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Estimating Body-Fixed Frame Velocity and Attitude from Inertial
Measurements for a Quadrotor Vehicle

Guillaume Allibert1 and Dinuka Abeywardena2 and Moses Bangura3 and Robert Mahony3

Abstract— A key requirement for effective control of quadro-
tor vehicles is estimation of both attitude and linear velocity.
Recent work has demonstrated that it is possible to measure
horizontal velocities of a quadrotor vehicle from strap-down ac-
celerometers along with a system model. In this paper we extend
this to full body-fixed-frame velocity measurement by exploiting
recent work in aerodynamic modeling of rotor performance and
measurements of mechanical power supplied to the rotor hub.
We use these measurements in a combined attitude and velocity
nonlinear observer design to jointly estimate attitude and body-
fixed-frame linear velocity. Almost global asymptotic stability of
the resulting system is demonstrated using Lyapunov analysis
of the resulting error system. The performance of the observer
is verified by simulation results.

I. INTRODUCTION

Inertial measurement systems have a long history of being
used for estimating the orientation of aerospace vehicles
such as spacecrafts, aircrafts and missiles [5]. Most orien-
tation estimators are based on the principle of observing
known vectorial directions. For micro-aerial vehicles such as
quadrotors, the two most commonly used vectorial measure-
ments are the gravity and Earth’s magnetic fields. In earlier
work, Mahony et. al [10] showed that with just one vectorial
measurement along with angular velocity can be used to
estimate roll and pitch angles and gyroscope biases. This
approach has been applied extensively in practice for attitude
estimation in quadrotor vehicles using the accelerometers
as a gravity estimate, even though the assumptions do not
hold exactly in this case [12]. In particular, if the inertial
accelerations of the vehicle are significant, then they need to
be subtracted from the accelerometer measurement to obtain
the true gravity vector measurement. Global Positioning
Systems (GPS) can be employed for this purpose [6] but
high rate absolute position and velocity measurements are a
luxury that most mobile robots operating in urban and indoor
environments lack. Recent investigations into the dynamics
of quadrotor vehicles have revealed that the horizontal drag
force affecting a quadrotor vehicle is proportional to the
horizontal body frame velocity [3], [4], [11] and that this
force can be effectively measured using a triad of body
mounted accelerometers [12]. As a natural extension of this,
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other authors have demonstrated that these accelerometer
measurements can be combined with body mounted gyro-
scope measurements to obtain an estimate of the horizontal
velocity of the quadrotor vehicle, along with its attitude [1],
[9].

In this paper we consider the problem of designing a non-
linear observer for the full body-fixed-frame velocity along
with the attitude of a quadrotor vehicle. The paper makes two
principal contributions: Firstly, we show how aerodynamic
modeling of the rotors can be used along with the ac-
celerometer measurements and measurements of rotor speed
and motor shaft torque available on some electronic speed
controllers, to measure the full body-fixed-frame velocity of
a quadrotor vehicle. This measurement depends directly on
accelerometer measurements and is always subject to high
level of noise. To address the noise issues, we propose a
nonlinear observer in the spirit of Hua [6], but posed in
the body-fixed-frame. The second principal contribution of
the paper is to use a matrix decomposition of the general
R3×3 matrix that appears in this observer design in order
to identify the orthogonal part of the observer directly. This
provides a direct estimation of the attitude of the vehicle
without requiring a second stage orientation observer as
was necessary in prior literature. The performance of the
proposed observer is verified by simulation.

The paper has four sections in addition to the present
introduction. In Section II we introduce the model and some
mathematical definitions. In Section III we use momentum
theory to show how the full body-fixed-frame velocity can
be estimated from only an inertial measurement unit (IMU)
and a suitable electronic speed controller (ESC). Section IV
presents the proposed observer and provides a stability proof
for its performance while Section V presents some simulation
to verify the performance of the proposed observer.

II. BACKGROUND

This section introduces the kinematic model underlying
the observer problem considered and defines some Lie theory
terminology that will be used in the sequel.

Consider a quadrotor vehicle as a rigid airframe with four
independent rotors. A body-fixed frame, denoted {B}, is
attached to the vehicle, and an inertial frame {A} is fixed to
the ground. Following the usual convention in aerospace the
z-axis of the inertial frame is pointing downwards and the
body-fixed frame corresponds to the inertial frame when the
vehicle is in hover and oriented to the north. Let m denote the
mass of the vehicle. Let V ∈ {B} ≡ R3×1 denote the linear
velocity and Ω ∈ {B} ≡ R3×1 denote the angular velocity



of the body frame {B} with respect to the inertial frame
{A} expressed in {B}. Let R ∈ SO(3) denote the rotation
matrix representing the orientation of the body-fixed frame
{B} with respect to the inertial frame {A}. The gravitational
acceleration expressed in the inertial frame {A} is given by
g−→e 3 where −→e 3 = [0; 0; 1] is the unit vector in the z-axis.

Since the mass m of the airframe of a quadrotor is a scalar
constant, we can write a scaled version of the linear dynamics
of the vehicle as

V̇ = −Ω× V + gR⊤−→e 3 −
1

m
T−→e 3 −

1

m
H,

where T ∈ R denotes the vertical thrust and H ∈ R3×1 the
horizontal drag force generated by the rotors. It should be
noted that for slow moving quadrotors, H⊤−→e 3 = 0. More
details of the thrust and drag terms are provided in Section III
where we discuss the aerodynamics of a quadrotor in detail.
In this paper, we will not be concerned with the attitude
dynamics and there is no need to model them.

The second order linear kinematics of a quadrotor are
given by

V̇ = −Ω× V + gR⊤−→e 3 + a, (1)

where a ∈ {B} is the specific acceleration of {B} with
respect to {A} expressed in {B}. That is a is the sum of
all the exogenous accelerations applied to the rigid-body.
Coriolis and gravitational accelerations are associated with
the internal dynamics of the rigid-body and are not modeled
by the specific acceleration. Clearly, the second order kine-
matics and the scaled dynamics are closely related. However,
we draw an important distinction associated with the nature
of the exogenous signals. In particular, the second order
kinematics incorporate the specific acceleration a, which in
our case can be measured using an inertial measurement unit
(IMU), while the dynamics incorporate the forces T and H
that we will model using an aerodynamic analysis. Trivially,
one has

a = − 1

m
T−→e 3 −

1

m
H. (2)

Given that a is measured, then this equation provides direct
measurements of T and H . In practice, this measurement
should be treated with care due to high noise levels in a
as well as possible bias effects. However, the information
provided by this correspondence lies at the core of a number
of recent works for velocity and attitude estimation for
quadrotors [12], [11], [9], [1].

The system model that we consider consists of the second
order linear kinematics along with the first order attitude
kinematics

V̇ = −Ω× V + gR⊤−→e 3 + a, (3a)

Ṙ = RΩ×, (3b)

where the linear operator (.)× maps any vector in R3×1 to
its corresponding skew-symmetric matrix in so(3) such that
x×y is equal to the cross product x× y for all x, y ∈ R3×1.

Define |.| to be the Euclidian norm in R3×1 and ||.|| to
be the Frobenius norm in R3×3. That is for all A ∈ R3×3,
||A|| =

√
tr(ATA), where tr(.) is the trace.

The set SO(3) denotes the special orthogonal Lie-group
and so(3) denotes its Lie-algebra, the set of skew-symmetric
matrices. Define U(3) to be the set of all invertible upper
triangular including entries along the diagonal matrices in
R3×3. It is easily verified that U(3) is a Lie-group with
Lie algebra u(3) given by the set of all upper triangular
matrices: that is including upper triangular matrices that
are not invertible. Any invertible matrix A has a unique
decomposition into an orthogonal and upper triangular part

A = UQ, Q ∈ SO(3), U ∈ U(3).

The factorisation is locally unique and globally unique if the
diagonal elements of U are required to be positive.

Observe that the Lie-algebra’s so(3) and u(3) span R3×3

in a natural manner under the usual vector space addition of
matrices. Let Pas (anti-symmetric) and Put (upper-triangular)
denote the associated projections onto so(3) and u(3) respec-
tively. For any matrix A ∈ R3×3 given by

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

then one has

Pas(A) =

 0 −a21 −a31
a21 0 −a32
a31 a32 0

 ∈ so(3),

and

Put(A) =

a11 a12 + a21 a13 + a31
0 a22 a23 + a32
0 0 a33

 ∈ u(3).

It is easily verified that P2
ut = Put and P2

as = Pas. Moreover,

Put(A) + Pas(A) = A,

for any matrix A. It is straightforward to verify that
Pas(Put(A)) = 0 and Put(Pas(A)) = 0.

III. AERODYNAMIC POWER AND ESTIMATION OF V

This section presents a lumped model for the aerodynam-
ics of a quadrotor. The approach is based on recent work in
measuring aerodynamic power for quadrotor applications [3].
The model is based on using simplified momentum theory to
relate thrust, horizontal drag forces and aerodynamic power
and combining these relationships with (2).

A. Horizontal drag force

There are several recent works [1], [4], [9], [11], [12]
that have discussed and exploited models for horizontal drag
forces in estimating attitude and velocity for quadrotor and
other aerial vehicles. The horizontal forces associated with
induced drag, blade flapping, and translational drag [4] all
manifest as bilinear functions of horizontal velocity and
thrust magnitude

H = −TKrV ∈ {B}, (4)



where T ∈ R is the thrust,

Kr =

c̄ 0 0
0 c̄ 0
0 0 0

 ,

and c̄ > 0 is a lumped parameter that models the combined
linear drag coefficients. In contrast, parasitic drag depends
quadratically on vehicle velocity and since we consider
quadrotors operating in near hover conditions, this effect is
negligible.

B. Vertical thrust force

Modeling the thrust or vertical force of a rotor is complex
because of the dependence of thrust on the induced velocity
vi of air passing through the rotor; that is air velocity at the
rotor plane that is induced by action of the rotor in generating
thrust and separate from the relative wind experienced due
to the motion of the vehicle through the air.

We will assume that the aerodynamic conditions across all
four rotors are similar and there is an ‘average’ rotor speed
ϖ that can be used to model the aerodynamic performance of
the quadrotor using momentum theory. We will also assume
a single average induced velocity vi for all four rotors. We
will use vector notation for the induced velocity vi ∈ {B},
however following the lead of classical helicopter books
[8], only the vertical component of the induced velocity is
considered in the aerodynamic model. That is

vi = viz
−→e 3,

where viz ∈ R is a scalar. We will assume that all rotors have
the same flapping angles and generate the same aerodynamic
drag components. These assumptions are reasonable if the
quadrotor is flying in near hover conditions.

Consider a control volume for a single rotor shown in
Figure 1. Momentum theory for a single rotor yields [8]

Tk = 2ρAvizU,

where Tk denotes the thrust associated with rotor k, ρ is the
density of air, A is the area of a rotor disc, and

U = |vi − V | (5)

is the magnitude of the total wind velocity, including both
vehicle velocity and induced velocity of the air through the
rotor. Note that the wind due to the vehicle motion is −V ,
the negative of the vehicle motion. Let c1 = 8ρAtotal ∈ R,
then the total thrust generated by all four rotors is modeled
by

T = c1v
i
zU. (6)

Unlike the classical helicopter analysis found in books such
as Leishman [8], where only the steady-state performance
in the separate lift or drag directions is required, we will
provide a combined model that includes transient effect for
power in the rotor and both thrust and drag in a single model.
The aerodynamic power Pa supplied to the air consists of
two components: vertical PT and horizontal PH power,

Pa = PT + PH , (7)

Fig. 1. Momentum Theory control volume and rotor hub showing the
various powers for one of the rotors. In the control volume, we have the
axis definition for {B} which may not always align with the rotor tip path
plane. Vc = −Vz is the climb velocity described in the helicopter literature.

associated with providing thrust and overcoming drag respec-
tively.

The power associated with motion of the air in the vertical
direction is [8]

PT = T (viz − Vz), (8)

where Tviz is the induced power (required to operate the
rotor and overcome induce aerodynamic forces) and −TVz

is the power to climb. Note that due to the choice of axis,
when Vz < 0 the vehicle is ascending and −TVz is positive
as expected. In the horizontal plane one has

PH = −H⊤V > 0, (9)

where H ∈ {B} is a vector quantity that lies uniquely in
the horizontal plane and hence only the horizontal velocity
contributes to the power PH .

To account for losses such as tip loss and rotational wake,
there is an efficiency factor between the mechanical power
supplied and the aerodynamic power at steady state. We refer
to this efficiency as the figure of merit (FoM) which is a
number between 0 and 1 and is obtained from static thrust
tests [4]. It follows that the mechanical power Pm, supplied
to the rotor hub factors into

Pm = Pr +
1

FoM
Pa, (10)

where the power supplied to accelerate or decelerate the rotor
is Pr = Iϖϖ̇. If the torque on the rotor shaft is τ , then
the mechanical power supplied to the rotor hub is given by
Pm = τϖ. The torque τ can be measured by identifying
motor parameters and measuring current. The rotor speed
ϖ is measured in the operation of all Electronic Speed
Controllers (ESCs) and a complementary filter for estimating
ϖ̇ is provided in [3]. It follows that Pr and Pm can be
measured, and once FoM is identified then Pa can be treated
as a measured variable.

Counting equations, one has two constraints from (4)
(note that although this is a compound equation with three
components, only the two associated with the horizontal rotor
plane contain meaningful information), and one constraint



from both (6) and (8) in six unknowns Vx, Vy, Vz, v
i
z,H ,

and T . However, adding the constraint measurement (2) that
has three additional constraints ensures that this system of
equations can be resolved algebraically.

Given that a is measured, then T , Vx and Vy can be solved
for directly using (2) and (4). This is the same approach used
in [1], [4], [9], [11], [12] to measure horizontal velocity of the
vehicle. From (4) and (9) and using T , Vx and Vy then PH

is computed. It follows that using (7) and (10) then PT can
be computed. With PT known, then (8) is used to compute
(viz − Vz). Finally, this is used to compute the total wind
velocity U and substituted into (6) to compute vi = viz

−→e 3.
Once viz is computed the z-axis velocity Vz is available by
substituting back into the known value of (viz − Vz).

The key outcome of this algebraic process is the compu-
tation of a measured value of the body-fixed frame velocity
V = (Vx, Vy, Vz). We emphasise that this “measurement”
is independent of orientation of the vehicle, unlike the
approximations made in prior work [1], [4], [9], [11], [12].
The assumptions on the aerodynamic conditions still limit
applications to those where the vehicle is in hover or near
hover conditions. However, the additional identification of
z-axis velocity provides the potential for a more advanced
observer design than developed in prior works.

IV. OBSERVER DESIGN

In this section, a nonlinear observer for estimating the
body-fixed-frame velocity for a quadrotor is proposed. The
approach is based on deterministic Lyapunov design tech-
niques and draws heavily from the approach pioneered in
[6].

For a quadrotor vehicle with an inertial measurement unit
(IMU), the angular velocity Ω and specific acceleration a
are available. If the same vehicle is equipped with electronic
speed controllers (ESCs) that measure both rotor speed and
combined torque to all four motors then the mechanical
power supplied to the rotor hubs can be measured. As we
have seen in Section III, this is sufficient to provide a
measurement of the body-fixed-frame velocity V ∈ {B} of
the vehicle. If the IMU is also equipped with magnetometers
then these can be used to provide an additional measurement

µ = R⊤µ̊ ∈ {B}

for µ̊ ∈ {A} the inertial “known” magnetic field. In prac-
tice, the magnetic field measurement is often corrupted by
onboard magnetic fields and cannot be used for attitude
estimation. For this reason we will initially develop the
proposed observer in the case where the magnetic field is not
available and only provide a remark about the case where µ
is measured.

The goal of the observer design is to provide estimates
V̂ ∈ R3 and R̂ ∈ SO(3) of the body-fixed-frame velocity
and attitude of the quadrotor. We will distinguish between
the true velocity V̊ (t) and the measured velocity V (t) in
the following theorem for the sake of clarity; although the
deterministic stability analysis is based on the relationship
V (t) = V̊ (t).

Assumption 1 Assume that the trajectory of the quadrotor
is sufficiently smooth such that Ω(t), Ω̇(t), V̇ (t) and V̈ (t)
are bounded signals.

Theorem 1 Consider system (3) with Ω, a and V measured.
Consider the observer

˙̂
V = −Ω× V̂ + gX⊤−→e 3 + a− k1∆1,

V̂ (0) = V (0) (11a)

Ẋ = U̇ R̂+ U
˙̂
R, X(0) = U(0)R̂(0), (11b)

where k1 > 0 is a scalar gain and X = UR̂ is the upper-
triangular orthogonal decomposition of a general matrix
X ∈ R3×3. The dynamics of U and R̂ are given by

U̇ = −k2gUPut(U
−1−→e 3(V̂ − V )⊤R̂⊤),

U(0) = I3 (12a)
˙̂
R = R̂Ω× + k2R̂∆2, R̂(0) = I3 (12b)

∆1 = V̂ − V (12c)

∆2 = −gR̂⊤Pas(U
−1−→e 3 (V̂ − V )⊤R̂⊤)R̂, (12d)

where k2 > 0 is a scalar gain. Suppose that Assumption 1 is
satisfied, then for almost all initial conditions, the estimate
V̂ (t) → V̊ (t) and

R̂⊤−→e 3 → R⊤−→e 3.

Proof: Define a velocity error

Ṽ = V̂ − V.

The time derivative of Ṽ is given by

˙̃V =
˙̂
V − V̇

= −Ω× Ṽ + (X −R)⊤g−→e 3 − k1∆1.
(13)

Define a candidate Lyapunov function

L :=
1

2
Ṽ ⊤Ṽ +

1

2k2
||X −R||2.

The time derivative of L satisfies

L̇ = Ṽ ⊤(X −R)⊤g−→e 3 − k1Ṽ
⊤∆1+

1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))

(14)

= tr(Ṽ ⊤(X −R)⊤g−→e 3)︸ ︷︷ ︸
A

+

1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))︸ ︷︷ ︸

B

− k1Ṽ
⊤∆1.︸ ︷︷ ︸
C

(15)

Since the rotation matrix R is unknown, the innovation terms
∆2 and U̇ must be chosen properly in order to cancel the
expressions A and B in the previous equation while ∆1 is



chosen to make L̇ negative. Considering just terms A and B
from above, one has

tr(Ṽ ⊤(X −R)⊤g−→e 3) +
1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))

= tr((X −R)⊤(g−→e 3 Ṽ ⊤ +
1

k2
U̇ R̂+X∆2))

=
1

k2
tr((X −R)⊤(k2g

−→e 3Ṽ
⊤R̂⊤ + U̇ + k2UR̂∆2R̂

⊤)R̂)

=
1

k2
tr((X −R)⊤UΓR̂), (16)

where the matrix Γ ∈ R3×3 is given by

Γ = k2gU
−1−→e 3 Ṽ ⊤R̂⊤ + U−1U̇ + k2R̂∆2R̂

⊤.

Since X can be an arbitrary matrix, then the only choice to
cancel terms A and B from (15) for all possible X is to set
Γ ≡ 0. Using the projectors defined in Section II, one can
split Γ into its components

Γ = Pas(Γ) + Put(Γ), (17)

with

Pas(Γ) = k2gPas(U
−1−→e 3 Ṽ ⊤R̂⊤) + k2R̂∆2R̂

⊤

Put(Γ) = k2gPlt(U
−1−→e 3 Ṽ ⊤R̂⊤) + U−1U̇

since ∆2 = −∆⊤
2 , Pas(U

−1U̇) = 0 and Put(k2R̂∆2R̂
⊤) =

0. Substituting (12d) for ∆2 and (12a) for U̇ , it is easily
verified that Pas(Γ) = 0 = Plt(Γ) and hence Γ ≡ 0.
Substituting (12c), one obtains

L̇ = −k1Ṽ
⊤ Ṽ ≤ 0. (18)

Since the time derivative of L̇ is semi-negative definite and
L is positive definite then Ṽ and X are bounded. In view
of (13) and Assumption 1, one deduces that ˙̃V is bounded
and it follows that L̈ is also bounded. This is sufficient
to ensure that L̇ is uniformly continuous along trajectories
of the system. Applying Barbalat’s lemma [7] ensures the
convergence of L̇ → 0 that implies the convergence of Ṽ to
0.

The same procedure is performed to prove that ¨̃V is
bounded (since Ω̇, ˙̃V , Ẋ and ˙̂

R are bounded) and conse-
quently to demonstrate the uniform continuity of ˙̃V . Bar-
balat’s lemma ensures the convergence of ˙̃V to 0 which
implies from (13) the convergence of X⊤g−→e 3 to R⊤g−→e 3.

Finally, substituting X = UR̂, one sees that R̂⊤U⊤−→e 3 →
R⊤−→e 3. Taking norms, one has |U⊤−→e 3| → 1, that is the
(3, 3) entry of U converges to unity and U⊤−→e 3 → −→e 3. It
follows that R̂⊤−→e 3 → R⊤−→e 3 by continuity.
Since R̂⊤−→e 3 → R⊤−→e 3, then this observer will effec-
tively identify the pitch and roll components of the attitude
of a quadrotor. The remaining degree of freedom in the
orientation, corresponding to yaw rotation around the −→e 3

axis is unobservable without additional measurements. If
magnetometer measurements are available, then the filter

can be augmented with these measurements to obtain full
estimation of the attitude by replacing (12b) by

˙̂
R = R̂Ω× + k2R̂∆2 − k3R̂(µ× R̂⊤µ̊)×, R̂(0) = I3.

(19)
Although the proof is beyond the scope of the present paper,
it is relatively straightforward to show that as long as µ̊ is
not collinear with −→e 3 then R̂(t) → R(t) locally.

V. SIMULATION RESULTS

In this section, we illustrate through simulation results
the performance and robustness of the proposed observer.
Simulations are performed for a model of a quadrotor aerial
vehicle. The complete observer scheme is shown in Figure 2.

Ωa

a
V̂x

V̂y

V̂z

R̂

Pm

Pr

ϖ
controller

power

measurements

from

Velocity
Attitude

V z observer

V y velocity

V x
and

Fig. 2. Observer scheme

The trajectories of both V (t), a(t) and R(t) are generated
assuming that the vehicle performs circular motion in the
inertial frame combined with a sinusoidal changes of altitude.
The vehicle’s linear velocity given in the inertial frame is
v(t) = [0.5 sin(α1t); 0.5 sin(α1t+

π
2 ); sin(α2t)] ∈ {A} with

α1 = 1
2 and α2 = 1

3 . For the observer given by (11), the
gains are k1 = 10 and k2 = 1. If Rx(θ), Ry(θ), Rz(θ) are
the rotations about the x, y, z-axis rspectively by θ, then the
initial conditions are R̂(0) = Rx(10)Ry(−20)Rz(30) and
U(0) = [.5 0 0; .2 .3 0; .4 .5 .2], ensuring that R̂ ∈ SO(3) and
U is an upper triangular matrix. In the following, we assume
that we can measure Pa = FoM(Pm−Pr). In terms of prac-
tical implementation, [3] showed that Pa can be measured
from the current and ϖ along with a complementary filter
which estimates ϖ̇ onboard an electronic speed controller
board [2]. We also consider that the onboard IMU gives the
specific acceleration and angular velocity measurements. In
order to have a more realistic simulation, a random signal
with a constant power spectral density is added to all inputs
of the observer. The range of this signal is in accordance
with the sensors used. For the accelerometer measurements,
a high frequency noise of 200% the magnitude of typical
accelerations experienced by such vehicles is added.

The noise in Ω of relative magnitude 20% is also added.
For the Pa used, the experimental results obtained in [3]
show that the estimated values have relative noise that
are under 10%. Hence 10% noise was added to Pa. The
performance of the proposed observer is shown in Figures 3
and 4. The plots show the convergence and the performance
of the proposed observer for the three body velocities. Note



that despite the magnitude of noise in the input as well as in
V̄ , the outputs of the observer are smooth and track the true
real body velocities. Finally, Figure 4 shows the convergence
of R̂⊤e3 to R⊤e3 and the convergence of U(3, 3) to 1.

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Translational Velocities in x−direction

V
e

lo
c
it

y
 [

m
/s

]

Time [s]

 

 
V x

ǫx = V̂ x− V x
V x

V̂ x

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Translational Velocities in y−direction

V
e

lo
c
it

y
 [

m
/s

]

Time [s]

 

 
V y

ǫy = V̂ y − V y

V y

V̂ y

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Vertical Velocities

V
e

lo
c
it

y
 [

m
/s

]

Time [s]

 

 

V z

ǫz = V̂ z − V z
V z

V̂ z

Fig. 3. Results of the simulated V ∈ {B}. With V being the true velocity,
we can see that despite the 200% noise in accelerometer measurements that
is reflected in V̄ determined algebraically as in Section III, the estimated
velocities V̂ track quite well the true velocity V . This is indicated by the
small difference ϵ between estimated V̂ and true V .
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Fig. 4. Attitude error and scaling factor. We can see that the norm of
the attitude error between estimated (R̂⊤e⃗3) and true (R⊤e⃗3) converges to
zero in less than 0.5s which implies R̂⊤e⃗3 → R⊤e⃗3. This performance is
further reaffirmed by Ue⃗3 → 1.
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