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The field of Human Robot Interaction (HRI) encompasses many difficult challenges as robots need a better
understanding of human actions. Human detection and tracking play a major role in such scenarios. One
of the main challenges is to track them with long term occlusions due to agile nature of human naviga-
tion. However, in general humans do not make random movements. They tend to follow common motion
patterns depending on their intentions and environmental/physical constraints. Therefore, knowledge of
such common motion patterns could allow a robotic device to robustly track people even with long term
occlusions. On the other hand, once a robust tracking is achieved, they can be used to enhance common
motion pattern models allowing robots to adapt to new motion patterns that could appear in the
environment. Therefore, this paper proposes to learn human motion patterns based on Sampled Hidden
Markov Model (SHMM) and simultaneously track people using a particle filter tracker. The proposed
simultaneous people tracking and human motion pattern learning has not only improved the tracking
robustness compared to more conservative approaches, it has also proven robustness to prolonged
occlusions and maintaining identity. Furthermore, the integration of people tracking and on-line SHMM
learning have led to improved learning performance. These claims are supported by real world experi-
ments carried out on a robot with suite of sensors including a laser range finder.

Crown Copyright � 2014 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Successful Human Robot Interaction (HRI) requires a robot to
have advanced abilities to carry out complex tasks. One such abil-
ity is robust people tracking. It has been identified as an important
tool in HRI not only for safe operation (Schulz, Burgard, Fox, &
Cremers, 2003) but also for collision avoidance (Bennewitz,
Burgard, Cielniak, & Thrun, 2005) or to implement following
behaviors (Bolić & Fernández-Caballero, 2011; Gockley, Forlizzi, &
Simmons, 2007; Prassler, Bank, & Kluge, 2002). Conventional way
of people tracking is to use known motion models (Kluge, Kohler,
& Prassler, 2001; Montemerlo, Thrun, & Whittaker, 1999) including
probabilistic motion models (Tadokoro, Hayashi, Manabe, Nakami,
& Takamori, 1995; Zhu, 1991). However, those methods have
limited ability to model agile human movements. Therefore, some
researchers opt not to use motion models (Francesc Serratosa &
Amézquitaa, 2012; Kluge et al., 2001). Another type of techniques
can track people in the vicinity of sensors (Montemerlo et al., 1999;
Schulz, Burgard, Fox, &Cremers,Crem). However, they do not
provide solutions for tracking with long term occlusions.
Rosencrantz, Gordon, and Thrun (2003) have overcome the
problem of tracking with temporary occlusions, however the tech-
niques is not reliable when it is tracking outside the sensory
ranges.

It has been observed that human motion often follows place
dependent patterns as it is influenced by a combination of social,
psychological and physiological constraints (Altman, Rapoport, &
Wohlwill, 1980; Arechavaleta, Laumond, Hicheur, & Berthoz,
2006; Dean, 1996; Hall, 1969). Therefore, if such a model could
be learned by a robot, it could subsequently be used to improve
people tracking.

Approaches to the learning of place dependent motion pattern
models have been proposed in the past. Bennewitz et al. (2005)
used a network of laser scanners to learn motion patterns of indi-
vidual occupants of an office environment. After collecting a data
set, Expectation Maximization (EM) was used to cluster trajecto-
ries for building a Hidden Markov Model (HMM). The HMM was
used to implement collision avoidance behaviors. However, this
technique relies on environment mounted sensors, which needs
infrastructure modifications and hence it leads to difficulty in
deployment. In Kanda, Glas, Shiomi, and Hagita (2009), multiple
laser scanners were used to learn activity patterns of people in a
shopping mall. The idea was to automatically identify potential
customers in order to communicate with them. The approach
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seems appealing, however it uses six infrastructure mounted laser
scanners and off-line learning framework which may limit the
feasibility to be used in many other robotic applications. Using
stationary laser scanners, Luber, Tipaldi, and Arras (2011) proposed
to learn a spatial affordance map based on a Poisson process. The
approach was shown to be a viable extension to Multi Hypothesis
Tracking (MHT) with improved tracking capabilities and robust-
ness. However, it uses stationary sensors. Vasquez, Fraichard, and
Laugier (2009) proposed Growing Hidden Markov Models to learn
motion patterns. Although it implements an on-line learning algo-
rithm, the technique requires the observer to be stationary.
Lookingbill, Lieb, Stavens, and Thrun (2005) used a small helicopter
with a camera as a semi-stationary observer to monitor a single
roundabout to build an activity histogram. This histogram was
shown to improve target tracking notably, however it may not be
feasible nor suitable to be used in the indoor scenarios like the
one proposed in our paper. Bruce and Gordon (2004) used training
data to learn goal locations in a small environment. This informa-
tion was then used to provide a particle filter based tracker with an
improved prediction model, which was shown to perform better
than Brownian motion for prediction. This work relies on previ-
ously learned goal locations in a given environment.

In general, the methods proposed in the literature have many
limitations as described in the previous paragraphs such as the
requirement of infrastructure based sensors, difficulty of operation
under partial observability or occlusions, limited on-line adaptabil-
ity, and on-line operation. Further, they are not capable of simulta-
neously improving both the model learning and tracking.
Therefore, here we propose simultaneous people tracking and
motion pattern learning based on our previous work on SHMMs
(Sehestedt, Kodagoda, & Dissanayake, 2010), which uses robot
mounted sensors for on-line learning and can effectively handle
partial observations with limited FOV of the sensors. This frame-
work allows the robot to improve its tracking abilities with the
availability of a learned model, while improving the model learn-
ing with the feedback from the improved tracker. The SHMM based
framework was tested in an office environment using the robot
LISA shown in Fig. 1 with appealing results. More specifically, the
contributions of this paper are, 1. Formulation of the Sampled
Hidden Markov Model for effective handling of on-line learning
and model adaptation to capture the changes in the human motion
patterns. 2. Synthesis of the theoretically sound probabilistic algo-
rithm for the simultaneous people tracking and motion pattern
learning for improving both aspects. 3. Implementing and testing
the algorithm and obtaining superior results for long term occlu-
sions when comparing with conventional (model based) methods.

This paper is organized as follows. Section 2 gives a brief intro-
duction to SHMMs for on-line learning of common human motion
patterns. Section 3 introduces and formulates the simultaneous
Fig. 1. The LISA robot.
people tracking and motion pattern model learning. Section 4 pre-
sents experimental results showing the viability and effectiveness
of the proposed approach. Finally, Section 5 summarizes the con-
tributions and briefly discusses current and future work.

2. Sampled Hidden Markov Models

In this section, a brief introduction to SHMM learning is given.
SHMMs provide a sparse representation of common motion pat-
terns and can be learned on-line using a mobile robot’s on-board
sensors. The importance of this can be seen in Fig. 2, which
illustrates a robot as a red circle and its current laser scan as a
red outline. It can be observed that the field of view (FOV) of the
robot is a small fraction of the size of the operating environment.
Thus, any learning algorithm that can be used in such environ-
ments needs the ability to incrementally learn with partial
observations.

An SHMM is defined by its states S and state transition matrix A
where each state is represented by a set of weighted samples.
Although, these sample sets can represent arbitrary probability
distributions, for notational simplicity, the states are defined by
their means l and covariances R as,

S ¼ sðiÞ ¼
lðiÞ

RðiÞ

" #
1 6 i 6 N ð1Þ

where N is the number of states in the model. Note that the model is
time dependent as learning is done incrementally, however it is
omitted for convenience of notation. The state transition matrix
contains the probabilities of transitions from state i to state j as

A ¼ aðijÞ ¼ KðijÞ

PðsðjÞjsðiÞÞ

" #
1 6 i 6 N ð2Þ

where KðijÞ is the number of times a transition was observed, from
which the probability of the transition PðsðjÞjsðiÞÞ can be calculated.

A particle filter based people tracker is used for learning the
SHMM. Consider the situation in Fig. 3(a) where a person walked
along the trajectory indicated by the arrow. The tracking algorithm
produced a series of sample clusters, each of which could be inter-
preted as one state of an SHMM. To obtain a more sparse represen-
tation of the observed trajectory, a subset of those sample clusters
was used as shown in Fig. 3(b), where means, covariances and
transition of states are shown as red squares, red ellipses and red
lines respectively. It is to be noted that the state transitions could
be directly derived from the sequence of sample clusters as the
temporal order of the clusters are known.

Suppose another person is observed walking along the trajec-
tory shown by the arrow in Fig. 3(c), where the information needs
Fig. 2. A small robot observing its environment.



Fig. 3. A basic example of SHMM learning.
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to be immediately added to the available motion pattern model. As
part of the new trajectory is overlapped with the existing trajec-
tory, a fusion mechanism is essential. Further, the non-overlapping
states need to be appropriately added to the model. The symmetric
Kullback–Leibler divergence (KLD) (Kullback & Leibler, 1951) is
used for this purpose, which finds associations between states in
the SHMM and sample clusters obtained from people tracking as,

KLDðsðiÞksðjÞ�Þ ¼ KLDsðsðiÞksðjÞ�Þ þ KLDs� ðsðjÞ�ksðiÞÞ ð3Þ

with 1 6 i 6 N and 1 6 j 6 K , where K is the number of sample
clusters (candidate states, sðjÞ�) reported by the tracker. Whenever
an association is found, the new information is added to the corre-
sponding state and state transitions can be updated by counting.
The non-associated sections are added as new states.

Now the probabilistic formulation of the SHMM learning
approach is given by the belief of motion patterns Dt at time t
conditioned on the robot’s location estimate and people tracking
results. That is the belief,

BelðDtÞ ¼ PðDt jnt ; ft ; zt ; . . . ; n0; f0; z0Þ ð4Þ

is to be computed, where ft is the robot localization hypothesis, nt is
the people tracking result and zt the sensor reading at time t.

From this an incremental update rule can be derived using the
Bayes theorem as,

BelðDtÞ ¼ Pðnt jDt ; ft ; zt ; nt�1; . . . ; n0; f0; z0Þ

� PðDtjft ; zt ; nt�1; . . . ; n0; f0; z0Þ
Pðnt jft; zt; nt�1; . . . ; n0; f0; z0Þ

ð5Þ

Since the denominator is independent of Dt , it can be written as,

BelðDtÞ ¼ gPðnt jDt ; ft ; zt ; nt�1; . . . ; n0; f0; z0Þ
� PðDtjft ; zt ; nt�1; . . . ; n0; f0; z0Þ ð6Þ

where g ¼ Pðntjft; zt; nt�1; . . . ; n0; f0; z0Þ is a constant.
This is the belief of D at time t given all past observations,

sensor readings and observer poses. Obviously, this is not an
efficient solution for updating the belief since all observations of
moving people, sensor data and observer poses up until time t
would have to be remembered. Therefore, it is assumed that obser-
vations and poses are conditionally independent of past observa-
tions and poses given ft and Dt , i.e. the system is Markov. Therefore,

BelðDtÞ ¼ gPðnt jDt ; ft ; ztÞ PðDt jft ; zt; nt�1; . . . ; n0; f0; z0Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{prior belief

ð7Þ

In fact the last term of this equation is the belief at time t � 1
and thus the final update rule is written as
BelðDtÞ ¼ gPðntjDt ; ft; ztÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{people tracking

BelðDt�1Þ ð8Þ

As given in the above equation, the belief BelðDtÞ can now be
updated using the most recent observations of moving people.

3. Simultaneous people tracking and motion pattern learning

In this section, the formulation is extended to simultaneous
people tracking and motion model learning. The idea is to tightly
integrate learning and tracking in order to improve both perfor-
mances. Therefore, the goal is to estimate

PðDt ; nt ; ftjztÞ ð9Þ

which is the joint probability of the motion pattern model Dt , the
position estimates of people in the robot’s FOV nt and the robot’s loca-
tion estimate ft at time t given the latest sensor reading zt . Assuming
independence between these variables, it can be shown that

PðDt ; nt ; ftjztÞ ¼ PðDt jnt ; ztÞPðft jztÞ
YK

k¼1

PðnðkÞt jztÞ ð10Þ

where K denotes the number of tracked people. It is to be noted that
the first term on the right hand side is conditioned on nt . Further-
more, it can be observed that the estimate of Dt is conditionally
independent of zt given nt which is estimated from the latest sensor
reading, leading to

PðDt ; nt ; ftjztÞ ¼ PðDt jntÞPðftjztÞ
YK

k¼1

PðnðkÞt jztÞ ð11Þ

The second term on the right hand side defines robot localiza-
tion and the estimate is commonly conditioned on control input
given as ut resulting in

PðDt ; nt ; ftjzt;utÞ ¼ PðDtjntÞPðftjzt ;utÞ
YK

k¼1

PðnðkÞt jztÞ ð12Þ

Intuitively, this equation could be solved from the right to the
left, i.e. after states of people have been estimated, the result could
be used to improve the robot localization. The localization data in
turn would be used to determine the global positions of detected
people. Moreover, the result could be used in the first term to
update the model of motion patterns. However, to fully exploit
the idea of an incrementally learned model of motion patterns
Dt , the simultaneous utilization and learning of the model is desir-
able. To accomplish this, the last term of above equation could be
made dependent on Dt .
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PðDt ; nt; ft jzt ;utÞ ¼ PðDt jntÞPðft jzt ;utÞ
YK

k¼1

PðnðkÞt jzt ;D_tÞ ð13Þ

Note that when people tracking is performed, although time has
already incremented to the current discrete time step t, belief at
this point is still Dt ¼ Dt�1, which is indicated by the notation D_t .
We now have a formulation of SHMM learning, which explicitly
accounts for a mobile observer and takes advantage of improved
tracking while learning.

3.1. Motion prediction

There is no general model for human motion prediction as such
a very conservative prediction models like Brownian motion or
constant velocity model is commonly used (Luber et al., 2011). In
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Fig. 6. A panoramic view of the la
rare cases, less conservative learned models have been presented
(Bennewitz et al., 2005; Bruce & Gordon, 2004; Luber et al.,
2011), however, they often use stationary observers or off-line
learning, which limits the potential mobile robotic applications.
Here, we propose to utilize the learned motion models at the
prediction stage of a particle filter (PF) based people tracker
(Arulampalam, Maskell, & Gordon, 2002) as

Pðnt jnt�1;D_tÞ ð14Þ

Consider the scenario given in Fig. 4(a) with a person (blue
ellipse) associated with state ‘‘a’’ in the model, state ellipses (red)
and state transition lines (thicknesses are proportional to the
magnitude of transition probabilities). Then in the next state, the
location of the person can be predicted as indicated by the purple
arrow based on dx and dy.
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In our current implementation, half of the samples are
dedicated to SHMM based prediction and the other half is used
for the prediction based on the constant velocity model to cater
for some previously unlearned motion patterns. In more complex
situations, there can be more state transitions based on the learned
model (see Fig. 4(b)). There the person is associated with state d
has two possible transitions, e and f. As the transition probabilities
are available in the model, they are used to determine the number



Fig. 8. Experimental set up for the evaluation of the tracking performance. Two
trajectories (blue and green) were considered. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this
article.)

Table 1
Number of track losses in 22 trials.

Experiment Sample size

50 100 200 500 1000

Stage 1 13 8 5 2 0
Stage 2 3 0 0 0 0
Stage 3 22 12 9 4 1
Stage 4 2 0 0 0 0
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of samples that are allocated to each prediction. That is, the predic-
tions with higher transition probabilities are allocated more sam-
ples than that of the prediction with lower transition
probabilities. Hence the number of samples are estimated based on

NðjÞD ¼ PðsðjÞjsðiÞÞ � ND; 1 6 i 6 N

1 6 j 6 N
ð15Þ

where N is the number of states of the SHMM, NðjÞD denotes the num-
ber of samples dedicated to the transition from the current state i to
state j.

3.2. Long term prediction

Long term prediction of people locations without observations
is a complex and a non-trivial problem due to the agile and compli-
cated nature of human movements and the presence of occlusions.
Without having prior knowledge about movements nor recent
track

new

Fig. 9. Learning while
observations, the conventional model based predictions tend to
deviate from the actual people movements leading to track losses.
However, this may be solved to a greater extent, if the knowledge
of human motion patterns are available.

In our approach, we utilize the learned human models based on
SHMM in the prediction stage of the particle filter as described in
the previous section. However, it is important to note that there
is an inherent uncertainty in the learned model due to the gross
nature of motion pattern learning. It gives rise to slight growing
uncertainty of the estimator over time. However, as the tracker is
still managed to follow the general trend of people motion, it still
has significantly lower track losses.

4. Experimental results

Experiments were conducted using the Lightweight Integrated
Social Autobot (LISA) shown in Fig. 1. LISA is a low cost robotic
platform designed for fast and easy deployment. The base is an
iRobot create equipped with a small Intel Atom X86-64 computer
together with a Hokuyo UTM-30LX laser range scanner (http://
www.hokuyo-aut.jp) for perception. The software development
environment is Player/Stage (http://playerstage.sourceforge.net/)
and all the algorithms were implemented in C++ within the Orca
software framework (Brugali et al., 2007).

Fig. 5 shows a Simultaneous Localization and Mapping (SLAM)
generated map of the environment where desk areas and corridors
are marked appropriately. The LISA robot is shown as a red circle
with the red outline illustrating the observed laser reading. Being
a small robot, it has a significantly limited field of view due to
the presence of furniture. The map spans approximately
32 m� 20 m. Fig. 6 shows a panoramic view of the office environ-
ment. It is important to note the complexity of the environment
with large amount of clutter and semi-static objects like trash cans.
Furthermore, some of the walls are made out of glass contributing
to perception issues.

4.1. Learning motion patterns

In this section SHMM learning is presented with the robot LISA
in the aforementioned office environment. Ten different subjects
were included in this experiment and no modifications were done
track losses occur.

http://www.hokuyo-aut.jp
http://www.hokuyo-aut.jp
http://playerstage.sourceforge.net/
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to the environment. The limited observability at most times means
that the robot had to explore the environment to build a model of
motion patterns. Furthermore, in order to observe longer trajecto-
ries the robot had to follow people, hence it was a truly mobile
observer.

The series of figures in Fig. 7 show the evolution of an SHMM.
Fig. 7(a) shows the robot following a person, where the person is
represented by a yellow cylinder and the trajectory is shown as
an orange line. The robot is shown as a red circle, where the red
outline indicates the observed reading of the forward looking laser
sensor. The observed trajectory exhibits a typical human motion
and accordingly it is represented in the initial model in Fig. 7(b).

Fig. 7(c) shows the model after more than 70 observed trajecto-
ries while the robot was on the move. The trajectories were
successfully joined and compactly represented. The final represen-
person1

person2

prediction1

prediction2

Fig. 10. Motion prediction during sensor failure in a complex situation. (a) Two people
LISA’s sensor fails. Consequently, the position estimates of people were updated based
maintained using the information from the SHMM. (d) After the sensor resumed opera
maintained.
tation including more than 80 trajectories are shown in the
(Fig. 7(d)) as a unimodal Gaussians distribution. It could be noted
that trajectories are positioned correctly on free spaces rather than
through obstacles on the map. Further, compared to grid based
representations of motion patterns, a greater efficiency is achieved
as the belief has to be maintained only in the relevant areas (with
human motion) of interest rather than over the entire space.

4.2. Tracking robustness

In this experiment, the robot was positioned at an intersection
while observing people trajectories as shown in the Fig. 8. The test
data consists of 22 observed trajectories for the right turn and the
same for the left turn (44 in total). The experiment was divided
into four stages. In the first stage (stage 1) people followed the
prediction1

prediction2

person1

person2

were tracked and associated with an SHMM with two disconnected trajectories. (b)
on the SHMM. (c) Over an extended period of time, the tracks and identities were
tion, both tracks could be recovered successfully and the identities were correctly
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Fig. 11. Long term motion prediction.
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trajectory indicated by the blue arrow (right turn) to evaluate the
tracking performance. In the second stage (stage 2,) a model of
the blue trajectory was learned and used in the tracker to predict
the motion. In the third stage (stage 3), the model from stage
two was used, however, people followed the green trajectory (left
turn), i.e. they exhibited a drastically different behavior compared
to the previous observations. In the fourth stage (stage 4) of the
experiment, the model was extended to include both types of
trajectories and tested on people following either trajectory. Based
on these tests, the tracking performance was evaluated in terms of
the number of track losses as shown in Table 1.

In stage 1, the subjects took a sharp right turn, as indicated by
the blue arrow in Fig. 8, while being observed by the robot. As
there was no earlier learned SHMM, tracking was done using the
near constant velocity model for motion prediction. Sample sizes
of 50, 100, 200, 500 and 1000 were considered and the observed
track loss rates are summarized in the first row of Table 1. Not sur-
prisingly, it can be seen that the tracking with fewer number of
samples provided large number of track losses. This is due to the
sharp turn, where the constant velocity model could not
adequately provide a reasonable prediction. However, with the
increasing number of samples, the tracker could achieve lower
track losses. In stage 2, the SHMM model was learned first with
sharp right turn data before being used in the tracker. The
algorithm was tested by replaying the data in stage 1 of the exper-
iment. As shown in Table 1, the tracker performance was signifi-
cantly improved with no track losses for more than 100 samples
used in the PF.

In stage 3, data of the people following the right turn was used
to learn the model, however tested on people following a left turn,
i.e. their motion pattern would diverge from the learned model. As
expected the number of tracks losses has increased significantly,
even more than that of using a constant velocity model (stage 1).
It can also be seen that the tracking performance has an adverse
effect with the small number of samples used. Finally, in stage 4,
after adaptively learning the left turn with the previously learned
right turn, the tracker performed significantly better with only loss
of 2 tracks even with 50 samples used in the PF.

4.3. Learning with track losses

The findings in stage 1 and 3 of above experiment can be further
analysed to understand the process of learning in the presence of
track losses. As discussed before, in stage 1, LISA observed people
following the blue trajectory in Fig. 8 without having a priory
motion pattern model. The People were tracked with a sample size
of 100 in this experiment. Fig. 9(a) shows the tracking result of the
first observed person, where the track was lost during the sharp
turn. Fig. 9(b) illustrates the learning result based on that trajec-
tory. As could be seen in Table 1, most of the tracks were lost
during the process without contributing much to the learned
model. However, once an extended track was observed as shown
in Fig. 9(c), the result was immediately used to update the model
as shown in Fig. 9(d). This model was further tuned with other
few more extended tracks to achieve the gross motion model. This
alleviates the need to keep all the trajectories by just keeping the
combined trajectory.

4.4. Occlusion handling and long term prediction

Consider a part in an office environment with two strictly sep-
arated motion trajectories as shown in Fig. 10(a). The figure further
shows two people who were tracked by LISA while predicting both
motions based on the motion pattern model. Then, in Fig. 10(b) a
sensor failure has occurred, which is indicated by the absence of
the red outline of the laser scan. From this point, the two people
tracks were maintained purely based on the predictions made by
the motion pattern model and the predicted estimates are shown
as transparent purple cylinders in the figure. The sensor failure
persisted for a while and the two people turned to their respective
rights. While the constant velocity model based tracker failed to
track both targets, our SHMM based tracker could successfully
track in such agile situations as shown in Fig. 10(c). Furthermore,
it could successfully maintain the identities of people. Finally, as
in Fig. 10(d), after the sensor resumed it’s normal operation, the
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two people were re-detected correcting associated uncertainties of
the filter.

Consider a hallway which is partly divided by a wall as shown
in Fig. 11(a), where the dividing wall is approximately eight meters
long. A motion pattern model has been learned for this environ-
ment. At one time, there was a person appeared while the robot
was observing the hallway from the left side. The person moved
upwards in the figure and took the path right of the dividing wall
leaving the field of view of the robot. Once the person was
occluded by the wall, as there were no observations, all samples
were predicted according to the SHMM (Fig. 11(b)) for continuous
tracking. Although, unavailability of observations lead to slight
increase of uncertainty (which is indicated by the green covariance
ellipse in Fig. 11(c)), it did not contribute to track losses. The con-
stant velocity model based implementation lost track within a cou-
ple of iterations of the particle filter. Once the observations were
available towards the end of the track, the filter converged success-
fully as shown in Fig. 11(d).

5. Conclusions and future work

5.1. Conclusions

Model based conventional trackers have significant difficulties
in tracking with long term occlusions. Therefore, this paper pro-
posed to use human motion pattern models in people tracking
within a probabilistic framework. We presented simultaneous peo-
ple tracking and human motion pattern learning based on Sampled
Hidden Markov Models and particle filter tracker. Learning is
achieved on a mobile observer where only the robot’s on-board
sensors were used without relying on cumbersome infrastructural
sensors. Since there was no dedicated learning phase, all new infor-
mation was incorporated in the model immediately improving the
adaptability. This property is of central importance which particu-
larly distinguish our work with many of the other previously pre-
sented approaches. The representation of motion as an SHMM is
more memory efficient than grid based approaches as the model
only represents motion in areas of interest rather than the whole
space. Furthermore, as the model is not fully connected, the transi-
tion matrix can be replaced by more compact data structures.

The knowledge of motion patterns has been shown to be useful
in not only handling long term occlusions but also maintaining
identities. While a reduction in the tracking errors could be
observed with SHMMs integrated tracker, the most significant
improvement was observed in the tracking robustness especially
in complex situations like a sudden change of direction. The num-
ber of lost tracks were greatly reduced even when using small sam-
ple sizes for PF tracking. These effects in turn led to a better
convergence in motion pattern learning, which again highlights
the benefits of on-line learning of human motion patterns. The
integration of tracking and learning was shown to have mutual
benefits.

5.2. Future work

Once the robot is placed in a new environment, it takes some
time for learning the motion patterns. Until a reasonable motion
pattern model is learned, the tracking performance of the current
algorithm suffers in accuracy. Therefore, learning the human
behaviors directly from the environmental features rather than
relying on observing humans in the environment (through object
affordance and hallucinated humans) is a research direction that
is of future interest. Further, in the context of learning of human
spatial behavior, this paper has presented some of the fundamental
abilities needed for lifelong learning such as on-line learning,
adaptability and the ability to include incomplete knowledge in
incremental learning. One another key competency for lifelong
learning under uncertainty in a changing environment is the for-
getting of obsolete information, which is not addressed in this
research and is considered as a great future direction.

Acknowledgments

This work was supported by the ARC Centre of Excellence pro-
gramme, funded by the Australian Research Council (ARC) and the
New South Wales State Government.

References

Altman, I., Rapoport, A., & Wohlwill, J. (1980). Environment and culture. Springer.
Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2006). The

nonholonomic nature of human locomotion: A modeling study. In IEEE/ RAS-
EMBS international conference on biomedical robotics and biomechatronics.

Arulampalam, M. S., Maskell, S., & Gordon, N. (2002). A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50, 174–188.

Bennewitz, M., Burgard, W., Cielniak, G., & Thrun, S. (2005). Learning motion
patterns of people for compliant robot motion. International Journal of Robotics
Research, 24.
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