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Abstract

We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum,
in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and
rainfall gradient across the species’ introduced range in south-eastern Australia. Seeds were germinated, grown to
reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed
that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing
heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found
that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude
north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or
between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide
compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and
highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid
environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a
result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level
differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid.
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Introduction

Successful invasion of novel environments by exotic plant
species requires that species maintain positive population growth
and spread in the face of environmental heterogeneity and new
selection pressures [1,2]. While many factors determine the
demographic characteristics and spatial spread of invading plant
populations [3], rapid evolutionary changes in fitness-related traits
increase the reproductive output of local populations and often
play a fundamental role in the invasion process [1,4,5]. Indeed,
significant evolutionary capacity has been identified in many
invasive plant species [6–12]. This is perhaps not surprising, since
considerable theoretical and empirical evidence supports the
notion that the capacity for rapid evolutionary change exists
widely in plant populations (e.g., [1,13–15]).

Recently it has been suggested that, at large spatial scales, the
spread of invasive populations is mainly determined by evolution-
ary adaptation and population-level genetic differentiation, while
phenotypic plasticity becomes more important where small-scale
variation in abiotic conditions impact on population fitness [16].
While the adaptive importance of phenotypic plasticity is well
understood [17–21], the capacity for invasive species to undergo
adaptive differentiation along broad-scale climatic gradients has

been more poorly documented. Adaptive clinal variation in life-
history traits has been observed in some invasive species (e.g., [6,9–
12,20,22]), and their ability to occupy new climatically distinct
envelopes in their introduced range is likely to be a valuable
strategy in general [23].

However, not all invasive species display clinal differentiation
[24,25], perhaps due to the wide range of genetic, demographic,
developmental and environmental factors that influence evolu-
tionary divergence of plant populations in new habitats [1,26–29].
Peripheral populations located in marginal habitats, for example,
suffer numerous evolutionary constraints related to population
size, gene flow and migration rates [30–32]. Levels of phenotypic
plasticity [19], seed dormancy [33], co-variation among fitness
traits [29], and pathogen load [34] are also known (among other
factors) to limit evolutionary adaptation, and many are especially
relevant for invasive plant populations. Given this conflicting
evidence, there is a clear need for a more comprehensive
understanding of the species, circumstances, and traits in which
adaptive clines are likely to develop.

Seed mass is a key fitness-related trait that might be expected to
show strong clinal adaptation when the ability of a species to
produce seeds of a particular size underpins reproductive success
and survival in new environments [35,36]. Seed mass influences
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many life-history traits including dispersal ability, seed bank
viability and persistence, progeny fitness, flower size and plant
longevity [37,38]. Large seed size appears to be especially
important in arid zone species probably due to the increased
temperature-related metabolic costs and requirements for seedling
establishment in arid environments [35,39,40]. Evolution of seed
mass in response to environmental gradients is indeed well
documented on a local [40–45] and global scale [46,47] although
few studies have considered whether such patterns exist among
invasive species (but see; [46,48,49]).

The aim of this study was to test whether, over the past ,150
years since introduction, invasive populations of the annual plant
species Echium plantagineum L. (Paterson’s curse) have developed
adaptive, population-level differentiation in seed mass in response
to broad climatic gradients in south-eastern (SE) Australia. Echium
plantagineum is a genetically diverse [50], globally significant weed
[51]. In Australia, it has invaded arid, temperate and coastal
environments, costing the meat and wool industry upwards of
$125 million annually [52]. We hypothesized that invasive
populations of E. plantagineum have developed a cline in seed mass
in response to aridity, with larger seeds prevailing in populations
sourced from warmer, drier habitats than in those sourced from
cooler, wetter temperate and coastal habitats. We also hypothe-
sized that ongoing selection for seed size will have resulted in a
narrowing of seed size variation among populations within
bioregions and among individual plants within populations in
the most arid and unfavourable environments relative to
populations from a more favourable core habitat [29,30]. To test
these hypotheses, we compared the weights of glasshouse-
produced seeds from invasive E. plantagineum populations sourced
from 34 sites across a very large (1,000 km) temperature and
rainfall gradient in SE Australia.

Methods

Study species
Originally native to Europe and the Mediterranean region,

Echium plantagineum (Boraginaceae) is an annual forb that was
introduced to Australia in around 1850 [51]. It is a globally
invasive species that has become successfully established in 30
million hectares of agricultural land in Australia [53,54] (Fig. 1a).
Echium plantagineum is insect pollinated and can produce up to
10,000 seeds with seed production of up to 30,000 per m2. Seeds
are dispersed via water, contaminated fodder, garden waste,
animal fur and the alimentary tracts of birds or grazing animals
[54,55], and while some seeds can remain dormant in the soil for
up to ten years [55,56], most germinate more rapidly [51].
Seedlings most effectively colonise bare ground [57] and can have
recruitment rates of .1,000 m22 [56]. In annual species like E.
plantagineum frequent seed production is a critical driver of
population fitness, making it an ideal model species for studies of
adaptive capacity and evolutionary responses of seed-related traits
in response to broad-scale climatic variation.

Seed collection and field sites
Echium plantagineum seeds were collected during the 2009

reproductive season (October to December) from a total of 34
sites across seven IBRA (Interim Biogeographic Regionalisation
for Australia scientific framework; [58]), bioregions in New South
Wales, SE Australia (Fig. 1b). These bioregions are large,
geographically distinct areas of land with similar climate, land
systems, vegetation and animal communities [58]. The study sites
followed a 1000 km long climatic cline which varies from arid
(Broken Hill Complex bioregion) to coastal (Sydney Basin and

South-East Coast bioregions) and cool temperate (South-East
Highlands bioregion; Fig. 1b, Table 1). These bioregions capture a
large majority of E. plantagineum habitats in SE Australia. Due to
similarities between the two coastal bioregions (Sydney Basin and
South-East Coast; Fig. 1b) and the limited number of sites
containing E. plantagineum, these bioregions have been combined to
form a single coastal bioregion (COAST) for our analysis. Sites
were randomly selected from across each bioregion; all had at least
50 seed-producing plants. Seeds were collected from ten randomly
selected individual plants at each site between October 2009
(Broken Hill Complex bioregion) and December 2009 (COAST
bioregion), when plants were producing mature seeds. No permits
were required for the field collections since E. plantagineum is an
introduced, invasive species. No collections were made on private
land. Seeds were transported to the laboratory (CSIRO Black
Mountain Laboratories, Canberra, ACT; Fig. 1b), extracted from
the mature fruit using a rubbing board (consisting of two flat
rubber pads), and stored in paper bags at room temperature until
used in the following glasshouse experiment.

Common garden glasshouse experiment
The objective of the glasshouse experiment was to compare the

mass of seeds produced by different plants under common growing
conditions, thus allowing for a more controlled assessment of the
genetic basis of existing variation. Experimental maternal effects
were minimised by using seeds from different populations that
were equivalent in mass, size, germination time and level of
dormancy. Seed choice was facilitated by the fact that field-
collected seeds from different bioregions did not differ in mass (TK
Konarzewski unpublished data), unlike glasshouse-produced seeds
(see below). This probably reflects the dry conditions experienced
during the collection year (2009), especially in the most westerly
bioregions, since drought stress in reproductive plants can reduce
seed mass [59] and cause general divergence of plant traits under
field and glasshouse conditions [22,42]. Nonetheless, all popula-
tions produced large numbers of viable, fully mature seeds which
were adequate for experimental use.

Ten seeds from each of ten plants from each site (3400 seeds in
total) were germinated in the laboratory on moist filter paper in
petri dishes under dark conditions at room temperature. After the
radicle had emerged, one similar sized embryo (based on radicle
length) from each plant (340 in total) was transplanted into small
biodegradable pots (JiffypotH) in a temperature controlled
glasshouse at the CSIRO Black Mountain site. After ten days
the pots were planted into 10 cm pots of standard potting mix, and
then four weeks prior to the commencement of the experiment,
plants were again transplanted into 20 cm pots containing
standard, high nutrient compost potting soil (consisting of a mix
of calcium carbonate lime, dolomite lime, blood and bone, and
NPK fertiliser; pH = 6.5). Pots were arranged in a randomised
block design with five blocks each consisting of three benches; two
plants from each of the 34 study sites were randomly placed in
each block. Plants were grown from April to December 2010
under a photoperiod governed by natural sunlight and a targeted
day/night temperature regime of 25/15uC with an average of
20uC. Temperatures were logged from August to October and
followed the targeted regime reasonably closely, with daily
averages of 16–20uC, although spot temperatures as high as
27uC and as low as 12uC were observed. Of the 340 plants used in
the experiment, two died and 34 plants did not flower within the
duration of the experiment (250 days); these were removed from
further consideration. After 27 weeks sufficient flowers were
produced to allow pollination. Pots were fertilised with AquasolH
Soluble Fertiliser (Yates, Australia) fortnightly or as required.

Clinal Variation in Echium plantagineum Seed Mass
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Suitable plants for open pollination were defined as plants with
ten or more open receptive healthy flowers which were identified
by the shape and size of the flower and the length and maturity of
the stigma. Between October and November 2010 plants from
each site were transported together but separately from plants
from other sites to a pollination chamber (a small naturally-lit
glasshouse) to ensure that cross pollination occurred among plants

that originated from the same site. Between six and ten plants,
with suitable numbers of flowers, were available for each site.
Plants were stored in a separate, insect-free glasshouse for
24 hours prior to placement in the pollination chamber and
previously mature flowers were removed to ensure that only newly
developed flowers were pollinated. Pollination was performed by
European honey bees (Apis mellifera) with an exposure period of

Figure 1. Distribution of Echium plantagineum in Australia and location of collection sites across south-eastern Australia. (a)
Herbarium records from the periods 1889–1910, 1911–1960 and 1961–2010 based on data obtained from Australia’s Virtual Herbarium (2009 Council
of Heads of Australasian Herbaria Inc) show the pattern of spread since introduction. (b) Distribution of study sites (depicted by black diamonds)
across south-eastern Australia, grouped by IBRA bioregion (coloured). BHC = Broken Hill Complex, MDD = Murray Darling Depression, RIV = Riverina,
NSS = NSW (New South Wales) South-Western Slopes, SEH = South-Eastern Highlands, SB = Sydney Basin, SEC = South-East Corner. Note that for all
analyses SB and SEC were combined into a single coastal bioregion (COAST). The location of CSIRO Black Mountain Laboratories (S 35.27u, E 149.12u)
where the glasshouse experiment was conducted is indicated.
doi:10.1371/journal.pone.0049000.g001
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24 hours. Plants were changed at night when the bees returned to
their hive to reduce the risk of cross pollination between sites. All
plants were then moved back to the glasshouse (which was also
insect free) to complete their development. Seeds were collected
from all plants after five weeks following seed maturation and
placed into paper bags for storage at room temperature. Seed
production was only observed in flowers that were exposed to bee
pollination.

Seed measurements
Seed mass per individual plant was determined as the weight of

ten viable seeds dried for one week at a temperature of 80uC,
expressed as seed weight (g) per 100 seeds. Seed viability was
determined by visual inspection and lightly pressing on either side
of the seed with forceps. Experience with germination of field
collected seeds indicated that seeds were viable if the seed coat did
not crack or deform under light pressure (i.e., the seed was filled)

Site characterisation
One representative soil core, 10 cm2 and 10 cm deep, was

collected at each field site, sealed in a plastic bag, and stored at
room temperature in the laboratory. A representative subsample
(five grams) was ground to a fine powder using a tissuelyser at a
frequency of 30.1 rpm for ten minutes, and analysed for
percentage carbon (C) and percentage nitrogen (N) using a
Europa 20–20 isotope ratio mass spectrometer with an automated
nitrogen carbon analysis preparation system [60]. Soil electrical
conductivity and soil pH (CaCl2) were measured as described in
[61].

Climate data for the period 1910–2010 were obtained for all
study sites using the SILO enhanced meteorological dataset and
datadrill procedure hosted by The State of Queensland (Depart-
ment of Environment and Resource Management) 2012 (see
http://www.longpaddock.qld.gov.au/silo/ [62]). We then derived
five key climatological variables for each site, focusing on the time
frame of May to October during which E. plantagineum growth and
effective precipitation are highest [63]: total precipitation (P),
mean maximum temperature, mean minimum temperature, mean
temperature, and total potential evapotranspiration (PET). We
also derived two measures of aridity for each site: 1) the annual
atmospheric water balance (AWB) [64], defined as AWB = P- PET
and 2) the aridity index (AI) [65], defined as AI = P/PET (See
Table 1 for summary).

Mean climatological conditions during the historical (1910–
2010) May–October Echium growing season for each bioregion are
shown in Table 1. Total precipitation increases from around
100 mm in the arid Broken Hill Complex to .300 mm in
COAST and South-East Highland bioregions (Fig. 2a). Higher
bioregions in the east (e.g., NSW South-West Slopes and South-
East Highlands) experience cooler temperatures than coastal or far
inland locations (Fig. 2b). The combination of increasingly drier
and warmer conditions towards the west of the study region results
in a sharp increase in aridity from the South-East Highland to
Broken Hill Complex bioregions (Fig. 2c); aridity is intermediate in
coastal habitats due to the high overall rainfall.

Statistical analyses
The primary data set consisted of mean seed mass for 189 seed-

producing plants across 34 study sites (the remainder either died,
produced no flowers, or produced no viable seeds). We construct-
ed the final data set for analysis by removing data for the parental
plants (n = 45) that produced fewer than three seeds since in most
cases the seeds produced were very small due to early abortion or
senescence of the fertilised flowers. For one site we retained data
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from a single plant that produced two healthy, viable seeds
because it was the only datum available for that site. The final data
set thus consisted of mean seed mass for 144 seed-producing
plants. While we report the results of analyses conducted on the

final data set, because the presence of small or aborted seeds may
reflect varying levels of self incompatibility or inbreeding
depression [66], we conducted all analyses on both data sets.
This decision had no impact on interpretation of the results,
although the exclusion of smaller seeds did slightly reduce among-
site variation in seed mass.

Linear mixed model analysis was used to relate seed mass to
bioregion (fixed predictor variable), site within bioregion (random)
and block (fixed). Effects of fixed variables were tested using
standard F-tests and the effect of the random variable was tested
using the Wald Z test [67]. The final seed mass data set was
square-root transformed according to y = sqrt(x) to meet model
assumptions. Post-hoc tests were performed on bioregion means
using the Tukey-Kramer adjustment for multiple testing [68].

We also quantified the direct relationships between seed mass
and specific environmental characteristics of maternal field site
using linear regression. We first used principal component analysis
(PCA) to reduce the ten correlated environmental variables
describing the sites (six climatic, four soil variables; see Table 2)
to two components that, combined, accounted for 82% of the total
variance. The first component (PC1) accounted for 58% of the
variation in the data and was strongly associated with climatic
variables (Table 2). Scores on PC1 decrease from the arid (BHC)
to mesic (SEH) bioregions, with coastal, slopes and Riverina
regions having intermediate scores (Fig. 3a). The second compo-
nent (PC2) accounted for 24% of the variation and primarily
reflected site-level soil characteristics (Table 2). PC2 primarily
distinguished between coastal and highland bioregions (Fig. 3b),
with low-elevation coastal areas having higher soil fertility
(Table 2). The relationship between soil pH and PC1 (Table 2;
Fig. 3a) is indicative of the general tendency for soil acidity to
increase from the western to eastern parts of the study area [69],
although soil pH also loaded on PC2.

Both PC1 and PC2 were related to mean site-level seed mass
using linear regression analysis. Finally, we used individual linear
regression analyses [67,70] to directly assess the impact of latitude
and longitude on mean site-level seed mass since these relation-
ships have been previously assessed for a number of species in
Australia (e.g., [71]). Mean growing season (May–October)
precipitation, temperature, and aridity index were also used in
individual regression analyses in order to directly determine the
relationships between these variables and seed mass. No data
transformations were required for the regression analyses.

We next tested whether site-level seed mass variance differed
across bioregions. First, we performed Levene’s test of homoge-
neity on non-transformed data to determine whether variance
among populations differed among bioregions. We then per-
formed a one-way analysis of variance to determine whether mean
among population seed mass variance differed across bioregions.
Data from two sites were excluded because plants produced
insufficient seeds to determine variance. Finally, we used simple
linear regression to determine whether among population seed
mass variance was related to longitude, latitude and scores on PC1
and PC2. All statistical analyses were performed using SAS version
9.1 (SAS Institute Inc., Carey, NC, USA).

Results

Seed mass varied significantly among bioregions (F(5,28) = 3.42,
P = 0.02, Fig. 4a,b), but not among sites within bioregion (WALD
Z = 1.20, P = 0.12). Seed mass did not vary significantly across
blocks (F(4,106) = 0.77, P = 0.54). There was an overall pattern for
seeds sourced from populations found in drier bioregions
(especially the Broken Hill Complex and Murray Darling

Figure 2. Climatological data for the May–October growing
season for bioregions in the study area. Data are based on 1910–
2010 averages derived from the enhanced meteorological dataset
hosted by The State of Queensland (Department of Environment and
Resource Management) 2012 (http://www.longpaddock.qld.gov.au/silo/
). (a) Total precipitation (mm). (b) Mean temperature (uC). (c) Aridity
Index. Abbreviations denote the individual bioregions, See Fig. 1 for full
names. Bioregions are arranged along the x axis from most westerly
(BHC) to most easterly (COAST).
doi:10.1371/journal.pone.0049000.g002
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Depression) to be heavier than those sourced from more mesic
coastal and SE highland habitats (Fig. 4a,b). Mean seed weight in
Broken Hill Complex populations was 23% higher than that of
COAST populations (Fig. 4a), with seeds produced by plants from
semi-arid (Riverina) and temperate (NSW South-Western Slopes,
South-Eastern Highlands) bioregions being intermediate in weight
(Fig. 4a).

At the population level, seed mass was significantly related to
PC1 (Fig. 5a) but not PC2 (B (unstandardised regression
coefficient) = 20.012, R2 = 0.05, P = 0.19), indicating that climatic

factors were more important than soil-related factors, in deter-
mining variation in seed mass. Seed mass was strongly related to
longitude (Fig. 5b). Each degree of longitude reduced predicted
100-seed weight by around 0.01 g (from a maximum of ,0.40 g
in the Broken Hill Complex to a minimum of ,0.30 g in the
COAST bioregion; Fig. 5b). This represents a decline of, on
average, ,2.5% per degree of longitude. Seed mass also declined
with May–October rainfall (1910–2010) (B = 20.0002, R2 = 0.18,
P = 0.01), aridity index (B = 20.058, R2 = 0.15 , P = 0.02) but only
marginally with mean temperature (B = 0.007, R2 = 0.09,
P = 0.09). Finally, seed mass was also significantly related to
latitude (Fig. 5c), with each degree of latitude reducing predicted
mean seed mass by 0.016 g, or around 4% (on average over the
entire study region).

Variance among populations within bioregion did not differ
significantly (Levene’s test of homogeneity on untransformed data
F(5,26) = 1.36, P = 0.27; Fig. 4a), and mean site-level variation in
seed mass (calculated as the variance in seed mass among plants
within each site) did not differ significantly across bioregions
(F5,26 = 1.63, P = 0.19; Fig. 4c). There was a general trend for
between-site variance in seed mass (Fig. 4a) to be greatest towards
the core of the species distribution (e.g., NSW South-Western
Slopes and South-Eastern Highland bioregions) and least towards
the edge (e.g., Broken Hill Complex and COAST bioregions).
This result was not observed in among-plant variation at the site
level (Fig. 4c). Site-level variation in seed mass was also not related
to longitude, latitude, or scores on PC1 or PC2 (P..0.05 for all).

Discussion

The results of this study support the hypothesis that relatively
recent climatic adaptation has resulted in the development of a
cline in Echium plantagineum seed mass with aridity in SE Australia.
Our data indicate that E. plantagineum seed mass declines by
around 25% across the 1,000 km west-east gradient spanning the
study area, with smaller seeds being produced by populations from
cooler, wetter environments (e.g., COAST bioregion) than
warmer, drier environments (e.g. Broken Hill Complex bioregion).
Seed mass correspondingly declines by close to 2.5% (on average)
per degree of longitude, and broadly increases with site aridity,

Figure 3. Mean scores for each bioregion on first and second
principal components derived from PCA of data from ten
climatological and soil-related variables collected at each of
the 34 study sites (see methods). a) Mean scores on PC1. b) Mean
scores on PC2. Variables with high (.0.40) loadings on PC1 and PC2 are
shown beside the y-axis; upward and downward arrows indicate
positive and negative loadings respectively. For example, in (a) average
annual temperature (Tav) loads positively on PC1 while atmospheric
water balance (AWB) loads negatively. The data show that PC1 is
primarily related to overall aridity, which increases from the most mesic
(South-Eastern Highlands) to most arid (Broken Hill Complex) bior-
egions, while PC2 primarily distinguishes between COAST and South-
Eastern Highland bioregions based on soil characteristics. Abbreviations
denote the individual bioregions; see Fig. 1 for full names. Bioregions
are arranged along the x axis from most westerly (BHC) to most easterly
(COAST). Climate and soil variable acronyms defined in the text except
%N = percentage soil nitrogen; %C = percentage soil carbon; EC = soil
electroconductivity.
doi:10.1371/journal.pone.0049000.g003

Table 2. Component loadings of ten variables based on
principal components analysis of site-level climatic and soil
data.

Variable1 PC 12 PC 22

Atmospheric water balance 2.972 .047

Potential evapotranspiration .957 .065

Precipitation 2.931 .175

Maximum temperature .924 .290

Average temperature .923 .317

Minimum temperature .895 .345

Soil pH .763 2.406

Soil nitrogen 2.070 .957

Soil carbon .062 .891

Soil electrical conductivity .100 .474

1Climatic data for the May to October growing season (1910–2010) (see
methods). Potential evapotranspiration (PET); atmospheric water balance
(AWB) = precipitation- PET.
2Component loadings above 0.400 or below – 0.400 are in bold.
doi:10.1371/journal.pone.0049000.t002
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which is highest in the west of the study region. We also found that
seed mass declines with increasing latitude, although the strength
of the association is lower than for longitude (Fig. 5b,c).

These data suggest that selection pressure, associated with
aridity, has acted on invasive populations of E. plantagineum to
increase seed size in arid relative to mesic habitats. This supports

the general argument that seed mass plays an important role in
maintaining population fitness in arid-adapted species [35,39], and
that seed-related traits have the capacity to undergo evolutionary
shifts that increase the invasive potential of newly introduced plant
populations [45]. Adaptive variation in seed mass in response to
broad environmental gradients has been well documented [40–
45,47]; but this study is one of the first to document such a change
in an invasive species (see [46,48,49] for other examples).

Interestingly, the decline in seed mass of 2.5% per degree of
longitude and 4% per degree of latitude in E. plantagineum is
remarkably similar to that reported by [71] for native perennial
Glycine species in Australia. They attributed the presence of larger
seeds in inland areas and at low latitudes to the increased
metabolic costs of high temperature and increase in availability of

Figure 4. Seed mass and seed mass variance derived from
plants collected from six bioregions in the study area. (a) Mean
site-level seed mass (g; 100 seeds) across all six bioregions based on the
final data set (with small seeds removed). Site means are shown as filled
circles while bioregion means (average of all sites within a bioregion)
are shown as unfilled circles. (b) Estimated mean seed mass (61 SE) for
each bioregion based on linear mixed model analysis (see methods) of
final data set (square root transformed). Means sharing the same letter
did not differ significantly at the 0.05 level. (c) Variance in seed mass for
all study sites in each bioregion, determined as the variance in seed
mass among seed-producing plants using the final data set. Abbrevi-
ations denote the individual bioregions, See Fig. 1 for full names.
Bioregions are arranged along the x axis from most westerly (BHC) to
most easterly (COAST).
doi:10.1371/journal.pone.0049000.g004

Figure 5. Scatterplots depicting linear relationships between
seed mass and three key predictor variables: a) site-level
scores on PC1 (primarily related to climate, see Table 2), b) site
longitude, and c) site latitude. B = unstandardised regression
coefficient.
doi:10.1371/journal.pone.0049000.g005
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photosynthate in these environments [40], which is a plausible
explanation for existence of the same pattern in E. plantagineum.
The high degree of spatial convergence of Echium and Glycine
strongly supports the view that, in Australia, both native and exotic
species experience similar climatic selection pressures and have the
capacity to develop adaptive clinal variation in seed mass in
response. However, while seed mass evolution is likely to have
increased the overall distribution, abundance and fitness of E.
plantagineum, other factors, such as overall seed size [45], broad
differences in other life history traits, or the effects of disease [34]
are also likely to play a key role in determining the performance of
this and other invasive species relative to sympatric native species.

We also hypothesized that variation in seed mass should
decrease in populations subjected to the strongest directional
selection pressure (see [29]), which in this case is more arid areas
where seed mass is known to be a key determinant of fitness
[35,39]. However, in contrast to mean seed mass, we did not find a
clear pattern in seed mass variation across the study region.
Variation in seed mass among plants at the individual site scale
was unrelated to longitude, latitude, or variation in climate and
soil (i.e., PC1), and did not differ across bioregions (Fig. 4c). This is
consistent with other studies that have shown E. plantagineum
populations in Australia to be extremely genetically diverse, with
geographically isolated peripheral populations as diverse as those
located in core habitat [50,72]. It is worth noting, however, that
the magnitude of variation across different plants within each
study site was relatively low (coefficients of variation mainly in the
10–30% range; data not shown), and could reflect experimental
error. Another possibility is that other processes, including gene
flow and resulting migration-selection balance [30,31,73], genetic
drift in peripheral populations with small effective population sizes
[74], increased local genetic diversity arising from genotypic
admixture [30] or ‘‘genetic rescue’’ [31] could have resulted in the
lack of clinal development in variation for seed mass.

Variation among sites in seed mass also did not differ among
bioregions, but there was a suggestion that sites had greater
similarity in mean seed size (i.e., lower variance) at either ends of
the cline than in the centre (Fig. 4a). This effect was more evident
in site means determined from the full data set. The overall
relationship between seed mass variance and clinal location (e.g.
longitude) appears to be curvilinear, with a peak in the NSS
bioregion, and if true, could reflect the effects of directional
selection operating more strongly on heritable genetic variation in
marginal than in core populations. Indeed, the observed pattern
differs from that predicted under simple genetic drift, i.e., greater
differentiation among small, isolated (peripheral), populations than
larger, more interconnected (core) populations [8]. However, the
reduced variance observed in marginal populations could also
reflect the generally lower levels of climatic variation across survey
sites in the most westerly and easterly bioregions (Broken Hill
Complex and COAST bioregions respectively) compared with
those towards the centre of E. plantagineum’s distribution. Clearly,
further data are required to resolve whether convergence in seed
mass among range-edge populations has occurred as a result of
selection, other demographic or evolutionary processes, or simply
as a sampling artefact.

From an evolutionary standpoint, the development of clinal
population-level variation in fitness-related traits observed in
invasive species both here and globally (e.g.,
[11,12,16,22,36,75,76]; although see [25] for a contrasting
example) can arise via several different mechanisms. Clinal
differentiation can occur via adaptive radiation, the evolution of
diversity within a rapidly expanding lineage or during range

expansion as a restricted number of founder genotypes incremen-
tally diverge over time [9,16]. This process can be facilitated by an
admixture of populations sourced from different parts of the native
range and generations of novel genotypes for selection to act upon
[11,16,34]. Alternatively, a broad base of genotypes may be
introduced across the species range, mean trait shifts occurring as
a result of selective filtering of pre-adapted or climatically matched
genotypes [9,16]. While the latter process is sometimes not seen as
adaptive evolution [9], it does still involve incremental improve-
ment in population fitness via natural selection of phenotypes with
heritable traits, which is a condition necessary for evolutionary
change [77].

In E. plantagineum, both processes have probably taken place, as
is the case in invasions more generally [16]. Early introductions of
E. plantagineum are thought to have come from a variety of areas in
the native range, including England, Morocco and France, with
multiple introductions occurring across eastern Australia in the
mid- to late 1800’s [51]. Between 1910 and 2010 populations
expanded and merged (Fig. 1a), and during this time significant
mixing of genotypes has been likely. Populations in Australia are
extremely genetically diverse, recombinants are ubiquitous [50],
and overall levels of genetic diversity are similar to that observed in
the native range [72]. The breeding system of E. plantagineum has
also diverged in Australian and native range populations [66] with
Australian populations being self compatible and able to outcross
[50]. These lines of evidence suggest that the clinal development
observed in E. plantagineum in this study can be at least in part be
explained by evolutionary adaptive radiation and not simply by
fitness optimisation of populations via filtering of pre-adapted
genotypes.

The rate at which adaptive variation in seed mass exhibited by
E. plantagineum in Australia has developed is noteworthy. Mean
differences in seed mass of around 25% have occurred in, at the
very most, 150 generations, which is towards the lower end of the
evolutionary rates observed, in traits related to invasiveness,
elsewhere [5,6,9,10,16,78–81]. Despite this short timeframe,
geographic patterns in seed mass observed in E. plantagineum have
apparently converged with those observed in other native
Australian forbs.

The results of this study have significant long-term management
implications for E. plantagineum and other invasive species globally.
Predicted global climate change is expected to favour species that
have the capacity to rapidly adapt to new conditions [36], and
these are the same characteristics that facilitate the invasion of new
environments [82]. Our study supports the view that the fitness
and range potential of invasive species can rapidly increase as a
result of genetic divergence of populations along broad climatic
and geographic gradients, and that selection for seed mass can
play in important role in this process.
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particular paper are then made after publication by the readership (who are the most qualified to
determine what is of interest to them).
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Publication Charges

To provide open access, PLoS journals use a business model in which our expenses—including those of
peer review, journal production, and online hosting and archiving—are recovered in part by charging a
publication fee to the authors or research sponsors for each article they publish. For PLoS ONE the
publication fee is US$1350. Authors who are affiliated with one of our Institutional Members are eligible
for a discount on this fee.

We offer a complete or partial fee waiver for authors who do not have funds to cover publication fees.
Editors and reviewers have no access to payment information, and hence inability to pay will not influence
the decision to publish a paper.

Measures of Impact

At PLoS, we believe that articles in all journals should be assessed on their own merits rather than on the
basis of the journal in which they were published.  PLoS journals have therefore initiated a program to
provide a growing set of measures and indicators of impact at the article level that will include citation
metrics, usage statistics, blogosphere coverage, social bookmarks, community rating and expert
assessment. The long-term vision is to bring the views and activities of entire communities to bear, using
the wealth of opportunities offered online, to provide new, meaningful and efficient mechanisms for
research assessment. For more information on article-level metrics see the PLoS blog.

Editorial and Peer-Review Process

Each submission to PLoS ONE passes through a rigorous quality control and peer-review evaluation
process before receiving a decision. Beginning in 2008, we are providing the following summary data
regarding our process. This information will be updated quarterly with the latest data:

The PLoS ONE criteria for publication are as follows (more detailed information is provided here):

The study presents the results of primary scientific research.

Results reported have not been published elsewhere.

Experiments, statistics, and other analyses are performed to a high technical standard and are

described in sufficient detail.

Conclusions are presented in an appropriate fashion and are supported by the data.

The article is presented in an intelligible fashion and is written in standard English.

The research meets all applicable standards for the ethics of experimentation and research

integrity.

The article adheres to appropriate reporting guidelines and community standards for data

availability.

Each submission is subjected to an in-house quality control check, which deals with issues such as

competing interests; ethical requirements for studies involving human participants or animals; financial

disclosures; full compliance with data deposition standards, etc. Submissions may be returned to authors

for queries, and will not be seen by our Editorial Board or Peer Reviewers until they pass this quality

control check.

We use an international Editorial Board of over 3,000 academic experts, and a list of their areas of
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expertise is available at: http://www.plosone.org/static/edboard.action. Once each manuscript has passed

quality control, it is assigned to a member of the Editorial Board, who takes responsibility as the Academic

Editor for the submission. The Academic Editor is responsible for conducting the peer-review process and

for making a decision to accept, invite revision of, or reject the article. Further details of the editorial

process are described here.

Our instructions for Peer Reviewers are to be found here. Currently, of the articles that are ultimately

accepted for publication, 95.8%* were sent for review by external experts. Around 4.2%* of articles are

peer reviewed by the Academic Editors themselves (often in consultation with other members of the

Editorial Board) when they are sufficiently expert in the field to determine whether the paper meets the

PLoS ONE criteria.

On average, ALL accepted articles have been reviewed by 2.9* experts (one Academic Editor and 1.9*

external Peer Reviewers).

Authors can recommend specific Academic Editors, but PLoS ONE is not obliged to use that suggestion,

and the identity of the Academic Editor is not revealed until a decision is rendered. The Academic Editor is

also publicly identified on all published articles. If Peer Reviewers are willing, then they are also identified

to the author at the time of decision.

On average, PLoS ONE publishes 69%** of all submissions.

Rejected papers are given the opportunity for a formal appeal.

*Data refer to the 1,837 manuscripts that received a decision in the period 7/1/10 - 9/30/10.

**Data refer to the 2,216 manuscripts submitted in the period 1/1/10 - 3/31/10 and their status as of
10/5/10. We quote data from an earlier time period as some submissions spend time passing through
revisions and re-evaluations before ultimately being accepted or rejected. Therefore, if we quoted data for
submissions in the most recent quarter, it would not give a complete picture for those papers still being
evaluated.

Please see our Frequently Asked Questions (FAQ) page for detailed information on common editorial
inquiries.

Indexing and Archiving

PLoS ONE is indexed in PubMed, MEDLINE, PubMed Central, Scopus, Web of Science, Google Scholar, the
Chemical Abstracts Service (CAS), EMBASE, AGRICOLA, PsycINFO, Zoological Records, FSTA (Food
Science and Technology Abstracts), GeoRef, and RefAware, as well as being searchable via the Web of
Knowledge. In addition, PLoS ONE is formally archived via PubMed Central and LOCKSS.

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to
making the world's scientific and medical literature a freely available public resource. For more
information about PLoS, visit www.plos.org.
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