Tick Toxinology: Isolation and Characterisation of the Toxin from the Australian Paralysis Tick, Ixodes holocyclus.

By

Michael J. Thurn

Thesis submitted in September, 1994, in fulfilment of the degree of Doctor of Philosophy in the Faculty of Applied Sciences, University of Technology, Sydney.

Acknowledgements

The last four years have been at times rewarding and extremely frustrating. This thesis would not have been possible if not for the help and assistance from the following people.

First and foremost I would like to thank my supervisor and mentor, Kevin Broady. He has been instrumental to this project and his patience knows no bounds.

My sincere thanks must also go to Robert Raison for allowing me to be part of the Immunobiology Unit and the various members of this unit over the years. In particular, Jeff Hook, Roseanne Dunn, Peter Towns, Nick dos Remedios, Charles Robin, and Sue Kehrer. Thanks for your assistance and companionship it has been deeply appreciated.

To the following establishments and their personnel, thanks for all your input and help: The Kolling Institute of Medical Research (Brian Baldo, Greg Donovan and Geraldine O'Neil); Biotechnology Australia (Yella Lahnstein, Chris Costandi, and Co Yen); Norvet Laboratories (Mal Logan and Graham Kelly); Centre for Drug Design and Development (Paul Alewood and Alun Jones).

Closer to home, I would like to thank the following departments and people for their friendship and assistance: Pathology and Immunology (Bob O'Grady, Chris Sinclair, Jennifer Thorpe and Toni Baragith); Biochemistry Department (Bill Booth); Applied Biology and Environmental Biology (Ken Brown, Ben Pearson, Brett Nudd, Peter Ralph, and Ross M^cpherson); Animal House (Don Ernst, Janeen Skewes).

Gillian Lyons and Catherine Dorey deserve a special mention, as without their love and patience this thesis would definitely not have been possible.

Finally, I thank my family for their support and encouragement, and Emma-Jane Barter for her undivided attention and love, and for teaching me that there is more to life (a lot more) than a PhD.

For my loving mother.....

Table of Contents

Abbreviatio	ons	ii
List of Figure	2S	iv
List of Tabl	es	viii
Abstract		x
Chapter 1	Introduction / Literature Review	1
Chapter 2	Identification and Partial Purification of Holocyclus Toxin	31
Chapter 3	Characterisation of Holocyclus Toxin Binding to Rat Brain Membranes	83
Chapter 4	Final Purification and Structural Analysis of Holocyclus Toxin	105
Chapter 5	Molecular Characterisation of Holocyclus Neurotoxins	157
Chapter 6	General Discussion	226
Chapter 7	Bibliography	232
Appendix 1		257
Appendix 2		259

ii

Abbreviations

[α- ³² P]dATP	deoxyadenosine 5'-[α- ³² P]triphosphate
[α- ³² S]dATP	deoxyadenosine 5'- $[\alpha$ - ³² S]thiotriphosphate
aa	amino acid
ADP	adenosine diphosphate
AP	alkaline phosphatase
ATP	adenosine triphosphate
BCIP	5-bromo-4-chloro-3-indopyranoside
bp	basepair
BSA	bovine serum albumin
BWSV	black widow spider venom
%C	percentage of crosslinker in an acrylamide solution
cDNA	complementary DNA
cpm	counts per minute
D	dalton
dATP	deoxyadenosine triphosphate
dCTP	deoxycytidine triphosphate
dGTP	deoxyguanosine triphosphate
dTTP	deoxythymidine triphosphate
DEAE	diethylaminoethyl
DMF	dimethyl formamide
DMSO	dimethyl sulphoxide
DNA	deoxyribonucleic acid
DTT	dithiothreitol
EDTA	ethylenediaminetetra-acetic acid
EDC	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl
DSS	suberic acid bis(N-hydroxy-succinimide ester)
EtOH	ethanol
g	gravity
[γ- ³² P]dATP	adenosine 5'-[₇₋ 32P]triphosphate
HPLC	high pressure liquid chromatography
hr	hour
IEF	isoelectric focusing
IPTG	isopropylthio-β-D-galactopyranoside
Kb	kilobasepairs
kD	kilodalton
λ	bacteriophage lambda
MAb	monoclonal antibody

MeOH	methanol
min	minute
m M	millimolar
mRNA	messenger RNA
Mr	relative molecular weight
MW	molecular wieght
NaN3	sodium azide
NBCS	newborn calf serum
NBT	nitro blue tetrazolium
ng	nanogram
OD ₆₀₀	optical density measured at 600nm
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
pfu	plaque forming unit
pI	isoelectric point
pmol	picomole
PMSF	phenyl methyl sulphonyl fluoride
PTD	paralysing tick dose
PVDF	polyvinylidinedifluoride
QS	quackenback strain
RT	room temperature
SEM	standard error of the mean
SDS	sodium dodecyl sulphate
SGE	salivary gland extract
SSC	sodium chloride trisodium citrate
SPD	standard paralysing dose
% T	total acrylamide concentration (w/v)
TBS	tris buffered saline
TBE	tris buffered ethylenediaminetetra-acetic acid
TCA	trichloroacetic acid
TEMED	N,N,N',N'-tetramethylenediamine
TFA	trifluoroacetic acid
Tris	tris(hydroxymethyl)aminomethane
U	unit
UV	ultraviolet
WBE	whole body extract
Xgal	5-bromo-4-chloro-3-indolyl-β-D-galactoside
2-DE	two-dimensional electrophoresis

List of Figures

Figure 1.1	Conduction of nerve impulses5
Figure 1.2	Distribution of the Australian paralysis tick <i>I. holocyclus</i> , the Tasmanian paralysis tick <i>I. cornuatus</i> , and the Hirst's marsupial tick <i>I. hirsti</i> (Roberts, 1970; Stone, 1987)
Figure 1.3	An electron micrograph (x250 in magnification) showing the powerful mouth parts of <i>I. holocyclus</i>
Figure 1.4	A cross-sectional diagrammatic representation of an Ixodid tick shortly after penetrating the host's skin20
Figure 1.5	Relationship between change in the secretory material within salivary cells "a" and "b" of Acinus II, and the toxicity of homogenates of salivary glands from <i>I. holocyclus</i> fed for varying lengths of time23
Figure 1.6	End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) in a diaphragm from a mouse paralysed by <i>I. holocyclus</i> 27
Figure 1.7	The standard experimental arrangement for recording EPPs27
Figure 1.8	A schematic outline illustrating the various aims of this thesis
Figure 2.1	The essential components for protein purification
Figure 2.2	10-20% Tricine-SDS-PAGE analysis of each toxic fraction obtained during the partial purification of Holocyclus toxin (Silver stain)51
Figure 2.3	Elution profile obtained from the chromatography of the 70% ammonium sulphate precipitate on heparin Sepharose54
Figure 2.4	Elution profile obtained from the chromatography of the heparin Sepharose flow through on DEAE Affi- Gel Blue55
Figure 2.5	Outline of the technique for the identification of Holocyclus toxin and the audioradiogram showing the outcome60

	List of Figures V
Figure 2.6	Synaptosomes adsorption patterns obtained for ¹²⁵ I- HT preparation after analysis by Tricine-SDS-PAGE under reducing and non-reducing conditions61
Figure 2.7	The specificity of the interaction between synaptosomes and HT63
Figure 2.8	HPLC gel filtration of HT preparation64
Figure 2.9	Polypeptides identified by the synaptosome adsorption technique from taipan venom66
Figure 2.10	Polypeptides identified by the synaptosome adsorption technique from tiger snake venom67
Figure 2.11	Polypeptides identified by the synaptosome adsorption technique from Black Widow Spider Venom
Figure 2.12	Polypeptides identified by the synaptosome adsorption technique from North African Scorpion72
Figure 2.13	PVDF blot of HT preparation and N-terminal sequence results74
Figure 3.1	Time course for the association of ¹²⁵ I-labelled HT with synaptic membranes95
Figure 3.2	The association of ¹²⁵ I-labelled HT with synaptic membranes over a range of temperatures97
Figure 3.3	Characterisation of ¹²⁵ I-labelled HT binding to synaptic membranes98
Figure 3.4	The effects of pretreating synaptic membranes with several venoms on the ability to bind ¹²⁵ I-labelled HT99
Figure 3.5	Cross-linking ¹²⁵ I-labelled HT binding to synaptic membranes101
Figure 4.1	Normal versus microbore reverse-phase HPLC110
Figure 4.2	Elution profile and Tricine-SDS-PAGE analysis of fractions obtained after reverse-phase C4 HPLC chromatography of the toxic fraction obtained from DEAE Affi-Gel Blue chromatography127

	List of Figures vi
Figure 4.3	Elution profile obtained from the HIC of the toxic fraction obtained by DEAE Affi-Gel Blue chromatography
Figure 4.4	Separation of peak 1 (HIC) by Reverse-phase C4 HPLC131
Figure 4.5	Separation of peak 1 (Figure 4.4) by reverse-phase C8 HPLC
Figure 4.6	Separation of peak 2 (Figure 4.4) by reverse-phase C8 HPLC133
Figure 4.7	Total amino acid analysis135
Figure 4.8	Ionspray mass spectrometric analysis of HT-I138
Figure 4.9	Ionspray mass spectrometric analysis of HT-II139
Figure 4.10	The effect of the column diameter (ID) on the sensitivity of the detection system available for this study
Figure 4.11	Separation of tryptic peptides by reverse-phase HPLC143
Figure 4.12	Amino acid sequence analysis of tryptic peptides separated by reverse-phase HPLC (refer to figure 4.11)144
Figure 4.13	Characterisation of the neurotoxin HT-I and HT-II for the presence of glycoconjugates using a DIG glycan detection kit (Boehringer Mannheim)146
Figure 4.14	Western blot analysis of the MAb 9B6 1G6147
Figure 4.15	Dot blot analysis of MAb 9B6 1G6149
Figure 4.16	Purification scheme for HT-I, HT-II, and HT-III. Tricine-SDS-PAGE was conducted under both reducing (R) and non-reducing (NR)152
Figure 5.1	Diagrammatic representation of the basic technique adopted for cDNA synthesis and cloning
Figure 5.2	SDS-PAGE analysis of the translation products196
Figure 5.3	Electrophoretic analysis of adult tick and nymph cDNA198
Figure 5.4	Size fractionation of adult cDNA200
Figure 5.5	PCR amplification of ubiquitin sequences203

Figure 5.6	Immunoscreening204
Figure 5.7	PCR Analysis of the immunopositive clone M920206
Figure 5.8	Partial nucleotide sequence and corresponding in- frame amino acid sequence of cloneM920208
Figure 5.9	Electrophorectic analysis of tick total RNA213
Figure 5.10	Northern hybridisation analysis of total RNA215
Figure 5.11	The production of toxin during engorgement217
Figure 5.12	Diagrammatic representation of RACE219
Figure 5.13	PAGE analysis of the PCR products produced by RACE220
Figure A.1	Measuring the molecular mass of a protein by ionspray mass spectrometry258
Figure A.2	Nucleotide sequence obtained for the 209 bp product derived from the amplification of adult tick cDNA library with degenerate primers for ubiquitin259

List of Tables

Table 1.1	Steps in the transmission of electrical impulses at the neuromuscular junction and their inhibitors (adapted from Mebs and Hucho, 1990)7
Table 1.2	Neurotoxins in spiders (adapted from Kawai, 1991)9
Table 1.3	World distribution of ticks implicated in tick paralysis14
Table 2.1	The comparative potencies of ticks engorged on different hosts47
Table 2.2	Partial purification of Holocyclus toxin50
Table 2.3	Fractionation of the crude tick extract with ammonium sulphate53
Table 2.4	Summary of the additional purification techniques attempted57
Table 2.5	The various venoms used and their presynaptic neurotoxins71
Table 3.1	Estimated acute toxicity in rodents of some of the most toxic toxins (adapted from Habermann, 1992)87
Table 4.1	Chemical cleavage of specific peptide bonds114
Table 4.2	Some common commercially available proteases114
Table 4.3	Purification of Holocyclus neurotoxin129
Table 4.4	Amino acid analysis of Holocyclus neurotoxins136
Table 4.5	Comparison of the HT-II peptide amino acid
sequence,	AXTYPLGSKVGYYK with protein databases using the BLAST algorithm154
Table 5.1	Oligonucleotide probes and primers
Table 5.2	% Incorporation of ³⁵ S-methionine195
Table 5.3	First strand incorporation of [α-32P]dATP297

—List of Tables	ix
-----------------	----

Table 5.4	FASTA sequence homology analysis of the amino acid deduced from clone M920	209
Table 6.1	Previous characterisations of the toxin from <i>I.</i> holocyclus	227
Table 6.2	Holocyclus neurotoxins and their characteristics	229
Table A.1	FASTA sequence homology analysis of the nucleotide sequence obtained for the 209 bp PCR product	260

x

Abstract

Several species of ticks have been reported to secrete neurotoxins which can be fatal to mammals, including man. Envenomation by the Australian paralysis tick, *I. holocyclus*, is a considerable veterinary problem affecting tens of thousands of domestic and native animals each year. Envenomation is characterised by a progressive ascending flaccid paralysis and is due to a neurotoxin present in the salivary secretions of the tick. Purification of the neurotoxic component has been largely unsuccessful mainly due to the insensitivity of the biological assay, the minute quantities present and the reported labile nature of the neurotoxin. This dissertation describes the identification, final purification, partial characterisation and preliminary structural characteristics of the neurotoxins from *I. holocyclus*.

The neurotoxins were identified as having a molecular weight of 5 kD by SDS-PAGE using an innovative technique involving adsorption to synaptosomes. The identification subsequently enabled the final purification of three closely related neurotoxins. The neurotoxins were purified from extracts of engorged adult female *I. holocyclus* by a series of conventional chromatography techniques (heparin Sepharose, DEAE Affi-gel blue, Alkyl Sepharose) followed by C4 and C8 reverse phase HPLC. Purity was demonstrated by Tricine-SDS-PAGE and biological activity confirmed by injection into neonatal mice. Total amino acid analysis of the three neurotoxins showed that the neurotoxins were essentially identical. This was latter confirmed by a non-neutralising monoclonal antibody which was capable of recognising a common epitope shared by all three neurotoxins. Amino acid sequence of the neurotoxins was restricted to peptides generated by proteolytic digestion with trypsin as direct N-terminal sequencing revealed an amino-terminal blockage. An accurate molecular weight of 5,640 (HT-II) and 5,460 (HT-I) Daltons has been determined by mass spectrometry for two of the neurotoxins. The small size is comparable to neurotoxins isolated from other arachnids (spiders and scorpions). However, comparisons of the peptide amino acid sequences derived from the proteolytic digestion of HT-II with known protein sequences failed to display any significant homologies.

cDNA libraries were produced from $poly(A^+)$ mRNA isolated from unengorged *I. holocyclus* ticks. The libraries were characterised and found to

be well-represented with tick-derived cDNA sequences. PCR primers and oligonucleotide probes were designed from the partial amino acid sequence obtained for HT-II and used to screen the cDNA libraries. After extensively screening the libraries, no positive clones were obtained. Northern hybridisation analysis of total RNA prepared from unengorged and engorged ticks with the oligonucleotide probe RHT produced a band of the expected size (220 bps), only with total RNA prepared from engorged ticks. This indicated the original cDNA libraries prepared from unengorged ticks were unlikely to contain the gene of interest. PCR based strategies were unable to isolate neurotoxin gene(s) from mRNA prepared from engorged ticks.