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Abstract

This paper focuses on the problem of verifying information
inconsistencies in acquired information. A rule-map based
technique for data inconsistency is presented, where rule-map
is used to describe hierarchical structure of rules and estimate
judgment standard for consistency dynamically. Moreover, a
state-based knowledge representation technique for logical
inconsistency is investigated, in which knowledge is illustrated
as states set of related objects and logical inconsistency is
determined by the relationships between those state-sets. To
illustrate the presented techniques, two examples are given.

1. INTRODUCTION

Intelligent systems have been widely used in various areas,
such as industrial control, business management, medical
diagnose, market analysis, public security, as assistant tools
for supporting decision making [5]. For the sake of designing
and developing an intelligent system, a combination of models,
methods, and techniques for effective information processing
is employed [5]. Generally speaking, information processing
consists of a series of processing stages, including information
acquisition, representation, verification, filtration, integration,
and application. Among them, information verification plays
an important role, which can assure the reliability of infor-
mation to be processed in the following steps. Because a
knowledge base is required when we develop an intelligent
system for a specific domain, this paper mainly focuses on
information inconsistency verification based on knowledge
base.

Information inconsistency verification is referred to as two
aspects: (1) how to find the inconsistencies of acquired in-
formation, which consists of data inconsistency and logical
inconsistency, and (2) how to find the anomalies of knowledge
base, which includes redundancy, conflict, circularity, and
deficiency [13]. Methods and systems for the second aspects
are widely investigated, but few on the first aspect. This paper
aims at verifying the inconsistency of acquired information.

There may be two kinds of inconsistencies in the ac-
quired information. One occurs when the information is not
compatible with the main part of the information acquired,
which is called data inconsistency. The other one occurs when
using acquired information, it may lead to wrong conclusions
but each piece of information could be right. The second

type of inconsistency is called logical inconsistency. In this
paper, we shall present a model to verify these two kinds of
inconsistencies.

The rest of the paper is organized as follows. Section 2
reviews some related works. In Section 3, a rule-map based
method for verifying data inconsistency is illustrated. A state-
based method for verifying logical inconsistency is described
in Section 4. In Section 5, two examples are given to illustrate

the presented methods. Our future work is discussed in Section
6.

2. RELATED WORKS

Information verification techniques were developed rapidly in
the past decade in data base and expert systems. Most existing
works are concentrated on the verification of knowledge base
(rule base) in order to reduce errors and faults during sys-
tem development and maintenance. Roughly speaking, these
approaches can be divided into two classes:

1) Approaches based on logical inference or logical deduc-

tion.

2) Approaches based on graph-based searching or model

matching.

Because first-order predicated logic is a powerful knowledge
representation method, logical inference based approaches
play important role in information verification. Polat [12]
applied unification of rules to verify anomalies in knowledge
base. Mazure et al [7] used the bound resolution and the
local searching method for satisfiability problem to knowledge
base verification. Because SAT problem is NP-hard and semi-
determined, their methods is hardly to be applied to real prob-
lem directly. Wu et al [15] discussed how to find and modify
the inconsistency based on resolution principle. Zhang et al
[18] presented an illustration for inconsistency, redundancy,
circularity, and incompleteness in terms of theories in the first
order predicate logic. Moreover, Zhang et al [18] pointed out
that without a clear semantics, it is hard to formally define
and analyze knowledge base anomalies and to assess the
effectiveness of verification tools, methods, and techniques.

Graph-based searching technique including methods based
on Petri nets and its extensions, binary directed graph, or
others, is another important strategy to verify inconsistency
in knowledge base. Graph-based searching methods describe
the connection between conditions and conclusions of rules by
edges between nodes in a directed graph or an incident matrix.



Park and Seong [9] reported a method based on extended
colored Petri nets for knowledge acquisition and verification
for nuclear power plant dynamic alarms. In their method,
inconsistent rules are described by different sub graphs, each
of them corresponding to a kind of inconsistency, and the
verifying task is realized by searching those sub graphs. Yang
et al [17] proposed a Petri nets formalism for verifying rule-
based systems, in which the rules are Horn clauses form.
Their method includes three phases: rule normalization, rule
transformation, and rule verification. The rule verification
phase has two Petri nets models, i.e., the static analysis and
dynamic simulated Petri nets model. Moreover, they applied
these models to verify inconsistency for fuzzy rules. Botten [2]
described rules in a matrix, which is similar to the incident
matrix in Petri nets theory. In Botten’s method, the verification
of knowledge base is carried out by simple operations on
the constructed matrix. Similarly, Mues et al [8] discussed
a method based on binary decision diagram, in which rules’
input space are encoded into binary forms, and rule verification
is checking whether some resulting labels are against each
other. This method is more like semantical resolution in SAT
problem.

To our best knowledge, aforementioned strategies have some
drawbacks in the following aspects.

(1) From the point of view of logic, predicated logic is
suitable to describe universal knowledge and, in general, it
has only two possible values. However, in real problem,
the applied knowledge is always domain specified and the
underlying logic may be many-valued logic. Hence, first-order
predicated logic based verification methods cannot be the best
choice for knowledge base verification in specific domain.

(2) From the point of view of recognition, a piece of
knowledge may be right in one time but wrong in another.
However, the existing methods mainly aim at the knowledge
as a whole. So the anomalies in the globe sense may not be real
anomalies in a given time slot. On the contrary, a theory model
may not be a real model in application. For example, suppose
{A — B, B— C, C — —A} is a set of knowledge (rules).
Obvious, a model for the set of rulesis A =0, B=1,C = 1.
However, we have commonly the consequence A — —A. In
real problem, this consequence is unacceptable.

Considering the effect of time in knowledge representation
and inference, this paper combines the rule-map technique
and state-based knowledge representation technique to realized
information verification.

3. RULE-MAP BASED DATA INCONSISTENCY
VERIFICATION

The concept of rule-map is mainly based on the following
three points:
1) Formal rules is a kind of important and efficient way to
represent human knowledge [14].
2) Knowledge always involves in formal concepts and has
a certain hierarchical structure [3].
3) Applying different rules can be seen as recognizing an
object from multiple views or aspects.

A. Data rules and rule-map

Without loss of generality, let X be the set of all possible
observations for a situation, T" be the set of all time slots, O(t)
and E(t) be the real observation and the expected observation
at time ¢ (¢ € T) respectively. In the following suppose ¢ is
an integer.

Definition 3.1: A potential rule r is a triple (m(r),g, f),
where m(r) is an integer, g : T — T™(") and f : X™(") — X
are two maps such that g(t) = (t1,%2,...,tp () and E(t) =
f(O(tl)v O(tQ)a e 7O<tm(r)))’ <t i=12... 7m(r)

For example, suppose H = {0,1,1,2,3,5,8,...} is a par-
tition of the collected data. Let g and f be g(t) = (t—1,t—2)
and f(O(t1),0(t2)) = O(t1) + O(t2) respectively, then we
obtain a potential rule r such that the expected observation of
rule 7 at time slot ¢ is E(t) = O(t — 1) + O(t — 2).

For convenience, we use r(¢) rather than E(¢) in the
following. Let ¢, and t* be the starting and ending time slots
for extracting a rule, 7' = {t|t* >t > ¢, }, and T'(r) be the
set of all time slots at which rule r is valid.

Definition 3.2: The feasible degree of a rule r is defined
as T
o(r) = . m

To a rule r, an observation O(t) is called consistent if
d(r(t),0(t)) < € where d(z,y) is a given distance between
x and y, and € is an consistent error scale. Let T'(r,e) =
{t|d(r(t),0(t)) < e}.

Definition 3.3: The reliability of a rule r under a given
consistent error scale € is defined as

[T(r,e)l

The feasible degree of a rule indicates whether a rule can
be applied to a given period. The higher feasible degree of a
rule, the more applicable it is. However, the feasible degree of
a rule cannot guarantee the acceptability of the estimation of
it. The reliability of a rule indicates the feasible degree of a
rule under the given consistent error scale. As shown in Fig.
1,t; =0, t* =11, and the extracted rule has estimations at
t=1,3,6,8,9,11. Hence, the feasible degree of the rule is
0.5. But the reliability of it is 0.83 because five estimations
are close to the real observations under given consistent error
scale in all six estimations of it.
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Fig. 1: A rule and its estimations.



Definition 3.4: Two rules r; and ry are called equivalent
if T(r1) = T(re), and r1(t) = ra(t) for any ¢t €= T'(ry)
(: T(Tg)).

Definition 3.5: Rule 7 is called to cover rule ro if T'(r1) D
T(rg) and r1(t) = ro(t) for any ¢t € T*, where T* = T'(r3).

According to the covering relationship between two rules,
a directed graph can be built such that the vertex of it
are potential rules, and a pair of nodes with the covering
relationship is connected by an arrow as an edge. As shown
in Fig. 2, rule r1; covers rule ry;, but is incomparable with
rule 12 and rule ra,,,. In the following, we shall call such a
directed graph as a rule-map.

Level2

Level3

Fig. 2: A rule-map.

A rule-map is used to illustrate the hierarchical structure of
human knowledge, which reflects the knowledge before the
current time slot. As shown in Fig. 1, the rule is extracted
before time slot ¢ = 11. Although the rule can be applied to
t =12, 13, 14, 15, it doesn’t mean the rule will be work at
all time slots afterwards. Hence, the picture is updatable.

Suppose G is a rule-map, three features can be concluded:

« the rules at the same level are incomparable to each other,

« the rules at the higher level can take place those at the

lower levels in the sense of covering relationship, and

« the rules at the higher level with higher reliability than

those at the lower levels.

The first feature indicates that the incomparable rules can
describe one object from multiple aspects or viewpoints. The
second feature indicates that only a part of rules are necessary
to be selected, which are located at the top level of the rule-
map. The third feature indicates that each expected observation
has higher accuracy for being the conclusion of a rule at the
top level. Using these three features of a rule-map, we can
efficiently verify data inconsistency.

B. Data Inconsistency Verification

The verification includes four main steps: (1) Construct a rule-
map: extracting rules from collected data and constructing
a rule-map by the covering relationships. (2) Select rules:
selecting the rules which are applicable at the current time slot
from the top-level of the rule-map. (3) Estimate a judgment
standard: estimating an expected observation of the current
time slot as the judgment standard by the selected rules. (4)
Check inconsistency: judging if the newly collected data is
consistent or not.

More details of the four steps are given as follows.

1) Construct a rule-map: The task includes two main sub-
steps. One is to extract rules from collected data by using
methods proposed in machine learning, database processing, or
time series analysis areas[4], [6]. The other is to establish the
covering relationship between any pair of rules if there exists.
We take the following strategies to establish the covering
relationship between rules (Here the rule is not only limited
to the form defined in Definition 3.1 because in general a rule
always involves many attributes of a situation.).

Strategy 1 Assume that 7 : A — B and v’ : A’ — B are
two extracted rules, where A’ is a sub-concept of A, we say
that rule r covers rule r’.

Strategy 2 Assume that r : A — B and v’ : A’ — B are
two extracted rules, where B’ is a sub-concept of B, we say
that rule r covers rule 7’.

Strategy 3 Assume that r : A — B and v’ : A’ — B are
two extracted rules. If neither rule r covers ' nor r’ covers
r, then these two rules are incomparable.

Strategy 4 Suppose the extracted rules have been marked
in a directed graph. We adjust the rule-map such that for a
top-level rule, no rule covers it, and for a non-top-level rule,
at least one rule at the higher level covers it.

2) Select rules: By the features of a rule-map, the selected
rules must be at the top-level of the rule-map. Moreover, notice
that the rules at the top-level may not work at current time slot,
we need to select the rules which are applicable at current time
slot.

3) Estimate a judgment standard: Without loss of gener-
ality, suppose the selected m rules are r1, ro, - - -, 7y, and the
obtained m estimations are vy, vs, - - -, Up,. Then the judgment
standard is obtained by the following equation

s Um), 3)

where Agg is a selected aggregation operator [1] according to
the situation at hand. Here, for simplicity, we can select the
arithmetical mean of these estimations as:

v = Agg(vlav2>"'

m
> v
§==_ 4)
m
Moreover, we can have other choices for aggregation operator,
such as the weighted sum, the OWA operator [16], etc.

4) Check the inconsistency: It is common that people are
easily to accept one result if it is similar to an expected one. By
this idea, the main task at this step is to select an appropriate
measure of the closeness between the new observation and
the estimated judgment standard. If the closeness between
them satisfies a given consistent error scale, then the new
observation is consistent data. For convenience, let v be the
new observation and d(z,y) be a given distance measurement
as closeness measurement. If d(v,v) < €, where ¢ is a given
consistent error scale, then the new observation is acceptable,
i.e., it is consistent. Otherwise, it is inconsistent.

Through the four steps, data inconsistency for a set of data
can be checked.



4. STATE-BASED LOGICAL INCONSISTENCY
VERIFICATION

A. Knowledge as set of objects’ states

For convenience, we shall still use (z1,2,...,2,) to denote
a n-tuple only without concerning the order of these elements,
and set

X19Xo®---
i=1,2,..

®Xn = {(331,]]2,...,
., n}.

Suppose T is the set of all time slots, Oy, O, ..., O, is
a set of objects related to the situation, each object O; has
some possible states denoted by S; = {31 , sg), e 552},
and S;(t) C S; the possible states of object O; at time ¢,
i=1,2,...,n

Definition 4.1: A piece of knowledge w(t) at time t is

defined as follows:
X 55, 5)
JE€J(w)

xn) | Tq S Xia

where J(w) C {1,2,...,n} is a set of indexes such that O;,
j € J(w), is an object corresponding to the knowledge w(t).

Definition 4.2: A piece of knowledge w(t) at time tis
called an empty knowledge if for any j € J(w), S; = 0

or S(w C S;\ S;(t), where S(w) is the set of states of object
oF in knowledge w(t).

Empty knowledge represent the impossible states at time ¢.
Obviously, empty knowledge is not unique. Because it is not
harmful for our discussion to treat all empty knowledge as
one, empty knowledge is denoted by U in the following.

Definition 4.3: Let w(t) be a piece of knowledge at time ¢,

J = {i1,...,iq} C J(w). Then the J-part of w(t) is defined
by w(t)]:
D w(t)l; € Q;cs 5 ); and
2) for any (s,(fll),.. s,(éi:)) €  w(t)|y, there ex-
ists (5181)’-“7 SQ),SI(CZ;),..., ,(Cll’;)) € w(t), where

b, ... e Jw)\ J.
In the following, let () be the set of all knowledge at
time ¢. Then the knowledge about a situation is denoted by

Q=[] o), (6)

t<t.

where t. is the current time. From Eq. (6), we know ) is
incomplete in most cases because it consists of knowledge we
obtained before the current time. Also, there are both consis-
tent knowledge and inconsistent knowledge in {2 because a set
of knowledge is consistent at one time may not be consistent
at another. Although 2 may not be consistent, it is still rational
to require €2(t) is consistent.

B. Knowledge consistency

Although all knowledge as a whole about a situation may not
be consistent, it is still rational to expect the knowledge €2(t)
at each time slot is consistent.

Definition 4.4: Suppose w(t) and ¢(t) are two pieces of
knowledge. w(t) and ¢(t) are said to be strict consistent if
) J(w)nJ(p) =0; or
2) J(w)NJ(9) # 0 and S\
J(9).
Definition 4.5: Suppose w(t) and ¢(t) are two pieces of
consistent knowledge. If J(w) N J(¢) # () and

§4 2 59 and 5 N5 £ )

for any j € J(w) N J(¢), then w(t) and ¢(¢) are said to be
partial consistent.

Definition 4.6: Suppose w(t) and ¢(t) are two pieces of
knowledge. If J(w) N J($) # 0, and there exists j € J(w) N
J(¢) such that

_ <(®) :
= 5;" forany j € J(w) N

@) @) _
S\ st =, 8)

then w(t) and ¢(t) are said to be inconsistent.

The inconsistency of two pieces of knowledge indicates
that any object cannot have states in two separated states sets
at the same time. This can be seen as an expansion of the
inconsistency of the classical logic, where a logical formula
cannot take truth values 1 and O simultaneously.

Before define the inconsistency of a set of knowledge, we
first discuss the combination of two pieces of knowledge,
which includes two forms. One is extracting the common part
of them, which is denoted by E(w,¢), and the other one
is coupling them and cutting the inconsistent components of
them, which is denoted by C(w, ¢), where w(t) and ¢(t) are
the combined knowledge.

Definition 4.7: Let w(t) and ¢(t) be two pieces of consis-
tent knowledge. Then E(w, ¢) is obtained by:

) WhenJ< )NT(9) # 0.

J(E(w,9)) = J(w) N J(¢);
E(w, ) ®; e TN SJ(“’) N S;d’), and
s E(w,0)C w(t)|, )nJ()> and
d E(wv ) ()|J(w NJ(¢)-

2) When J(w) N J(¢) = 0. Define E(w, ¢) as w(t)Uo(t),

where U is the ordinary joint of two sets.

Definition 4.8: Let w(t) and ¢(t) be two pieces of consis-
tent knowledge. Then C'(w, ¢) is obtained by:

1) When J(w) N J(¢) # 0.
J(C(w, ) = J(w) U J(¢);
C(w, )| 1wyn() =
o(t )J(w)m(@,

(C(w; D) () s w)nic ¢) C(w,
(C(w; D) 1)) 1w)na(g) = Clw
2) When J(w)NJ(¢) = 0. Deﬁne C’(

In the following, we also denote C'(
E(w, ) as w U ¢.

Base on Definition 4.8, let Q*(¢) C €(¢), and

c@w) =[] w®. )

w(t)eQ*(t)

W) swyni@e N

=

|J(L.d ﬂ](¢)a
)|J(w yNJ(¢p)-

) as w(t) @ o(t).

) as w M ¢ and

9

w,
W,

SRR

We shall call a set 2 of knowledge is indivisible if there
doesn’t exist a division of J(Q) = J; U J; U---U Jg such



C(w.9)
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Fig. 3: Covering among knowledge

that for any w € Q, J(w) C J;, where [ € {1,2,...,
J() = Uyeq J().

Deﬁnition 4.9: A set of knowledge §2(t) is called consistent
if C(2*(t)) ¢ U for any indivisible knowledge subset of (t);
otherw1se it is called inconsistent.

k} and

C. Knowledge covering

Definition 4.10: Two pieces of knowledge w(t) and ¢(t)
are said to be equivalent and denoted by w(t) = ¢(t) if J(w)
J(¢) and S = 5 for any j € J(w)(= J(9)).

Deﬁmtwn 4.11: A piece of knowledge w(¢) is said to be a
logical consequence of knowledge ¢(t) and denoted by ¢(t) =
w(t) if the following conditions hold:

) J(w) € J(9),

2) w(t) = o(t)]s(w)-

Obviously, two equivalent knowledge w and ¢ are logical
consequence of each other. It is easy to verify that the
following conclusions hold.

1) w(t) E w(t) for any w(t) € Q(t).

2) w(t) = ¢(t) if w(t) = ¢(t) and ¢(t) |= w(t).

3) w(t) = o(t) if w(t) = ¢(t) and ¢(t) |= ¥(t).

By Definition 4.11, we know E(w, ¢) is a logical conse-
quence of both w(t) and ¢(t). So, {w(t), (1)} E E(w, o).
Similarly, C(w, ¢) = w(t) and C(w, ¢) = ¢(t).

The logical consequence relationship between knowledge
gives a hierarchical structure among all knowledge at time t.
We draw the hierarchical structure as follows:

w(t) < ¢(t) if and only if ¢(t) E w(t).

The relationship < is called a covering relationship, which can
be pictured in a graph such as Figure 3.

(10)

D. Logical Inconsistency Verification

According to the construction of covering relationship, we
know the C'(Q(¢)) must be at the top level, which exactly
includes all possible states for each objects, which satisfy
all knowledge in €2(¢), and can be applied to verify logical
inconsistency of observations.

1) Problem illustration: The problem of checking logical
inconsistency can be formally described as: In a situation, we
have stored some related knowledge 2 = U;er2(¢) about
the situation, which are a set of collections of states of a set
of objects O = {Oy,...,0,}. At a given time slot ¢, we
collected some new observations S* = {S} | j € J(S*)} of
some objects O* = {07 | j € J(O*)} C O, where J(5*) =

TABLE 1: A DATA SET
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J(O*) is an indexes set. Our question is whether these new
observations are consistent or not with the stored knowledge
from the viewpoint of logical consistency.

2) Basic idea: Assume that the stored knowledge at
time ¢ is consistent. Under this assumption, the potential
inconsistencies are introduced by the new observations. As
all possible combinations of observations which satisfy all
knowledge can only fall in C(€2(t)), hence, that checking
logical inconsistency of observations is equal to checking
whether it is fall in C(Q(¢)).

3) Processing steps: The presented method includes the
following steps.

Step 1: Compare J(S*) and J(C(Q(t))). If J

J(S*), then go to Step 2. If J(C'(2(t))) C J(S
Step 3.

Step 2: Check whether S* € (C(€(t)))]s(s+) or not. If
S* € (C(21)))|s(s+)» then the observations are consistent;
otherwise, they are inconsistent. Go to Step 5.

Step 3: Divide S* into two parts S} and S5 such that
J(ST)) = J(C((t))). For S§, go to Step 2. For S;, using
rule-map method to check their consistencies of observation
s € S3. If some observations in S5 is inconsistent, then the
observations is inconsistent. go to Step 4.

Step 4: Update knowledge base. For any consistent observa-
tion s € S5, construct C'(C(€2(t)), s) and add C(C(§2(¢)), s)
to Q(t).

Step 5: Stop.

J(C(Q(1))) 2
*), then go to

5. EXAMPLES

In this section, we shall give two simple examples to describe
the presented methods for information verification.
Example 5.1: Suppose a situation has four states 0, 1, 2,
and 3, and has 17 historical data, which are listed in Table 1.
Suppose the rules r1, 72, and 73 are obtained three rules.
Obviously, r1 covers entries from 2 to 17, while ry covers



entry 3 to 17, and r3 covers entry 1 to 17. notice that the
three rules are incomparable to each other. So they all belong
to the top-level of a mule-map, and will be selected as the
rules for estimating the expected observation.

1) Let ¢ = 18. Then r1(18) = 2, r5(18) = 2, and
r3(18) = 2. Hence by the presented method, the
expected observation is the state 2(=(2 4+ 2 + 2)/3).
Because the real observation is the state 2, it satisfies
any given error and so is inconsistent.

2) Lett = 20. Then r1(20) = 2, r2(20) = 2, and 73(20) =
2. So, the expected observation is state 2 but the real
observation is state 3. Hence, the real observation is
inconsistent to the expected one.

Example 5.2: Suppose we have a knowledge base (t)
which have the following knowledge shown in Table 2, where
w;, ¢ = 1,2,...,10, is a piece of knowledge, and p;, j =
1,2,...,14, are related objects and each of them have two
possible states 1 and 0. Now, let S* = {, (p1 = 1, p2 = 1,

TABLE 2: A KNOWLEDGE BASE.

No. Knowledge

wi {(pr=1p2=1,ps =1,ps =1)}
w2 {(p2=1,p1a = 1)}

w3 {(ps = 1,p10 = 1)}

wa {(ps=1,pa=1,pr =1)}
ws {(pro =1,p1a =1)}

we {(pr = 1L,p1o =1,p11 = 1)}
wr {lps=1,p11 =1)}

ws {lps=1,pr =1)}

wo {(pro=1,p1a =1)}
wio {(p1o =1,p13 = 1)}

p3 =1, pg = 1)}. By our method, we have

Step 1: J(5*) € J(C(€(t))). Then goto Step 3.

Step 3: Dividing S* into S} = {(p1 = 1,p2 = 1,p3 = 1)}
and S5 = {(ps = 1)}. For ST, goto Step 2. For S5, without
loss of generality, suppose it is consistent by the rule-map
method. Then goto Step 4.

Step 2: For ST, we know it is consistent.

Step 4: Because the S* is a set of consistent observation,
we shall update our knowledge by coupling {(pg = 1)} and
C(C(Q(t))) and have {(pl =1, P2 = 1, pP3s = 1, P4 = 1,
ps=Lps=1pr=1ps=1,po=1po=1 pn =1,
pi2=1pi3=1,p1a =1)}.

Step 5. Stop.

6. CONCLUSION

In this paper, we proposed a rule-map technique and a state-
based knowledge representation method to verify data incon-
sistency and logical inconsistency respectively. According to
the given examples and related experiments, the following
topics will be our future research goals: (1) how to combine
these two techniques, (2) how to efficiently construct a rule-
map, and (3) how to representation domain knowledge by the
state-based representation technique.
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