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Complex systems such as Cellular Automata (CA) produce global behaviour based
on the interactions of simple units (cells). Their evolution is specified by local
interaction rules that generate some form of ordered, complex or chaotic
behaviour. This wide variety of behaviour represents an important generative tool
for the artist. Chaotic behaviour dominates rule space, which has serious
implications for the serendipitous use of these systems in artistic endeavour. A
fresh insight into a recognised key problem, the structure of rule space, is
presented based on empirical evidence. This provides a method for creating groups
of rules with a broad range of behaviour for application Within generative arts
practice and will also be of interest to scientific practitioners.

1. Introduction

On the phono-scales a common or garden F sharp gave a
reading of 93 kilogrammes. It issued from a decidedly large
tenor whose weight I took. (Erik Satie 1912)

The different classes of behaviour that CA produce, whether
ordered, complex or chaotic, make them interesting to artists
and scientists alike. They are fascinating objects, producing more
pattern than a single human is capable of observing within their
own lifetime. Stephen Wolfram has proposed twenty key

problems in the theory of CA (Wolfram 1985), the seventh problem asks
: How is different behaviour distributed in the space of cellular
automaton rules? The structure of the elementary rule space was
examined by Li and Packard, where their aim was to show inter and
intra behaviour class connections (Li and Packard 1990). The approach
taken in this paper and described in section 3 is different, providing
fresh insight into rule space structure.

Within the domain of generative music access to a variety of behaviour
is essential. CA have played a key part in generative music for many
years (Burraston, Edmonds, Livingstone and Miranda 2004) (Burraston
and Edmonds 2005). Reflective practice has also been utilised to
investigate and describe generative music (Burraston and Edmonds
2004) (Burraston 2005a, 2005b & 2005c), and also a precursor to the

21



work described in this paper (Burraston 2005d). Schon suggests
research on fundamental methods of inquiry and overarching theories
are a key part of reflective practice (Schon 2003). These methods and
theories are the springboards for making sense of new situations. It has
been suggested that rule choice is a fundamental process in generative
music composition with CA (Burraston 2005a). Using recent theory as a
foundation methodology, rule groups are created by considering the CA
state space as a symbolic representation of rule space. A detailed
example exposes the main process of creating a rule space structure.
Applying this method to larger rule spaces demonstrates an ability to
create reasonable diversity from such a random behaviour space. The
approach taken in this paper may provide an interesting and alternative
method of studying CA rule spaces in general.

Other methods of behaviour classification have been devised, an
example of six categories is given in (Li, Packard and Langton 1990). It
is known that it is undecidable to assign a CA to a Wolfram class
(McIntosh 1990) and there are several attempts at behaviour prediction
parameters, five of which have been surveyed in (Oliveira, Oliveira and
Omar 2001). The relatively rare complex behaviour of class 4 was
suggetsed to occur at a "phase transition" between order (class 1 and 2)
and chaos (class 3), termed the "edge of chaos" (Langton 1991). The
concept of the "edge of chaos" and efficacy of Langton's "Lambda"
prediction parameter has also been critically re-examined in (Mitchell,
Crutchfield and Hraber 1993).

2. Brief Overview of CA

The global dynamics of CA (Wuensche & Lesser 1992) offers a different
perspective based on the topology of attractor basins, rule symmetry
categories and rule clustering. Wuensche's Discrete Dynamics Lab
(DDLab) software allows for the exploration of global dynamics
(Wuensche 2005), as well as many other important aspects of CA and
related discrete networks. The number of cells in a CA is termed the
system size and is represented by L. The number of state values is
represented by v and the number of cells in the neighbourhood by k.
This differs slightly from Wolfram's numbering scheme of k as the
number of states and r as the neighbourhood radius (Wolfram 1984).
Wuensche's numbering scheme allows for even numbers of cells within a
neighbourhood. This is useful for considering CA as part of the wider
field of random Boolean and intermediate networks.

Complementary I
I
I
I
I
I

Complex systems such as CA produce global behaviour based on the
interactions of simple units. CA were conceived by Stanislaw Ulam and
John von Neumann in an effort to study the process of reproduction and
growths of form (Burks 1970). The concept of the universe as a type of
CA computer was introduced by Konrad Zuse and termed Calculating
Space (Zuse 1969). Here Zuse poses the controversial question : "Is
nature digital, analog or hybrid?". Ed Fredkin, a long standing CA
scientist, is convinced that the universe is digital (grainy) and has a
developed his own "Digital Philosophy" termed "Finite Nature" (Fredkin
1992). Fredkin believes that the digital mechanics of the universe is
much like a CA, deterministic in nature but computed with unknowable
determinism. Space and time in this view are discrete quantities,
everything is assumed to be grainy. Some important CA concepts are
now reviewed to give a sufficient background for the purpose of this
paper. ""Reflection

Figure 1 - Rule cluster axis (left) and layout (right)CA are dynamic systems in which space and time are discrete. They may
have a number of dimensions, single linear arrays or two dimensional
arrays of cells being the most common forms. The CA algorithm is a
parallel process operating on this array of celis. Each cell can have one
of a number of possible states. The simultaneous change of state of
each cell is specified by a local transition rule. The local transition rule is
applied to a specified neighbourhood around each cell. CA were classed
by Stephen Wolfram with one of four behaviours (Wolfram 1984).

Class 1: Patterns disappear with time or become fixed.
Class 2 : Patterns evolve to a fixed size with periodic
structures cycling through a fixed number of states.
Class 3 : Patterns become chaotic.
Class 4 : Patterns grow into complex forms, exhibiting
localized structures moving both spatially and temporally.

The 1D v2k3 rules can be grouped into 88 equivalence rule classes, by
negative, reflective and composite negative reflective transforms,
with a maximum of four rules per equivalence class (Walker & Aadryan
1971). With the addition of a complement transform a total of 48 rule
clusters can be formed from three basic rule table transformations
(Wuensche & Lesser, 1992). The rule cluster axis is shown in Figure 1
(left) and the rule cluster layout is shown in Figure 1 (right). The lowest
rule number (R) identifies a cluster and is always positioned in the top
left corner. The negative (Rn) and reflection (Rr) transforms are
identified along with a composite transform, the negative reflection
(Rnr). The complement transform (Rc) also has corresponding negative
(Rcn), reflection (Rcr) and negative reflection (Rcnr) transforms. Rule
symmetry categories are formed by the reflection transformation. This
groups rules with related symmetric properties in their spacetime
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behaviour into symmetric (S), semi-asymmetric (SA) and fully
asymmetric rules (FA). The symmetry categories divide elementary rule
space in the following proportions: S = 1/4, SA = 1/2 and FA = 1/4.

attractor cycle, is termed the basin of attraction (boa) of that individual
attractor. An example basin of attraction is shown in Figure 2. State
space for a particular CA rule and size is populated by one or more
basins of attraction, termed the basin of attraction field. The boa field
may contain equivalent basins or subtrees, where the states are
rotationally symmetric.Wuensche has importantly shown that as the neighbourhood size k is

increased beyond 5, the proportion of chaotic rules rises very sharply in
a random sampling of rules (Wuensche 1997). This has serious
implications for the serendipitous use of these systems in artistic
endeavour. The magnitude of the numbers of rules is extremely large,
Wentian Li (1989a) has commented on the 5 neighbour rules:

"Even if we can produce a spatial-temporal pattern from each
rule in 1 second, it is going to take about 138 years to run
through all the rules. Considering the redundancy due to
equivalence between rules upon O-to-1 transformations, which
cut the time by half, it still requires a solid 69 years."

Table 1 - Total number of CA rules for v2k2 to v2k7 of one dimension
Rule type Total number of rules
(vnkn)
v2k2 2" 2"2 = 16
v2k3 2" 2"3 = 256 (the elementary rules)
v2k4 2" 2"4 = 65536
v2k5 2" 2"5 = 4 294 967 296
v2k6 2" 2"6 = 1.844674407370955e+19
v2k7 2" 2"7 = 3.402823669209385e+38

The total number of CA rules is a function of the number of states and
the size of the neighbourhood. The v2k3 CA amount to a total of 256
rules, and are known as the elementary rules (Wolfram 1983). Table 1.
shows a summary of the total number of rules for 1D binary CA with
neighbourhoods of 2 to 7 cells. As the neighbourhood is increased there
is astronomic increase in the total number of rules. To further compound
matters the size of the digits specifying the transition rule number itself
becomes very unwieldy. For example, say the left most digits of a 15
neighbour rule expressed as a hexadecimal number are:

Figure 2 - Basin of attraction

Each elementary rule cluster has two boa fields, one for the top layer
(R), and a different, but garden of Eden related field for the
complementary bottom layer (Rc) if it exists. Rule clusters contain
either 2, 4 or 8 different rules depending on whether the
transformations result in the same rule number. For both layers the
other transformed rules have identical boa measures and the states in
spacetime are simply related by being negative (Rn), mirror image (Rr)
or both (Rnr). For a deeper understanding of these concepts the reader
is strongly advised to study the literature, in particular Wuensche and
Lesser's book, now freely available on the internet (Wuensche and
Lesser 1992).

c2dc0648578781faOa07a05b40015c645e028d23a5bc64418d14019615c

the remaining digits for this rule number would take up 3 pages of A4!

This section will now review attractor basin theory to give sufficient
background for the following sections. The state space of a CA consists
of all possible global states. In a finite deterministic CA all state
transitions must eventually repeat with period 1 or more. States are
either part of an attractor cycle or lie on a transient leading to the
attractor cycle. If a transient exists there will be states unreachable by
any other states at the extremity. These extremities are called garden of
Eden (goE) states. All transients leading to an attractor, and the
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3. Rule Space Structures from Attractor Basins
are actually rule cluster pairs. The pair (0, 255) are a complete 2 rule
cluster, and (85, 170) are the reflection half of the well known 4 rule
cluster "left/right shift". DDLab can visualise state space as a matrix of
values. This will be termed here as a rule space matrix to clarify that
they are representing rule space in this paper. The rule space matrix for
each tree is shown, Figure 4 top left, right and bottom right. Each matrix
shows that the space is not randomly divided and each one appears to
cover much of the area of the space......••......•.........•II II II"

_II... III. II I II .-,;a. ._.
II .rJd II III -.1 ~. I .111 II

.
11 11.1 II II aI.Q:"Ii!'"
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If we consider state space to be a symbolic representation of rule space,
then a basin of attraction field can be interpreted as an example of the
self-organisation of rule space. It follows that this organisation of rule
space will reflect the properties of the chosen CA for a specific system
size. The requirements for a one to one relationship between system
size Land v2kn rule space is shown in Table 2.

A rule containing a single boa field would be a good candidate for
investigation, for the simple reason that all the states are contained in a
single structure. The v2k3 rules 60 and 90 (and their equivalence
related rules) are the only ones that exhibit this property for the
required system sizes. In addition they are "Limited Preimage" or LP
rules, giving the very important additional property of small and known
number of braches in their attractor basins. Not all of the LP rules will
give the same types of structure, for example some of them are chaotic
rules. The boa field of rule 90 for a system size L = 4 is shown in Figure
3 (left). This structure has formed into three easily recognisable groups
around a central period 1 attractor. A similar property is seen with rule
60, except here two groups are attached to the state immediately
preceding the attractor, shown in Figure 3 (right).

L = 2"2 = 4 L = 2"4 = 16 L = 2"5 = 32

'·~\t~hh~·1' I • -m.
'\/>'fi~".r~ II -

B;r\i~; i-. rI I•.-. :..
I III ••
1~11I II. r

Figure 4 - The entire basin field for rule 90 L = 8 (bottom left) and rule
space matrix for each tree (top left, right and bottom right).
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Figure 3 - Simple formations of groups of states: rule 90 (left) and rule 60
(right) with a system size L = 4.

From Table 2 a system size of L = 8 is required for a one to one
relationship with elementary v2k3 rule space. The boa field of rule 90 at
L =8 is shown in Figure 4, producing a similar structure to the L = 4
field. Three groups are again formed around a period 1 attractor. The
decimal values of the states immediately preceding the attractor are 85,
170 and 255. These innocent looking numbers and the attractor itself

A more detailed view of the attractor is shown in Figure 5 (left),
depicting predecessor states up to two levels. The state values for the
base of the three main groupings are shown again in decimal. The 16
rules seen here in the matrix diagonal of Figure 5 (right) are identical to
the the 16 rule numbers identified as type (d) deterministic structure in
Jen (1986), and also feature in Table 4.4a from the computational
analysis by Voorhees (1996).
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Figure 5 - Rule 90 L = 8, attractor and two levels of each subtree (left),

representedas a rule spacematrix (right).

From this group of 16 rules the remaining 12, three groups of four, can
also be paired into rule cluster sections. This group of 16 rules will be
called the root cluster of rule 90 and a visual representation is shown in
Figure 6. The Rand Rc cluster sections are indicated by a solid circle and
rules not containing them are indicated by dashed circles. In practice I
use the term shadow rules to describe cluster pairs that do not contain R
& Rc. In the case of the shadow pair (102, 153) the cluster itself (R =
60) is collapsed and does not have any Rc. This cluster section (Rr &
Rnr) is indicated by a vertical line between the rule numbers.

\
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I 85

The pairing of rules 51 and 204 is significant, as these are the important
rules of complement and identity. The shadow rules (119,136) and
(221,34) are complimentary pairs from rule clusters 3 and 12
respectively. The same is true of the remaining pairs (17,238) and (68,
187). Symmetry categories in the root cluster are of the same
proportion as the total number per category for the whole of v2k3 rule
space: S = 1/4, SA = 1/2 and FA = 1/4.
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Figure - 7 Rule 90 L = 8, complete subtree
representedasa rule spacematrix (right).

of node 119 (left) and
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Figure6 - The first 16 rules structuredby rule 90 form a root cluster.
Figure8 - Identifying the rule cluster sectionsby handfrom the printout.
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The remaining rule space is occupied by the outer 12 subtrees from the
root cluster. An image for each subtree was created using DDLab and a
printout obtained. Each subtree is of identical topology and contains 20
rules attached to the root rule. The subtree and rule space matrix for the
root rule 119 is shown in Figure 7. The rule space matrix again does not
appear randomly configured. Each of the 12 subtree page printouts was
examined to see how the numbers related to the remaining rule clusters.
In all cases these were organised by the global dynamics of rule 90 into
pairs from a cluster, importantly all were complementary (or their
collapsed equivalent) pairs. This was verified by drawing over each of
the 12 pages to identify the main rule pairs as depicted in Wuensche and
Lesser's atlas. The handrawn identifications for the subtree of 119 is
~ninFi~8.
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Figure 11 - The four rule groups from rule 170.

Figure 9 - The 10 rule pairings from root rule 119.
This group of 21 rules by rule 90 can be represented visually as shown
in Figure 9. The diagram shows the main rules indicated by solid circles,
the shadow rules by dashed circles and the root rule in the centre as a
square. The larger circles are derived from the intermediate level above
the root rule, the smaller circles from the goE nodes.

4. Results and Reflections

EB @ @ (111"; @ (83": EB ©212

'@5'" 249 ,.173.'

ffi ........, .®..~... -,

.~
: 102: 1153 :
~ •••••• t 150 ~......'

@ ED @ (163"; ~ j159': • 113 ' 'r: '~ :66189:176 246 '.?~.' • 202 , , 96 , .. 142 • ..,........ .. ..... .•...... .• ...•..

@ (7;": @ (86"; @ (89"; & ('2'3":

'~"'.
252 .169, 243 -, 1~~..• 20 .132 ••......•...•....

.@.
.......•........

: 135 •• 0 : 75 ••B . • . •210 •••120 .* •••180.:

@~ ,'20""", 4t···~·io..l.... @.........
222 :-,1~~.· t-:-;:--; t-c:---l ~ ,,149": 29 t' 183 'i

•. 48 , •. 154. •. 192 • •. 106 .. 226 .72 •
••a ~ ~ ..~..~ ..~.... ".~.. •••••• I

® ©
.@.

~ j133':
.208 • • 122 ,a.. ..... 1

Figure 12 - The four rule groups from rule 85.
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The remaining 11 hand drawn pages were also converted to this same
diagrammatic form. The complete set of 12 groups of the elementary
rule space is shown in Figures 10 to 12. Eight rules have collapsed
compliments so these became paired with other rules in their cluster.
These collapsed rules are indicated by an oblique or vertical line between
the rule numbers indicating visually how the cluster has been paired.
Significantly, the symmetry categories are again exactly proportioned
(1/4, 1/2 & 1/4) in two ways: the 16 intermediate rules of each subtree
(255, 170 and 85), and the 16 goE rules in each of the 12 groups.

Figure 10 - The four rule groups from rule 255.

Spacetime plots are a convenient way to visualise CA behaviour from a
chosen starting state, different behaviours can be subjectively identified
visually between plots. The cells are usually represented horizontally and
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time evolves vertically downwards in discrete steps. Example spacetime
plots for the 20 rules from root rule 119 are shown in Figure 13. A wide
variety of behaviour can be seen from the rules present in this group.
The complex rule 193 is part of the well known equivalence class
containing rules 110, 124 and 137) and is suggested by Wolfram to be
the only v2k3 complex rule (Wolfram 2002) .
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Figure 13 - Example spacetime plots for the 20 rules from root rule 119.
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Figure 14 - Rule 90 attractor basin at L=16 (top left) and rule matrix of 1365 v2k4
rules (top right). Partial views coming up from the attractor (bottom left and right).The applicability of this method to structure higher k rule spaces is

undergoing current investigation and showing much promise. Detailed
information is beyond the scope of this paper but some of the basic
findings are now presented. When discussing rule spaces of higher k
than the elementary v2k3 space it is more convenient to use
hexadecimal to represent rule numbers. Both rules 60 and 90 preserve
basin topology for each L size identified in Table 2. This allows for
obtaining mixtures of higher k rules in easily accessible groups of e.g.
21, 85 or 341 in the case of rule 90. The complete basin structure of
rule 90 for L = 16 and a v2k4 rule matrix from a partial subtree is shown
in Figure 14 (top left and right). The rule matrix was obtained from the
subtree of rule 9696 (hex) and contains 1365 rules. A partial view of the
basin is shown in Figure 14 (bottom left and right), where the
distribution of rules has similarities to the L=8 basin.

An example from v2k5 rule space, represented by rule 90 at L = 32 is
shown in Figure 15. The rules are in 10 complimentary pairs, connected
to rule cc6e5386. An entropy-density signature of the 21 v2k5 rules is
shown in Figure 16 (left), indicating a diverse behaviour from the group.
Classification of rules by entropy is presented in detail in (Wuensche
1997). Entropy measures the amount of disorder in the spacetime
pattern, a high entropy value indicates chaos. All the rules were
randomly seeded five times and each seed was evolved in a 150 cell
system for approximately 1500 generations to create this signature.
Example spacetime plots are shown depicting ordered, complex and
chaotic behaviour from three of these rules. Filtering of spacetime
patterns (Hanson and Crutchfield 1997, Wuensche 1999) would further
assist in classification and is planned to be included in future work.
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Figure 17 - Rule 60 at L = 8 (left) and L = 16 (right) .

As a strategy for structuring rule space it is possible that this method
could be used with some other v2k3 rules. Rule 60 is the only other
v2k3 rule with a single basin rooted on attractor zero, if we disregard
the equivalents. Basin fields are shown in Figure 17 for L = 8 (left) and L
= 16 (right). At L = 8 the two main branches of rule 60 appear at 85
and 170. Examining these further shows the rule space is partitioned in
a related way to rule 90, shown in Figure 18 (left). The state values are
identical to rule 90 at L = 8 and the rule matrix in Figure 18 (right) is
thus identical. After this point a different structuring of rule space
occurs, which appears related to rule 90 in that complementary pairs are
again formed.
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Figure 18 - Rule 60 at L = 8 attractor and two levels of each subtree (left).

the rule space matrix (right) is identical to rule 90 at this point.Entropy density signature of ordered complex: chaotic
all 21 rules. 783974fc 301a3798 123815ba

Figure 16 - Entropy (vertical) against density of i 's (horizontal), a
signature showing a broad range of behaviour (left), and three spacetime
examples.

Binary 1D CA have rotation symmetries in their state space attractor
basins, effectively allowing parts of the boa fields, e.g. equivalent
subtrees, to be removed during analysis (Wuensche and Lesser 1992,
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Wuensche 1997). The L=8 rule 90 subtree equivalences are as follows
(68,34), (187,221), (17,136) and (238,119). Visual inspection confirms
that all the cluster sections are in this case also rule equivalent, so
effectively subtree 85 (55 in hex) = subtree 170 (aa in hex) removing
approximately 1/3 of the total basin field. For subtree 255 (ff in hex)
this is a special case as 51, 204, 102 and 153 are ALL rotationally
symmetric as can be seen from their bit patterns. However, only one
subtree can be removed because although this rotation symmetry exists
over all these subtrees, it is in the context of state space. Rule space
clustering does not include rotation symmetry of the rule table in the
creation of a cluster. The subtrees with equivalent rules are 51 and 204
so it is possible to remove one of these, approximately reducing a
further 1/12 of the the basin field. For v2k3 this leaves 7 groups of 21
rules occupying 7/12 of the total rule space and encompassing all 48
rule clusters (if we include the attractor). A general rule of thumb I use
to obtain the total number of behaviour groups from rule 90 is

However, the results presented show all the rules distributed in a self-
similar manner based on symmetry category and complementary
pairing, rather than complex behaviour.

where L= 8 (or 16, 32 etc.) and groupsize = 21,85,341...

Total groups = ABS(((2AL)-1) * (7/12) / groupsize)

With v2k4 rule space and groupsize of 21 this would give a total of 1820
groups. With the same groupsize the v2k5 rule space has a total of
119,304,647 groups. This reduction and structuring of rule space by rule
90 importantly suggests that obtaining groups from larger rule spaces
may be performed by traversing a limited part of the basin structure.
The remaining rules of a particular cluster can be easily obtained by the
rule axis transformations shown in Figure 1 if required in application.
However, much less is known about these larger rules spaces and in the
case of higher k it must be stressed that this is a useful "rule of thumb
calculation", not a mathematical proof.

Figure 19 - Spacetime examples showing broad behaviour from seven
neighbour rule space. The first column is generated from the intermediate nodes
the remaining four columns from goE nodes. '

For the L=8 basin of rule 90, order from nullity begins at the attractor,
traversing one level up we reach; compliment/identity, order with
sections of clusters 3 and 12, and cluster sections of rule 60 giving a
more chaotic rule. Traversing up the remaining two levels to the goE
nodes we see the existence of order, chaos and complexity. Limited
traversal of larger k rule spaces has confirmed that this structure is
indeed repeated, with an increase in chaotic behaviour towards the goE
nodes. In Figures 15 and 16 the complex rule is a goE node, the ordered
rule is one level below, so the extremities of the space are not
completely chaotic either. The spacetime examples in Figure 19 show a
broad range of behaviour in the seven neighbour rule space and are
derived from the goE extremity of rule 90 at L = 128. The first column is
generated from the intermediate nodes, the remaining four columns are
from the goE nodes. This suggests, in terms of the rule space structures
created by rule 90, and possibly rule 60, that a clear phase transition
does not exist when traversing from the attractor to the goE extremity.
Will some mysterious single or multi valued parameter either derived

Deeper reflections on these results concerning rule space structure
suggest many questions, particularly regarding the Lambda parameter
and the "edge of chaos" phase transition debate. Lambda is simply a
measure of the fraction of l's in the rule table and a value of 0.5 is
meant to imply chaos. This fails in elementary v2k3 space and two
obvious deviants are the compliment/identity cluster (rule 51) and
left/right shift cluster (rule 15) both which give fundamental ordered
behaviour. Rules 60 and 90 are generally regarded as chaotic, but their
global behaviour is ordered (null) when the system size L = 2Ak.
Mitchell and her colleagues object to parameters based on the "laws of
motion", i.e. the rule table, suggesting they are not "appropriate loci of
dynamic behaviour" (Mitchell et al 1993). This is exemplified by the shift
in behaviour with system size when the rule remains fixed, as in rules 60
and 90. Li suggests that the "complex rules are scattered around some
fractal-like set in the rule space" (Li 1989b). If this implies some form of
self-similarity the basin of rule 90 certainly approaches this criterion.
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from the rule table, or in conjunction with the data presented here, ever
achieve a near perfect demarcation of rule space; maybe even with a
clearly defined phase transition? In reality all attempts are destined and
accepted to fall short in some manner due to undecidability. Perhaps a
suitable name for the elusive mysterious parameter would be the
"Minerva parameter", after the Roman goddess of crafts and wisdom,
and wars, also said to be the inventor of musical instruments (Wikepedia
2005).

• Investigate these structures to identify how the smaller
neighbour subspaces are embedded.

• Is there a basin field that structures elementary rule space in
distinct basins as a) the 88 equivalence classes b) the 48
clusters?

• Investigate if a parametric approach to behaviour classification is
possible with this method, and demonstrate if a phase
transition can be observed.

• Investigate applicability with random Boolean and intermediate
network architectures

S. Conclusions and Future Work
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