̈ cos θ sin(δ − ψ)

+xψ̇2 cos θ cos(δ − ψ) + (g + z̈) cos θ sin δ
]

w4 = mpl
[
2l̇θ̇ + 2ẏψ̇ sinφ sin θ sin(δ − ψ)

+ 2ẏφ̇ cosφ sin θ cos(δ − ψ)− 2ẏφ̇ sinφ cos θ

+ 2yψ̇φ̇ cosφ sin θ sin(δ − ψ)− yφ̇2 cosφ cos θ

− y
(
ψ̇2 + φ̇2

)
sinφ sin θ cos(δ − ψ)

− yφ̈ sinφ cos θ + hφ̇2 sinφ cos θ

+ yψ̈ sinφ sin θ sin(δ − ψ)− hφ̈ cosφ cos θ

+ yφ̈ cosφ sin θ cos(δ − ψ)− xψ̇2 sin θ sin(δ − ψ)

− xψ̈ sin θ cos(δ − ψ) + lδ̇2 sin θ cos θ

− 2hψ̇φ̇ sinφ sin θ sin(δ − ψ)

− h
(
ψ̇2 + φ̇2

)
cosφ sin θ cos(δ − ψ)

+ hψ̈ cosφ sin θ sin(δ − ψ)

−hφ̈ sinφ sin θ cos(δ − ψ) + (g + z̈) sin θ cos δ
]
.

The control torque τδ is produced by adjusting the ten-
sions in the additional ropes such that

τδ = (d1 − d2)f0 + (d1 + d2)∆f,

where f0 is the initial tension in each additional rope, ∆f
is the variational force exerting at the hydraulic cylinders
to adjust the tensions in the additional ropes at two sides
of the trolley, i.e. f1 = f0 + ∆f and f2 = f0 − ∆f for
lateral sway control, and d1 and d2 are the distances
from the trolley centre to the additional ropes, which

are defined as follows:

d1 =
bl cos(ψ − δ)√

(b− a)2 + l2 + 2l(b− a) sin(ψ − δ)

d2 =
bl cos(ψ − δ)√

(b− a)2 + l2 − 2l(b− a) sin(ψ − δ)
,

in which a and b are respectively the specific distances
from the spreader centre to the pulley at the spreader
side and from the trolley centre to the pulley at the trol-
ley side [Ngo and Hong, 2012]. Then (1) can be rewritten
as

M(q)q̈ + W(q, q̇) = τ , (2)

where

W(q, q̇) =

[
w1 w2

w3 − (d1 − d2)f0
d1 + d2

w4

]T
τ =

[
fy fl ∆f 0

]T
.

3 Second-order Sliding Mode Control

This section presents the design of the control develop-
ment for trajectory tracking and antisway control of the
offshore crane.

3.1 The Control Algorithm

The vector of generalised coordinates can be partitioned
as qT =

[
qTa qTu

]
and where qa and qu are the actu-

ated and unactuated state vectors respectively. Similarly
we partition the control vector as τT =

[
uT 0

]
. The

partitioned vectors are defined as follows:

qa =
[
y l δ

]T
, qu = θ

u =
[
fy fl ∆f

]T
.

Then (2) can be rewritten as[
Maa(q) Mau(q)
Mua(q) Muu(q)

] [
q̈a
q̈u

]
+

[
Wa(q, q̇)
Wu(q, q̇)

]
=

[
u
0

]
, (3)

where

Maa =

m11 m12 m13

m21 m22 0
m31 0 m33


Mau = MT

ua =
[
m14 0 0

]T
, Muu = m44

Wa =

[
w1 w2

w3 − (d1 − d2)f0
d1 + d2

]T
, Wu = w4.

By substituting q̈u = −M−1uu (Muaq̈a + Wu) obtained
from the second row of (3) into the first row, we get the
following form

M(q)q̈a + W(q, q̇) = u, (4)
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where M = Maa−MauM
−1
uuMua and W = Cq̇a +G+

f = −MauM
−1
uuWu +Wa. Note that (4) is written such

that the property Ṁ = C + C
T

holds.
The tracking problem consists in finding a control

action guaranteeing that limt→∞ q(t) = qd(t) where

qd(t) =
[
yd(t) ld(t) 0 0

]T
represent the reference

trajectories for the vectors of generalized coordinates.
By defining the tracking error as e = q − qd, similarly,
it can be partitioned as eT =

[
eTa eTu

]
, where

ea =
[
y − yd l − ld δ

]T
, eu = θ,

where ea(t) and eu(t) are the tracking error vectors of
the actuated and unactuated generalized coordinates.

Let us define the vector of sliding functions as

σ =

σ1σ2
σ3

 =

ẏ − ẏd + λ1(y − yd) + γθ̇ + λ4θ

l̇ − l̇d + λ2(l − ld)
δ̇ + λ3δ


or in a more convenience form

σ = q̇a − q̇ra, (5)

where q̇ra is given by

q̇ra = q̇da − Λa(qa − qda)− Γθ̇ − Λuθ, (6)

in which Λa = diag(λ1, λ2, λ3), Λu =
[
λ4 0 0

]T
and

Γ =
[
γ 0 0

]T
. Thus, from (5) the second-order

derivative of the sliding function is

σ̈ = ϕ(q, q̇,u) + M
−1

(q)u̇, (7)

where ϕ(q, q̇,u) = −M−1(q)[Ṁ(q)q̈a + Ċ(q, q̇)q̇a +

C(q, q̇)q̈a + Ġ(q) + ḟ(q, q̇)] − ˙̈qra. We assume that the
second-order derivative of the sliding function is bounded
by a known function, i.e. |σ̈i| ≤ Υi(·) [Pisano and Usai,
2011]. In order to simplify the control synthesis, it is
assumed that a constant value ΥMi

can be found such
that

|Υi(·)| ≤ ΥMi
. (8)

Consider an auxiliary system constituted by a double
integrator with output x1 and input v defined as

ẋ1 = x2

ẋ2 = v.
(9)

By denoting ε1 = σ − x1, we obtain

ε̇1 = ε2

ε̇2 = σ̈ − v,
(10)

where ε1 is assumed bounded such that |ε1i | ≤ ε1iM .
The equivalent control of the system (9) can be obtained

once the second-order sliding mode has been established
on the manifold ε1 = ε2 = 0, i.e. veq = σ̈ = ϕ(q, q̇,u)+

M
−1

(q)u̇. This leads to the equivalent representation of
system (9) as follows:

ẋ1 = x2

ẋ2 = veq = σ̈ = ϕ(q, q̇,u) + M
−1

(q)u̇.
(11)

The equivalent system (11) can be stabilized by using
first-order sliding mode control. Let us define the sliding
function as

s = x2 + Λxx1, (12)

where Λx = diag(λx1, λx2, λx3). The sliding function
(12) can steer the system (11) onto the sliding manifold
s = 0 by defining a suitable discontinuous control u̇.

The proposed control algorithms for the control
derivative u̇ and the auxiliary control signal v are de-
fined as

u̇i = − (ΨMi + ηi) sign si (13)

vi = (2ΥMi
+ ηi) sign

(
ε1i −

1

2
ε1iM

)
, i = 1, 2, 3. (14)

where ηi is a positive constant and the definition of con-
stant ΨMi will be discussed in the next subsection.

3.2 Stability of the Equivalent System

In the equivalent dynamics, the condition ε1 = ε2 = 0
has been already achieved, which implies

x1 = σ = q̇a − q̇ra

x2 = σ̇ = q̈a − q̈ra

q̈a = s− Λxσ + q̈ra.

(15)

To prove the stability of the equivalent system by means
of control algorithm (13), we choose the following Lya-
punov function candidate

V =
1

2
sTMs.

Then, the derivative of V is

V̇ =
1

2

(
ṡTMs + sTMṡ

)
+

1

2
sTṀs

= sTMṡ +
1

2
sTṀs

since M is symmetric. From (12), (11) and (5),

ṡ = ẋ2 + Λxx2 = σ̈ + Λxx2 = ˙̈qa − ˙̈qra + Λxx2. (16)

Thus, we have

V̇ = sT
(
M ˙̈qa −M ˙̈qra + MΛxx2

)
+

1

2
sTṀs.
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Figure 3: (a) Trolley position; (b) rope length; and (c)
swing angles; when the mobile harbour is stationary, i.e.
φ = 0 and ψ = 0.

By differentiating (4), it can be shown that M ˙̈qa =

−Ṁq̈a − Cq̈a − Ċq̇a − Ġ − ḟ + u̇. Hence, from this
equation and the last equation of (15), the derivative of
the Lyapunov function becomes

V̇ = sT
[
−Ṁq̈a −Cq̈a − Ċq̇a − Ġ− ḟ

−M ˙̈qra + MΛxx2 + u̇
]

+
1

2
sTṀs

= sT
[
−Ṁ (s− Λxσ + q̈ra)−C (−Λxσ + q̈ra)

−Ċq̇a − Ġ− ḟ−M ˙̈qra + MΛxx2 + u̇
]

+
1

2
sT
(
Ṁ− 2C

)
s

= sT
[
Ψ(q, q̇,u,qra, q̇

r
a, q̈

r
a, ˙̈qra) + u̇

]
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Figure 4: (a) Trolley position; (b) rope length; and
(c) swing angles; when φ = 0.02 sin 1.25t rad and ψ =
0.01 sin 1.25t rad.

since the matrix Ṁ − 2C is skew-symmetric while all
terms that do not contain the derivative of control sig-
nal u̇ are lumped into the function Ψ(·). We also assume
that this function is bounded, i.e. |Ψi(·)| ≤ ΨMi

. There-
fore, by substituting (13) into the last equation, it can
be shown that

V̇ ≤ −ηisT s,

which implies that the surface s = 0 is globally reached
in a finite time.

4 Results and Discussion

In this study the values of the crane parameters are listed
as mt = 6000 kg, mp = 20000 kg, h = 10 m, x = 5 m,
a = 0.5 m, b = 4 m, f0 = 8000 N, and g = 9.8065 m-
s−2. The mobile harbour motion (z, φ, ψ) are considered
as disturbance, where z = 0.02 sin 1.25t m while φ and
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ψ will be defined based on the scenarios studied. The
controller parameters used in the simulations are λ1 =
10, λ2 = λ3 = 1, λ4 = −1, γ = 0.1, λxi

= 1, ΨMi
= 50×

103, ΥMi
= 10×103, ηi = 30 and ε1iM = 10, ∀i = 1, 2, 3.

The initial value of the generalized coordinates vector is
chosen as (y0, l0, δ0, θ0) = (0 m, 10 m,−0.1 rad, 0 rad).
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Figure 5: (a) Trolley position and payload mass; (b) rope
length; and (c) swing angles; when φ = 0.02 sin 1.25t rad,
ψ = 0.01 sin 1.25t rad, and payload mass is varied.

Several scenarios were considered for simulation to as-
sess the capability of the proposed controller. The first
one is by considering that the mobile harbour is station-
ary, i.e. both its roll and pitch angles are set to zero
(φ = 0 and ψ = 0) as shown in Figure 3. In this case,
both longitudinal and lateral swing angles are totally
suppressed a few seconds after the trolley reached its ref-
erence position. The second scenario considered in the
study is with the presence of both roll and pitch angles
such that φ = 0.02 sin 1.25t rad and ψ = 0.01 sin 1.25t
rad. In practical, this situation can occur due to the

presence of ocean wave movements. As shown in Figure
4, the lateral sway is suppressed to zero but the longitu-
dinal sway keep swinging with amplitude 0.03 rad. This
is due to the longitudinal sway is controlled indirectly
by the control force fy which is applied to the trolley.

To demonstrate the robustness of the controller, the
payload is varied between 10× 103 to 30× 103 kg. From
Figure 5, it is shown that the trolley position trajectory
and swing angles unperturbed by the presence of payload
variation, which is similar with Figure 4. However, the
rope length trajectory is slightly affected by the payload
variation with 0.02 m steady state error.

In all three scenarios, the proposed second-order slid-
ing mode controller has provided a shorter rise time of
the trolley position, which is 4.02 s, as compared to Ngo
and Hong [2012], which is 8.20 s. However, this faster
response comes at the cost of 10.1% overshoot.
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6 Conclusion

In this paper we have presented second-order sliding
mode control schemes for the trajectory tracking and
anti-swing control problem of an offshore container crane
system. The extended model by considering the flex-
ibility of the crane hoisting rope length has been dis-
cussed. A sliding surface vector, a second-order sliding
mode control law, and the asymptotic stability of the
closed-loop system in the Lyapunov sense have been de-
veloped. High performance in trajectory tracking and
swing angle suppression are obtained either when the
mobile harbour is stationary or moving with pitch and
roll angles. Robust control performance is also obtained
when the system is subject to external disturbances and
payload variations. Simulation results are provided to
indicate the effectiveness of the proposed method.
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