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Abstract

Human robot interaction is an emerging area of research, where, a

robot may need to be working in human populated environments. Human

trajectories are generally not random and can belong to gross patterns.

Knowledge about these patterns can be learned through observation. In

this paper, we address the problem of a robot’s social awareness by learn-

ing human motion patterns and integrating them in path planning. The

gross motion patterns are learned using a novel Sampled Hidden Markov

Model (SHMM), which allows the integration of partial observations in dy-

namic model building. This model is used in a modified A* path planning

algorithm to achieve socially aware trajectories. Novelty of the proposed

method is that it can be used on a mobile robot for simultaneous on line

learning and path planning. The experiments carried out in an office envi-

ronment show that the paths can be planned seamlessly avoiding personal

spaces of occupants.
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1 Introduction

Path planning is a fundamental yet crucial ability that a robot should posses in

order to execute most mobile robotics tasks. In the past, it has been extensively

explored with great diversity of solutions [1] [2]. Although there was work un-

dertaken to perform path planning in dynamic environments, non-static objects

(such as people) were often treated as purely random occurrences, sometimes

using a model to predict those occurrences, in an effort to reduce the problem

to a static environment [3] [4]. However, one main focus of current robotics

research is the human interaction, where a robot carry out its intended tasks

collaborating with humans. In these types of applications, robots should be

equipped with more sophisticated path planning algorithms to deal with all the

complex dynamics that are inherent in human populated environments.

Human populated spaces usually exhibit common motion patterns, which

has been noted in different areas of research [5], [6]. These motion patterns

can be a result of a complex combinations of goals, tasks, physiological and

social constraints. General observation of people is that they do not always

plan shortest paths. Depending on the task at hand, environmental and social

constraints, they may choose to use a longer path. As an example, an office clerk

may choose not to walk through cubicals even if it is the shortest path, but opt to

take a longer path through a corridor to avoid invading occupants’ workspaces.

In a social context, these types of behaviors are very constructive. Therefore, if

a robot could learn these human behaviors and plan "human like" paths, it can

be considered as a positive step toward a socially acceptable robotics. Being a

robot, this knowledge could be exploited by observing and learning dynamics

in an environment and planning paths based on the learned models.

Learning could be achieved through the information based on infrastruc-

ture mounted sensors overlooking the region of operation or based on sensors

mounted on mobile robots or both. The infrastructure mounted sensors are

mainly utilized in video surveillance applications [7], [8]. However, there is a
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Figure 1: a) LISA robot navigating in its environment. b) The office environ-
ment

few literature available on learning models based on infrastructure based sensors

to be used in mobile robots with limited success.

Kruse et al. [9] and Govea et al. [10] have utilized stationary cameras to ob-

serve motion patterns in an office space and car park respectively. In Kruse et

al. [9], a statistical representation of motion patterns is proposed. The trajecto-

ries are modeled as a Poisson process in consecutive locations with linearization

to minimize the complexity. Furthermore, it is proposed to combine similar

trajectories, which eventually lead to loss of information. Once the model is

learned, it is utilized for pre-planning to minimize the probability of collisions

and improved reactive behavior. It results in the robot preferring areas of low

traffic density. It has also reported to have improved motion planning with

moving obstacles. In Govea et al. [10], a model of trajectories is learned incre-

mentally by dividing the space into Voronoi regions. These regions are used to

define the states and state transitions in the proposed Growing Hidden Markov

Models to model motion of people or cars in a parking area. Even though the

method is promoted as being useful for mobile robotics, no experiments were

presented which would support this claim. These methods may not be suitable

for most of the mobile robotic applications due to the requirement of infrastruc-

ture modifications, higher cost, physical constraints in observations due to large

occlusions, etc.



Data acquired through infrastructure based sensor networks can also be

found in the literature. Bennewitz et al. [11] use Expectation Maximization

(EM) to learn trajectories of individual persons in an office environment. The

learning procedure is carried out off-line based on sensor network data and then

fed to a mobile robot to implement reactive behaviors. The algorithm specifi-

cally requires complete trajectories between defined resting points, which may

not be always available in most human populated environments. Kanda et

al. [12] propose to use a sensor network to track people walking in a shopping

mall. Local behaviors, such as fast-walk and idle-walk, of people are learned

to subsequently form a histogram of local behaviors in each grid cell of a dis-

cretized space. Global behaviors of people are then analyzed using state chains

of local behaviors. A number of global behaviors is extracted from a large data

set, which range from passing through the observed space to window shopping.

This model is then used to enable a robot to identify the pattern a person is

engaged in and approach to motivate entering the store. The use of sensor net-

works for data acquisition may require careful positioning of sensors and it may

need infrastructure modifications.

Although these methods show appealing results, the approaches do not ex-

ploit the full potential of learned information to be used in Human Robot In-

teraction. These methods are in general implemented off-line learning strate-

gies, which have disadvantages of incorporating incomplete data, chronological

changes in motion patterns and sudden changes while used in on-line applica-

tion. Therefore, in this paper, we propose the motion model learning based on

Sampled Hidden Markov Model (SHMM) and use it with the A* and proba-

bilistic road maps (PRM) algorithms to solve the above mentioned limitations.

This work of socially aware path planning is based on our previous work [13].

The observer travels through an office like environment as shown in Fig. 1(a).

Although a 30m laser range finder was used in the experiments, the environmen-

tal conditions, such as cubical walls lead to partial observations (see Fig. 1(b)).

Learning is based on sampling from observation of trajectories, followed by clus-



tering. This model composes of rich knowledge of human motion patterns. It is

then exploited in a modified A* based algorithm to realize socially aware path

planning. The contributions of this paper are, (1) Synthesis of an on-line motion

pattern learning algorithm based on Sampled Hidden Markov Model, which is

capable of utilizing sensory data as and when they arrive requiring no dedi-

cated learning phase, (2) The SHMM based motion pattern algorithm is used

with A* algorithm and Probabilistic Roadmaps to achieve socially acceptable

navigational paths, and (3) Experiments on a robotic platform are presented to

validate the results

The remainder of this paper is organized as follows. In Section 2, learning

motion patterns based on Sampled Hidden Markov Model is presented. Section

3 discusses the issues of path planning in populated environments. Experiment

results based on a robotic platform is presented in Section 4. Section 5 concludes

the paper with an indication to future work.

2 Representation and learning of Motion Pat-

terns

In this section, the proposed methodology for learning motion patterns based

on Sampled Hidden Markov Model is presented.

2.1 Learning Motion Patterns

In a 2D environment a trajectory can be described as a succession of x − y

positions with heading θ and linear speed vl. Consider a segmentation of a 2-

dimensional space into a regular grid where the occurrence of motion could be

counted in each grid cell. Extending the grid to include all four dimensions, i.e.

x, y, θ and vl, would result in what is known as a flow field or motion histogram

[14]. One could normalize the values in the histogram to obtain probabilities

resulting in a grid representation of the joint probability distribution.



P (x, y, θ, vl) (1)

which expresses the probability of the simultaneous occurrence of x− y − θ

and vl. Knowledge of this distribution constitutes knowing all motion patterns

in the environment independent of time. The distribution is very complex and

thus requires a significant amount of data to succeed.

Here a probabilistic method is developed to build an estimate of Eq. 1 con-

sidering it to be a moving observer with limited field of view. The goal is to

incrementally build the belief of Dt (approximation of Eq. 1) using all sensor

readings z0...t, all robot poses ζ0...t and all observations of moving people ξ0...t

up until time t,

Bel(Dt) = P (Dt|ξt, ζt, zt, ..., ξ0, ζ0, z0) (2)

From the above equation, an incremental update rule can be derived using

the well known Bayes theorem as

Bel(Dt) = ηP (ξt|Dt, ζt, zt, ξt−1, ..., ξ0, ζ0, z0)

P (Dt|ζt, zt, ξt−1, ..., ξ0, ζ0, z0)

(3)

where, η = P (ξt|ζt, zt, ξt−1, ..., ξ0, ζ0, z0) is a constant. Since Bel(Dt) is the

belief of D at time t given all past observations, sensor readings and observer

poses, it is not an efficient solution without further simplifications. Therefore,

it is assumed that observations and poses are conditionally independent of past

observations and poses given ζt and Dt, i.e. the system is Markov

Bel(Dt) = ηP (ξt|Dt, ζt, zt)

prior belief︷ ︸︸ ︷
P (Dt|ζt, zt, ξt−1, ..., ξ0, ζ0, z0) (4)

Finally, the last term of this equation is the belief at time t− 1 and thus the

final update rule is written as



Bel(Dt) = ηP (ξt|Dt, ζt, zt)Bel(Dt−1) (5)

This result allows the update Bel(Dt) to use only the most recent obser-

vations of moving people. Due to the intricacies of human spatial behaviors,

Bel(Dt) is complex and of unknown distribution. Therefore, an adequate rep-

resentation has to be chosen.

2.2 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model that represents a system

as a directed graphical model. Here we briefly outline HMMs following the

notation used by Rabiner [15]. HMMs are defined by N states of a system

S = s1, s2, ..., sN , together with the observation symbols V = v1, v2, ..., vM with

M being the number of symbols.

A state transition probability distribution A = aij is given as

aij = P (qt+1 = s(j)|qt = s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ N
(6)

Furthermore, the observation probabilities in state j, B = bij are formulated

as

bij = P (v(i)|s(j)), 1 ≤ i ≤M

1 ≤ j ≤ N
(7)

Finally, the initial state distribution π = πi is defined as

πi = P (q1 = s(i)), 1 ≤ i ≤ N (8)

A large number of variations of HMMs is proposed in literature and generally

HMMs are reported to be working well in different areas of research [11], [10].



2.3 Sampled Hidden Markov Model

While a grid based approach is a possible representation of the Bel(Dt), there

are a number of shortcomings to this approach. Firstly, it leads to high compu-

tational costs and inefficient implementations due to the need of updating the

whole grid whenever the belief is updated irrespective of the field of view of the

observation. Moreover, as the grid is ignorant of the environment’s structure,

a grid representation of motion patterns would require maintaining a belief in

regions where even no motion would be possible (e.g. inside walls). Finally,

the grid’s resolution has to be chosen carefully and even then it is difficult to

guarantee a good resulting approximation.

Considering the inherent shortcomings of grid based approaches, a sampling

algorithm which can predict, weigh and resample to incrementally learn an

approximation of Eq. 1 is proposed. The sample based representation overcomes

the grid based approaches’ problems by only generating samples in areas of

interest, i.e. where motion was observed and the number of samples can be

controlled by means of resampling or subsampling.

The belief Bel(Dt) as defined in Eq. 5 can be represented as a set of weighted

samples

Xt = 〈x(i)t , ω
(i)
t 〉, 1 ≤ i ≤ N (9)

where

x
(i)
t =

[
x(i)y(i)θ(i)v(i)

l

]T
(10)

and ω(i)
t being the weight of the i-th sample. The belief of Dt is then defined as

Bel(Dt) = Xt = η

People Tracking︷ ︸︸ ︷
P (ξt|Dt, ζt, zt)Bel(Dt−1) (11)

where a particle filter is implemented for people tracking.

Consider a person walking along a corridor in the direction of the arrow as
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Figure 2: Learning example: a) A person was moving in the direction of the
arrow with samples from the tracker. b) The resulting SHMM. c) After merging
a new trajectory from the left. In (b - c), the states are represented by means,
’.’, covariances by ellipses and transition probabilities by the thickness of the
straight lines joining the states

shown in Fig. 2(a). The particle filter based tracker would produce a series of

poses along the observed trajectory. Each of these poses would be represented by

a cluster of samples (see Fig. 2(b)) which approximates a probability distribution

over x, y, θ and vl. The transitions between states are directly observable.

S = s(i) =

 µ(i)

Σ(i)

 1 ≤ i ≤ N (12)

where µ(i) and Σ(i) are the mean and the covariance of the i-th sample cluster

and N is the number of states. Whenever another moving object is observed

in a region where a model was previously learned, the statistics of states are

updated by combining the corresponding sample clusters. Therefore, the time

dependency needs to be incorporated into the definition of a state, however it

is omitted in the formulation due to the unworthy complexity.



2.3.1 Model Adaptation and Growth

By observing a moving object, the resulting cluster can be seen as the j-th state

s(j)− in the path of the object. The superscript “−” means that it is either

a new state or may add new information to an already existing state in the

model of motion patterns. The decision can be made based on the symmetric

Kullback-Leibler divergence (KLD) [16] representing s(i) and s(j)− as probability

distributions.

KLD(s(i) ‖ s(j)−) = KLDs(s
(i) ‖ s(j)−)

+KLDs−(s(j)− ‖ s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ K

(13)

where K is the number of clusters from the tracked object’s path. The first and

second term of the equation are computed as

KLDs(s
(i) ‖ s(j)−) =∫ ∞

−∞
Ps(i)(x) log

Ps(i)(x)

Ps(j)−(x)
dx,1 ≤ i ≤ N

1 ≤ j ≤ K

(14)

and

KLDs(s
(j)− ‖ s(i)) =∫ ∞

−∞
Ps(j)−(x) log

Ps(j)−(x)

Ps(i)(x)
dx,

1 ≤ i ≤ N

1 ≤ j ≤ K

(15)

If the KLD between state s(i) and cluster s(j)− is below a certain threshold,



the sample clusters can be combined and the state statistics can be updated

accordingly. The threshold can be computed based on the expected distance

between consecutive states or be chosen as a fixed threshold based on experi-

mentation. To avoid growing computational effort with a growing model, the

KLD is only computed for clusters which are closely located in the state space.

It is to be noted that the robot localization is assumed to be known. Fig. 2(c)

shows a situation where a new trajectory from the left being joined based on

the KLD criteria.

2.3.2 Reducing the Dimensionality of the Model

Higher dimensions demand higher computational requirements. The dimension-

ality is proposed to be reduced by making use of the properties of the HMM.

When sampling with a fixed frequency as proposed, the distance between the

means of successive states encode the average speed of the target in the area.

Thus, a distance measure for the speeds or binning replace the explicit use of

v in the model and hence the state can be represented as (x, y, θ). Similarly, it

is possible to use binning for the heading θ, reducing the dimensions of a single

state to just two, (x, y).

3 Path Planning in Populated Environments

Path planning in dynamic environments has been studied before (e.g. [17] [3]),

however, most of the time the context of a human populated space has not been

exploited. In psychology and other fields, the use of a space by multiple people

is an active field of research, which yields many interesting results [6] [18]. It

is a fact that the interaction between humans and robots in this context is not

extensively studied yet due to lack of existing real world scenarios. However,

with the fast growing field of HRI, it is perceived to have such robots operate

in a socially acceptable manner for seamless integration with the humans.

The concept of personal space as described by Hall [18] is central to human



Table 1: Personal space zones as defined in [18].
Personal Space Zone Distance (m)

1

2

31 Intimate 0.0− 0.45
2 Personal 0.45− 1.2
3 Social - Consultative 1.2− 3.0
4 Public 3.0+

space sharing. There, it is stated that the space needed by a person is more than

the bodies volume, but there are areas around a person which should only be

intruded for a particular interaction (see table 1). The inner most area should

only be entered if an intimate relationship exists between the involved persons,

middle region is only for personal relationships. The outer circle defines an area

which is used for consultive interaction such as between colleagues. Unexpected

intrusion of the personal space may result in discomfort, lower perceived privacy

and lower work performance [19], which is enviable to avoid if possible. In

robotics perspective, it is desirable to develop path planning algorithms giving

due regards to such social issues.

3.1 The A∗ Algorithm

The A∗ algorithm and its derivatives are a popular solution for the path plan-

ning problem [3] [2] [20]. It performs the best-first search on a grid which is

precomputed using a collision detector with defined configuration values. More

precisely a configuration space C is computed which contains all static obstacles

in the d-dimensional space of the robot. There a Cfree exists, which contains

all collision free configurations. A path planning algorithm searches a path such

that the path lies in Cfree.

A∗ is defined by the functions g(x) which is the shortest path from start to

goal by Euclidean distance (often called the path-cost function), h(x), which

is used as a heuristic estimate of the length of the path, and f(x) defines the

sum of g(x) and h(x). The algorithm searches for a path using a priority queue,

where the priority of node x is higher, the lower its f(x) is. Hence, it is called



a best-first search.

This can be exploited to include prior information about dynamics in the

environment. A cost function is used to evaluate the cost of a path with respect

to a model of motion patterns as

gD(x) ∼ D(x) (16)

where D denotes the learned model of motion patterns. gD(x) returns a low

value if node x is in an area of high traffic density and returns a high value

if it is in an area of low traffic density. Consequently, g(x) in the standard

A∗-algorithm can be replaced by the below function to calculate f(x),

G(x) = g(x) + gD(x) (17)

This cost function is suitable for a robot, which is supposed to prefer a com-

monly taken path by people. However, in complex scenarios, it is appropriate to

have more flexibility in choosing path planning solutions. For example, in some

cases it may be better for the robot to choose the shortest path. This flexibility

could be introduced by reformulating the Eq. 17 as

G(x) = g(x) + w ∗ gD(x), 0 ≤ w ≤ 1 (18)

where the factor w is chosen depending on the current requirements. Setting

w to zero means the paths are planned based purely on A∗. If w is set to 1, the

robot prefers common paths whilst any number between 0 and 1 denotes the

combination of pure A∗ with gD(x).

3.2 Probabilistic Roadmaps

The integration of Probabilistic Roadmap path planning (PRM) with the pro-

posed model of motion patterns is straightforward and yields some interesting



properties.

PRM was introduced as a method to overcome the issue of growing com-

plexity in higher dimensions [21] [2]. The basic algorithm first constructs an

undirected graph G, the roadmap, to solve the path planning problem. The

nodes of G are generated by random sampling and collision checking. Path

planning is done by traversing between nodes which are sufficiently close to

each other. There are many publications presenting variations to the sampling

step and collision checking in order to improve the efficiency. Generally PRM

has been applied in many successful applications.

The main appeal to use PRM here is that once a graph is constructed, path

planning can be done with A* as detailed above. Consequently when using

the model of motion patterns D, atleast part of the graph G can be considered

known and sampling can be restricted to unexplored areas thus improving the

efficiency. The more complete D is the less sampling need to be done. This

highlights the appeal of PRM when using with SHMM. If there is an already

learned SHMM, the PRM graph can be considered known or mostly known and

planning can be done on the SHMM graph directly.

4 Experimental Results

4.1 Experimental Set up

Experiments were carried using an in-house developed LISA (Lightweight In-

tegrated Social Autobot), which was realized using an iRobot Create platform

(see Fig. 1(a)).The robot carried an Intel D510MO small scale computer and a

Hokuyo UTM-30LX laser range finder enabling it to localize and navigate in the

environment whilst detecting [22] and tracking people using a simple particle

filter. The software development environment was Player/Stage [23] and all the

algorithms were implemented in C++ within the Orca software framework [24].

Fig. 3 shows a Simultaneous Localization and Mapping (SLAM) generated map

of the environment where desk areas and corridors are marked appropriately.



The LISA robot is shown as a red circle and the red outline illustrates the ob-

served laser reading. Being a small robot, it has a significantly limited field of

view due to the presence of furniture. The map spans approximately 32m×20m.

It is important to note the complexity of the environment with large amount of

clutter, semi-static objects like trash cans, chairs and transparent objects such

as glass walls.

D D D D D

D
D

H H

H

C

Figure 3: The map used in experiments. Desk areas, hallways and common
areas are marked as "D", "H" and "C" respectively. LISA’s pose is shown by
a red circle and the observed laser reading is shown as a red outline. Note the
limited observability LISA in the environment.

4.2 Learning Motion Patterns

In this section SHMM learning is presented with the robot LISA in the aforemen-

tioned office environment. Ten different subjects were included in this experi-

ment and no environment modifications were done. The limited observability

at most times means that the robot has to explore the environment to build a

model of motion patterns. Furthermore, in order to observe longer trajectories

the robot has to follow people, hence it has to be a mobile observer. For more

information about the implementation issues such as updating the transition

probability matrix, the readers are referred to [25].

The series of plots in Fig. 4 show the evolution of an SHMM. Fig. 4(a)

shows the robot following a person, where the person is represented by a yellow

cylinder and the trajectory is shown as an orange line. The robot is shown as a

red circle, where the red outline indicates the observed reading of the forward



looking laser sensor. The observed trajectory exhibits a typical human motion

and accordingly it is represented in the initial SHMM as shown in Fig. 4(b).

Fig. 4(c) shows the model after more than 70 observed trajectories while the

robot was on the move. The trajectories were successfully joined and compactly

represented. The final representation including more than 80 trajectories are

shown in the (Fig. 4(d)) as a unimodal Gaussians distribution. It could be noted

that trajectories are positioned correctly on free spaces rather than through

obstacles. Further, compared to grid based representations of motion patterns,

a greater efficiency is achieved as the belief has to be maintained only in the

relevant areas (with human motion) of interest rather than over the entire space.

4.3 Model Adaptation

Another important aspect of the evolution of an SHMM is the adaptation to

changes in the environment. Consider the situation in Fig. 5(a) where people

usually walk along a hallway in an almost straight line. The learned model after

observing five similar trajectories is illustrated in Fig. 5(b). Then an obstacle

is placed on the commonly taken path to partially block it, which leads to a

change in people’s paths as visible in Fig. 5(c). After five observations of the

changed trajectories, the SHMM’s states shifted accordingly as in Fig. 5(d),

thus effectively adapting to the change in behavior.

For the next experiment, consider the same situation as in Fig. 5(b), how-

ever, with a larger obstacle blocking the common path as shown in Fig. 6(a).

Naturally, people’s trajectories have to change drastically in order to avoid the

obstacle. As a result it is not sufficient to merely shift the locations of existing

states to accommodate the change, instead the model is extended with a new

part as shown in Fig. 6(b). Initially, the transition ac has a lower probability

than transition ab as indicated by the thickness of the red state transition lines.

However, with more observations the transition probability of ac became larger

than that of ab as can be seen in Fig. 6(d).
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Figure 4: Model Learning with real world data, (a) robot follows a person,
(b) initialize the SHMM with the observed trajectory in (a), (c) SHMM after
observing more than 70 trajectories, (d) learned model is represented as a uni
modal Gaussian distribution
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Figure 5: An SHMM is adapting to a slightly changed environment. (a) The
initial common trajectory, (b) The SHMM representation of the common tra-
jectory. (c) An obstacle causes a slight change of the trajectory (d) SHMM
adapting to the new situation
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Figure 6: An SHMM adapting to a large change. The initial trajectory and
SHMM are the same as in Figure 5. (a) A large obstacle causes a drastic change
in the trajectory (b) The large change of the trajectory leads to the learning of
a new branch of the SHMM. Initially, the transition ac is estimated to be less
likely than ab as indicated by the thickness of the transition lines. (c) and (d)
Observing the changed behavior repeatedly leads to an increase of ab transition
probability than that of ac.
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Figure 7: Personal spaces overlaid on a part of the map

4.4 Socially Aware Path Planning

In the previous section, the robot has learned human motion patterns through

SHMM, which captures the navigational behaviours of people in the particular

environment. Having such knowledge, the robot can then behave in a similar

manner obeying general human social rules. For example, the robot is supposed

to avoid office desk spaces of other people, i.e. a high value for wg in Eq. 18

in path planning. Importance of avoiding the desk areas can be seen in Fig.

7, where the personal space area is overlaid on a part of the map. This shows

that if a robot moves through one of the desk areas, it may intrude the personal

space of the occupier, which is not desirable.

Fig. 8 shows the A∗-cost map derived from the SHMM shown in Fig. 4(d).

This cost map illustrates the cost for traversal, which is calculated using the

spatial distance of a grid cell to the SHMM as well as the observed traffic

density in the area. The spatial distance as a factor is useful to incorporate

closeness to previously seen trajectories to path planning without the need to

stay exactly on such a trajectory. Combination of the two factors represents

rich information about human path planning and is used for socially aware path

planning in the following experiments.

Fig. 9 presents some path planning results. Fig. 9(a) shows a more traditional

planning result based on the shortest path criterion, where among a set of

equally long paths the planner has no preference. Given equal probability for
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low

Figure 8: The A∗-cost map for socially aware path planning, illustrating the
cost for traversal in a 2D grid. This cost map is also indicative for the cost of
the PRM graph. Note that the cost map needs to be updated whenever the
SHMM is updated.

choosing any of these paths, in this example there is a 2/3 probability of the

robot passing a desk area. Utilizing the proposed method, the planned path

became the one shown in Fig. 9(b). Hence, the robot was able to deliberately

avoid desk areas, which could have been some ones personal space.

As illustrated in Fig. 9(c), the robot would even accept a longer path in

order to avoid disturbing office workers at their desks. However, if the detour

for a socially aware path compared to the shortest path is too long, the robot

may choose the shortest path as shown in Fig. 9(d). This stems from the fact

that the accumulated cost, including the higher cost for traversal in some areas

as illustrated in Fig. 8, is lowest for the shortest path. This could be argued

as mimicking human behavior of navigation. These experiments prove that the

experimental data includes valuable information about human path planning

which can be successfully exploited for socially aware path planning.

4.5 Simultaneous path planning and model learning

The last experiment is designed to demonstrate the seamless integration of path

planning and model learning. In Fig. 10(a) LISA plans a path around a desk

area based on the information at hand. Once it reaches near the goal (Fig.

10(b)), it detects a walking person and started tracking while moving toward

the goal (Fig. 10(c)). Once the person leaves the field of view of the robot (i.e.
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Figure 9: Socially aware path planning based on real data.
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Figure 10: (a) A path generated using basic PRM. (b) The robot reaches the
defined goal (c) The robot detects a walking person and start tracking (d) The
newly observed track has been added to the model

the track is terminated) the new information is added to the model of motion

patterns as shown in Fig. 10(d).

5 Conclusions and Future work

In this paper, a method was presented to allow a robot to plan paths considering

social behaviors. This philosophy is important as it will lead the robots to be-

have more like humans reinforcing human-robot interactions. For this purpose,

we have proposed a motion pattern learning algorithm to enhance the robot path

planning algorithm. The learning algorithm was performed on-line with data

received from the on-board sensors without needing any infrastructure mounted

sensors. Further, there is no dedicated learning phase utilized where all acquired

information is incorporated in the model immediately. Therefore, the robot can

be deployed efficiently in many environments. The model is capable of adapting

to new information and thus it is suitable for life long learning in a changing

world. The representation of motion as an SHMM is more memory efficient than



grid based approaches as the model only represents motion in areas of interest.

As the model is not fully connected, the transition matrix can be replaced by

more compact data structures.

Path planning was achieved using A∗ algorithm and Probabilistic Roadmaps,

which integrate coherently with the motion pattern models. A weight is set to

control the influence on path planning leading to socially acceptable paths. Ex-

perimental results show that the robot can plan paths with regard to a model of

motion patterns avoiding certain areas where people prefer minimal interactions.

In this study, it was assumed that there were no reactive actions taken by

the people to regain their personal spaces. This could be an interesting area

of future research. Further, future research will also focus on management of

the states in SHMM, integration of SHMM based motion prediction with other

probabilistic data association methods, e.g. Sample-based Joint Probabilistic

Data Association [26] and learning of common locations of interest, e.g. kitchen,

printer, which could further improve the long term prediction capabilities.
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