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Abstract: We demonstrate that a combination of multipole and Bloch
methods is well suited for calculating the modes of air core photonic
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demonstrate that in the presence of absorption, the modal losses can
be substantially smaller than in the corresponding bulk medium.
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1 Introduction

Photonic crystal fibres are fibres in which the light is guided by a periodic array of air
holes in a glass matrix surrounding the core. While in early work the core was charac-
terized by the absence of an air hole, perhaps the most intriguing type of fibre is that
for which the the core consists of an air hole that is larger than the others [1, 2]. In
some of the modes of these fibres the energy is mostly in the air core, which immedi-
ately suggests a number of applications, including low-loss propagation, for example at
wavelengths where the glass absorbs.

The guiding mechanism of the light in air-core fibres is Bragg reflection due to the
periodicity of the airholes outside the core. This is a subtle effect which complicates
modal calculations. To see this, recall that the existence of a mode requires the presence
of a mirror, while in addition some phase condition needs to be satisfied. In conventional
germanium-doped fibres the mirror is due to total internal reflection at the core-cladding
interface, and the modal calculation essentially involves satisfying the phase condition.
The same is true in photonic crystal fibres with a solid core. In contrast, in air-core fibres,
where the mirrors are associated with Bragg reflection, a modal calculation needs to be
preceded by a separate band structure calculation of the cladding. Once the regions of
high-reflection are then identified, the modal calculation can proceed.

Different methods for photonic crystal fibre calculations have been discussed in the
literature [2, 3, 4, 5, 6]. The most common of these is the plane wave method [2, 4], in
which the field is written as a superposition of plane waves. Similarly, the calculation of
the band structure of the cladding uses a plane-wave expansion. Recently, we developed
a multipole method for field calculations of fibres with inclusions. In this method the field
is written in terms of cylindrical harmonics centered around each hole, with consistency
being enforced using a field identity [7]. The method has advantages in terms of speed
and accuracy, though in its present implementation it can only deal with circular holes.
In contrast to the multipole method, the plane wave method is presently implemented
using periodic boundary conditions and so losses due to a finite cladding cannot be
calculated in this way. The features of the multipole method are not limited to photonic
crystal fibres. Indeed, it was originally developed for general diffractive structures and
photonic crystals [8, 9]. Here we show its development for determining the cladding
band structure, and the subsequent calculation of the air-core fibre modes, building on
the multipole method with a scattering matrix approach and Bloch’s theorem [10, 11].

2 Theoretical Formulation

We commence with an outline of the multipole theory of propagation in photonic crystal
fibres and proceed to relate this to the corresponding properties of the cladding. Our
model [7] of the fibre, which is aligned with the z-axis, provides for a finite number (N,)
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of circular holes of refractive index n; embedded in a finite matrix of index n. bounded
by a circular jacket, the presence of which is convenient for various applications.

Because of strong refractive index contrast of the materials, a full vector field for-
mulation is required, necessitating field expansions for the longitudinal (z) components
of both electric and magnetic fields, from which all other components may be derived.
Assuming a longitudinal field dependence of exp(if3z), each of E, and H, satisfies a
transverse (zy) Helmholtz equation (V2, 4+ #*)V = 0 with k = kS = \/k?n? — 32
in the matrix, where k is the free space wavenumber, and a corresponding form with
K= kj_ = /k?n? — 32 in the holes. In the vicinity of each cylinder I, we prescribe local
expansions in the cylindrical harmonic basis. Using the local coordinate system centred
at ¢, the exterior form of F, is

E. = 3 [AB Tk e — aal) + BE HD (K Jr — )| emerse=en, (1)

m

and correspondingly for the magnetic field. Such local expansions are valid only in
an annulus extending to the perimeter of the nearest scatterer, thus necessitating the
introduction of a global expansion that is valid throughout the matrix

Nec
E, = Z ZBELlHS)(kih' — Cl|)el’m arg(r—c;) 4 ZA?nOJm(kir)esz, (2)
=1 m -

and from which a field identity determining the source coefficients (B! ) can be derived.

Representation (2) contains outgoing waves sourced at each cylinder (1) and a stand-
ing wave term generated at the jacket boundary, identified by superscript 0. The deriva-
tion of the field identity [7] follows from the observation that the regular, or non-singular,
part of the field, characterized by coefficients A#! = [AZ!].} in the vicinity of each cylin-
der I arises from outgoing contributions (due to B¥/ = [BLJ]) from all other cylinders
j and the standing wave originating on the jacket, A% = [AZ0]. In matrix form,

AP =Y THUBY 4 gUAR, with WU =[G T =170 @)
il
HY = H,(f_)m(kj|clj|)e*i("*m) argler) 10 = J (kS ¢)et(mmm)arale) (g

with ¢;; = ¢; — ¢;, and with an analogous form for H.. In (3), the matrices HY and
T arise through an application of Graf’s addition theorem for Bessel functions [17]
and may be regarded as change of basis transformations. For example, the matrix HY
converts outgoing waves (i.e. Hankel function terms) sourced at the centre of cylinder
j to standing waves (i.e. regular Bessel function series) in the coordinate system of
cylinder {. Correspondingly, J'° transforms standing waves from the jacket frame of
reference to standing waves in the coordinate frame of cylinder [. There exists a further
identity

Nc
B = 5" 7B, where 70 = [T%], T = Jum(kS c)em mmEED(5)
=1

which together with its magnetic field analogue, expresses the total outgoing field in the
vicinity of the jacket in terms of contributions from all cylinders. It involves changes of

IThe notation A = [Ap] denotes a column vector with elements A,,, which may be scalars, vectors
or matrices.
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basis J° that convert outgoing waves from the coordinate system of cylinder I to that
of the jacket.

Each of the identities (3) and (5) applies individually to single field components.
However, cross-coupling of fields occurs through the application of the boundary con-
ditions at the surface of each cylinder and the jacket. It is convenient [7] to write the
boundary conditions, expressing the continuity of the tangential electric and magnetic
field components, in terms of cylindrical harmonic reflection coefficients. For each cylin-
der [ we may write

BEl _ REE,ZAEl + REH’lAHl, BHl _ RHE,lAEl + RHH’ZAHl. (6)

Only for in-plane incidence (3 = 0) do R¥! and R"¥® vanish, thereby decoupling the
problem into two distinct polarizations, each of which can be solved as a scalar problem.
In all other cases, a full vector formulation is required and it is convenient to mirror
this requirement in the notation. We thus introduce the partitioned vector notation

- T
B! = [BElT BHlT] , with the superscript T' denoting the transpose. This represents the
outgoing electromagnetic field for each cylinder [ and we combine these in the partitioned

- ~ T
vector B = [B!] for all cylinders. Similarly, we introduce A! = AET AHTY apg
A = [A!] for the regular field components and also block partitioned matrices

~ REE,l REH,l ) ~

R' = (RHE,z RHH,l) ; R = diag (Rl) (7)

that enable the exterior forms of the boundary conditions at cylinder interfaces to be

expressed in the compact form B = R.A. Similarly, the boundary condition at the jacket

boundary may be written as A =R"B, involving the interior reflection coefficient RO.
With this notation, the field identities may be respectively recast as

A=HB+ JPOR°, B°=7F°88, with 75° = [Jﬂ and J°F = [JOZ] . ®)

In (8), JBY denotes a column vector containing matrices TO for | = 1,2,..., N., while
T8 denotes a row vector containing matrices J o,
Manipulation of (8) and the boundary conditions then yields the field identity

MB=(1-RS8)B=0, where S=H+J R'T". 9)

In (9), the scattering operator & comprises two essential clements: (a) H that contains
, ~B0~, ~0B
partitions H" and describes direct cylinder to cylinder interactions, and (b) J  R°J

that describes all indirect interactions between cylinders that take place via reflections
(Ro) at the jacket interface. The matrix M = M (k, 3) when singular, defines a mode
of the photonic crystal fibre, with the corresponding null space vector B characterizing
the associated fields. Details of the implementation of the computational methods and
the search algorithm for modes are described elsewhere [7].

Locating modes of photonic crystal fibres is a numerically intensive and delicate task,
guided by the requirement that they be confined to complete band gaps of the cladding.
The task thus reduces to the location of fibre modes within cladding band gaps. The
additional requirement that the energy be mostly confined to the central air hole can
further refine the search region by requiring that the mode be located close to the light
line (i.e., B~ k).

For a well confined photonic crystal fibre with a large number of holes, the jacket is
negligible and (9) is well approximated by (I — RH) B = 0. For a periodic lattice, the
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Bloch condition, namely that V (r +c;) = e ¢V (r) where ko = (kou, koy) denotes the
Bloch vector, relates the field coefficients of every cylinder through the quasiperiodicity
constraint B/ = Beo ¢ Here, B denotes multipole field coefficients associated with a
central cell, centred at the coordinate origin. The field identity (9) thus reduces to

v =&\ & . S A sS4 o0

MB:(I—RS)B:O, with $ :(0 SA)' (10)
In (10), R is the exterior reflection matrix given in (6) for any of the identical cylinders
and S#4 = [S4 ] =[S2_,,] is a Toeplitz matrix whose bands contains array lattice sums
[13]. These follow from the quasiperiodicity condition and the structure of the field
identity, and are given by

S;;l = ZHijbeik@(cj—cl) _ ZHr(Ll)(Mche—in arg(cj)eikgcj, (11)

£l J#0
where the summation excludes the central lattice point. Lattice sums underpin the
application of multipole methods to periodic structures and a description of them, and
techniques for their computation, may be found in the review of McPhedran et al. [13].

Returning to (10), the matrix M = M(k, ko, 3) and thus the location of complete
band gaps requires the scanning of a subset of k-3 parameter space, locating all modes
by searching for (effectively) zero determinants of M for all possible orientations ko.
In practice, this task is undertaken by traversing the perimeter of the irreducible part
of the first Brillouin zone of the particular lattice. This method has been successfully
used in our earlier computation of in-plane (8 = 0) band diagrams [14] for 2D photonic
crystals. However, in the present three-dimensional case, the additional requirement of
scanning over a ( interval is a computationally demanding task.

Instead, it is advantageous to regard the lattice as a stack of one-dimensional diffrac-
tion gratings, a reformulation that is equivalent [11, 15] to the array multipole treatment.
The method relies on the use of plane wave scattering matrices that characterize diffrac-
tion by an elemental cylinder grating, and the subsequent formulation of an eigenvalue
problem from which we may compute the modes of the photonic crystal cladding.

The derivation of the scattering matrices outlined below is the conical diffraction
generalization [16] of the in-plane formulation [8, 9]. We consider a single grating of
period d that gives rise to a set of upward and downward propagating plane waves

expi(asz £ xsy) where ag = 27s/d + ko, and x5 = \/k‘f — 2. In what follows, plane

wave fields will be characterized by vectors f of plane wave coeflicients that comprise
both TE (fF) and TM (f) entries. The plane wave expansions

E, _Z& 5E— —iXsY —|—fE+ iXs y) RE +§9 (5H— —iXsY +fleI+€ixsy) RSH(12)
? x K, :Z&E (5SE*€*ixsy _ fereixsy) Rf + 5;% (557671‘)@.@ _ fSHJreixsy) Rf(l?))

represent the transverse electric and magnetic plane wave fields above the grating (Fig.
1), with 6~ denoting an arbitrary incoming field and £ denoting an upward, outgoing
field. An analogous expansion for the field below the grating may also be written, this
time in terms of an incoming field 67 and an outgoing field f~. In (12) and (13),
& = Xs/k, while the TM and TE plane wave modes are given respectively by R =

qs/qs eXP(iQS 'I‘), RgE = y X qs/q.s eXP(iQS 'I‘)7 with q5 = (asaﬁ) and r = (amz)

Around each cylinder of the grating, fields are again expressed in a local, multipole
series (1). Proceeding in an analogous manner to that described above, we are led to
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Fig. 1. Geometry of the unit cell (defined by the fundamental translation vectors
e1 and ez. Phase origins P; and P» and representations of the incoming (Ji) and
outgoing (f%) plane wave trains is depicted.

an identity for the field coefficients A = SEB + A®* which is the analogue of (8) for
gratings. Here, S¢ is a matrix of lattice sums for the grating, the definition of which
follows from that of the array sum (11) by restricting the summation to the central
line of cylinders [8, 9]. The exterior driving field At i due to the incoming plane
waves 8= and it is straightforward to show that A = J +€5+ +J-£6 , where € is a
transformation that converts TE/TM plane wave coefficients to the E,-H,. system, in
which the multipole scattering problem is most naturally expressed. The matrices J*
perform changes of basis converting upward and downward going plane waves into series
of cylindrical harmonic terms, with J*+ = diag [J*,J*], J* = [J}] = [exp(inf,)], and
J- =diag [J-,J7], 3 = [J,] = [(=1)" exp(—inb,)] and exp(ifs) = (xs + icvs)/k..
Here, the diag function assembles its arguments into diagonal, or block diagonal, form.

Proceeding as in other work [8, 9, 16], the vector forms of the outgoing, plane wave

diffracted fields may be shown to be f* = §% + 2w€TKi]§ where w = k/(dkS ?).
In this expression, the terms 6% denote the non-diffracted part of the incident field,
while the second term represents the diffracted field and involves changes of basis K=
from cylindrical harmonic terms to upward and downward propagating plane waves.
Here, Kt = diag [K+,K*], Kt = [K] ] = [exp(—inf,)] and K~ = diag [K~, K],
K~ = [K,,] = [(—1)" exp(inb,)] Applying the field identities with the cylinder bound-
ary condition B = RA, we form

F=wWOA - {1 +20f' K (1-RS) fa‘g} A (14)

where F = [f7 f7]7, A = 67,677, K = [KT,K%]|T, and J = [J_, J,].

The calculation of this scattering matrix W(® is aided by the up-down symmetry
of the grating. Such symmetry enables the diffraction problem to be decomposed into
E-symmetric and H-symmetric problems that lead to the factorization of the dense

-/~ -~ -1 . _
multipole scattering matrix K (I — RSG) RJ in (14) into a block diagonal form,
each block of which is half the dimension of the original.
The structure and significance of W) a matrix that arises in the subsequent eigen-

value problem, may be revealed by setting d — and 4 in turn to zero. We thus deduce
that relative to the natural phase origin (denoted by a superscripted (0)) at the centre

of the central cylinder
T RO
wO =~ o s 15
(Réo) T (15)
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where (R;O), T;O)) denote reflection and transmission scattering matrices for incidence
respectively from above (j = 1) and below (j = 2) the grating. Naturally, Rgo) =
Réo) =R, together with an analogous relationship for the transmission matrices, for
a vertically symmetric structure such as a cylinder grating.

The formation of the band structure of the infinite cladding now requires that the
grating be embedded in a hexagonal lattice that is characterized by basis vectors e; =
d(1,0) and ez = (ss,dy) = d(1,v/3)/2 which define the unit parallelogram cell. In
order to apply the Bloch condition that defines the eigenvalue problem for the lattice,
it is necessary to relocate the phase origins of the scattering matrices (R;, T;) to points
P; = £(s4,dy)/2 located at the centres of the upper and lower edges of the parallelogram
cell and separated by a lattice constant es. As in [11], this is achieved by a transformation
W = OQPWOPQ, where Q = diag (Q,Q_l), and P = diag (f’,f’) respectively
phase the scattering matrices to perform the the lateral and vertical shifts of origin. Both
Q and P involves operations on both TE and TM partitions and so each must be defined
accordingly with Q = diag (Q,Q), with Q = exp(iaypsy/2), and P = diag (P,P), with
P = exp(ixpdy/2).

When the grating is embedded in the infinite lattice of Fig. 1, the Bloch condition
requires that f~ = ud~ and f+ = =16, where the eigenvalue, or Bloch factor, is given
by © = exp(—ikg - e3). For the particular symmetry of centred rectangular and hexag-
onal lattices, in which each grating layer is translated by half a period relative to the
surrounding layers, there exists a significant simplification that enables the formulation
of the eigenvalue problem in a stable and compact form—one that is of half the dimen-
sion and which is not afflicted by the stability problems of 7 -matrix methods. Here,
Q = exp(iapd/4)Qo with Qo = diag[exp(ipm/2)], enabling the the eigenvalue problem
to be recast in the form

(16)

I /
W'F':OwhereW’:{T wl R 1}’

R/ T — H/*l
with TV = Qalf’T(O)f’Qal, R = lef’R(O)f’Qal, 1 = pexp(icpd/2). Then, with
1 T +R -l isI )

I I
_ VVT _ IVV/IT _
I= V2 (—1 1) , we form B B ( is1 T -R —
(17)

which has the same eigenvalues. In (17), ¢ = (u+p~1)/2 and s = —i(u —p~1)/2. Some
straightforward manipulation then leads to two algebraic eigenvalue equations which
are equivalent to one another

U;'Tg; = 2icgi where U; =1+ (TFR)(TxR), (i=1,2). (18)
Since the eigenvalues of (18) occur in the form 1/(2¢), it follows that ' and 1/4/ occur
as a matched pair, corresponding to upward and downward travelling states that carry
energy provided || = 1.

We conclude by observing that plane wave methods compute the frequency as the
eigenparameter given the Bloch vector. They therefore require an iterative process to
handle material constants that are a function of frequency. In contrast, the process
described above inverts the parameter order and is thus well suited to the computation
of band diagrams for dispersive media. In the scattering matrix technique, the method
takes a component of the Bloch vector and a given frequency as input data, embeds
the material constants for that frequency during the scattering matrix calculation, and
then generates the remaining component of the Bloch vector as the eigenparameter.
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3 Air-guided modes

The location of complete band gaps requires traversing k-3 parameter space, assessing
everywhere whether or not propagating states (i.e., modes with |u| = 1) exist. We do this
for each 3 by traversing the perimeter of the Brillouin zone for all required frequencies.
Here this is achieved efficiently since the scans of I'M and I'’X M in the Brillouin zone
may be generated from the solution of (18) for the normal incidence (ko, = 0) operation
[11] of two diffraction problems, respectively corresponding to gratings aligned with e;
and ey, and with periods of d and v/3d.

11.25
11
10.75

10.5

k A

10.25

10

9.75

11 11.25 115

Fig. 2. Dispersion diagram for a hexagonal microstructured optical fibre overlaid
with the light line (magenta curve) and the modal dispersion curve (red curve).
The fibre data are: hole diameter d = 4.026 pm, hole spacing A = 5.7816 pm,
central hole diameter d. = 13.1 pm.

The background of Fig. 2 is the result of such scans over a 101 x 101 mesh in k-3 space,
requiring approximately 50 minutes of computation on a 600 MHz Pentium III system.
The method is rapidly convergent and a well stabilized solution was obtained from the
solution of eigenvalue problems (18) with matrices of dimension 14, corresponding to
only 7 plane wave orders (—3,—2,...,0,...,3). The color density is proportional to
the number of propagating states, and thus complete band gaps are represented by
the white fingers in which the mirror condition, referred to in Sec. 1 is satisfied. The
magenta curve is the light line where § = k, and the red curve gives the dispersion
relation for the fundamental mode. It is seen to extend into the region where cladding
modes do exist; this is so because the mode calculation was performed for a structure
with finite number of holes, for which the cladding reflectivity is a smooth function of
wavelength. This should be contrasted to the band diagram calculations, in which the
use of suitable lattice sums implies an infinite system.

The dispersion curve for the mode given in Fig. 2 shows it to be located on the high
frequency side of the light line, so that n.g = 3/k < 1. This means that the guiding
mechanism cannot possibly be total internal reflection. An effective index less than unity
of course is not unphysical since this relates to a phase index rather than a group index.

The absorption loss of a mode may be calculated in two ways which we have found
to be numerically equivalent. The first involves the use of a complex value of the matrix
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refractive index n. and the direct determination of the complex propagation constant
B, by making the determinant of M in (9) zero. The second involves taking n. to be
real, calculating § and the associated modal fields, and then calculating the Ohmic
loss of these fields in the matrix material from Poynting’s theorem, using the complex
ne. In doing so, note that the current induced by the electric field J = oE, where
o = weoS(n?).

The results of such calculations for the mode in Fig. 2 is shown in Fig. 3. It shows the
variation with wavelength of the loss reduction factor oy, defined to be the absorption
in the bulk matrix material divided by the absorption loss of the mode (calculated from
the imaginary part of the propagation constant 3). The reduction in loss, varies between
3 and 5.2, reaching its maximum in the middle of the gap, where the confinement of
radiation in the photonic crystal is strongest, and decaying near the edges of the gap,
as the evanescent waves in the crystal become propagating.

In our actual calculations, we used 4 rings of holes, which constitutes a considerable
computational effort. In this structure, the confinement losses [12] are of the same order
of magnitude as those due to absorption. By comparing the results of calculations in
which n, is real to those in which it is complex, it is straightforward to determine the
contributions of the absorption and confinement losses to the total attenuation. The
results in Fig. 3 are obtained from the absorption losses only; this is justified since
S(ne) < R(ne), and so the confinement losses are unaffected by the absorption of the
matrix material. Moreover as long as S(n.) < R(ne) the curve in Fig. 3 does not on the
actual absortion coefficient of of the material. It should be noted that the confinement
losses can be reduced arbitrarily by increasing the number of holes. In contrast, the
absorption losses do not decrease in this way, and absorption is therefore the effect
ultimately determining the attenuation.

5.5
5

10.2 103 104 105 106 10.7
KA

Fig. 3. Wavelength variation of the absorption reduction factor for the fibre of Fig. 2.

The spatial variations of the magnitudes of the longitudinal components of the elec-
tric and magnetic fields are shown in Fig. 4, together with the z-component of the
Poynting vector. Since the latter of these is quadratic in the fields, it is better confined
than either E, or H,, though there is nonetheless significant flux leakage into the regions
between the central hole and the first ring of smaller holes, and the region between the
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first and second ring of holes. Further work is needed to design structures with a larger
fraction of the energy propagating in air, and therefore higher values of ;.

02 0.25
0.15 0.2
0.1 0.15
0.1
0.05 0.05

Fig. 4. Longitudinal components of the electric field, the magnetic field and the
Poynting vector at the wavelength, A\ = 3.428um, where the MOF of Fig. 2 has
maximum reduction in material absorption. At this wavelength, the matrix index
is ne = 1.39 + ¢0.0003.

4 Conclusions

The multipole method [7] outlined here has been used in studies of microstructured
optical fibers MOFs and has proven to be a useful tool in modelling propagation and
in estimating confinement losses [12]. As noted in the introduction, it handles finite
collections of scatterers exactly and is not affected by numerical convergence problems
and the use of periodic boundary conditions that afflict plane wave and other methods,
and which, in turn, lead to fallacious outcomes such as the numerical birefringence of
modes. By virtue of solving for the propagation constant § as a function of k, the
method’s handling of material dispersion is demonstrably superior to techniques (such
as plane wave eigenvalue methods) which solve for k as a function of . Furthermore,
the method is capable of yielding the geometric loss of finite solid core MOFs with
estimates of 3(neg) down to 10714 being accessible.

The quality of the numerical results depends on the truncation of the multipole
expansions — which, for computational purposes contain 2M + 1 harmonics (—M, —M +
1,...,0,1,... M) — and is tested by assessing the stability of the null vector(s) B of the
matrix M in (9 with increasing M, and also the convergence of the global and local field
expansion at the boundaries of the inclusions. For systems which exhibit high symmetry
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(e.g. Cg, symmetry), the classification of the mode structure may be determined from
group theoretic considerations, leading to substantial reductions in the computational
requirements. In such cases [7], the computational demands are quite modest and, for
example, a complete set of modes for a singled ring of six hexagonally spaced holes each
of diameter 5 pm and pitch of 6.75 um at a wavelength A = 1.45 pum in glass of refractive
index n, = 1.45 may be computed for 1.4 < R(Neg) < 1.45 on a 733 MHz Pentium
I1T system in under 3 minutes using less than 2 MByte of memory. The corresponding
calculation for a three ring hexagonal structure of 55 holes requires under an hour
of computation on a 500 MHz Compaq Alphastation and approximately 15 Mbyte of
memory. Indeed, on such a workstation, we have undertaken studies of solid core MOF's
with up to 180 holes. In all such calculations, the ratio of the diameter to the pitch (§/A)
is a significant factor in the choice of series truncation limits. While M = 5 is suitable
in many circumstances, it is necessary to use higher values with increasing proximity
(i.e. increasing d/A) of the cylinders.

The only significant drawback to the present technqique is its restriction to circular
holes. However, it is possible to lift this restriction through the numerical computation
of the coeflicients that comprise the multipole reflection matrices of R of (7). In this
case, the partitions that comprise R are now dense rather than diagonal.

The results reported here require the solution of multipole coefficients for each cylin-
der, with the accurate characterization of the field around the large central hole requiring
additional terms Mj in the multipole series. The resulting matrix M would be expected
to have dimension 2[N.(2M + 1) + (2My + 1)] for an N, + 1 hole system. Here M is
the truncationorder of the central hole and M is that for all others. For the four-ring
structure considered here, with M =5 and My = 19, the matrix M would have dimen-
sion 2012. The dimension of the matrix can be reduced, however, by using symmetry
considerations, by a factor that depends on the type of mode that being considered. For
nondegenerate modes the matrix dimension reduces by a factor 6, while for degenerate
modes it reduces by a factor of roughly 3.5 [7]. Nonetheless, even with these reduc-
tions in the matrix size, the computational demands are near the limits of standard
workstations, and the quality of the band gap confinement is still somewhat less than
desirable.

Indeed, the optimization of the absorption reduction factor is likely to push us to-
wards systems where the number of rings of air holes is large, and the holes come
close together. At this point, the present implementation of the multipole treatment
would become numerically cumbersome, with many coefficients required for each of a
large number of holes. This argues for the extension of the multipole treatment in two
theoretical directions and the consideration of a more advanced computational imple-
mentation. The first is an asympotic analysis where the outer rings of holes in a large
system are treated perturbatively, rather than by direct solution. The second is an
asymptotic analysis valid when air holes come close together, in which their nearest
neighbour interaction is treated analytically, rather than by a multipole expansion that
converges slowly in this case. At the same time, the structure of the algorithm is highly
amenable to parallelization using the OpenMP protocol (available on symmetric multi-
processor, shared memory systems) to implement highly efficient parallelisation in the
loop structure and in the numerical linear algebra routines.

A general feature of the multipole method is that the matrix M needs to be carefully
conditioned to avoid under- and overflows in calculating the determinant. In addition,
the minima of the determinant need to be carefully examined. Since the modes of
structures with sixfold symmetry are either nondegenerate and doubly degenerate [7],
the determinantal minima must be due to one or two eigenvalues of M being small.
These genuine minima can be distinguished from false ones, in which many eigenvalues
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are small simultaneously, by a singular value decomposition [7].

We conclude be recalling that the Bloch coeffient || describes the spatial decay of
the field over a lattice period. Hence, we suggest that structures with smaller values of
|| require fewer rings of holes to achieve a given level of confinement losses. This may
lead to a powerful tool for the design of photonic crystal fibres.
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