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Abstract 
For road vehicles, knowledge of terrain types is 
useful in improving passenger safety and 
comfort. The conventional methods are 
susceptible to vehicle speed variations and in this 
paper we present a method of using Laser 
Measurement System (LMS) data for speed 
independent road type classification. 
Experiments were carried out with an 
instrumented road vehicle (CRUISE), by 
manually driving on a variety of road terrain 
types namely Asphalt, Concrete, Grass, and 
Gravel roads at different speeds. A looking down 
LMS is used for capturing the terrain data. The 
range data is capable of capturing the structural 
differences while the remission values are used 
to observe anomalies in surface reflectance 
properties. Both measurements are combined and 
used in a Support Vector Machines Classifier to 
achieve an average accuracy of 95% on different 
road types.  

1 Introduction 

Road terrain type classification based on on-board sensors 
can provide important, sometimes crucial information 
regarding safety, fuel efficiency and passenger comfort. It 
can be used to estimate various physical quantities 
including friction coefficients, slip angles and vehicle 
handling characteristics [Iagnemma, 2004] [Nohse, 1991] 
[Shmulevich, 1996]. Therefore estimation of road surface 
parameters is of interest in many mobile vehicle 
applications. 

Road terrain type classification methods have 
been extensively studied in the past. Algorithms based on 

various sensory modules, such as Laser Measurement 
Systems, cameras, accelerometers, GPS, and wheel 
encoders have been reported. Being one of the most 
reliable sensors, LMS is used in autonomous robots for 
avoiding dangerous paths [Stavens, 2006] [Dahlkamp, 
2006] altogether.  

Apart from range information provided by LMS, 
remission information of the laser beam is also available 
in some types of laser models. The method in [Wurm, 
2009] has been reported to use laser remission values to 
identify vegetation on structured environments. The 
approach in [Saitoh, 2010] proposed a method to define a 
hazard and un-drivable area by using self-supervised 
learning based on the remission value of a map. However, 
these two methods find drivable regions but not the road 
terrain types.  

Varieties of road terrain types have abundant 
different characteristics. Vehicle vibrations while driving 
on such surfaces could be thought as the most naïve data 
to be used for identifying different road terrain types 
[Brooks, 2005] [Komma, 2009]. Weiss et al [Weiss, 
2007] used a vertically mounted accelerometer on the 
platform, RWI ATRV-Jr to classify some indoor and 
outdoor terrain types. Then the study extended to use an 
accelerometer and a camera for improved terrain type 
classification [Weiss, 2008]. Hsiao et al [Hsiao, 2009] and 
Helmick et al [Helmick, 2009] used images from cameras 
pointing down for road terrain type classification. The 
images were analysed to identify potholes and ruts to 
distinguish different road terrain types. However, both of 
the research works were based on small sized robotic 
platform operating at slow speeds. The stability of this 
method was affected by lack of camera’s exposure time to 
capture fast moving features or low illuminated 
backgrounds [Wang, 2011].  

The approaches mentioned above are 



 

 

implemented on small sized robotic platforms that have 
rigid wheels providing a good coupling between the 
terrain and the rover.  Those methods cannot be readily 
used in road vehicles due to various dampers including 
the tyres and shock-absorbers. Therefore, in [Ward 2009], 
they utilized the dynamic model of the vehicle with a 
vertically mounted accelerometer to reconstruct the road 
surface. As the road surface is independent of the vehicle 
speed, frequency domain features were extracted for 
terrain type classification. However, further research 
[Wang, 2012] showed that it has limitations due to 
non-ideal nature and parametric uncertainties of the model 
resulting in speed dependency.  

This paper focuses on road terrain type 
classification using LMS, which provides range and 
remission values at a high sampling rate. Thereby, spatial 
frequency features of the lateral direction can be extracted 
for road terrain classification.  

The paper is arranged as follows. Section 2 
describes the road surface estimation procedure and the 
feature extraction methodology. Section 3 presents the 
details of the classifier and in Section 4 experimental 
platform is described followed by experimental results. 
Section 5 concludes the paper indicating future direction 
of the research.  

2 Methodology 

2.1 Geometric Arrangement of the LMS 
A downward-looking SICK LMS111 is mounted on the 
CRUISE as shown in Fig. 1. It scans the road surface 
vertically in a two dimensional plane at a 50 Hz sampling 
rate. The LMS has a 270° field of view with 0.5° angular 
resolution providing 541 range and remission values per 
scan. While the vehicle is moving forward, it leaves a 
trace of three dimensional point cloud of the surface.  

 
Fig. 1 The geometric arrangement of the LMS 

2.2 Reconstruction of the Road Surface  
It is well known that the laser beam emitted in a LMS is 
deflected using a rotating mirror and scans surroundings 
in a circular manner. In general, once a laser beam 
incidents on a surface, the light is reflected. This reflected 
energy can be partly received by the photodiode in the 
LMS calculating the range to an object based on time of 
flight measurements.  
 As shown in Fig. 2, the surface is estimated by 
the laser range data and the speed data coming from the 
GPS unit.   
 

 
 

Fig. 2 Reconstruction of the Road Surface  
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Fig. 3 Mounting geometry of the LMS 
 

Vertical coordinate, zi, of each range measurement can be 
easily reconstructed by (See Fig. 3):  
 

cos( )i i iz H r q= -                  (1) 
 
where, ri is laser range value, θi is included angle 

between the current laser beam and z axis, and H is the 
reference height from a relatively flat floor to the height 
of the LMS. In a similar way, the x-axis coordinate can be 
calculated as: 

 
    sin( )i i ix r q=                     (2) 

 
The 270° scanning field of view contains road 

surface as well as other nearby objects. Therefore, as 
illustrated in Fig. 1, a 1.3m wide region of interest is 
defined for the purpose. This leads to inter-distance 
between two sampling points of a particular scan to 
approximately be 2 centimetres on a road surface with the 
mounted height 2.2 meters of the LMS.  

Speed Data Processing 
The 20Hz Global Positioning System (GPS) on board is 
used to measure the speed of the vehicle. Although the 
experiments were restricted in open outdoor areas, the 
GPS did not keep a clear and stable logging all the way 
for some unknown reasons. At some places, the logged 
speed data contained unreasonable errors, so a low pass 
filter was employed to remove them.  

As the speed data rate was too slow when 
comparing with that of the LMS data, it was interpolated 
to 50 Hz by proximal interpolation method (also known as 
nearest-neighbour interpolation) [Watson, 1984]. Then, 
simply the longitudinal vehicle displacement, y(t), is 



 

 

estimated by,  
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where v(t) is the estimated vehicle speed.  

Road Surface 
Once the data is processed to estimate the longitudinal 
and lateral displacements of the laser data point clouds, a 
three dimensional view of the displacements can be 
generated. Such displacement profiles of the road types 
are shown in Fig. 4. It seems not difficult to reconstruct a 
qualitative assessment of the plots for the differences 
purely by visual inspections.  
 

   
   (a) Asphalt   (b) Concrete 

  
    (c) Grass   (d) Gravel 

 
Fig. 4 Three dimensional surface data of four 

different road types.  

2.3 Feature Matrix 

Extraction of Spatial Frequency Features 
The estimated 3D surface has more dissimilarity in the 
resolution along the vehicle moving direction due to the 
variations of the speed. However, the vehicle speed has 
minimal effect on the lateral data. Therefore, in this work, 
only the lateral components are considered. Rather than 
relying on each new lateral scan of data, this will 
concatenate a group of scans captured over the vehicle 
length, which is 4 metres. This is done for future 
comparisons with other sensor modalities. The number of 
scans depends on the vehicle’s speed, however, in general, 
it is around 35~145 scans at speeds of 20~80 km/h.  
 The feature matrix is formed by carrying out the 
Fast Fourier Transform on each scan. The power spectral 
density (PSD) is then calculated using Welch’s method 
[Welch, 1967]. The start frequency, end frequency and 
frequency step are empirically decided as 0 cycles/meter 
(c/m) to 35 c/m with 0.1 c/m interval, which led to 
optimal classification rate in many prior tests. 
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Then the PSD of each group of scan, which 
defines the feature vector, is arranged column by column 
to form the feature matrix F, given in (3). In this matrix, 
every column refers to a feature vector (a group of 
scanning lines) while every row represents the features 
(PSD) extracted using the above procedure. For instance, 
in this case, 

1 1,s fF presents the PSD from 0 c/m to 0.1 c/m 

of the 1st group lines, while 
1,ns fF  presents the PSD from 

0 c/m to 0.1 c/m of the nth group, and ,n ms fF  presents the 

PSD from 34.5 c/m to the end 35 c/m of the nth segment. 
Overall, the matrix, F contains n samples while each 
sample has m features. Each value of element in matrix (3) 
indicates a power at a particular investigated frequency 
forming the final feature matrix. After all it is normalized 
to reflect each row of F mapped to [0, 1].  

Remission based Features 

As introduced in [Wurm, 2009] and [Saitoh, 2010], a laser 
remission value is a function of distance, incidence angle 
and material. For our application, since the LMS is 
mounted on a frame above the vehicle and the fact that we 
are only interested in a small field of view, the factors of 
distance and incidence angle can be considered relatively 
constant. Therefore, the remission value seems 
informative for road surface classification.  

Similar to the previous section, we segment 
scanning lines into groups with the same length, however 
rather than the range values means of the remission values 
are used. So the feature matrix is, 
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As given in the matrix (4), each column refers to 

mean values of a group (a sample) of lines while each row 
represents the mean value of a specific angle. For instance, 

1 1,s rR presents the mean remission value of all first points 

of the lines belong to 1st group, while 
1,ns rR  presents the 

mean remission value of all last points of the lines belong 
to 1st group, and ,n ms rR  presents the mean remission 

value of all last points of the lines belong to nth segment.  
The matrix is finally normalized to reflect each row of R 
mapped to [0, 1].  

2.4 Classification 
A number of classifiers were evaluated. Comparing with 
Neural Network classifier and Naïve Bayes classifier, 
Support Vector Machines (SVM) presents the best 
classification accuracy for road terrain type classification 
task by several number of off-line tests. SVM 
conceptually finds a hyper plane which separates the 
d-dimensional data in to its best separable classes. 
However, in some cases, the training data is often not 
linearly separable. SVM introduces the notion of a “kernel 
induced feature space”, which casts the data into a higher 
dimensional space where the data is separable. We used a 



 

 

freely available, highly accepted machine learning tool 
kit, WEKA [Bouckaert, 2010] in the implementation.  

3 Experimental Results 

3.1 Platform 

 

  
Fig. 5 CRUISE: the experimental vehicle 

 
The experimental test bed, CRUISE: CAS Research Ute 
for Intelligence, Safety and Exploration (Fig. 5), 
developed in-house was used for experimentation. 
CRUISE is equipped with range of sensors including 
GPS, cameras, LMS, accelerometers and an IMU. 
Number of computers mounted in the back tray, 
connected via Ethernet, are used for data collection and 
logging. A separate battery bank provides the required 
power.  

As shown on right side of Fig. 5, a SICK 
LMS111 is mounted on the vehicle looking down for 
scanning the road surface. It is aligned with the central 
axis of the vehicle and scanning plane is perpendicular to 
the ground.  

 

 
Fig. 6 The Hardware Structure of System 
 
A laptop computer is used for laser data logging 

where as a PC104 computer logs the GPS data. Both 
computers are synchronized via Ethernet using NTP.  

3.2 Data Collection 
The experiment was performed in a fine day with average 
autumn temperature and humidity in an urban area of 
Sydney, Australia. CRUISE was driven on four types of 
roads, which were asphalt, concrete, grass, and gravel at 
different speeds while capturing data. Considering driving 
safety and practical constraints, the data was logged when 
the vehicle was driven on asphalt roads at speeds of 0-70 
km/h, concrete roads at speeds of 30-40 km/h, grass roads 
at speeds of 10-20 km/h and gravel roads at speeds of 
10-30 km/h, respectively. Critical vibration was felt by 
the passengers in the cab while running on grass roads 
over 20 km/h speeds, which was apparently not 
comfortable or safe for human and the vehicle with 
equipments. Data was collected along more than 30 km 

road segments. At least two people were required for the 
purpose, one was attending to data logging while the other 
was driving.  

3.3 Experimental Results 

The Speed Independency 
The laser data collected were assumed to be minimally 
affected by the operating speed of the vehicle. This is 
reasonable as the LMS has a fast sampler which can 
capture range data in several microseconds.  
 This hypothesis was tested with data captured on 
Asphalt and Gravel roads at a range of different speeds. 
While the classifier was trained at a particular speed, it 
was tested at a different speed on the same road type. As 
shown in Table 1, the data set was divided into training 
and testing parts. It could be noted that the asphalt roads 
were the most widely available road type whereas 
concrete and grass roads were rare to find in Sydney. 

 
Table 1 Off-line data organized for training and testing 

Road 
Terrain 
Type 

Training (m) Testing (m) 

Speed 
(km/h) 

Distance 
(m) 

Speed 
(km/h) 

Distance 
(m) 

Asphalt 20 ~ 40 1900 0 ~ 70 3948 

Concrete 20 ~ 30 284 20 ~ 40 952 

Grass 10 304 10 ~ 20 876 

Gravel 20 ~ 30 1280 10 ~ 30 2712 

Total  3768  8488 

 
The Table 2 shows the classification results at 

different speeds. The first row shows the classification 
accuracies of Asphalt and Gravel tested at 40km/h (A40) 
and 10km/h (G10) while trained both at 20km/h 
(A20&G20) speed. Overall, the table shows very high 
accuracies leading to the conclusion that the LMS data is 
speed independent.  

 
Table 2 Classification at different speeds 

Training 
Speed 
(km/h) 

 Testing 
Speed 
(km/h) 

Asphalt 
Accuracy 

Gravel 
Accuracy 

A20&G20 A40&G10 100.0% 99.2% 

A20&G20 A30&G30 100.0% 100.0% 

A20&G20 A30&G10 100.0% 99.2% 

A30&G30 A20&G10 100.0% 100.0% 

A30&G30 A40&G20 100.0% 100.0% 

 

Classification Results based on Range Data 
The training and testing data was all hand-labelled a priori. 
SVM classifier performed well on three road terrain types 
but not on the Asphalt road. As can be seen in Table 3, 
training with Asphalt and testing with all other road types 
has the worst accuracies. The Asphalt road has been 
heavily misclassified as Concrete road. This is mainly due 



 

 

to the significant ambiguities between Asphalt features 
and Concrete features. In fact, those spatial frequency 
features just demonstrate that the surface structure of 
Asphalt road and Concrete road are very similar.  
 

Table 3 Range data only 

     Testing 
Training 

Asphalt Concrete Grass Gravel 

Asphalt 26.2% 39.3% 11.5% 23.0% 

Concrete 0% 86.1% 13.9% 0% 

Grass 0% 20.6% 76.7% 2.7% 

Gravel 0% 2.3% 7.4% 90.3% 

Average: 69.8% 

 
As for other three road terrain types, prediction 

accuracies of Concrete road, Grass road and Gravel road 
are 86.1%, 76.7% and 90.3% respectively. The structural 
differences obvious in gravel roads could be the reason 
for higher Gravel road classification accuracy. However, 
it could be noted that the overall average accuracy of road 
terrain type classification using LMS range data is just 
69.8%.  

The accelerometer data based classification 
reported in [Wang, 2012] has the problem of speed 
dependency. It required sufficiently large training data 
covering all speeds for better classification results. But if 
using LMS data, take this case for instance, it is not 
necessary to use all speed data in training phase but still 
provides a reasonable classification results.  

Remission data 
 

 
 

Fig. 7 Remission data 
 
The reflection of a laser light is affected by object’s 
surface properties and hence it is significantly affected by 
roadway scenes [Xiang, 2012]. The thresholded remission 
values of a certain data segment is shown in Fig. 7, where 
the blue points refer to reflective lane markings. In this 
particular scenario, the remission values can confuse the 
road type classifier. However in general, it performs well. 
That is because it can capture visual texture without being 
affected by environment lighting as does in camera 
images.  

Classification based on Range and Remission data 
The remission features were integrated to range features 

simply by combing Feature matrix (3) and feature matrix 
(4) to form a new feature matrix. All indices of samples 
were appropriately matched so that each range data 
sample corresponds to its remission data sample.  
 

Table 4 Fusion of Range and Remission data 

     Testing 
Training 

Asphalt Concrete Grass Gravel 

Asphalt 99.9% 0% 0% 0.1% 

Concrete 0% 91.6% 8.4% 0% 

Grass 0% 6.4% 93.6% 0% 

Gravel 1.0% 0% 0.5% 98.5% 

Average: 95.9% 

 
The same classifier with same parameters as in 

the previous section was used here. As expected, the 
classification accuracies of each class has increased. As 
can be seen in Table 4, accuracy of the Asphalt road 
classification has dramatically increased from 26.2% to 
99.9%. It can be explained that the remission features 
helps to provide a clearer difference between all of the 
classes than that of range value only. The average 
classification accuracy was also improved to 95.9% with 
both range and remission features.  

4 Conclusion 

In this paper, we have presented a method to classify road 
terrain types based on LMS data. Range data was used to 
estimate road surface features and the remission data was 
used to extract another set of features. Fusion of both 
types of features lead to higher classification accuracies. It 
was also shown that the accuracies were speed 
independent within the given operating ranges of speeds.  

We are currently working on online 
implementation and prediction of future road terrain types 
based on multi-sensor fusion algorithms.  
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Comments for Authors: 

The authors propose a technique for road terrain classification using rangefinder data. The algorithm extracts 
two features from the data - a spatial frequency feature and a remission-based feature. The authors show that 
by combining both features with an SVM classifier, the algorithm can distinguish between 4 common road types 
with a high degree of accuracy. 
 
Spelling and grammatical error aside, the paper explains the algorithm quite clearly and it seems relatively easy 
to reimplement from reading the paper although the mechanism for training the SVM could be fleshed out a bit 
more.  
 
A weakness of this paper is the lack of comparison with other methods. If I were to attempt to implement a road 
classification system on an autonomous vehicle, after reading this paper I would still not be sure whether it is 
worth employing the proposed algorithm because I have no point of reference to another state-of-the-art 
technique. Quantitively show me where does this algorithm outperform other methods using laser or vision and 
where it fails.  
 
One area where autonomous vehicles have been deployed successfully is in mines and sparsely populated rural 
regions. Would dust significantly impede the algorithms performance? 
 
It&apos;s unclear how robust this technique is to vibrations of the vehicle. An assumption is made that h_i, the 
height of the laser is fixed but this would change if the car vibrated. Is this a significant issue? 
 
The author mentions that lane markings can confuse the remission feature. Would it be possible to just add a 
maximum threshold on the remission values to filter out highly reflective returns and maybe replace the values 
with the average value of surrounding pixels, if necessary. 
 
One aspect of Table 3 that I feel warrants further explanation is the asymmetry between the asphalt and 
concrete. You mention in the text that the features look similar and hence the confusion of asphalt with 
concrete (39.3% false positives). However, why then does concrete not get confused with asphalt (0% false 
positives). It seems like there is an imbalance in the classifier that might be rectified with better training. 
 
Minor changes: Sec2.2 H is the reference height however Figure 3 shows h_i. Should these match? Fig 1 is a little 
confusing. It is unclear that the laser scanner is rigidly attached to the vehicle. Maybe include a supporting frame 
in the image. Should the lowest block in Fig 2 be "Road Surface Estimate" rather than just the "Road Surface" 
which is not dependent on the blocks above it. Section 3 Is a bit short and under developed for a section of its 
own. It might make more sense to call Section 2 "Methodology" and change Section 3 to Section 2.4 
 
Spelling: There are a number of words in the text that are unnecessarily capitalised Sec 1 Par 2 Road Terrain 
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(small t) Sec2.1 arrangement of the Laser scanner (small l) known as Nearest-neighbour ... known as nearest-
neighbour apriory .... apriori remission information of laser beam .... remission information of the laser beam 
causing somewhat speed dependency ... resulting in a dependence on speed. A looking down SICK ... a downward
-looking SICK In a similiar way, x axis coordinate .... the x-axis coordinate Cas Research ... CAS research ? Sec. 
4.2. "But if using laser scanner..." this sentence doesn&apos;t make sense. "As known" ... there is no need for this 
phrase. "without affected" ... without being affected it turned out classification rate ... it turned out the 
classification rate provide clearer difference of all classes .... provide a clearer difference between all of the 
classes

 

Review of pap120s1 by Reviewer 2 top
 
Comments for Authors: 

This paper details a road terrain type classification system using a SVM classifier which takes range data and 
remission values from a laser scanner as inputs. The authors acknowledged that there are many road terrain type 
classifiers in the literature based on a variety of sensors such as laser scanners, cameras, accelerometers, GPS 
and also wheel encoders. However, the authors only compared the performance of their system with respect to a 
range data only SVM classifier on 4 different terrain types making hard to gauge the actual improvement of the 
proposed system. 
 
Detailed Comments/Questions: 
 
1) Is "zi" in Equation 1 referring to "hi" in Figure 3? 
 
2) How does the system deal with the variation of the laser scanner&apos;s pose to respect to the ground as the 
vehicle is travelling on uneven terrain which causes the the suspension system on the vehicle to compress and 
extend. 
 
3) How accurate is the vehicle&apos;s estimated speed in Equation 2? How accurate does your GPS estimate the 
vehicle&apos;s actual speed when travelling at varying and constant speeds? 
 
4) Authors may want to comment on the effect on the concatenated group of scans over 4 metres due to issues 
(2) and (3) and how this may or may not be an issue to the classifier. 
 
5) Experimental results lack comparisons to state of the art systems. Authors should at least provide a qualitative 
comparison if quantitative comparisons are not feasible. 
 
Typos/Grammatical Errors: 
 
1) Rephrase Sect. 1 Para. 6 "…parametric uncertainties of the model causing somewhat speed dependency" 
 
2) Rephrase Sect 2.1 Para. 1 " A looking down SICK LMS111…" 
 
3) Sect 2.2 under "Speed Data Processing&apos;&apos; subsection "…unreasonable error scatted…" 
 
4) Rephrase Sect. 3 Para 1 : "… turns out the best classification rate for road terrain type classification by 
numbers of off-line tests" 
 
5) Confused with the sentence in Sect 4.3 under "Classification based on Range and Remission data" subsection 
"All incorrect predicted labels of Grass road shifted to the Asphalt road while part of Gravel road did as well"

 

Review of pap120s1 by Reviewer 3 top
 
Comments for Authors: 

The main contribution of the paper is the evaluation of a method using range and remission data from a lidar 
scanner to classify road surface type. The authors seem to have done some good work researching this topic; 
however, their presentation of results needs a little bit more work to be satisfactory. 
 
The authors mention that classifiers in addition to SVMs were evaluated, but the paper has no such results; it 
would be good to present a table or plot comparing the performance of various classifiers. 
 
Figure 3 and the corresponding equations (1) and (2) are very basic trigonometry and not really necessary to 
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detail in the paper. It would be better for the authors to provide more details of the classification method, 
especially how the multi-class labeling is done since SVM are inherently binary classifiers. 
 
The paper uses the units of Hz to describe the power spectral density features, however the data is a spatial 
signal and not a time signal. Therefore units of cycles per meter (1/m) would be more appropriate.  
 
Table 1 is difficult to understand. The notation (i.e. 40%10) is not explained, and the accuracy percentages are 
relatively meaningless without any confidence bounds. It would be nicer to show type I and type II errors (false 
positives and false negatives) and indicate the statistical significance of the test. 
 
Table 3 and 4 are a bit better, but I think that the terms "training" and "testing" here are confused with ground 
truth results and classifier outputs. 
 
It would be good to show how the classifier performance varies with the size of the feature patch. How small can 
the patch be to still produce reasonable classification results? or is there a point where larger patches start to 
degrade the performance? This analysis would produce an interesting plot. 
 
Figures 4 and 6 need a lot of work. The axis should be labeled with units and in a font size that is legible. The 
color range should be labeled with a colorbar, and all the plots should have the same color range. Better yet 
would be to color the surface plots by the remission values. Figure 6, doesn&apos;t make sense since the 
algorithm is not using thresholded remission values, and perhaps should be combined into figure 4. 
 
I believe that the following reference has been missed and would be appropriate to include in the introduction: 
Comparison of boosting based terrain classification using proprioceptive and exteroceptive data A Krebs, C 
Pradalier, R Siegwart - Experimental Robotics, 2009 - Springer 
 
I wonder why the authors employ gps for their speed sensor instead of the vehicles speedometer which can be 
queried via its OBD2 port and would be more reliable than GPS urban environments. 
 
I also wonder if it matters to distinguish asphalt from concrete. Under what basis were the class distinctions 
chosen, and do they have a relevance to a particular application or are they just easy to hand label? 
 
There are a number of typographical errors that a simple spell checker will not find such as: range vales -> range 
values rear to find -> rare to find a priory -> apriori It would be prudent to proof read the manuscript in more 
detail.
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Comments for Authors: 

The papers presents a method for road terrain type classification using laser scanner data on a vehicle. The 
subject is relevant, although there is significant related work. The approach appears sensible, however some 
points are not fully convincing, in particular the relative dependency to the vehicle&apos;s speed (affecting the 
scanning data sparsity), the influence of lane markings in remission data. The results are ok, although the variety 
of situations is limited. In particular, it seems that the training data and test data, albeit separate, are taken 
from the same series of experiments. One would like to see how the classification performs on new road that the 
vehicle has not trained on. 
 
More specific comments follow: 
 
Introduction: ---------- I question the comment that "Vehicle vibrations while driving on such surfaces could be 
thought as the most naïve data to be used for identifying different road terrain types". I am not sure what the 
authors meant by this, but there is a very good body of work on this subject, and proprioceptive data such as 
these vibrations are certainly relevant for this problem of terrain type classification. 
 
"the stability of this method was affected by lack of camera’s exposure time": please rephrase this, as you seem 
to be talking about your implementation of such a camera-based method in prior work, not the work by Helmick 
et al. 
 
I think the introduction should state more clearly what is the difference between the method presented in 
[Wang, 2012] and the one is this paper. 
 
Section 2: Fig. 1 is showing the laser scanner and the car, but there is no apparent link between (virtual) laser 
scanner box and the car. Please show how the laser actually is mounted on the vehicle. The figure in this form is 
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confusing. 
 
2.2. "Establishment" does not seem to be the right word here. 
 
Equation (1) and Fig. 3: hi is shown on the figure but not used in the text or anywhere (it should at least be 
defined somewhere). It&apos;s not exactly clear what is H and why it is needed. Is it assumed to be known and 
constant? 
 
Explain why do you use a 1.3m wide region of interest. Is this the car width? I believe that it is not this value of 
1.3m that leads to a 2cm sampling for each line scan. This should depend on the height of the laser scanner 
w.r.t. the road surface instead (which we don&apos;t know, please give the value). 
 
What is the accuracy of your GPS localisation? This could be critical to the quality of your results. 
 
The "on the other hand" at the bottom of page 2 is the wrong link. 
 
Based on Fig.4, the authors claim "It is not difficult to establish a qualitative assessment of the plots for the 
differences purely by visual inspections". Apart from Gravel, I don&apos;t find this so obvious. Please justify. 
 
You never indicate what is your (experimental) sampling in y. Obviously this depends on speed, but this raise the 
question: at what speed may your technique &apos;break&apos; because of insufficient sampling in y? Would 
some regression be needed to "fill the gaps" and maintain a decent classification? I wonder how such 
classification can really be considered independent of speed, because of this sampling issue. At higher speeds, 
are you effectively scanning in "diagonals" on the road rather than on a horizontal line (perpendicular to the 
direction of travel)? what impact does it have on your classification, especially if your training data has been 
acquired at lower speeds, when this effect might be negligible? 
 
Section 3: avoid using "turns out": it is informal and it sounds like you obtained some results "by accident". 
 
Section 4: Fig. 5 deserves more legend. Is this the laser scanner you use that is shown on the right picture? 
 
Any reason to use a laptop to collect laser scanner data rather than using the same PC 104 as for the GPS? How 
good was your synchronisation during your experiments? What do you mean by "Critical vibration was felt by the 
passengers in the cab "? 
 
4.3: The authors say that laser data are assumed to be minimally affected by the speed of the vehicle because of 
the high scanning speed. I am not sure this hypothesis is valid at high speeds for a car, and this scanning speed 
should be given. 
 
Table 1: I don&apos;t understand what the 20&20 mean. How much data have been used to generate those 
results? Note that the speeds presented here are different, but still pretty close (similar range). 
 
"As shown in Table 2, the data set was divided into training and testing parts." : the table doesn&apos;t really 
show that. Table 2: note that speed 0 is impossible since you wouldn&apos;t have scanning in y as required. 
 
"a priory" -> a priori 
 
Smooth asphalt can be similar to concrete indeed. Why do you need to make the difference between the 2 
anyway? 
 
When you use remission data, it does seem that lane markings can have a strong impact indeed, providing 
information that may confuse your classifier. Was there any such lane marking in your training data? Could you 
account for this by recognising the remission is from lane markings and separate the corresponding data? 
 
The formatting of the references needs to be fixed: - Please sort the references alphabetically. - Be consistent in 
the format (e.g. use always initials for first name, or always the full first name, always emphasize the book title 
etc.) - Do not capitalize some names in squared brackets, even if it is yours.
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ACRA 2012: 

http://www.araa.asn.au/acra/acra2012/ 

 

About us 

The Australian Robotics and Automation Association Inc. (formerly the Australian Robot 

Association Inc.) is a professional society in Australia and New Zealand that is concerned with 

robots, their applications and their implications, and related automation technologies. 

The Association organises conferences and other meetings, and serves as a focal point for 

Australian industry and researchers concerned with robotics and automation. 

Joining 

Membership of the Association is available to interested organisations and individuals. Use 

our membership application form to join. ARAA's organisational members include leading 

robot suppliers, users and consultants. 

Organisational Members of the ARAA 

    

ACRA 

The association runs an annual conference Australasian Conference on Robotics and 

Automation (ACRA). The next conference will be held at the University of New South Wales 

between 2-4 December 2013. Details of ACRA2013 will appear here soon. 

Field and Service Robotics (FSR) 

Conference 

http://www.araa.asn.au/join/index.html
http://www.freelancerobotics.com.au/
http://www.scotttechnology.com.au/
http://www.axelent.com.au/
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The association is a co-organiser of the FSR 2013 conference which will be held between 9-11 

December 2013, at Queensland University of Technology in Brisbane. Details of FSR2013 can 

be found at the FSR website. 

Mail list 

Members of the ARAA get access to the ARAA mail list. 

This list is for members to inform other members about activities in the field of robotics and 

automation in Australia and New Zealand. Mail on the list typically contains information on 

topics such as conferences, trade shows, job openings, student and post-doc positions, and 

significant news in the field. 
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