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Abstract

‘Context-awareness’ could be one of the most
desired fundamental abilities that a robot
should have when sharing a workspace with
humans co-workers. Arguably, a robot with
appropriate context-awareness could lead to a
better human robot interaction. In this paper,
we address the problem of combining context-
awareness with robotic path planning. Our ap-
proach is based on affordance-map, which in-
volves mapping latent human actions in a given
environment by looking at geometric features of
the environment. This enables us to learn hu-
man context in an given environment without
observing real human behaviours which them-
selves are a non-trivial task to detect. Once
learned, affordance-map allows us to assign an
affordance cost value for each grid location of
the map. These cost maps are later used to
develop a context-aware global path planning
strategy by using the well known A* algorithm.
The proposed method was tested in a real office
environment and proved our algorithm is capa-
ble of moving a robot in a path that minimises
the distractions to human co-workers.

1 Introduction

Thanks to recent advances in robotic technologies,
robots are slowly approaching daily lives of humans. As
such, the ability of a robot to perceive and understand
its operating environment is a key requirement in many
of the scenarios. Often in robotics, context awareness
refers to the ability of robots to sense and react according
to the environment. Particularly, understanding human
context is paramount for a robot that works alongside
humans. Therefore, human context often involves recog-
nizing probable human activities in a given environment.
However, even recognizing a simple human activity is
considered to be non-trivial due to large intra-activity

Figure 1: A robot with proper context-awareness will
select a path along corridors rather than the shortest
path

variations associated with human activities [Piyathilaka
and Kodagoda, 2013b].

In order to react according to context of the environ-
ment, a mobile robot is often required to alter its path
more often. Therefore, context-aware path planning is
a fundamental ability that every robot should acquire
in order to navigate in a human work space. However,
most traditional path planning algorithms are based on
two major factors, obstacle avoidance and minimizing
cost associated with robot’s movements. In other words,
these robots try to move from start position to the goal
location on the shortest possible path while avoiding ob-
stacles on its way. Although this path planning strategy
is more suitable for a industrial setting, such an approach
is often perceived as inappropriate for a robot that works
alongside with humans, as human factors are not consid-
ered in path planning.

The need for context-aware path planning can be ex-
plained by the scenario shown in Fig. 1. In this ex-
ample, a robot is required to move from point A to B.
A robot that uses a traditional path planning strategy
would select the shortest path between A and B, which
is going along the human work space. Therefore in this
case, a robot that navigates on the shortest path may



distract human workers. However, a robot with context-
aware path planning capability would choose an alterna-
tive path along the corridor minimizing obstruction to
human activities.

In recent years, a few researchers have considered as-
sociating human context with robotic path planning [Se-
hestedt et al., 2010; Bennewitz et al., 2005]. These ap-
proaches try to learn human context through observa-
tions. Therefore, first the robot is required to observe
and track people for a considerable amount of time be-
fore using that knowledge for path planning. On the
other hand, the robot could learn the human context,
only if humans were observed in the environment.

Our approach for context-aware path planning is
based on the concept of affordance-map. Affordance
map allows us to learn human context in a given en-
vironment without seeing any humans. Affordance is
defined as ‘action possibilities that are readily perceiv-
able by an actor in a given environment’ [Greeno, 1994;
Grabner et al., 2011; Piyathilaka and Kodagoda, 2014].
The rationale here is that, it is possible to learn basic
human action possibilities by only looking at geometric
features of the environment as humans arrange objects
to support their activities. For example, chairs and sofas
support the activity ‘sitting’ and they are physically de-
signed to support that affordance. Therefore, the action
possibility ‘sitting’ could be learnt by simply detecting
sittable locations in the environment. Although these
affordances could be learnt by detecting human activ-
ities in a given environment, in our proposed method
we used virtual skeleton models to learn possible affor-
dances. This allowed us to learn affordances even in
environments where human were not observed.

Following section briefly explains the major steps in-
volved in our approach to build the affordance map.
First the 3D map of the environment is obtained and
converted to a 3D distance map. Then at the learn-
ing phase,virtual human models are placed on 3D CAD
models of furniture downloaded from a public dataset
to learn parameters of the affordance model. Later, at
testing phase, virtual human skeleton models are placed
across the 3D environment to search for locations that
support the given affordance. Finally, affordance-map
is created by calculating affordance value for each grid
cell that represents how likely that location support the
given affordance. In addition, each grid cell is consisted
of orientation information of the human skeleton model.
This information embedded in the affordance map is
then used to assign context cost value for each grid cell.
Finally, experiments were carried out in a real office en-
vironment to explore the applicability of afordance-map
for context-aware path planning.

2 Related Works

There are many publications that explored various
robotic path planning strategies. However, only a few
researchers have previously considered global path plan-
ning with appropriate context awareness.

In [Sehestedt et al., 2010] researchers developed so-
cial aware path planning strategy using a robot that
learns human motion patterns based on sampled Hidden
Markov Models. Then they utilized these models for
path planning based on Probabilistic Roadmap. How-
ever their approach need to continuously observe real hu-
mans in the environment before using it for social aware
path planning. Therefore, such a robot would require
a considerable amount of time to learn human context
in a new environment. On the other hand, human mo-
tion patterns could be affected by the presence of the
robot itself. However our approach for context-aware
path planning does not require to observe real humans.
Instead it learns human behaviours by looking at geo-
metric features of the environment.

In an attempt to build context-aware path planning
strategy, some other researchers have used an off-line
learning procedures to obtain motion models of individ-
ual people in an office using HMM [Bennewitz et al.,
2003]. Once a person is identified, a model is used to pre-
dict that persons future position in order to perform the
’give way’ action . Thus, the model is used to improve
local replanning and does not influence global planning.
However such a behaviour could lead to more complex
behaviours and robot might interfere with some one else
when deployed in crowded environments.

In [Luber et al., 2012] researchers tried to build so-
cially aware navigation strategy using objective criteria
such as travel time or path length as well as subjective
criteria such as social comfort. As opposed to model-
based approaches they posed the problem as an unsu-
pervised learning problem. They learnt a set of dynamic
motion models by observing relative motion behaviour of
humans found in publicly available surveillance data sets.
Again this strategy requires the human to be present and
detected in the environment. Further, they have only
focused on human like collision avoidance rather than
global path planning.

3 Affordance Detection

In order to build a social cost map, possible affor-
dances in the given environment need to be detected and
mapped. Affordance-map is consisted of likelihood value
assigned to each grid cell. This is achieved by modelling
the 3D environment, virtual humans and their interac-
tions which can be illustrated by the example shown in
the Fig.3. It can be seen from the Fig. 3 ‘proper sitting’
of the virtual humans model can be described by placing



Figure 2: Virtual human models extracted from human
activity detection data set

Figure 3: Virtual human models sitting near a computer

the spine supporting the vertical part of the chair while
thighs supporting the horizontal part of the chair. Also
human model should not go through any 3D point of the
chair. Therefore, if each point of the chair is converted
in to a 3D distance field then each point of the virtual
human model should lie with a specific distance value.
These distance features together with occupancy values
are used to learn and detect affordances as explained in
following sections.

3.1 Environment Model

The environment model is consisted of 3D Distance
Transform Map DT (x) and 3D Occupancy Map OC(x),
where x is any 3D position of the environment. The
3D Distance Transform (DT) is a shape representation
that indicates the minimum distance from a point in the
environment to the closet occupied voxel. In our ap-
proach, we calculated 3D Distance Transform by using
the occupied voxels of 3D point clouds, OC. The dis-
tance transform map DT (x) of the occupancy grid map
OC can be generated using an unsigned distance func-
tion (1), that represents Euclidean distance from each
location x of the environment to the nearest occupied
voxel in OC(x).

DT (x) = min
Oj∈OC

|Oj − x| (1)

3.2 Virtual Human Skeleton Model

Instead of observing real humans in the environment, the
proposed algorithm uses virtual humans to model inter-
action between the environment and the human. Al-
though many human poses could be observed in a given
environment, a very few of them actually influence the
robot’s context-aware navigation strategy. For example,
most frequently observed human pose in an office en-
vironment is sitting beside an office desk and working
with a computer. Therefore, a service robot operating
in an office environment should minimize the distrac-
tions caused to those people working beside office ta-
bles. In this scenario, human pose model can be selected
from the activity ‘working with the computer’ to gen-
erate the social cost map. In our experiments, human
skeleton models were extracted from a human activity
detection dataset [Sung et al., 2012] and used them to
build the affordance-map. Fig. 2 shows the frequently
observed human pose models in the dataset. Each hu-
man model is a skeleton with 15 joint body positions in
3D. Given these 3D points of the human skeleton Hl, we
can move it across the given environment using the rigid
body transformations of translation and rotation. Then
we can effectively map each human skeleton model to the
coordinate system of the environment using (2), where
Xk = (xk, yk, zk, θk) is the position and orientation of
the skeleton’s torso in the world coordinate system and
Rz(θk) is the rotational matrix about z axis. It is to be
noted that only rotation about z axis is considered here.

Hw(Xk) = [xk, yk, zk]
T +Rz(θk).Hl (2)

3.3 Human Environment Relationship

Once the models for environment and the human have
been built, the next step is to model the relationship
between them. This is achieved through two geometric
features, namely distance features and collision features.
Selection of these features are motivated by two facts.
First is the proximity of objects for effective interactions
and the second is to prevent collisions or intersects with
occupied voxels of the environment.
Distance features are obtained by moving the human

model across the voxels in the environment and calculat-
ing distance measure for each and every skeleton points
of the human model. Once the environment is mod-
elled by (1), we can effectively calculate distance fea-
tures of a human skeleton with location and orientation
Xk = (xk, yk, zk, θk) by (3), where n is the number of
3D points in the skeleton.

[d1, d2, ...dn] = DT (Hw(Xk)) (3)

In the same way, we can check for any collisions of a
skeleton at location and orientation, Xk by (4). In case
of a collision ci becomes 1 and 0 otherwise.



[c1, c2, ...cn] = OC(Hw(Xk)) (4)

There after, the collision check at Xk in the map can
be converted into a probability value using (5).

P (C|Xk) = 1−

n∑
i=1

ci

n
(5)

Then the affordance map for ‘workable area’ in the
given environment map can be calculated by using the
distance features, di and collision features. Each cell in
the affordance map represents the likelihood of that place
being a ‘workable area’. Finally, given a virtual skeleton
with location and orientation Xk, the underlying Like-
lihood, P (Ak|Xk, λ) of that location being a ‘worakable
area’ can be calculated by (6).

P (Ak|Xk, λ) = P (C|Xk).

n∏

i=1

1

σi

√
2π

e−(di−µi)
2/2σ2

i (6)

The Parameters of the above likelihood function λ =
{µi, σi}, for each distance measure can be estimated via
training as explained below.
First human pose models are selected according to

the environment that new social cost map need to be
built. Then 3D models of furniture that support each
virtual pose model are selected from synthetic datasets
of ‘Google 3D Ware House’. For example, to learn ‘sit-
table’ affordance, ‘sitting’ human skeleton models can be
used from the human activity detection dataset [Sung et
al., 2012] and furniture like sofas and chairs can be used
to train parameters of (6). Finally, distance features are
recorded by manually placing human skeleton on the se-
lected furniture, and estimating [µi, σi] using training
samples.

4 Affordance-Map for Context-Aware

Path Planning

This section explains how affordance map can be used for
context-aware path planning in an office environment.
For this research, context-aware path planning is de-
fined as the path that minimizes the interferences caused
to people working in an office cell. The Context-aware
path planning strategy involves avoiding work spaces of
humans and planning paths through the humans work
spaces if and only if the human presence is not detected.
The robot can use affordance map for global path plan-
ning as it provides location information of human work
spaces. For this research we define this path as ‘Global
Path with Minimal Distractions’, (GPMD). However, if
this path is too long then the robot needs seek alter-
native path that goes through the nearest unoccupied
workspace.

4.1 A* for Path Planning

The A* algorithm has been in use for robotic path plan-
ning for many years [Sehestedt et al., 2010; Dechter
and Pearl, 1985]. It utilizes best-first search strategy to
search the least cost path that lies in the D-dimensional
collision free space of the robot.

The algorithm searches for a path using a priority
queue, where each node x in the path is sorted according
to the cost function f(x). Therefore highest priority is
given to the nodes with least cost. Generally f(x) is the
sum of two main components, g(x) which is the shortest
collision free path from start to goal by Euclidean dis-
tance and h(x), which is used as a heuristic estimate of
the length of the path.

In order to do minimum distraction path planning we
can simply incorporate a social cost gS(x), to the total
cost function such that A* algorithm will seek a colli-
sion free path while minimizing interference to humans.
Depending on the affordance model selected social cost
gS(x) for each grid cell can be assigned according to the
affordance likelihood given by (6). For example, for an
office environment we can select ‘sitting and working’ as
the affordance model and assign high social cost values
to the areas where affordance likelihood is high. In such
cases social cost is given by (7).

gS(x) ∝ P (Ak|Xk, λ) (7)

Consequently, f(x) in the standard algorithm can be
replaced by the cost function F (x). In some scenarios
it is appropriate to have additional weight term w for
social cost function gS(x) in (7) to enable the robot to
choose between shortest path and alternative minimal
distraction path. This can be incorporated as,

F (x) = g(x) + w ∗ gS(x) + h(x) (8)

If w is set to 1, the robot prefers shortest path whilst
any number between 0 and 1 denotes the combination of
shortest path and a context-aware path.

4.2 Detecting Human Presence

Detecting human presence is vital for a robot that does
context-aware path planning because the human context
defines the role of the robot in most scenarios. Although
a number of human detecting algorithms are available in
literature, detecting humans while the robot is in move
is considered to be non-trivial [Sehestedt et al., 2010].
One reason for this challenge is the absence of a priori
knowledge about the presence of human poses and their
best viewing directions. On the other hand, how to re-
act to the human presence depends on the context of the
location. For instance, if a human is detected in a corri-
dor, the robots can simply treat him/her as an obstacle



(a) 3D Point Cloud Map (b) 2D Laser Map

Figure 4: Maps of the office environment

and plan to avoid the obstacle (could be a dynamic ob-
stacle). Whereas, if the human presence is detected in
an office space, then the robot needs to plan a path to
minimize interference to humans.

However, these problems can be effectively addressed
by using the information embedded in the affordance-
map. Firstly, it contains information about human activ-
ities like ‘sitting and working’. Secondly, the affordance-
map contains information about the locations and poses
of possible human workers. This can be used for active
human search, which will eventually lead to a higher hu-
man detection rate.

4.3 Context-aware Path Planning
Algorithm

Algorithm 1 summarises the major steps involved with
context aware path planning. First A* algorithm is
used with affordance map to calculate shortest path,
PS and GPMD path PA as explained in the Section
4.2. Path threshold Tp defines when to use GPMD. The
path threshold can be set according to the urgency of
the task that is being carried out by the robot using a
high level planner. If the difference of travel distance
between these two alternative paths is small, then the
robot chooses the GPMD path which is reasonable. If
the difference of travel distance is large, the robot starts
to move along the shortest path while looking for hu-
mans. If a human is detected, then the robot alters its
path by recalculating a new path to minimize the inter-
ference caused to the human.

Algorithm 1: Context-Aware Path Planning

Data: Affordance map
Result: Context-Aware Path
PS ← Calculate the shortest Path;1

PA← Calculate the Global Path with Minimal2

Distractions (GPMD) using Afordance-map;
Tp ← Path Threshold;3

if (len(PA)− len(PS))/len(PS) ≤ Tp then4

Follow PA5

else6

while Detect people OR Goal do7

Follow PS8

end9

Assign Affordance cost values to all locations10

within the sensor range and update the cost
map;
PSnew ← Calculate the new shortest path ;11

PS ← PSnew;12

GoTo Line 7;13

end14

5 Experiments

In order to experimentally verify the effectiveness of the
proposed algorithm, a series of path planning experi-
ments were conducted in an office environment. First,
3D point cloud map of the environment was built using
a state of the art RGDB SLAM (Simultaneous Localiza-
tion and Mapping) algorithm [Dryanovski et al., 2013]

and a depth camera mounted on a mobile robot. Fig.
4a shows the 3D point cloud and Fig. 4b shows 2D
Laser map of the environment with corridors and work-
ing benches.
Human pose model extracted from the activity ‘sit-

ting and working with a computer’ is selected to detect
affordances. This is justified by the fact that ’sitting
and working with a computer’ is the most frequently
observed activity in the given environment. First, the
map is voxelized into 10cm x 10cm x 10cm grids and
distance fields and occupancy map are built. Then for



(a) 2D Affordance Likelihood Map (b) 3D Skeleton Map

Figure 5: Learned Affordance-Map for the office environment

(a) Shortest path with A* (b) ‘Global Path with Minimal Distractions’, GPMD

Figure 6: Experiment 1. Context-aware path planer selects a longer path to minimize the distractions to humans
work spaces.

(a) Shortest path with A* (b) ‘Global Path with Minimal Distractions’ (GPMD)

Figure 7: Experiment 2. Affordance-map based ’Global Path with Minimal Distractions’ (GPMD) selects the only
path that always lies along corridors.



(a) Shortest Path with A* (b) Global Path with Minimal Distractions’ (GPMD)

Figure 8: Experiment 3. Minimum distraction path along corridors is too long and shortest path goes through human
works space.

each grid location P (Ak|Xk, λ) is densely calculated by
moving the virtual human model across the 3D map.
The 2D and 3D representations of the affordance map
is shown in Fig. 5a and Fig. 5b. High ‘workable’ affor-
dances are recorded near work benches as can be seen
from the Fig. 5a. A 3D representation of the affordance
map with skeletons is shown in Fig. 5b. It is clear from
these results that the proposed algorithm is sufficiently
capable of learning tested affordance in the given envi-
ronment. More importantly, the learned affordances are
more or less realistic to real human behaviours as can be
seen from the 3D affordance map in Fig. 5b.

The affordance map is then used for context-aware
path planing. As the robot is required to avoid ’working
spaces’ of humans in the office environment, we used A*
algorithm with the cost function given by (8). The values
for the affordance cost, gS(x) are assigned in the range
of 0-10 with proportional to the affordance likelihood
‘sitting and working’ for each grid cell. The value of w
in (8) is set to ‘1’ if minimum distraction path is required
and set to ‘0’ if just the shortest path is required.

In experiment 1, robot is placed in the corridor near
a work station and requested to plan a path to a goal
location in the other side of the work station as shown in
Fig. 6. As depicted in Fig 6a, A* planner has calculated
the shortest path through a human workspace whereas
the GPMD based planner has chosen a path that avoids
workstations as shown in Fig. 6b. In this case the dif-
ference of travel distances between these two paths is
less than the chosen Path Threshold Tp in algorithm 1.
Therefore, the robot selects affordance-map based path
as the context-aware path which eventually causes lesser
distractions to humans.

In experiment 2, robot is placed in the right corner
of the map and asked to plan a path to a goal location
in the opposite corner of the map as shown in Fig. 7.

Figure 9: Experiment 3. Minimum distraction path
along corridors is too long. Hence robot tries to find
a path through an empty working space.

There is only one possible path along corridors and all
other paths contain atleast one working space. Accord-
ing to the results, it can be seen that the shortest path
calculated by the A* planner goes through a human work
space as shown in Fig. 7a. In contrast affordance-map
based planner has selected the only path that always lies
in corridors. Since both of these paths have very sim-
ilar travel distances the robot chooses the path based
on affordance-map which causes minimal distractions to
humans.
In experiment 3, the robot is placed at far left corner

of the map near a workstation and requested to plan a
path to a location in the other end of the workstation as
shown in Fig. 8. The shortest path is shown in Fig. 8a
and minimum distraction path based on affordance-map
is shown in Fig. 8b. Note that there is a considerable
difference in travel distances between the shortest path



and the minimum distraction path that lies along cor-
ridors. Therefore, according to the algorithm 1, robot
starts to move along the shortest path while looking for
human presence as shown in Fig. 9. To make the hu-
man detection more efficient, the robot only looks at lo-
cations where ‘sitting and working’ affordance likelihood
is high. This leads to a huge computational savings as
it does not look for humans in each and every location.
At location ‘A’ of the shortest path the robot detects
its first human. Then robot assigns affordance cost val-
ues to the locations which are within sensory range of
the human detector. With this new cost map the robot
plans a new path and follows it until it reaches its goal
location as shown in Fig. 9. Although this new path is
going through a human work space robot doesn’t alter
its path as humans are not detected in this region.

Finally, these experiments showed that context-aware
path planning can be done in an office environment effi-
ciently using the proposed affordance-map. This map
provides many additional information which a tradi-
tional grid based map fails to provide for a successful
context-aware path.

6 Conclusions

In this paper, we introduced a context-aware path plan-
ning method for robots, centered around human context
in an indoor environment. We also showed how a dense
3D point cloud can be converted into a more informative
semantic map called ‘affordance-map’ which consists of
virtual human models. This affordance-map is then used
for path planning in an office environment. The experi-
ments showed the proposed context-aware path planner
is capable of avoiding human work spaces and hence con-
tributing to less distractions to humans.

Our future work involves, using social path plan-
ning strategy for non invasive human activity detec-
tion [Piyathilaka and Kodagoda, 2013b] [Piyathilaka and
Kodagoda, 2013a].
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