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Abstract—Human context is the most natural explanation why
objects are placed and arranged in a particular order in an
indoor environment. Usually, humans arrange objects in order
to support their intended activities in a given environment. How-
ever, most of the common approaches for robotic object search
involve modelling object-object relationships. In this paper, we
hypothesize such relationships are centered around humans and
bring human context to object search by modelling human-objects
relationships through affordance-map. It identifies locations in
a 3D map which support a particular affordance using virtual
human models. Therefore, our approach does not require to
observe real humans in the scene. The affordance-map and object-
human-robot relationship are then used to infer the object search
strategy. We tested our algorithm using a mobile robot that
actively searched for the object “computer monitors” in an office
environment with promising results.

I. INTRODUCTION

Ability to recognize objects plays a major role in robot’s
understanding of its environment. To execute various tasks
such as pick and carry or object manipulation require effec-
tive interaction with objects. Therefore, a service robot that
operates in an indoor environment is required to localize and
map objects in its operating environment. This is challenging
due to several reasons. First, the operating environment of
an indoor robot could extend beyond robot’s sensory range.
Therefore the robot should have an understanding of where to
look for objects when they are located beyond its perception
range. Secondly, real time object recognition is still largely
an open problem. This makes object search and recognition
a challenging task even though the objects are visible to the
robot’s sensors.

Active object search involves executing series of sensing
actions in order to bring the object to the field of view of the
sensor. When vision sensors like cameras are involved, this
is called as ‘active visual object search’. In order to increase
object detection efficiency, the robot should move in a path
that maximizes the object detection probability. Solving this
problem is far from trivial because factors such as occlusions
and poor illumination affect the object recognition capabilities.
On the other hand, 3D objects can be viewed from a number
of different view points. Therefore, often objects recognition
techniques involve training models for multiple view points.
However, even such a greedy approach may often fail for most
of the unsymmetrical objects, if the object is viewed from a
previously untrained view point.

Fig. 1. Affordance-Map models the relationship between virtual human
skeleton model and the 3D environment. 1.Robot- Human relationship 2.
Object -Human relationship 3. Probable robot’s locations that give best view
of the object

However, complexities associated with object search can be
minimised by understanding the relationships between objects
and humans. This is because most of the objects play major
role in humans’ perception of their environment [1]. Further,
humans arrange objects in their environment in a specific order
to cater their requirements and activities [2]. For example the
‘computer monitor’ is placed on a tabletop so it can be easily
seen, and the ‘keyboard’ is placed within arm reach of the
human sitting beside the table. The ‘Mouse’ is placed near the
keyboard in a place that is convenient to handle. Therefore,
these strong relationships between objects and humans can be
used to localize probable locations of a given object.

Our approach for active object search is based on the
concept of affordance-map. This brings the human context to
the active object search which has not previously explored in
robotic object search research. Affordance is defined as all
‘action possibilities’ latent in the environment. In other terms,
affordance is a property of an object, or an environment, which
allows an individual to perform an action [3]. Although many
affordances are possible in a given environment very few are
practically probable. For example, in an office environment
most frequently observed affordance is sitting and working
beside an office desk. Office desk supports this action and
other objects such as the monitor, keyboard, mouse and the
telephone are arranged around the sitting human. Therefore,



by identifying the locations of the 3D map that support the
affordance ‘sitting and working’, we can easily model most
probable locations that the searched object can be found.

In order to build an affordance map, human actions need
to be observed in the environment. However, observing real
humans could be time consuming and a robot could easily miss
a possible affordance if a real human is never observed in the
environment. Therefore in this research, we used virtual human
models to learn affordances in a given 3d environment. First,
the 3D map of the environment is obtained and converted to
a 3d distance map. Then the virtual human models are trained
using distance measures by manually placing human models on
3D cad models of furniture downloaded from a public dataset
[6]. Later, these models are placed across the 3d environment
in search of locations that support the given affordance. Finally,
affordance map is created by calculating an affordance value
for each and every grid cell which represents how likely that
locations support the given affordance. In addition, each grid
cell consists of orientation information of human skeleton
model. This information embedded in the affordance map is
later used to model the relationship between the human,object
and the robot’s position which gives the best view of the object
that is being searched. Therefore our approach for active object
search requires a fewer number of training samples that are
taken from a limited number of view points. In other terms,
our method looks at the objects only from similar viewpoints
that were used to train the object detector.

II. RELATED WORKS

Active object search has been a popular research area
among robotic research community in recent years. Bulk of
the previous works have relied on the fact that the object is
already located within the field of views of robot’s sensors
[4]. These aproaches have used object features such as color
to guide the robot towards the object. However, it is unclear
how the same approach can be used, if the object is located
outside the sensory range of the robot.

Some other researchers have used object-object relations
to search objects in large search areas [5], [6]. Common
approach is to model object-object relationships using proba-
bilistic graphical models such Markov Random Fields (MRF).
However to this to work, atleast few objects need to be recog-
nized before the object search step or strong prior assumptions
have to be made about object’s locations. On the other hand,
these approaches do not model the human context in the
environment, which has a strong relationship with objects that
are being used in the environment.

In recent years, human context has been introduced to the
object recognition research field in the form of affordance.
In [7] researchers used virtual human models to recognize
objects that have “sittable” affordance without using common
approaches such as 3D features for object recognition. They
used a human model with sitting pose to detect locations
that support sitting, and tested their approach in synthetic
datasets. Although they achieved good recognition accuracies

Fig. 2. Built 3D map of the office environment

with synthetic datasets, they failed to record good results when
tested on a real 3D environment.

Recently, few researchers introduced virtual humans models
to learn human context in 3D environments [2]. They hallu-
cinated human models in a 3D environment to learn human
context in the environment and used them for object detection.
However, they did not explore the possibilities of using virtual
human models for active object search in a large environment.

III. OUR APPROACH

In this research, our main goal is to identify ‘human-
working’ areas in an office space and use it for object search.
However, our approach does not require real humans to be
seen. Instead, we modelled the relationship between the virtual
human and the environment. The 3D environment is modelled
as a 3D distance field and humans are modelled as 3D
skeletons, obtained from a real human activity detection dataset
[2].

A. Environment Model

State of the art 3D point cloud maps generated from a
depth camera usually contain large amount of 3D points,
and searching for areas with ‘workable’ affordance in this
large space is computationally infeasible. Therefore in order
to generate ‘workable’ affordance-map, we preprocessed bulky
3D point clouds in to much lighter point clouds that only
contain horizontal surfaces and vertical surfaces. Our heuristic
here is that human workable areas are always need to be
supported by horizontal flat surfaces like table tops. On the
other hand, vertical flat surfaces like ‘wall partitions’ and
‘table drawers’ oppose the existence of ‘sitting’ virtual human
skeletons. In other terms, given an office table as shown in the
Fig. 1, human prefers to sit in a area where there is a free space
under the table top rather than sitting facing a drawer. In order
to segment the horizontal and vertical surfaces the original
point cloud is first voxelised. Then We segment the horizontal
surfaces by calculating 3D correlation across all points in the
map, using a point cloud template extracted from a table top
surface. Vertical surfaces are extracted with the same procedure
but point cloud templates extracted from vertical surfaces like
partitioning walls and table drawers are used.

The environment model is consisted of 3d Distance Trans-
form Map DT (x) and 3D Occupancy Map OC(x), where



x is any 3D position of the environment. The 3D Distance
Transform (DT) is a shape representation which indicates the
minimum distance from a point in the environment to the closet
occupied voxel. In our approach, we calculate 3D Distance
Transform from the occupied voxels of horizontal surfaces,
OCh. The distance transform map DT (x) of the occupancy
grid map OCh can be generated using an unsigned distance
function given by (1), which represents Euclidean distance
from each location x of the environment to the nearest occupied
voxel in OCh.

DT (x) = min
Oj∈OCh

|Oj − x| (1)

Finally, 3d occupancy map for the environment can be ob-
tained by combining occupancy map of the horizontal surfaces
OCh and the occupancy map the vertical surfaces OCv .

OC(x) = OCv(x) +OCh(x) (2)

B. Human Model

In this research, virtual human models that can effectively
model interaction between the environment and the human
is used to build the affordance-map. Therefore selected hu-
man models should have a direct relationship between the
affordance ‘workable’ and the given environment. Although
many human poses can be observed in an office environment,
very few of them directly relate to ‘workable area’. Most
frequently observed human pose in an office environment is
sitting beside an office desk and working with the computer.
Therefore human pose model are selected from the activity
‘working with the computer’ from a human activity detection
dataset [8]. Fig. 1 shows the human pose model that is used
in this experiment. It is a human skeleton that consist of 3D
joint positions in 3D. Given these 3D points of the human
skeleton Hl, we can move it across the test environment
using the rigid transformations of translation and rotation.
Then we can effectively map each human skeleton model to
the coordinate system of the environment using (3), where
Xk = (xk, yk, zk, θk) is the position and orientation of the
skeleton’s Torso in the world coordinate system and Rz(θk)
is the rotational matrix about Z axis. Since we only move
skeleton model in a plane parallel to the ground plane only
rotation about Z axis is considered.

Hw(Xk) = [xk, yk, zk]T +Rz(θk).Hl (3)

C. Human Environment Relationship

Once the models for the environment and the human have
been built, the next step is to model the relationship between
them. This is achieved using two geometric features, namely
distance features and collision features. Selection of these
features are motivated by two factors. First the human needs
to be close enough to the object for effective interaction, and
the second is to prevent collisions with occupied voxels of the
environment.

Distance features are obtained by moving the human model
across the voxels in the environment and calculating distance

measure for each and every skeleton points in the human
model. Once the environment is modelled by (1) and (2), we
can effectively calculate distance features for a human skeleton
with location and orientation Xk = (xk, yk, zk, θk) by (4),
where n is the number of 3D points in the skeleton.∣∣∣∣∣∣∣∣
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In the same way, we can check for any collision for a
skeleton at location and orientation, Xk by (5). In case of
a collision ci becomes 1 and 0 otherwise.∣∣∣∣∣∣∣∣∣∣
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Thereafter, the collision check at Xk in the map can be
converted into a probability value using (6).

P (C|Xk) = 1−

n∑
i=1

ci

n
(6)

Then the affordance-map for ‘workable area’ in the given
environment can be calculated by using the distance features,
di and collision features, ci. Each cell in the affordance-map
represents the likelihood of that place being a ‘workable area’.
Finally, given a virtual skeleton with location and orientation
Xk, the underlying Likelihood, P (Ak|Xk, λ) of that location
being a ‘worakable area’ can be calculated by (7).

P (Ak|Xk, λ) = P (C|Xk).

n∏
i=1

1

σi
√

2π
e−(di−µi)

2/2σ2
i (7)

The Parameters of the above likelihood function λ =
{µi, σi}, for each distance measure can be estimated via
training as explained in the next section.

IV. MAPPING AFFORDANCE

In order to build the affordance-map, probable working
areas in the given map need to be identified. This involves
training and detection steps.

A. Data set

In order to test the proposed approach, first a 3D point
cloud map of the environment needs to be built. Recent
advancements in RGBD SLAM algorithms allow us to build
3d map of the environment in real-time. We mounted a depth
camera on a mobile robot and used CCNY−RGBD [9], a ROS
tool for fast visual odometry and mapping RGBD data, to map
an office environment. The mapped area covers 30m X 30m
and includes several office cubicals and corridors. A snapshot
of the mapped area is shown in Fig. 2.



Fig. 3. Affordance map with highest probabilities

B. Training Human Model

The parameters of the human models are trained using a
simple process that calculates (µi, σi) in (7). We downloaded
3d model of office furniture that support affordance “workable”
from “Google 3d Ware House” and manually placed the human
skeleton model in areas that support the affordance “workable”.
Then we recorded distance measure for each point in the
human skeleton model and used them as training data to
estimate µi and σi of the normal distribution.

C. Detection

In order to build the affordance-map for the affordance
‘workable’, the virtual human model needs to be moved across
the environment while searching for most probable locations
that support affordance, ‘workable’. First, the map is voxelized
into 10cm x 10cm x 10cm grid and distance fields and
occupancy map are built. Then P (Ak|Xk, λ) for each grid
location is densely calculated. For each grid cell, rotation
angle θ is set to 10 discrete values to calculate affordance
P (Ak|Xk, λ). The z axis position of the virtual human model
is set to a preselected value in order to increase the calculation
efficiency. Fig. (3) shows the human skeleton samples with
high affordance likelihood, mapped on a section of the office
environment.

V. AFFORDANCE MAP FOR OBJECT SEARCH

Once the affordance-map is built, it can be used to effec-
tively search for objects. The main challenges that need to
be solved in any robotic object search algorithm are “ where
to look for a specific object” and “what is the camera angle
need to be?”. These challenges can be addressed effectively
by using affordance map as it already embodies human object
relationships.

A. Object, Human and Robot Relationship

The affordance map which is built for the office environ-
ment, models the relationship between the environment and the
‘working’ human pose. Therefore, the position of the robot can
be inferred by modelling the relationships between the object,
human and the robot. More specifically once the human pose
position is given, we can infer the best position and the viewing

angle of the robot that gives clear view of the object to be
recognised.

The robot position is modelled as a multivariate normal
distribution relative to the human skeleton model using (8).
Here µs and Σs are the mean and covariances of position and
orientation of robot in human skeleton co-ordinate system.

Rs ∼ N (µs,Σs) (8)

This probability distribution can be converted to world
coordinate system for a skeleton at Xk = (xk, yk, zk, θk) by,

Rk ∼ N (Xk +Bµs, BΣsB
T ) (9)

where B is the rotation matrix given by (10)

B =

∣∣∣∣∣∣∣∣
cos(θk) −sin(θk) 0 0
sin(θk) cos(θk) 0 0

0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣ (10)

Finally, likelihood of a robot at location Yj =
(xj , yj , zj , θj) can see an object is given by

P (z|Yj) ∝
n∑
k=1

P (Ak|Xk, λ).P (Yj |ηk) (11)

where ηk is the parameters of the probability distribution given
by (9) and n is the number of skeletons in the map. Note that
only skeletons with high affordance likelihood contributes for
(11).

VI. RESULTS AND DISCUSSION

To test the effectiveness of the proposed approach series of
experiments were carried out in an office environment. Our
objective was to find ’computer monitors’ in the given office
space. Learned affordance-map for the affordance ‘working’
is shown in the Fig. 4. It only shows 2d locations of the
map with likelihood values related to the rotation angle θ
that maximize affordance likelihood. The ground truth map
was generated with ROS Gmapping using a laser range finder.
High ‘workable’ affordances were recorded near work benches
as can be seen from the Fig. 4. A 3D representation of the
affordance map with skeletons is shown in Fig. 3. It is clear
from these results that our algorithm is sufficiently capable
of learning tested affordance in the given environment. More
importantly learned affordances are more or less realistic to
real human behaviours as can be seen from the 3D affordance-
map in Fig. 3. Few high affordance probabilities can be
observed outside normal working areas due to the lack of
sufficient 3D data.

The affordance-map is then used for active object search.
‘Computer monitor’ was selected as the object to be searched
in the experiments. Fig. 5 and Fig. 6 show position information
of the robot that gives the best view of the object ‘computer
monitor’. These positions are calculated using object, human
and Robot relationships explained in Section VI. It is clear
from these results, most of the time robot positions itself



Fig. 4. Affordance Probability shown on a 2D Laser map

TABLE I
OBJECT DETECTION RESULTS SUMMARY

Number of Monitors in the environment 33
Total Number of Snaps taken 49

Number of Snaps with Monitors in the image 43
True Positive Detections 37
False positive Detections 14
True Negative Detections 6
False Negative Detections 8

Precision 0.72
Recall 0.87

near work benches so it can obtain clear views of “computer
monitors”.

Fig. 7 shows the path planning results of the robot for
object search. It uses the Probabilistic Road Map (PRM)
based path planner [10]. To move the robot across all possible
search locations efficiently, we formulated this problem as a
‘Travelling Salesman problem’. Since finding exact solution
for the Travelling salesman problem is NP hard, Nearest
Neighbour Algorithm [11] is used to estimate the possible path
of the robot. As depicted in the Fig. 7, calculated path of the
robot covers all possible locations that “computer monitors”
can be found.

Once the robot reaches the predicted location, it captures
RGB images of the possible areas that the computer monitors
can be found. Then a simple object classifier based on boosting
[12] is used to recognize monitors in the scene. Samples form
the object detection experiments are shown in Fig. 8, and object
recognition results are summarized in the Table 1.

According to the test results, only 49 snaps are taken across
the entire office environment and 43 of those images contain
one or more monitors. This shows, our approach can effectively
infer the possible locations of monitors in a large environment.
On the other hand, object detector performed well giving
acceptable recall and precision values. Note here that, none of
the monitors present in the environment are used to train the
object detector. Although the object detector is neither scale
invariant nor view point invariant our algorithm was able to
detect 27 monitors out of 33 monitors present in the given

Fig. 5. Positions of the Robot that give the best view of the object

Fig. 6. Scaled view of the robot’s position and orientation for object search

search area. This proves robot is able to position its camera
correctly towards the object. It is clear from these results that
the proposed algorithm can solve the object search problem
efficiently by modelling the human context in the environment
through affordance-map.

Fig. 7. Path planning for active object search



(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 8. Samples from object search and detection experiments. (1-4) True Positive, (5) True Negative, (6-7) False positive, (8) False Negative

Not detected Monitors

Detected Monitors

Fig. 9. Object detection results

VII. CONCLUSIONS

In this paper, we introduced novel active object search
approach centered around human context in an indoor envi-
ronment. We also showed how a dense 3D point cloud can
be converted in to a more informative semantic map called
affordance-map which consists of virtual human models. The
affordance-map is then used to actively search objects in an
office environment. The object search is carried out by a naive
algorithm but lead to great detection accuracies. This is due to
the correct pose estimation based on the object-human-robot
relationship model. The experiments carried out in the large
office environment proved our approach can efficiently search
for given objects.

Our future works involve detecting multiple affordances in
a given environment and using affordance-map as a prior for
human activity detection [13] [14] .
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