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Abstract

Recent studies in Electromyogram (EMG) pattern recognition revealed a se-
mantic gap between research findings and a viable clinical implementation of
myoelectric control strategies. One of the important factors contributing to
the limited performance of such controllers in practice is the variation in the
limb position associated with normal use as it results in different EMG pat-
terns for the same movements when carried out at different positions. How-
ever, the end goal of the myoelectric control scheme is to allow the amputees
to control their prosthetics in an intuitive and accurate manner regardless of
the limb position at which the movements are initiated. In an attempt to
reduce the impact of limb position on EMG pattern recognition, a new fea-
ture extraction method is proposed in this paper that extracts a set of power
spectrum characteristics directly from the time-domain with the end goal of
forming a set of invariants to limb position. In specific, the proposed method
estimates the spectral moments, spectral sparsity, spectral flux, irregularity
factor, and signals power spectrum correlation by using Fourier transform
properties to form invariants to amplification, translation and signal scaling
and provide an efficient and accurate representation of the underlying EMG
activity. Additionally, due to the inherent temporal structure of the EMG
signal, the proposed method is applied on the global segments of EMG data
as well as the sliced segments using multiple overlapped windows. The perfor-
mance of the proposed features is tested on EMG data collected from eleven
subjects, while implementing eight classes of movements, each at five differ-
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ent limb positions. Practical results indicate that proposed feature set can
achieve significant reduction in the classification error rates, in comparison
to other methods, with ≈ 8% error on average across all subjects and limb
positions. A real-time implementation and demonstration is also provided
and made available at http://youtu.be/JRqXIv0xrN0

Keywords: Electromyogram (EMG), Spectral Moments, Signal Processing.

1. Introduction

Human-computer interfaces play a very important role in the advance-
ment of methods enabling humans to interact with and control a specific
machine. One of such interfaces directly senses and decodes the Electromyo-
gram (EMG) signals from human muscles and utilizes it in various appli-
cations including its use as a source of control for powered prosthetics and
rehabilitation devices [1, 2, 3], speech recognition [4, 5], and very recently in
developing muscle-computer interfaces for gamers [6, 7]. The control scheme
denoted as myoelectric control, employs a pattern recognition approach to
discriminate between the EMG signals that belong to different arm move-
ments [1]. The main assumption is that, at a given surface electrode location,
the set of parameters, i.e., the extracted features, describing the EMG signal
will be more or less the same for a given pattern of muscle activation. In
addition, it will also differ from one pattern or mode of muscle actuation to
another at the same electrode location [8]. Based on this assumption, suc-
cessful off-line classification results on pre-recorded signals were reported in
the literature [9, 10].

Recent interest toward advancing real-time and clinical application of
myoelectric control revealed a semantic gap between research findings and
a clinically viable implementation [11]. This is mainly driven by several
factors that can significantly affect the performance of an EMG pattern clas-
sifier and may result in an unusable controller. As an example, Hargrove et

al. [12] showed that electrode displacements during usage adversely affect
EMG classification accuracy, but training the system to recognize plausible
displacement locations can mitigate the effect. The conventionally defined
classification accuracy was also recognized as an idealistic measure that may
not reflect true clinical performance. Scheme et al. [13] proposed a selec-
tive multiclass one-versus-one classification technique allowing for indepen-
dent adjustment of individual class-pair boundaries making it flexible and
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intuitive for clinical use. Cipriani et al. [14] showed that variations in the
weight of the prosthesis and upper arm movements significantly influence the
robustness of a traditional EMG classifier causing a significant drop in per-
formance. It was suggested that a robust classifier should add to myoelectric
signals some inertial transducers like multi-axes position, acceleration sen-
sors, or sensors able to monitor the interaction forces between the socket and
the end-effector. The effects of limb position on pattern recognition based
myoelectric control was examined on normal and amputees subjects as an-
other factor [15, 16]. Fougner et al. [17] proposed two possible solutions to
reduce the adverse limb position effect including training in multiple limb po-
sitions and measuring the position using accelerometers. Additional factors
affecting the myoelectric pattern recognition performance could also include
minimizing EMG electrode numbers, determining acceptable electrode loca-
tions, optimizing electrode recording configurations, and dealing with any
other challenges of EMG recording in a dynamic environment [18]. Jiang et

al. [19] indicated that unlike the controlled laboratory conditions in fixed
arm/trunk positions that exhibit stationary EMG statistical properties, the
EMG signal characteristics can easily change in a dynamic environment due
to factors like sweat, fatigue, or from different strategies employed by the
user who is adapting to the system. The fact that very few myoelectric con-
trol systems proposed in the scientific literature can adapt to such changes is
by itself a good reason for the lack of usability of these systems in practice.
Additional factors were also reported to include: The majority of current
pattern classification methods do not provide simultaneous and proportional
control, are not implemented with sensory feedback, and do not integrate
other sensor modalities to allow complex actions.

The focus of this paper is also targeted on the effect of upper-limb position
on EMG pattern recognition as a complementary study to that reported in
[17]. We investigate in this paper a new feature extraction method based on
local and global spectral characteristics, as an alternative solution to the use
of accelerometers, to form a set of invariants to the change in the EMG signals
that belong to the same movements. The main arguments here to justify the
need for the new feature extraction method include first that the effectiveness
of any pattern recognition system is mainly dependent on the quality of the
extracted features, and their ability to provide an accurate representation of
the underlying activity. Thus, investigating a new feature set to overcome the
effects of limb position is of significant importance and should be considered
as an initial solution before employing additional inertial sensors. Secondly,
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regardless of the limb position, and the generated EMG activities at the dif-
ferent positions, the EMG pattern classifier should be able to recognize the
hand movements accurately. In simpler words, while implementing the same
arm or hand movements at different limb positions one would intuitively
think that the underlying relation between the EMG activities generated by
the different muscles should be the same, to some extent, as these muscles are
collaborating to induce the same movement. However, this is not the case as
different muscles combinations could be recruited to perform a specific task
at different limb positions to stabilize the limb, as indicated by Fougner et al.
[17]. Additionally, variations in the underlying EMG activities as induced by
the change in the muscle’s shape and length while the user attempts to do the
same movement at different positions should be captured and recognized as
they belong to the same movements class. Such variations can easily change
the amplitude, shape, and frequency-domain characteristics of the EMG sig-
nal upon what the classifier was initially trained on causing degradation in
EMG recognition performance. According to all of the above, we propose a
set of power spectrum features as possible invariants to signal amplification,
translation and scaling as a possible solution to this problem.

The structure of this paper is as follows: Section 2 first reports a back-
ground on EMG feature extraction and then describes the proposed feature
extraction method. Section 3 describes the data collection procedure. Sec-
tion 4 presents the experimental results and finally, conclusions are provided
in Section 5.

2. The proposed Feature Extraction Method

In an attempt to enhance the performance of an EMG-driven pattern
recognition system, a new feature extraction method is presented based on
spectral moments and described below. However before proceeding with the
description of our proposed method, we proceed first with a background on
feature extraction in EMG classification and then link the effect of changing
the limb position with the variations in the EMG signal characteristics.

2.1. EMG Feature Extraction-Literature Review

Feature extraction addresses the problem of finding the most compact
and informative feature set that can accurately describe the EMG signal in a
condensed representation. According to Boostani and Moradi [20], for a fea-
ture set to be suitable for EMG-based control, the feature space should have a
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maximum class separability, should be robust in a noisy environment as much
as possible and should have an associated low computational complexity. To
this end, various temporal and spectral approaches to feature extraction were
utilized to derive an EMG-based controller [1, 9, 20, 21, 22, 23, 24, 25].

One of the most important advantages of employing time-domain char-
acteristics is the reduction in the complexity associated with the process
of feature extraction. Hudgins et al. [1] were among the first to consider
time-domain features in myoelectric control while demonstrating the effec-
tiveness of simple features like mean-absolute value, mean absolute value
slope, zero crossings, slope-sign changes, and waveform length. Additional
methods were also utilized by many research groups including Integral of Ab-
solute Value, Variance, Willison amplitude, the V-order and log detectors,
and Root-Mean Square [9, 22, 26, 27, 28]. Although features extracted by
time-domain methods proved successful and suitable for real-time control, an
argument still exist in the literature that pattern recognition results using
these feature vectors may not provide high success rates [29]. This is justi-
fied by that such methods assume that the EMG signal is stationary, while
it is nonstationary in its nature [3]. This in turn changed the researchers fo-
cus to features extracted based on spectral parameters (spectral moments),
Autoregressive models [23, 30, 31, 32, 33] and time-frequency representation
such as the short-time Fourier transform, the Wigner-Ville distribution, the
Choi-Williams distribution, the continuous wavelet transform, the wavelet
transform, and the wavelet packet transform [2, 23, 34, 35, 36, 37, 38, 39, 40].

Spectral moments appear to be one of the promising approaches for EMG
characterization and has been used in several recent attempts [23, 27, 32, 33].
Generally, the first few moments are usually utilized to describe the energy,
center frequency, and variance of the EMG power spectrum [23, 21]. Farry
et al. [41] indicated that to use EMG spectral features in a real-time control
system we need a spectral estimation method that 1) works well on small
windows length of EMG data, 2) does not suffer from bias and variance that
obscures the spectral features, and 3) incorporates no incorrect assumptions
about the structure of the signal. However, it is generally known that if
the observed time sequence is too short, the simple spectrogram becomes
ineffective due to increased bias and variance while models based on the AR
spectrum were reported in some instances to match certain motion artifacts
and their output to be badly biased [41, 42]. Du [43] utilized the short-time-
Thompson-transform to extract the spectral moments and reported advan-
tages upon the short-time-Fourier-transform in terms of classification accu-
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racies of six classes of grasps. Du also reported that the first and the second
moments reduced the classification hit rates in certain cases and justified
that by the effect of noise on higher order moments but not the lower order
ones.

Despite the effectiveness of the aforementioned methods, the long record-
ing lengths (windows) required for spectral analysis and the high computa-
tional complexity for time-frequency representations played a significant role
for seeking alternative representation of ensemble of simple and complemen-
tary set of features with reduced computational requirements upon that of
time-frequency methods. As an example, many recent attempts referred to
the combination of time-domain features and the autoregressive features, de-
noted together as TDAR in this paper, as being very efficient and suitable
for real-time control [44, 45, 46]. The same combination was also success-
fully tested in experiments identifying seven user locomotion modes based on
myoelectric signals and applied on subjects with long transfemoral (TF) am-
putations; with results holding promise for future design of neural-controlled
artificial legs [47].

Other research groups utilized a combination of spectral moments (ze-
ros, first and second moments) and time domain features [27, 33] reporting
enhancements in classification accuracies upon that achieved by individual
features only. On the other hand, Vuskovic and Du [32] employed the auto-
correlation sequence of the original temporal signal, rather than the signals
power spectral density, to estimate a set of efficient and robust to noise mo-
ments for EMG classification, i.e., an attempt to provide time-dependent
spectral features. In a similar manner, the time-dependent spectral mo-
ments represented by Hjorth parameters [48] were recently utilized in EMG
classification and showed powerful performance when combined with other
features [49]. A significant advantage of these time-dependent spectral mo-
ments features is the associated very low computational cost and the good
classification performance. However, further investigation on the suitabil-
ity of the time-dependent spectral moments to problems with different limb
positions is missing from the literature and is the main aim of this paper.

In the next section, a new feature set is proposed for EMG classification
that can be considered as an extension to Hjorth’s approach to describe
the frequency-domain contents of a signal from the time-domain perspective.
The differences between the proposed features and Hjorth parameters are
described as follows:
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• Unlike Hjorth parameters that represent the activity, mobility, and
complexity of an EMG trace, the proposed features also measure the
sparseness, spectral flux, the irregularity factor (combining information
from number of zero crossings, number of peaks and waveform length),
and the correlation between the power spectrum of each two signals.

• Unlike Hjorth parameters that consider normalization by higher order
moments, the proposed features are normalized by a properly scaled
version of the zero order moment. The justification is that higher order
moments are not as robust to noise as the low order moments [50].

• Unlike Hjorth parameters, the proposed features are also logarithmi-
cally scaled as the power of most physiological features tend to change
linearly in the logarithmic scale rather than in the normal scale [51, 52].

2.2. Factors Affecting EMG Characteristics

Surface EMG signal characteristics can easily be affected by physical and
physiological changes that can make an EMG-driven system unreliable for
long-term use. Several factors were identified in the literature to cause vari-
ations in the EMG signals including (but not limited too): displacement of
the recording electrodes, variation in muscle contraction effort, muscle fa-
tigue, and the corresponding limb position [19, 53]. All of these factors may
affect the stability of time-domain features used for electromyographic pat-
tern recognition. We expand below on the aforementioned factors to better
understand how the proposed features in this paper could form invariants for
EMG classification.

Under normal conditions, an action potential propagating down a mo-
toneuron activates all the branches of the motoneuron; these in turn activate
all the muscle fibers of a motor unit, where a muscle is usually made of
several motor units. The membrane depolarization, accompanied by a move-
ment of ions, generates an electromagnetic field in the vicinity of the muscle
fibers [54]. An electrode located in this field will detect the potential or
voltage (with respect to ground), whose time excursion is known as an ac-
tion potential. The waveform of an observed action potential will depend on
the orientation of the detection electrode contacts with respect to the active
fibers. Thus variations in the electrodes recording positions can significantly
affect and change the EMG characteristics as the activity of more/less mus-
cles fibers could be captured when the electrodes shift in position, with the
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possibility of picking up the activity of muscle fibers from nearby muscles
(muscle crosstalk). The resultant signal at the detection site will constitute
a spatial-temporal superposition of the contributions of the individual action
potentials. As the activity of additional muscle fibers is picked up by elec-
trodes shift then the shape and the amplitude of the corresponding EMG
signal will also change [54, 55]. On the other hand, it is well known that the
muscle contraction force determines the number and type of recruited muscle
fibers and the frequency of firing, thus directly affecting the magnitude and
frequency of surface EMG signals [53], while muscle fatigue usually causes
a power spectrum shift toward low frequencies [53, 56]. Thus, the effect of
the aforementioned factors on EMG can be seen as changes in the EMG am-
plitude, shape, and frequency shift (spectrum shift toward small frequencies
means larger time scale is showing up in the time domain).

The limb position’s effect on EMG characteristics can be seen as a com-
bination of several factors that all depend on joint angles, including [17]:

• variations in muscle recruitment for limb stabilization due to gravita-
tional forces, resulting in changes to signal amplitude and the amount
of interaction between muscles to perform a specific movement

• electrode shift due to changes in muscle shape, length and position re-
sulting in changes to signal amplitude and frequency as different num-
bers of muscles fibers could be recruited.

• the force-length relationship of the muscle and the effect of fatigue as a
result of variable forces used during sustained contractions, resulting in
changes to the signal amplitude and a shift in the frequency spectrum.

Another possible factor to mention here is the effect of employing signal
segmentation techniques, overlapping or disjoint windows, for EMG feature
extraction. In such a case, the extracted features should be robust against
signal translation effect resulting from using small windows sizes required
to maintain the system delay within acceptable performance limits, with a
maximum of 300 msec defined in the literature [9].

In response to the effect of the above mentioned factors on the EMG
characteristics, we present in this paper a new set of power spectrum moments
features as a candidate subset to overcome many of the above limitations,
that we derive directly from time-domain to preserve computational cost.
These features are introduced as invariants to signal translation and time-
scaling while also attempting to produce a set of features that captures the
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distribution of EMG energy across the different time segments as a proportion
of the total record energy regardless of signal amplitude.

2.3. Feature Extraction Using Time-Dependent Power Spectrum Descriptors

Assuming a sampled version of the EMG signal record, denoted as x[j],
of length N and sampled at fs Hz, the EMG trace within a certain epoch can
be expressed as a function of frequency X [k] by means of Discrete Fourier
transform (DFT). Each EMG record is preprocessed by removing the mean
and dividing by the range of the data. We start the transformation of the
parameters between the frequency and the time domains by observing Par-
seval’s theorem which states that the sum of the square of the function is
equal to the sum of the square of its transform

N−1
∑

j=0

|x[j]|2 = 1

N

N−1
∑

k=0

|X [k]X∗[k]| =
N−1
∑

k=0

P [k] (1)

where P [k] is the phase-excluded power spectrum, i.e., the result of a
multiplication of X [k] by its conjugate X∗[k], and k is the frequency index.
It is generally well-known that the complete frequency description as derived
by means of the Fourier transform is always symmetrical with respect to zero
frequency, i.e., it has identical branches stretching into both positive and
negative frequencies [48]. As a consequence of this symmetry and because
we have no direct access to the power spectral density from the time-domain
then we are left with the option of dealing with the whole spectrum, including
positive and negative frequencies. Thus, in a statistical approach to the shape
of the frequency distribution, all odd moments will become zero, according
to the definition of a moment m of order n of the power spectral density P [k]
which is given by

mn =

N−1
∑

k=0

knP [k] (2)

In the above equation, when n=0 we will make use of Parseval’s theorem
in Eq.1, and for most of the rest of the value of n we will use the time-
differentiation property of the Fourier transform. Such a property simply
states that the n’th derivative of a function in the time-domain, denoted as
△n for discrete time signals, is equivalent to multiplying the spectrum by k
raised to the n’th power
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F [△nx[j]] = knX [k] (3)

To this end, we define the features utilized in this paper as the logarith-
mically scaled versions of the following properties as shown in Fig.1:

Figure 1: Schematic diagram of the proposed feature set.

• zero order moment (m0): which is an indicator of the total power
in the frequency domain. We divided this feature by the signal length
to form an indicator of the signal power that is invariant against the
change in the signal scale (time scale and not amplitude scale).

log(
m0

N
) = log

(

∑N−1
k=0 k0P [k]

N

)

= log

(

∑N−1
j=0 |x[j]|2

N

)

(4)

• normalized second and fourth order moments: according to
Hjorth [48] the second moment can be considered as a power, but
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then of another spectrum k2P [k], corresponding to a frequency function
k.X [k] and given as

m2 =
N−1
∑

k=0

k2P [k] =
N−1
∑

k=0

(kX [k])2 =
N−1
∑

j=0

(△x[j])2 (5)

A repetition of this procedure gives the moment.

m4 =

N−1
∑

k=0

k4P [k] =

N−1
∑

j=0

(

△2x[j]
)2

(6)

According to Flusser et al. [50], scale-invariance property is achieved
by proper normalization of low-order moments as they are more stable
to noise and easier to calculate than higher order moments. Thus,
our second feature is defined as log(|m2N

2/m0|) and third feature as
log(|m4N

4/m0|).

• Sparseness: this measures quantifies how much energy of a vector is
packed into only a few components and is given in this paper as

S = log

(
∣

∣

∣

∣

m0√
m0 −m2.

√
m0 −m4

∣

∣

∣

∣

)

(7)

such a feature describes a vector with all elements equal with a sparse-
ness measure of zero, i.e., m2 and m4 =0 due to differentiation and the
log(m0/m0)=0, whereas for all other sparseness levels it should have a
value bigger than zero. The m4 moment was added to this feature as
an indication of the rate of change of m2 itself.

• Irregularity Factor (IF): which is defined as the number of upward
zero crossings divided by the number of peaks. The number of upward
zero crossings (ZC) and the number of peaks (NP) in a random signal
can be expressed solely in terms of their spectral moments as given
below [57]

ZC =

√

m2

m0

(8)
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NP =

√

m4

m2
(9)

The irregularity factor is defined as the ratio of zero crossing over num-
ber of peaks and is given as [57]:

IF =

√

m2
2

m0.m4

(10)

We propose in this paper a modified irregularity factor that divides the
above measure in Eq.10 by the waveform length to account for the ratio
of ZC over NP within a specific waveform length rather than dividing
by the record length as in [57].

• Spectral Flux: which measures the local spectral change between
consecutive samples in the power spectral density [61]

SF =

N−1
∑

k=0

(
√

P [k]−
√

P [ko])
2 (11)

where P [ko] is a frequency shifted version of P [k] and can also be writ-
ten as P [k − ko]. Referring to Eq.1 it is clear that P [k] = |X [k]|2 /N
and that P [k0] = |X [k − k0]|2 /N . Hence, the spectral flux equation
can be written as follows:

SF =
1

N

N−1
∑

k=0

|X [k]|2 − 2

N

N−1
∑

k=0

(X [k]X [k − ko])

+
1

N

N−1
∑

k=0

|X [k − k0]|2 (12)

Using Parserval’s theorem and the shifting theorem, we can re-write
(12) as follows:
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SF =

N−1
∑

n=0

|x[n]|2 − 2

N

N−1
∑

k=0

(X [k]X [k − ko]) +

N−1
∑

n=0

∣

∣x[n]ej2πkon/N
∣

∣

2
(13)

Denoting X [k − ko] by Y [k] which implies that y[n] = x[n]ej2πkon/N :

SF =
N−1
∑

n=0

|x[n]|2 − 2

N

N−1
∑

k=0

(X [k]Y [k]) +
N−1
∑

n=0

|y[n]|2 (14)

Now working on the middle term we get:

X [k]Y [k] =
N−1
∑

m=0

(x[m])e−j2πmk/NY [k]

=

N−1
∑

m=0

(x[m])

N−1
∑

n=0

(y[n−m])e−j2πnk/N

=
N−1
∑

n=0

N−1
∑

m=0

(x[m])(y[n−m])e−j2πnk/N

=

N−1
∑

n=0

(x ∗ y)ne−j2πnk/N

= DFTk(x ∗ y)
(15)

substituting back into (14):

SF =

N−1
∑

n=0

|x[n]|2 +
N−1
∑

n=0

|y[n]|2

− 2

N

N−1
∑

k=0

N−1
∑

n=0

N−1
∑

m=0

(x[m])(y[n−m])e−j2πnk/N (16)
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and replacing y[n] by x[n]ej2πkon/N :

rcl SF =

N−1
∑

n=0

|x[n]|2 +
N−1
∑

n=0

∣

∣x[n]ej2πkon/N
∣

∣

2

− 2

N

N−1
∑

k=0

N−1
∑

n=0

N−1
∑

m=0

(x[m]) · · ·

(x[n−m]ej2πko(n−m)/N )e−j2πnk/N (17)

which in turn can be written as

SF = 2
N−1
∑

n=0

(x[n])2 − 2

N
×

N−1
∑

k=0

N−1
∑

n=0

N−1
∑

m=0

(x[m])(x[n −m])e−j2πnk/N (18)

which is equivalent to:

SF = 2

N−1
∑

n=0

x[n]2 − 2

N

N−1
∑

k=0

N−1
∑

n=0

(x ∗ x)n (19)

When implementing this feature in the frequency-domain, different
spectral flux functions were proposed in the literature using L1-norm
or L2-norm with attempts to smooth this feature by the rectification
of the difference between the samples, employing hamming windows
before utilizing FFT, or employing smoothing kernels (a discussion is
provided by Bello et al. [58]). As we are implementing this feature from
the time-domain then rectifying the spectral difference between the
samples is not an option. However, we do employ hamming windows
in the later sections to acquire the local moments as will be discussed,
which further smooth this feature.

An example of applying the proposed features on different versions of
the wavelet Morlet function is shown in Fig.2. The Morlet function
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was chosen here as a simple example that can be easily reproduced
by the reader. One can clearly see that despite the different scales,
signal amplitudes and dc-levels in these signals, the extracted features
were almost exactly the same. This in turn indicates the capabilities
of the proposed feature set as an invariant descriptor to the changes
encountered in the signal.
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(a) Original Signal

(C) Scaled, Amplified, DC−level Changed and Translated Signal

(D) Scaled, Amplified, and DC−level Changed Signal

(b) Translated Signal

Figure 2: An example of applying the proposed features on different versions of the Morlet
function (different scales, signal amplitudes, and dc-levels).

• The final feature proposed here is denoted as the ”‘spectrum cor-
relation”’ that is applied on the global windows and could be seen
as similar in its context to the well-known measure of spectral coher-
ence [59]. Unlike the coherence measure of similarity that requires
access to the power spectrum of the signals, the proposed measure at-
tempts to capture the similarity between the power spectrum of two
signals from the time-domain directly by using the cross-correlation
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and Fourier transform relations. In signal processing, cross-correlation
is a measure of similarity of two waveforms as a function of a time-lag
applied to one of them. Cross-correlation is a very similar operation
to convolution, except that the ”kernel” is not time-reversed during
the operation. In the time-domain point of view, the cross-correlation
theorem states that the Fourier transform of the cross-correlation of
two signals is equal to the product of the individual Fourier transforms
[60], where one of them has been complex conjugated:

x ⋆ g ⇔ X.G (20)

where X [k] and G[k] are the frequency domain representations of the
signal x[n] and g[n] by using the DFT. However, since we are inter-
ested in having an estimate of the similarity of the frequency domain
representations of the two signals then we simply reverse the relation in
Eq.20 and multiply the time domain signals to get a cross-correlation
in the frequency domain. In simpler words, our proposed feature would
be

Cx,g =

∑N−1
n=0 x[n].g[n]

√

∑N−1
n=0 x[n]2 ×

√

∑N−1
n=0 g[n]2

(21)

The complex conjugate in the frequency domain maps to a time reversal
in the time-domain which is represented by the reversed version of
g[n] that we denoted as g[n]. On the other hand, the measure was
normalized by the energy of the individual signals to limit the range of
the feature between 0 and 1 while describing the degree of synchrony
between the two signals.

2.4. Local-Global Time-Dependent Spectral Moments

According to Du [43], the energy of an EMG signal is usually not evenly
distributed and that the variation of energy upon time contains the most
important attributes for a muscle’s movement. In this paper, the raw EMG
signal is divided into 3 segments and each segment is multiplied with a win-
dowing function, selected as a hamming window for simplicity (Trapezoidal
windows provided similar results) as shown in Fig.3. The proposed feature
extraction method is then applied on each of these local segments of EMG as

16



well as on the total EMG data within the epoch. It should be mentioned here
that the zeros order moments of the local segments were divided by the zero
order moment or their corresponding total record to provide relative energy
features that are invariants to amplitude change.

Given the six features extracted from each segment and the existence of
four segments (3 local and one global), then this in turn results in 24 features
per each EMG epoch from each EMG channel (24 features = 6 features per
segment × 4 segments). The total number of features from 7 channels was
then calculated as 24 features/channel × 7 channels = 168 features in total.

Figure 3: A schematic of the local-global moments extraction from each EMG segment.

In order to account for the relation between the different EMG channels
as well as the individual EMG channels activities estimated above, then
we have applied our proposed spectrum correlation measure on all possible
permutations of existing channels resulting in the correlation values between
each possible two channels. Thus, the final number of features is 168 features
(24 feature per channel, from 7 channels) + 21 features (spectrum correlation
between each two channels, in a 7 channels problem) = 189 features.

3. Data Collection

Eleven subjects, nine males and two females, aged between 20-37 years
were recruited to perform eight classes of motion. All participants provided
informed consent prior to participating in the study as was approved by the
university research ethics committee. Despite the fact that the recruited
subjects were all normally limbed and had no neurological or muscular disor-
ders, one can easily notice that the same approach can apply for transradial
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amputees. The main argument here is that we are proposing an EMG based
control scheme that is not only intended for amputees and prosthetics use
but can also be applied on various EMG based control applications (including
Microsoft’s muscle-computer interfaces for gaming). However, for transradial
amputees, the muscles in the residual forearm physiologically used for flex-
ing/extending the hand fingers and wrist are the most appropriate targets
for multifingered prostheses control. Thus, the datasets were recorded using
seven EMG channels (Delsys DE 2.x series EMG sensors) mounted across the
circumference of the forearm and processed by the Bagnoli desktop EMG sys-
tem from Delsys Inc., as shown in Fig.4. This in turn justifies the clinical
relevance of the proposed scheme as it also applies on transradial amputees.
The first EMG sensor was placed on the Palmaris Longus muscle on the
right hand of each participant while the rest of the sensors were placed in
a way that guarantees an equal spacing between the adjacent sensors. A
2-slot adhesive skin interface was applied on each of the sensors to firmly
stick them to the skin. A conductive adhesive reference electrode, derma-
trode reference electrode, was placed on the shoulder of each of the subjects
during the experiments. The collected EMG signals were amplified using a
Delsys Bagnoli-8 amplifier to a total gain of 1000. A 12-bit analog-to-digital
converter (National Instruments, BNC-2090) was used to sample the signal
at 4000 Hz; the signal data were then acquired using Matlab software from
Mathworks1. The EMG signals were then bandpass filtered between 20-450
Hz with a notch filter implemented to remove the 50 Hz line interference.

Five different limb positions were considered in this research as shown in
Fig.5. The selected limb positions were chosen to cover most of the positions
at which a subject may implement his/her daily activities, including situa-
tions where the test subject’s arm was hanging straight down hanging at the
side (as shown in position P1), the arm was straight reaching forward (as
shown in position P4), the arm was reaching up in an angle of 45 degrees
(as shown in position P5), and two more possible situations between P1 and
P4 (as shown in positions P2 and P3). A set of eight hand motions was
performed by each subject at each of these limb positions, including: wrist
flexion (1), wrist extension (2), pronation (3), supination (4), power grip (5),
pinch grip (6), open hand (7), and rest (8) as shown in Fig.6. These are the
same limb positions and hand movements implemented in [15, 16, 17] and

1www.mathworks.com
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(a) Posterior electrodes positions (b) Anterior electrodes positions

(c) The EMG System hardware utilized in experiments.

Figure 4: EMG system hardware utilized in this research.

were chosen to provide competent experiments and complimentary results,
but without using accelerometers. Auditory and visual cues instructed the
participants on the required movement and the starting and ending points
at which each of the hand movements was implemented in each trial. In spe-
cific, the data collection program showed each participant an image of the
requested hand movement and the number of trials collected so far while also
informing the subjects with audio cues about when to start and when to stop
the specific hand movement. As the data is collected in a discrete manner, no
overlapping among EMG of different classes can happen in the training phase,
while in the testing phase the classifier assigns each of the testing samples
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to one of the predefined hand movements. Six trials of each motion at each
limb position were acquired while each motion was sustained for a period of
5 sec only within each trial, with a resting period of 3-to-5 sec given between
trials. These trials were equally divided into 3 trials allocated for training
the classifiers and 3 trials allocated for testing. Depending on the number of
trials per each motion and the length of each recording trial, then the amount
of extracted data from each position could be significantly large to allow the
classifier to generalize well on the testing data. In specific, given 5 sec of col-
lected data per each trial sampled at 4000 Hz and a window size of 100 msec
incremented by 25 msec, then the number of samples extracted from each
trial can be calculated as (5*4000 - 100/1000*4000)/(25/1000*4000)+1= 197
samples from each trial of each hand movement. In a problem with 3 tri-
als allocated for training and another 3 trials allocated for testing, then the
number of samples per each movement in each position would be 197*3=591
samples per each movement for training and another 591 samples per each
movement for testing. For a problem with 8 classes of hand movements the
total number of training samples would be 591*8 =4728 samples for training
and 4728 samples for testing. This in turn explains the distribution of the
training and testing data from each position.

When testing the performance of the system, experiments were performed
to included training on single limb position and training on multiple limb
positions. In the latter case, the features extracted from the EMG data of
four limb positions were utilized for training while the features extracted
from the fifth position (unseen during training) were used for testing. In
this manner, the data from one completely unseen position is utilized for
testing to validate the generalization capability of the proposed system while
implementing the same movements at a different limb position.

On the other hand, our experiments also included a real time testing

Figure 5: Various limb positions considered in this research.
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session in which the classifier was trained on data from three limb positions
only and tested on different limb positions, including those completely unseen
during training, as will be described in the later sections.

Figure 6: Different classes of hand movements considered in this research, these were
repeated at each of the aforementioned limb positions.

4. Experiments and Results

Before proceeding with the description of the experimental results, we
list first the details of the pattern recognition system employed within the
experiments as given below

• Feature Extraction and Reduction: In the feature extraction pro-
cess, the EMG data was sliced into global segments of 100 msec spaced
by 25 msec from the next segment, i.e., a sliding window approach with
100 msec window size advanced by 25 msec each time to get the next
window. The rationale for the choice of the 100 msec window size is
that it is generally well-known that the total delay in any EMG-driven
system needs to be kept below 300 msec to achieve real-time control
[36, 9]. However, there is a current debate on this figure in the litera-
ture with some research groups indicating that 300 msec is too long and
that this should range within 100-125 ms [62]. Thus, we opt to keep
the window length of 100 msec to fit within the aforementioned figures.
Each window of 100 msec was further divided using the aforementioned
3 windows technique to produce 24 features per window as mentioned
previously. In order to test the effectiveness of the proposed feature set,
we divided the experiments into distinct sections in a similar manner
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to that performed by Fougner et al. [17]. The dimensionality of the ex-
tracted feature set with 189 features was reduced using the orthogonal
fuzzy neighborhood discriminant analysis (OFNDA) feature projection
method that was recently proposed by Khushaba et al. [45]. OFNDA
is a variation of the classical Fisher discriminant analysis (LDA) fea-
ture projection technique and it similarly maps the original feature set
into a new domain with k-1 features only, with k being the number of
classes, i.e., 7 features in our problem.

• Classification methods: A set of four different classifiers were uti-
lized in the experiments including: a support vector machine classifier
(LIBSVM library2) was utilized due to its effectiveness in EMG clas-
sification [9, 63], Linear Discriminant Analysis (LDA) [9], k-Nearest
Neighbor classifier (kNN) with k=5, and Extreme Learning Machine
(ELM) library3 with the number of hidden nodes in the hidden layer
equal to 780 (chosen empirically) [64]. The complexity parameter C
of the SVM classifier, as well as the gamma parameter in the kernel
function, were optimized for each subject and each position within the
range -4 ≤ log10(C) ≤ 4. The default implementation of the LIBSVM
classifier includes a one-versus-one implementation while we have also
implemented the one-versus-rest approach. However, an analysis of
variance (ANOVA) test with a significance level of 0.05 indicated that
there were no statistical significant differences between the results from
both of these approaches, with p-values > 0.05. Thus, we opted to use
the default implementation of the LIBSVM classifier with one-versus-
one approach.

• PostProcessing: On the other hand, the outputs of the classifiers were
smoothed using a majority voting post-processing step while looking
at the decisions of the previous 8 windows to smooth the current one.
Majority voting was selected upon other postprocessing steps, like the
Bayesian fusion presented by Khushaba et al. [65], due to two rea-
sons. These include: firstly that we are using an overlapping window-
ing scheme in this paper while the Bayesian fusion requires the use of a
disjoint windowing scheme, and secondly that our work is presented as

2www.csie.ntu.edu.tw/ cjlin/libsvm/
3www.ntu.edu.sg/home/egbhuang/elm codes.html
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a complementary study to that reported in [17] with majority voting.
Thus we opt to use majority voting to provide a fair comparison.

A scatter plot of the EMG features extracted from the different limb posi-
tions for one subject were first observed to visually inspect the distribution of
the extracted features across the different limb positions, these are shown in
Fig.7. These plots were made upon the most discriminant three components
after the dimensionality reduction method with OFNDA [45], as otherwise
one would not be able to plot the scatter of the full feature set. Despite the
almost consistent distribution of the features across the different classes in
the training set at each position, however, there are some changes to the dis-
tribution of the features across positions and the within class variance in each
position, especially at position 3. This could be justified by the variations
in muscle recruitment for limb stabilization at each position. Thus, unless
training data is acquired from several positions then the classifier would not
be able to generalize well on unseen new positions.

In the next section, the hypothesis that training data should be acquired
from multiple positions will be tested while also observing the best positions
from which the training data should be acquired. Thus, we have divided the
experiments into three main sections: the first included experiments in which
the training data is acquired from a single limb position and testing data from
multiple limb positions. The second set of experiments included training the
classifiers with data from multiple limb positions and testing on the data
acquired from a completely unseen position during training, i.e., training
and testing positions are independent. Finally, the third section included in
the experiments was devoted to the comparison with other feature sets from
the literature.

4.1. Training in a single limb position

In the first part of the experiments, we train each of the different classifiers
with the EMG features from each of the limb positions individually and then
test the capability of the trained classifier on the generalization upon unseen
data from all possible positions, i.e., training and testing were performed
on all possible permutations of the different positions. As an example, the
first row in Fig. 8.a shows the classification error rates when training the
LIBSVM classifier with the extracted EMG features from P1 only (train-
ing positions reported in the rows) and then testing the LIBSVM classifier
with new data from all possible positions (testing positions reported in the
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(c) Position 3
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(d) Position 4
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(e) Position 5

Figure 7: Scatter plots of the extracted first three discriminant components with OFNDA
across the different limb positions. Colorbar variations in color refer to the problem classes,
these are indexed from 1 to 8.
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columns). These results represent the average across all problem classes while
training the classifier with data from P1 and then testing the classifier with
data from each of the corresponding limb positions reported in the columns.
The results in the second row show the classification error rates when training
the LIBSVM classifier with the EMG features from P2 while testing data is
acquired from all possible positions, and so on for the rest of the rows. Each
entry in these error matrices represents the average error of all motion classes
across all subjects for the indicated training and test positions with standard
error of mean reported between brackets. The classification errors shown
in the main diagonal represent the intra-position classification errors, while
the off-diagonal elements represent the inter-position errors. The mean intra-
position classification errors (on the diagonal) were 1.68%, 2.33%, 1.79%, and
1.98% respectively for the LIBSVM, LDA, kNN, and ELM classifiers whereas
the mean inter-position errors were 22.58%, 24.11%, 22.49% and 24.68% re-
spectively for the LIBSVM, LDA, kNN, and ELM classifiers. These results
clearly indicate that firstly all of the classifiers achieved nearly similar per-
formance with the proposed features due to the robustness of the proposed
feature set against the change of the classifiers. Additionally, both of the
LIBSVM and the kNN classifiers have the potential to perform slightly bet-
ter than other classifiers in this problem as they tend to produce lower error
rates. However, given the computational requirements of the kNN classifier
that compares each testing sample to all of the stored training samples then
one might prefer to utilize the LIBSVM classifier.

As expected, one can clearly notice the effect of the different limb posi-
tions on the accuracy of the myoelectric pattern recognition system. In such
a case, the classifier is only able to generalize well on the data that belongs
to the same limb position that the classifier was originally trained on, i.e.,
EMG classification error is strongly dependent on limb position. As a result,
training a prosthetic control system in a single position may be insufficient to
develop a system that can perform well in multi-position usage. Thus, more
training data from multiple EMG recording positions is obviously required
as was indicated by Chen et al. [16]. On the other hand, Fougner et al.

[17] and Scheme et al. [15] suggested the additional use of accelerometers
to further reduce the classification error rates while training on data from
multiple limb positions.

In order to further support the previous suggestion on the need to train
the data from multiple limb positions, the confusion matrices were also com-
puted on all possible permutations of the different positions. Since all clas-

25



(a) Using LIBSVM classifier (b) Using LDA classifier

(c) Using kNN classifier (d) Using ELM classifier

Figure 8: Inter-position classification error (in %), averaged across all subjects and classes
of hand movements and reported as mean error% (standard error of mean).

sifiers presented nearly similar classification results, we opted to present the
confusion matrices plots using only the LIBSVM classifier as shown in Fig.9,
representing the average across all subjects, as the LIBSVM classifier per-
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formed slightly better than other classifiers in terms of error rates reduction,
though no statistical significant differences were observed in the classifica-
tion error rates (using ANOVA with significance level of 0.05, the achieved
p-values were all >0.05). The confusion matrices plots assert the significance
of the intra-position classification results and further suggest that there are
particular grasps/hand movements that are easier to recognize than others.
As an example, wrist extension (class-2) and power grip (class-5) seems easy
to recognize when training data is acquired from almost any limb position
while testing on any possible position. However, there are also different
movements that are harder to recognize across different limb positions, for
example training on P1 and testing on P3 highly reduces the recognition
rates of wrist flexion (class-1) and pinch grip (class-6), while training on P4
and testing on P1 highly affects the recognition rate of supination (class-4),
pinch grip (class-6), and open hand (class-7). Thus, there is a clear rela-
tion between the limb positions from which the training data is acquired and
the recognition rates of the different movements performed at different limb
positions.

In the next section, we test the hypothesis that adding training data
from multiple limb positions will enhance the classifier performance. This is
justified by the fact that the classifier is made aware of the distribution of
the data at different limb positions and should therefore be able to better
generalize on unseen data.

4.2. Training in multiple limb positions

Five different testing situations are proposed each corresponding to one
limb position being held for testing, i.e., the data from each of the five po-
sitions (P1, P2, P3, P4, and P5) will be utilized as a testing position while
training on all other positions. As an example, when the data from P1 is
utilized for testing then the data from all of the P2, P3, P4, and P5 positions
will be held for training, and when P2 data is utilized for testing then the
data from P1, P3, P4, and P5 will be held for training and so on. The classifi-
cation error rates for this experiment are shown in Fig. 10 for the five testing
positions at which four different classifiers were tested individually, i.e., one
at a time. These results indicate a general enhancement on the classification
results when training upon EMG data from multiple positions with an overall
average of 8.85%, 9.62%, 9.34%, and 8.86% for the LIBSVM, LDA, kNN, and
ELM respectively across the different limb positions. Such results indicate
that EMG classification error is strongly dependent on limb position. This
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Figure 9: Confusion matrix plots across multiple limb positions using the LIBSVM clas-
sifier.

dependence may be attributable to variations in muscle recruitment (for limb
stabilization due to gravitational forces), the force-length relationship of the
muscle, and changes in the musculo-tendon lever arm, which all depend on
joint angles. As the classifiers are now trained on different samples reflecting
the aforementioned variations then the classification error rates were gen-
erally decreased upon the error rates resulting from training on individual
limb position. The confusion matrices plots were also computed as shown in
Fig.11 that further supports the previous results on the significance of having
the training data collected from multiple limb positions.

However, it should be also mentioned here that P3 was the only position
exhibiting relatively high error rates in comparison to the other positions.
This in turn might be attributed to the angle of the limb positions which
might be causing an electrode shift that deteriorates the classification error
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Figure 10: Classification error rates when training on EMG data from all positions, except
the one being tested on. These results are the average across all movements and all
subjects with standard error of mean between brackets for all different classifiers. The
figure presents the LIBSVM results first schematically and then tabulate the results from
all classifiers.

Figure 11: Confusion matrix plots across multiple limb positions when training on data
from multiple limb positions and testing on individual limb positions, unseen during train-
ing, using the LIBSVM classifier.

rates. The results also indicate that the classification system can perform well
on testing on EMG data from P2 and P4 while being trained on EMG data
from other positions. Since training in multiple positions can be cumbersome
for the end user, it is desirable to reduce the number of training positions
to as much as possible. To confirm the possibility of training on fewer limb
positions, another experiment was carried on in which we train the LIBSVM
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classifier with the data from P1, P3, and P5 only, while testing the classifier
on data from P2 and P4. The average error rate in this case is 7.31% ±1.54
with the average confusion matrix shown in Fig.12. Thus, one can train the
system on EMG data from P1, P3, and P5 only as the classifier was able to
generalize well on the rest of the positions. A real-time demonstration was
also prepared and is available for the readers4. The demo clearly shows the
good performance of the proposed EMG pattern recognition system when
trained on the data from P1, P3, and P5 and being tested at any possible
limb position in real-time.

Figure 12: Confusion matrix averaged across multiple subjects while training the LIBSVM
classifier on the data from P1, P3, and P5 and testing the classifier on features extracted
from EMG data collected at P2 and P4. The that larger magnitudes or percentages in the
main diagonal of the confusion matrix reflect the correct guesses, while the small values
in the off-diagonal represent the incorrect guesses.

On the other hand, when including training data from all of the positions,
the resulting classifiers were able to generalize in a better way on the unseen
testing data from any position. In such a case, the six trials of collected
data from each movement at each position were divided equally into three
trials for training and three trials for testing, with the achieved error results
reported in Fig. 13. In this case, the overall average classification error rates

4http://www.youtube.com/watch?v=JRqXIv0xrN0&feature=youtu.be
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across all subjects and all movements dropped from 8.85% to 3.25% only
when using the LIBSVM classifier indicating a significant enhancement in the
results. An analysis of variance test with utilized to confirm the significance
of the achieved results with a significance value of 0.05 which resulted in the
corresponding p-value of 0.0058, which in turn validates the significance of
these results.

Figure 13: Classification error rates using the LIBSVM classifier when training on EMG
data from all positions, including the one being tested on. These are the average across
all movements and all subjects, with standard error of mean between brackets.

According to Geng et al. [66], the average EMG classification error rates
when training on multiple limb positions for subjects with transradial am-
putations were significantly lower than that for intact upper limb subjects
while using EMG. The authors suggested that the EMG signals acquired from
an intact limb are more easily affected by limb position variation as subjects
with intact limb have much more complex patterns of EMG recruitment than
subjects with amputated limbs [66]. Given the aforementioned suggestion,
the achieved error rates of 8.85% with the LIBSVM classifier should thus be
considered acceptable, in a functional sense, for transradial amputees. How-
ever, such a claim would need further testing on amputees subjects. In the
current work, the population of prosthesis users was limited, so for practical
and ethical reasons the present method assessment using able-bodied sub-
jects represents a necessary first step toward this ultimate goal. The next
step of our research will be to validate the results by application to subjects
with amputated limbs.
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4.3. A Comparison with other methods

In this part of the experiments, we test the performance of the proposed
feature set, denoted as TDMOM, against other well-known feature extraction
methods from the literature. These include: Hjorth parameters (denoted as
Hjorth) [48, 49], reduced spectral moments by Vuskovic and Du (denoted as
REDMOM) [32], time-domain features utilized by Fougner et al. (denoted
as TD) [17], Barlow moments [67], the first four moments of the power spec-
tral density PSD (denoted as PSDMOM), a combination of time-domain and
Autoregressive model parameters (denoted as TDAR) [9], and the wavelet
features represented by energy, variance and standard deviation of the coeffi-
cients of at each node of Symmlet-8 family tree with 7 levels decomposition.
It should be mentioned here that that in order to provide a fair compar-
ison with the other methods, then we have utilized the same windowing
scheme, dimensionality reduction (OFNDA), classifier (LIBSVM), and post
processing steps when the classifications errors with the traditional features
mentioned above are used.

In this part of the experiments, we present two sets of performance com-
parison where in the first part, we train the classifier with data from only
one limb position, as opposed to multiple positions, as this training scheme
will remove the possible enhancement of the classifier by providing it with
a general data set. In a similar way to computing the plots presented in
Fig.8, we have calculated the inter-and-intra position error matrices for each
of the aforementioned feature sets. The mean inter-position errors (this is the
mean of the off-diagonal elements of the inter-position classification error ma-
trices) were calculated as 22.58%, 23.6921%, 23.6266%, 26.1031%, 27.0694%,
24.9905%, 25.5725%, and 22.1959% for each of the TDMOM, Hjorth, RED-
MOM, TD, TDAR, Barlow, PSDMOM, and wavelet features respectively.
These results indicate clearly that TDMOM and the wavelet features per-
formed substantially better in comparison to the TD, TDAR, Barlow and
PSDMOM and slightly better than REDMOM and Hjorth. This is an in-
dication that both of the proposed TDMOM and the wavelet features tend
to be more robust against the variation in limb position than other features.
This is further confirmed by the next part of this experiment.

In the second part, we train the classifier on data from multiple limb
positions and observe the generalization capability of the classifier when been
tested on data from an unseen position that was not included in the training.
In simpler words, training data was acquired from multiple limb positions,
except from the position upon which the testing data was acquired from,
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i.e., training and testing data are from completely separate positions. As an
example, when training on the data from P2, P3, P4, and P5 and testing
on P1 the achieved error rates were 10.56% on average across all subjects,
while training on the data from P1, P3, P4, and P5 and testing on the
data from P2 resulted in an average error rate of 7.38% on average across
all subjects, and so on for the rest of the positions with the results shown
in Fig. 14. These results clearly show that the proposed feature set was
able to compete with the other methods and achieve, on average across all
subjects, lower classification error rates, except on P4 where wavelet features
showed slightly lower error rates. The average error rates, across all positions,
were also computed as 8.85% for our proposed moments, 12.06% for Hjorth
parameters, 12.67% for REDMOM moments [32], 12.32% for TD features,
and 12.73% for TDAR features, 11.69 % for Barlow moments, 12.71% for
PSDMOM, and 9.8% for wavelet features. These results further suggests
that the performance of the Hjorth, RECMOM, TD, TDAR, Barlow, and
PSDMOM features tend to be significantly lower than that of our proposed
TDMOM and the wavelet features when the training data was acquired from
multiple positions. This is justified by the confusion caused to the classifier
by these features when these features were combined from multiple limb
positions to form the training set. Finally, it should be also noted here
that despite the close performance by our proposed method and that of the
wavelet features, the computational complexity of our time domain features
is much lower than that of the wavelet features. This in turn forms a factor
that favours our proposed features upon that of the wavelet features.

In order to evaluate the statistical significance of the aforementioned clas-
sification error rates achieved by our proposed method in comparison to each
of the other feature extraction methods, then we have utilized the well-known
Student’s t-test with Bonferroni correction. Bonferroni correction was uti-
lized here to reduce the chance of committing a type-I error that is denoting
the output from the test as significant while in reality it is not significant
and vice versa. For a significance level of 0.05, the achieved p-values for
comparing our method against each of the other methods were << 0.01 in-
dicating significant enhancements by our method, except that of the wavelet
features, for which the later came out with a p-value of 0.08 indicating no
significant differences between our method and the wavelet features. How-
ever, one important point that may result in favoring our method upon the
wavelet feature extraction is the associated computational time required by
the different methods. In specific, on a laptop with i7 processor operating
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Figure 14: Different feature sets classification error rates when training on EMG data from
all positions, except the one being tested on. These are the average across all movements
and all subjects with bars indicating standard error.

at 1.73GHz with 4 cores and 16 GB of RAM running windows 8 and Matlab
2013 and for a record length of 100 msec the proposed TDMOM required
0.56 msec to compute the proposed features while the wavelet decomposition
required 2.6 msec, i.e., an advantage of time reduction by a factor of (2.6-
0.56)/2.6*100 = 78.46%. Finally it should be also mentioned here that our
main argument is not to compete with the wavelet features, but to produce a
time-domain implementation for the features that usually require a transfor-
mation to the frequency-domain while maintaining the accuracy. It is true
that modern processors might be able to further reduce the computational
time by both methods, however, with the advent in signal processing tool,
further reducing the computational costs is always a desire for any real-time
implementation.

5. Conclusion

The paper provided an investigation into the effect of upper-limb position
on EMG pattern recognition by proposing a new feature set based on time-
domain derivations of spectral moments. It was shown that based on Fourier
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transform time-frequency relationships, a set of spectral moments were de-
rived directly from the time-domain which in turn reduced the computational
complexity and formed a set of invariants to signal scaling, amplification and
translation. The EMG data utilized in testing the proposed feature set was
acquired from eleven subjects performing eight classes of hand movements at
five different limb positions. Two sets of experiments were conducted involv-
ing off-line testing, with EMG records of movements held for 5 seconds each
(with a sliding window approach of 100 msec incremented by 25 msec), and
an on-line test with a video demonstration also provided. The results indi-
cated that by using the proposed features and training the classifier on EMG
data from multiple limb positions it was possible for the classifier to gener-
alize well upon EMG data from unseen positions with average error rates of
up to 8.85% on average across all positions. The results also suggested that
only three positions were required for training the classifier which in turn
resulted in a reduced cost of data collection during training.
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