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Abstract— In this paper, a decentralized discrete-time sliding
mode control is designed for the uncertain large-scale systems.
Firstly, a decentralized sliding surface is developed for the large-
scale discrete-time systems including uncertainty and exogenous
disturbance. Then, a decentralized sliding mode controller is
designed for the underlying systems. An LMI approach is
deployed to develop a new framework to design the decentral-
ized sliding mode controller which can stabilize the underlying
uncertain large-scale system. The ultimate boundedness of the
state and sliding function of the underlying closed-loop system
is studied accordingly. Illustrative examples are presented to
show the effectiveness of the proposed controllers.

I. INTRODUCTION

Discrete-time sliding mode control (DSMC) has been
firstly proposed in the mid 80s [1]. This idea was followed by
a vast variety of publications [2] - [5]. It is well-known that
the finite sampling rate in the discrete-time systems would
lead to the fact that the state trajectories could not remain on
the ideal sliding surface. Indeed, the state trajectories of the
discrete-time system would move within a boundary layer
around the predefined sliding surface known as quasi-sliding
mode band [6].

A wide range of the early DSMC investigations have
considered the possibility of creating a discrete-time coun-
terpart to the continuous-time reachability condition [7], [8],
[6]. However, it is argued in the literature that DSMC,
unlike continuous-time SMC (CSMC), does not necessarily
need to include a variable structure discontinuous control
(VSDC) strategy [10], [9], [11]. References [10] and [9] have
shown that using the so-called linear control can guarantee
that the state trajectories remain within a neighbourhood
of the sliding surface in the presence of bounded matched
uncertainty. According to the results given in [10], [9] the
use of a switching function in the controller can not certainly
improve the performance. More importantly, elimination of
the discontinuous control part from the discrete-time sliding
mode control law can eliminate the chattering issue [10], [9],
[11].

An outstanding investigation implemented on SMC has
been decentralized SMC for the large-scale interconnected
systems; see [12] - [13] and the references therein. Other
than recent works in [28] and [29], most of the literature is
in decentralized CSMC, and, thus, the discrete-time decen-
tralized SMC still requires more investigations. Furthermore,
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references [28] and [29] consider a VSDC for the problem
of decentralized DSMC, which according to [10], [9], [11],
is non-beneficial in terms of performance. Indeed, these
references assume that the sampling rate of the system is very
high. With this assumption, the closed-loop system would
behave more or less as a continuous-time system. This paper,
basically, will follow different framework. Moreover, unlike
[28] and [29], the underlying system, here, is assumed to
involve unmatched uncertainties.

It should be noted that decentralized control, today, is a
well-known field of study in the control community and it has
a rich history in the literature [14]. As a common approach,
a large-scale system is considered to be composed of inter-
connected sub-systems with a specific structure. One method
is to deal with the interconnections between sub-systems
as uncertainties of the overall system; see e.g. [15], [16].
As a result, the next step will be designing a decentralized
controller which can tolerate the effect of interconnections to
obtain a predetermined performance level. In order to achieve
this goal, two imaginable approaches are either neglecting or
using the interconnections in the controller design; see e.g.
[17], [18]. In either method, interconnections are known as
the factors that reduce the performance of the overall system.
Alternatively, in practical applications, the interconnections
or at least some of them might be known and provide useful
information, especially for the large-scale systems with an
insufficient number of decentralized controllers; see e.g. [19].

In this paper, we assume that the interconnections of
the underlying system contain both known and uncertain
parts. Using interconnections’ information, an LMI method is
exploited to design the decentralized sliding surface. To this
end, imposing the block-diagonal structure on the LMI vari-
able, a fully decentralized sliding surface is designed which
can tolerate both interconnection influences and subsystems
uncertainties. Accordingly, using the obtained decentralized
sliding surface, a linear decentralized DSMC is proposed and
the ultimate boundedness of the state and the sliding function
of the underlying overall closed-loop system is analyzed.
With the aim of comparison, and as an extension, a variable
structure decentralized controller is also proposed and tested
in this paper.

The rest of this paper is organized as follows: Section
II describes the problem formulation and preliminaries. In
Section III, the proposed method to design the decentralized
DSMC is given, and in particular, the linear controller is
investigated. Variable structure decentralized DSMC is the
subject of Section IV. Efficiency of the proposed DSMC is
studied by numerical examples in Section V. Finally, Section



VI concludes this paper.

Notation: [A;;], . is a square block matrix with the block
entries A;j,i=1,--- ,h, j=1,--- h. diag(Ay,---,A;) is the
block-diagonal matrix with diagonal entries A;,i=1,--- k.
|lv]| is the ¢>-norm of vector v. The function sgn denotes the
well-known signum function.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a large scale system including /& sub-systems,

Y, cxi(k+1) = [Ai+AA; (k)]x (k) + Bi[ui (k) + fi (k)]
h
+ [AijJrAAij(k)}xj(k)a i=1,---,h,
j=1
i#j
(D
where x; € R and u; € R™ are the state vector and control
input vector of the ith sub-system, respectively. The matrices
in (1) are constant and of appropriate dimensions. The
term AA;;(k) denotes the uncertainty of ith sub-system and
Z’}ZlAijxj(k), ?zlAA,-j(k)xj(k) are, respectively, a known
i i
interconnection and an uncertain interconnection of the ith
sub-system. f;(k) implies the matched external disturbances

of the ith sub-system with known bound.

Define
x| up fi(k)
X = U= (k) = : , 2)
xp up Tn(k)
and
A= [Aij],. DA = [AA;], B = diag(By, - ,By).

3)
Besides, the uncertainty matrix for compact system is
assumed to be as follows,

M,
AA(K):= | © | R(k) [Ny Ni], (4)
My,
where
IR(K)| <1, ¥ k> 0. 5)
Defining
M,
M=|:]|,N=I[N Ny, (6)
My,
one can write
AA(k) := MR(k)N. @)

Using (2) and (3) the compact form of the sub-systems in
(1) can be written as

S x(k+1) = [A+AK)x(K) + Blu(k) + FK)]. (8

The following lemmas are useful in the sequel.

Lemma 1 ( [21]): Let E, F(k) and G be real matrices of
appropriate dimensions with FT (k)F (k) < 1,Vk > 0, then, for
any scalar € > 0, we have

EF(k)G+G'FT(k)ET <eEET +¢7'G'G.
Lemma 2 (Schur Complement [20]): The following lin-
ear matrix inequality,

H
[,2; QZ] >0,

is equivalent to Q> >0, O fHQZ*IHT > 0, where QIT =0,
Qg =, and H is a matrix with appropriate dimension.

Remark 1: In this paper, it is assumed that the uncertain
parameters of the subsystems and the interconnections be-
tween sub-systems are similar, which results in the simplifi-
cation of the analysis. However, corresponding decentralized
SMC for the general form of uncertainties will be considered
in the future research.

III. DECENTRALIZED DISCRETE-TIME SLIDING MODE
CONTROL

Consider the following decentralized linear discrete-time
sliding function:
ox(k) = Sx(k), ©)

where o, (k) := col(oy, (k), - ,0y,(k)) and the block diago-
nal matrix S := diag(Sy,---,Sp) will be designed later such
that SB is nonsingular.

During the ideal sliding motion the sliding function satis-
fies:

oy (k+1) =0y (k) =0, Yk> ki, (10)

where k; > 0 denotes the time that sliding motion starts.
However, one may obtain from (8) and (9) that

or(k+1) = S(A+ AA)x(k) + SBlu(k) + f(k)]. (11)
Assume fj(k) = col(fi1,-- , fim;), and
fi<Fi <Al =1 m, (12)
also define

+ _ ilj' +f;lj fi tlj 7](;1/

v 2 13
Fr=col(fi o fih), T =diag(fi,  fm) (13)
%c = CQ}(fJ)... ’ﬁ'rjq)’

and
AD = diag(A11,~- 7Ahh)' (14)
Now, the following compact control law is proposed,
u(k) = —(SB)~'SApx(k) — ¥ (k), (15)

where (k) = col( (k),- -+, (k)), in which ;(k) € R™,
denotes the approximation of disturbance f(k) which may
be used in the controller to compensate the bad effect
of disturbance on the ultimate bound on the system state
trajectories. (k) can be also regarded as the feedforward



control, in addition to the linear controller. It is assumed
that the component ¥ (k) is bounded and, hence,

1f (k) =B (K < w7, (16)

where 7 is a positive scalar, and .7 = col(.F[,--- ,. %) ); see
(12), (13). Some choices for 9;(k) are presented later in the
next section.

Remark 2: Note that, here, to construct the control law
(15), only the upper and lower bounds on matched distur-
bance are used; see (12), (13). Although it can be seen
in the literature that the term AAx(k) or AApx(k), where
AAp(k) :=diag(AAqy,- - ,AApp), is assumed to be bounded;
see e.g. [24], [2] and [25], this assumption implies the
boundedness of system states, thus, the stability of the system
from the beginning. Hence, in this paper, we construct the
nonlinear part of the controller by using only the external
disturbance information.

The sequel of this section, aims to consider the stability of the
system (8) using the controller (15). As a result of applying
the controller (15) to the system (8), it is seen that

x(k+1) = (A+AA—A)x(k) + B[f (k) — 9 (k)]
where A = B(SB)~'SAp. Furthermore, it can be found that

o, (k+1)=S(A—Ap +AA)x(k)+ (SB)[f (k) — (k)]
(18)
The following lemmas are given to consider the boundedness
of the state of the system (17).
Lemma 3 ( [26]): Let V({(k)) be a Lyapunov candidate
function. In the case that there exist real scalars v > 0, ot > 0,
B >0and 0 <p <1 such that

allSR)* < V(CH) <BISHI,

A7)

and
V(E(k+1))=V(E(k)) <v—pV(E(K)),
then § (k) will satisfy

6l < e a-py
Lemma 4: For any symmetric block diagonal matrix P >0
and any full column rank block diagonal matrix B, we have
PB(B"PB)~'BTP < P.
Proof: 1t can easily be proved by

[I—B(B"PB)~'B" P|" P[I — B(B"PB)"'B'P] > 0.

|
Theorem 1: The compact form of the local control law
(15) can drive the state of the overall system (8) into a
boundary layer around the ideal sliding surface (9) and, in
addition, the system state trajectories are ultimately bounded
if there exist a symmetric block diagonal matrix P > 0, where
P =diag(Py,---,P,), in which P, € R"*" matrices X, ¥ and
also scalars € > 0 and 7 > O satisfying the LMI in (19),
shown at the top of the next page, where S = BT P~
Proof: Define

V(E(k)) =x" (k)Px(k)+ o] (k)(SB) ' ox(k),  (20)

where P = diag(Py,---,FP,), in which P, € R"*" is a sym-
metric block diagonal and positive definite matrix, S = B’ P
and (k) = [x" (k) of (k)]T. Thus, we can write

AV (L(k)) =V (E(k+1)) =V (E(k))
=xT (k4 1)Px(k+ 1)+ T (k+1)(SB) ‘o (k+ 1)
—x" (k)Px(k) — o (k) (SB) ™' 0 (k). 1)
It can be shown that
xT (k+1)Px(k+1)
=x" (k)[A+AA —B(SB)"'S(A+AA) + B(SB)"'S
x (A—Ap+AA)|TP[A+AA — B(SB) ' S(A+AA)
+B(SB)"'S(A — Ap + AA)|x(k)
+2xT (k) (A — Ap + AA)T ST [f(k) —
+[f(k) = 0 ()] (SB)[f (k) — B (k)]

B (k)]

=x" (k)[A+AA —B(SB)~'S(A +AA)])"
X P[A+AA — B(SB)"'S(A + AA)x(k)
+xT (k) (A —Ap +AA)T ST (SB)'S(A — Ap + AA)x(k)
+2x7 (k) (A — Ap + AA)T ST [f (k) — (k)]
+[f(k) = 0 (k)" (SB[ (k) — B (k)].
Also,

(22)

ol (k+1)(SB) o (k+1)
=xT (k)(A—Ap+AA)TST (SB)"'S(A — Ap + AA)x(k)
+[f (k) = B (k)] (SB) [ (k) — B (k)] (23)

+2xT (k)(A — Ap 4+ AA)TST[f (k) — (k)]

Besides, note that
2" (k) (A —Ap +A4)TST[f (k) — 0 (k)]]
<xT(k)(A—Ap+AA)TST(SB)"1S(A—Ap+AA)x(k) (24)
+f (k) = 9 (k)] (SB)Lf (k) — B (k)].
Now, using (22), (23), (24), (16), we have

AV (E(k))
<xT (k)[(A+AA(k))T P(A + AA(K))
—(A+AA(k))T PB(BTPB)'BT P(A+ AA(K)) — P
—PB(B"PB)"'BTP+4(A—Ap+AA) PB(B'PB)"'B" P
X (A—Ap +AA)Jx(k) +4[f (k) — 0 (k)] (SB)[f (k) — ® ((Q]) :
According to Lemma 4 and (16), it can be noted that

AV (E(k))
<xT (k) [(A+AA(K))T P(A + AA(K))
— (A+AA(k))TPB(BTPB) " 'BTP(A+ AA(K)) — P
—PB(BTPB) " 'BTP+4(A—Ap+AA)TP
x (A—Ap+AA)x(k)+y
2" (k)Ox(k) + 7,

(26)



—P+YT"BT +BY (AP+BX)T Y'BT 2P(A—Ap)T P PNT
AP+BX —P+eMMT 0 2eMMT 0 0
BY 0 —pP 0 0 0
2(A—Ap)P 2eMMT 0 —P+deMMT 0 o | <0 (19)
P 0 0 0 -l 0
NP 0 0 0 0 —el

where y =412 ||SB||||.Z¢||%, and
0 :=(A+AA(k))TP(A+AA(k))
— (A4 AA(k))T PB(BTPB)"'BT P(A + AA(K))

27
—~P—PB(B"PB)"'B"P @7
+4(A—Ap+AA)"P(A—Ap +AA).
Now, assuming that
®< —nl, (28)
we have
AV ( (k) < —nx" (k)x(k) + 7, (29)

where 11 > 0 is a scalar variable. To adapt the results of this
theorem to Lemma 3, we have to do some manipulations.
First, define

V(&(k)) = xT (k)[P+ PB(BT PB)~' BT P]x(k)
L (30
= x' (k)Mpx(k).
Hence,
Aanin (M) [[x(K)[|> < V(£ (K)) < Amax (Mp) [x(R) >, BD)
Furthermore, it is obvious that
Ammin (diag (P, (SB) ™)) 1 (k) [> < V(£ (K)) (32)

< e (diag(P. (SB) ™)) [ S (k) 1.

Consequently, from (29) and (31), one can derive that

n
AV(L(k)) < _mV(C(k)) +7.

Note that from (28) and Lemma 4 it can easily be derived
that n/ < Mp, or equivalently, W < 1. Eventually, from

ax

Lemma 3 and (32), we conclude that
Ve >0, 3k* > 0, s.t. Vk > k¥,
Amax(Mp
I < e sy
where € is a positive scalar. Now, let us consider the
feasibility of ® < —n/ in (28), which is equivalent to that
of
(A+AA(K))TP(A+AA(k)) + [(A+AA (k)" PB(B" PB) !
+FT)(B"PB)[F + (BT PB)"'BT P(A + AA(k))]
— (A4 AA(k))TPB(BTPB) 'BT P(A+ AA(K)) — P
—PB(B"PB)"'BTP+ L+ (B"PB)"'B"P|" (B” PB)
X [L+ (BTPB) 'BTP| +4(A—Ap+AA)TP
X (A—Ap+AA) < —nl,

(33)

(34)

Y+E.

(35)

where F' and L are two auxiliary variables [22]. Hence, we
derive

(A+AA+BF)"P(A+AA+BF)—P
+LT(BTPB)L+L"B" P+ PBL+4(A—Ap+AA)TP (36)
X (A—Ap+AA) < —nl.

Letting P = P~!, it can be shown that

P(A+AA+BF) P~ (A+AA+BF)P—P+PL"(B"P7'B)L
x P+ PLTBT + BLP +4P(A—Ap +AA)T P!
X (A—Ap+AA)P < —P2. (37)
Using Lemma 2, it may be demonstrated that the inequality
in (37) can be implied by (38), shown at the top of the next
page, where X = FP, Y = LP and j = n~!. With the help
of Lemma 1, (38) can be sufficed by the LMI in (19). ®
Remark 3: Note that the control law in (15) is referred
to as Lyapunov min-max controller, since it minimizes the
Lyapunov function’s difference, AV, for the worst case of
the uncertainty; see e.g. [23].
Remark 4: Consider the following so-called linear con-
troller,
u(k) = —(SB) " 'SApx(k). (39)
This linear controller can be used in the overall system (8)
with external disturbance, and can guarantee the boundedness
of the system state, in this case the ultimate bound on the
closed-loop system state is as in (34) with y = 4||SB|| || f||*.

IV. VARIABLE STRUCTURE CONTROLLER
CONSIDERATIONS

As discussed in section II, in the literature, it is argued
that the discontinuous part of the sliding control input can be
detrimental to performance [3]. However, this claim is only
true for the balanced uncertainties and/or disturbances whose
the biggest frequency is close to the sampling rate of the
discrete-time system. In simpler terms, when the sampling
rate of the discrete signal processing system is big enough
compared to the maximum component frequency of exoge-
nous disturbance f(k), the claim of [3] is not true. It has
been shown in [10] that the term .# © = col(F,", -+ ,.%")
(see (12) and (13)) can be used to compensate the nonzero
mean of the unbalanced disturbances. It can easily be realized
that in the case of using .# T the maximum estimation error
is F¢. Letting

O(k)=FT, (40)



—P+YTBT +BY
(A+AA)P+ BX P
BY
Z(A —Ap+ AA)P
P

S OO

[(A+AA)P+BX]T

o

YTBT 2P(A—Ap+AA)T
0 0

—p 0
0 P
0

<0 (38)

S o000

the controller in (15) can be defined as the following one,

u(k) = —(SB) " 'SApx(k) —.F . (41)

Also, the ultimate bound on the system state is as in (34)
with y=4||SB|| ||.Z¢||*, by setting T =1 in (16).

Remark 5: With a quick glimpse into the literature, it can
be found that a frequently used candidate for the component
¥ (k) has the general form of:

B(k) =

where y and v are known parameters. For instance, in [24],
with ignoring the bounds of SAAx(k) (see Remark 2), y and
v are assumed to be some constants involving the bounds of
f(k), similar to .Z" and .%~. Hence, the controller in (15)
can be set in a similar manner as in [24] to be as

u(k) =

Regardless of different approaches used to design the pa-
rameters of this nonlinear function, it should be emphasized
that the term sgn(o,(k)) is not an appropriate function to
determine the position of the disturbance relative to its mean
value either in the physical meaning or in the theoretical
sense. Using the controller containing ¥ (k) as in (42) will
lead state trajectories to chatter around the switching surface
with amplitude dependent on the lower bound of the term
(42) and with the frequency equal to the sampling rate; see
[10].

¥+ vsgn(i(k)), “42)

§+

—(SB) " 'SApx(k) — F T — F sgn(cy (k).  (43)

V. SIMULATION RESULTS

Consider system (8) with 7 =2 and

05 02 0.04 0.0038  1.00
Ajp=|-001 13 0.2{,B = [0.0810 0.10],
—0.16 —1.05 0.3 010 2
04 09 0.02
An = [1.1 0.2} B2 = [1.5}’
005 —0.1 —-0.23 0.15 0.1
Ap=|-01 00|, Ay=| 7" 0 "
0.02 02 S

M=[0.15 008 02 -005 02]"
N=[023 0.15 —025 —0.18 —0.22],

3sin(k

R(k) =0.
filk) = [ } sin(<), f2(k) =0. 131n(];)

x11
LAY - = =-x12
\:..__ - - -x13

State of sub-system 1

. . . . . . . . .
5 10 15 20 25 30 35 40 45 50
time (sec)

- = =x22

State of sub-system 2
7

AAAAAAAAA

Fig. 1. Trajectories of the state using the linear controller

Sliding function of sub-system 1
2 1,l_\t_l_

. . . . . . . . .
5 10 15 20 25 30 35 40 45 50
time (sec)

20

nnnnnnnnn

)

ding function function of sub~system 2

Fig. 2. Trajectories of the sliding function using the linear controller

Note that the open-loop sub-systems are unstable. Solving
the LMI (19) gives the following results:

292.1376  —86.9891 51.3692
P = |—86.9891 152.3270 14.4219 |,
51.3692 14.4219  338.9188
= 405.5726  —82.0062
P =

—82.0062 278.9241
7 =789.2056/5, € =310.7873.

Hence, using P = P~ in the control law (39), the results of
applying this linear controller to the overall system (8) are
shown in Figs 1-2. Note that smce the exogenous disturbance
is balanced, 1 = [O 0 O] and thus the controller in
(41) is same as (39). Here, the initial state is assumed to
bex(0)=[1 -3 —05 1 Z]T. It can be seen that the
states are ultimately bounded and also during the sliding
motion the states are within a band of sliding surface o, (k) =
0.

Once again, we apply the controller in (43) to the overall
system (8) using . %~ = 0.1/5. The results are demonstrated
in Figs 3-4. As seen, this controller leads the state trajectories
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Fig. 3. Trajectories of the state using the controller (43)
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Fig. 4. Trajectories of the sliding function using the controller (43)

to chatter around the switching surface.

VI. CONCLUSIONS

In this paper, using interconnections’ information, we have
used an LMI framework to design the decentralized sliding
surface which can tolerate both interconnection influences
and subsystems uncertainties. Besides, in order to have an
entirely decentralized sliding surface, we have imposed the
block-diagonal structure on the LMI variable. Using the
obtained decentralized sliding surface, a linear decentralized
DSMC has been proposed. Also, the boundedness of the
state and sliding function of the underlying overall closed-
loop system is analyzed and the ultimate bound on the
system state and the sliding function is derived. Moreover,
the issue of variable structure decentralized controller has
been discussed in this paper. The illustrative examples have
shown the efficiency of the proposed robust decentralized
DSMC.
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