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Abstract  18 

Nasal delivery has become a growing area of interest for drug administration as a consequence of several 19 

practical advantages, such as ease of administration and non-invasiveness. Moreover, the avoidance of hepatic 20 

first-pass metabolism and rapid and efficient absorption across the permeable nasal mucosa offer a promising 21 

alternative to other traditional administration routes, such as oral or parenteral delivery. In fact, nasal delivery 22 

has been proposed for a number of applications, including local, systemic, direct nose-to-brain and mucosal 23 

vaccine delivery. Nanoemulsions, due to their stability, small droplet size and optimal solubilization properties, 24 

represent a versatile formulation approach suitable for several administration routes. Nanoemulsions 25 

demonstrated great potential in nasal drug delivery, increasing the absorption and the bioavailability of many 26 

drugs for systemic and nose-to-brain delivery. Furthermore, they act as an active component, i.e. an adjuvant, in 27 

nasal mucosal vaccinations, displaying the ability to induce robust mucosal immunity, high serum antibodies 28 

titres and a cellular immune response avoiding inflammatory response. Interestingly, nanoemulsions have not 29 

been proposed for the treatment of local ailments of the nose. Despite the promising results in vitro and in vitro, 30 

the application of nanoemulsions for nasal delivery in humans appears mainly hindered by the lack of detailed 31 

toxicology studies to determine the effect of these formulations on the nasal mucosa and cilia and the lack of 32 

extensive clinical trials. 33 
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1. Introduction 41 

Oral administration of drugs has long been the most desirable and convenient route of drug administration. 42 

However, limitations regarding low oral bioavailability of select compounds through this route of administration 43 

have led to research on alternate routes of drug delivery. Although there is no limitation to drug absorption via 44 

intravenous administration, and other parenteral routes such as intramuscular and subcutaneous delivery have 45 

shown promising delivery of most drugs, more convenient and non-invasive administration routes are desirable. 46 

Transdermal administration has been explored over the past few decades however, delivery by this route is 47 

hindered by inherently low skin permeability to many drugs. More recently nasal mucosa has become an 48 

interesting and growing area of research with the recognition of its therapeutic viability as an alternate route of 49 

administration [1]. 50 

 51 

1.1 Nasal delivery 52 

The nose has long been recognized as a potential route of drug delivery with reports of its use in traditional 53 

Chinese medicine dating back as far as 403 BC [2]. Nasal administration is considered a viable route for 54 

delivering many drugs, particularly those that can’t tolerate the harsh gastrointestinal environment following 55 

oral administration, such as proteins and peptides [3]. The fundamental features and limitations of nasal drug 56 

delivery are outlined in Table 1 [1, 4-7].  57 

<Table 1> 58 

The respiratory region of the nasal mucosa covers the largest area of the nasal cavity and is the main site for 59 

drug absorption into the systemic circulation [8]. Compounds are proposed to enter systemic circulation via a 60 

number of mechanisms including transcellular (through the interior of the epithelial cells), paracellular (through 61 

the tight junctions between cells), carrier-mediated (e.g. organic cation transporters and amino acids 62 

transporters) and transcytosis pathways [8-10]. The proportion of drug that successfully reaches systemic 63 

circulation is dependent on the physiological characteristics of the nasal mucosa, physicochemical/molecular 64 

properties of the drug, pharmaceutical properties of the formulation and factors related to the delivery device as 65 

shown in Figure 1 [4, 10].  66 

<Figure 1> 67 

 68 
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Researchers have studied a number of different techniques by which many of the limitations posed by the nasal 69 

mucosa can be reduced. The fundamental reasoning behind these techniques is to increase nasal residence time 70 

and enhance nasal absorption or modify drug structure to produce more favourable physiochemical properties 71 

for nasal absorption. The main techniques studied include nasal enzyme inhibition, permeation enhancing, drug 72 

chemical structure modification and design of pro-drugs and particulate drug delivery systems such as 73 

microparticles, nanoparticles and nanoemulsions [11]. 74 

The aim of this paper is to explore the opportunities and challenges associated with the intranasal delivery of 75 

nanoemulsions. 76 

 77 

1.2 Nanoemulsions 78 

Emulsions are formed by the dispersion of one liquid, usually oil phase, into a second immiscible liquid, water 79 

or aqueous phase [12]. Emulsions are typically distinguished by their particle size and stabilization into three 80 

main categories namely macro-, nano- and microemulsions [13]. Table 2 outlines the different properties of 81 

these three main emulsion categories. Nanoemulsions are a specific type of colloidal dispersion, which consist 82 

of emulsions in which the dispersed phase droplets are in the nanometric scale [14]. They are also referred to in 83 

different publications as miniemulsions, ultrafine emulsions, submicron emulsions, fine-dispersed emulsions, 84 

parenteral emulsions and emulsoids [13-16]. In many ways nanoemulsions represent an intermediate between 85 

the properties of macro- and microemulsions. Like microemusions, nanoemulsions contains sub-micron size 86 

droplets, appear transparent or translucent and possess stability against sedimentation or creaming. However, 87 

microemulsions are thermodynamically stable and are formed spontaneously, while nanoemulsions are non-88 

equilibirium systems, in fact they are only kinetically stable and eventually subject to flocculation, coalescence 89 

and Ostwald ripening. This partial overlap in properties, in conjunction with the fact that many authors do not 90 

specify the nature of the submicron emulsion produced, has led to much confusion in the literature regarding 91 

emulsion type definition and size range [17]. Moreover, it has been suggested that many microemulsion systems 92 

studied in the literature are in fact misclassified nanoemulsion systems further adding to this confusion [18].  93 

<Table 2> 94 

Some physico-chemical aspects of nanoemulsion systems are essential to their superior stability when compared 95 

to macroemulsions systems. The size of the dispersed phase droplets allows for the Brownian motions and 96 

diffusion rate to overcome the effect gravitational force acting on the system leading to a significant reduction of 97 
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phenomena such as creaming, sedimentation and flocculation during storage. The system properties are also 98 

preventing phase separation by coalescence, as droplets are not easily deformable and the significant surfactant 99 

thickness on droplets surface impede the instability or disruption of the superficial film separating them [19-24].  100 

Nanoemulsions are non-equilibrium systems and thus, cannot be formed spontaneously. As a result, energy 101 

input is required for their production. There are two main methods of production, namely low-energy and high-102 

energy methods [25, 26]. Low-energy methods utilize the intrinsic physicochemical properties the individual 103 

components of the nanoemulsion to produce small droplets [27]. Techniques for the preparation of 104 

nanoemulsions through low-energy methods include: self-emulsification (also referred to as titration method or 105 

spontaneous emulsification method), emulsion phase inversion (EPI) and phase inversion temperature (PIT) 106 

methods [28, 29].  107 

Self-emulsification approaches exploit the diffusion of water miscible components, such as solvents, surfactants 108 

and co-surfactants, from the organic phase into the continuous aqueous phase to produce a nanoemulsion. A 109 

simple dilution process at constant temperature is sufficient to obtain the nanoemulsion without any phase 110 

transition. The nanoemulsion formation can be obtained by dilution of homogeneous three-component solutions, 111 

such as water, ethanol and oil, as in the Pastis/Ouzo effect, of an O/W microemulsion or of a cubic liquid 112 

crystalline phase [27]. 113 

In the phase inversion processes, the emulsion system O/W reverse to W/O or vice versa. While the curvature of 114 

the interface O/W gradually changes, the interfacial tension of the system decreases to minimum value and a 115 

submicron emulsion can be obtained with minimal energy expenditure. Two types of phase inversion may 116 

occur: (a) transitional inversion and (b) catastrophic inversion [30, 31]. The transitional inversion may occur 117 

with changes in the affinity of the surfactants for aqueous and/or oil phases and may be induced by variations in 118 

factors such as temperature, HLB values, salinity of the aqueous phase and polarity of the oily phase [32, 33].  119 

In particular, changes in system temperature can promote modifications in the interactions (hydrogen bonding, 120 

dipole-dipole interactions and induced dipoles) between the ethoxylated nonionic surfactants and the aqueous 121 

phase. These surfactants have generally HLB values above 10, being amphiphilic molecules with a clear 122 

predominance of hydrophilic aspect. However above the phase inversion temperature of the surfactant molecule 123 

becomes predominantly lipophilic triggering the transitional inversion of the emulsion [34, 35].  124 
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The catastrophic phase inversion can occur when there is an increase in the volume of the dispersed phase or 125 

variations in the ratio of the volumes of the aqueous and oil phase. This type of inversion is irreversible and can 126 

occur over a wide range of volume fractions. The term catastrophic means a sudden change in behavior of a 127 

system and occurs as a result of gradual changes in process conditions [36-38]. The phase inversion in this case 128 

is triggered by the change of the water/oil ratio when the volume fraction of the dispersed phase increases. The 129 

origin of the structural changes are related to the balance between droplet breakup and coalescence in the system 130 

and the droplet size produced to the formation of the intermediate multiple emulsion dispersions (O/W/O for 131 

O/W systems and W/O/W for W/O ones). The catastrophic phase inversion, although influenced by the 132 

concentration of the surfactant is primarily dependent on the type and particle size distribution of the globules 133 

formed, ie, the amount and morphology of the dispersed phase [37].  134 

Emulsification by emulsion phase inversion (EPI) may be considered a type of catastrophic inversion, where the 135 

point of phase inversion (PPI) is the composition at which the emulsion formed by the aqueous phase, oil and 136 

surfactants reverses phases at constant temperature. The titration of water into an oily phase containing an 137 

hydrophilic surfactant promotes the initial formation of an W/O dispersion. However, increasing the volume 138 

fraction of water a change in the spontaneous curvature of the surfactant molecules occurs leading the inversion 139 

to an O/W emulsion passing through an unstable multiple emulsion phase [38].  140 

When using low-energy methods it is important to consider temperature control, especially when using the PIT 141 

method, volumetric fraction of water and oil phases as well as surfactant and co-surfactant concentration and 142 

weigh ratio [39, 40]. These factors are relatively easy to control on a small scale but may hinder the industrial 143 

viability of these methods. Currently, there is less information regarding the industrial scale-up of 144 

nanoemulsions produced by low-energy methods compared to high-energy ones.  145 

In alternative to low-energy manufacturing methods, high-energy methods utilize mechanical devices to disrupt 146 

the oil and water phases to form nano-sized droplets [25]. The main apparatuses utilized include rotor/stator 147 

devices and, more recently, the high efficiency ultrasound generators and high-pressure homogenizers [14]. 148 

High-energy methods have the ability to produce submicron emulsions from a large variety of materials, 149 

displaying homogenous flow and narrow droplet size distribution and thus have the potential to be utilized on an 150 

industrial scale [12, 29]. However, there are a number of limitations to this method. Firstly it is not suitable for 151 

heat sensitive drugs such as retinoids and macromolecules, including proteins, enzymes and nucleic acids [25]. 152 

Secondly, due to the high-energy requirements and inefficient use of energy (approximately 0.1% of the energy 153 
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produced is directly used for the emulsification process) this approach is also relatively expensive [26]. Thus, 154 

low-energy methods are considered advantageous in regard to cost, energy efficiency, simplicity of 155 

implementation and can be used for fragile or heat sensitive drugs [16]. However, low-energy methods generally 156 

require higher surfactant concentrations than high-energy emulsification methods. A recent study by Ostertag 157 

and colleagues compared the low-energy phase inversion technique to the high-energy microfluidisation 158 

technique and found that small droplets could be produced by both methods, however much less surfactant was 159 

needed for the high-energy method than the low-energy method, with a surfactant to oil ratio required to obtain 160 

droplets with diameter smaller than 160 nm of ≥0.1 and ≥0.7 respectively [41].  161 

Nanoemulsions have attracted much interest in recent years over a number of different fields including the 162 

personal care, cosmetics, agrochemical, chemical, food and pharmaceutical industries [12, 15]. Within the 163 

pharmaceutical industry, nanoemulsions are being investigated as a formulation approach suitable for a number 164 

of different administration routes such as topical, transdermal, parenteral, ocular, pulmonary, nasal and oral [26, 165 

28, 41]. Even though nanoemulsions are primarily regarded as a vehicle for drug formulation, they have 166 

received increasing attention for a number of novel applications as delivery systems for the controlled release of 167 

drugs, the targeted delivery of anti-cancer agents, and mucosal vaccination [26]. This interest can be largely 168 

attributed to their many unique and favorable properties, providing a number of advantages over conventional 169 

emulsions. Nanoemulsions are kinetically stable and are therefore not significantly affected by flocculation, 170 

coalescence, creaming or sedimentation during storage time [42]. They can be formulated into foams, liquids, 171 

creams and sprays and being transparent/translucent can be incorporated into these preparations without loss of 172 

clarity [43, 44]. They can be used to deliver both hydrophilic and lipophilic drugs and are generally considered 173 

non-toxic and non-irritant formulations. In fact, nanoemulsions are usually manufactured using reasonably low 174 

concentrations of surfactants that are Generally Recognized As Safe (GRAS) for human consumption by the 175 

FDA, rendering them safe for enteral and mucosal administration [27, 42, 43]. Furthermore, nanoemulsions 176 

present large surface area and high free energy assuring faster and greater drug permeation of drug through 177 

absorption barriers (intestinal epithelium, skin and mucosal surfaces); as a consequence enhanced bioavailability 178 

is obtatined, particularly of poorly water-soluble drugs, but also of peptide and proteins [44, 45]. One additional 179 

advantage of nanoemulsions is the protection from hydrolysis and oxidation provided by the encapsulation of 180 

the drug in the dispersed droplets, which also provides taste masking in regard to oral administration.  181 
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The effect of nanoemulsions on oral absorption of poorly soluble drugs is reported to be extremely significant. 182 

Candesartan cilexetil (CC) is a drug used in the treatment of hypertension with low oral bioavailability due to 183 

poor aqueous solubility. Gao et al proposed a CC loaded nanoemulsion for oral administration containing CC, 184 

soybean oil, Solutol HS-15, Tween 80, dichloromethane and distilled water using the emulsification-solvent 185 

evaporation technique, with a mean particle size of 35.5 ± 5.9 nm. This study found that CC loaded 186 

nanoemulsions were associated with a peak concentration 27 times higher than control (CC dissolved in ethanol 187 

and then diluted in Krebs-Ringer bicarbonate buffer) and a 10 fold increase in bioavailability [46]. 188 

Such effects are not limited to the oral administration rout but can enable the transdermal delivery of many 189 

drugs. The absorption of celecoxib through transdermally applied liquid nanoemulsions and nanoemulsion gels 190 

was compared to the commercial oral capsule formulation. Nanoemulsions were prepared using the spontaneous 191 

emulsification method and contained celecoxib (2% w/w), Sefsol-218 (7.5% w/w), Triacetin (7.5% w/w), 192 

Cremophor-EL (17.5% w/w), Transcutol-P (17.5% w/w) and distilled water to 100 % w/w. The nanoemulsion 193 

gel was prepared by dispersion and contained the same constituents used to prepare the previous nanoemulsion 194 

with the addition of Carbopol-940 (1% w/w) and Triethanolamine (0.5% w/w). This study found that the 195 

absorption of the drug through transdermally applied nanoemulsions and nanoemulsion gel resulted in a 3.30 196 

and 2.97 fold increase in celecoxib bioavailability in comparison to the oral capsule formulation [47].  197 

Although nanoemulsions have good stability they are subject to droplet size increase over time and eventually 198 

breakdown, via the Ostwald ripening process [16]. This process involves the movement of molecules of the 199 

dispersed phase by passive or micelle-assisted diffusion leading to the increase in size of larger droplets at the 200 

expense of smaller ones. The effect is more relevant for dispersed phases with high solubility in the dispersing 201 

phase and for highly polydisperse systems [24]. Nanoemulsions can also be made unstable through changes in 202 

environmental parameters such as temperature and pH, which can change upon delivery to patients [43, 48]. 203 

Moreover, nanoemulsions properties are formulation-dependent, meaning that a formulation that provides some 204 

desired characteristics is not always suitable for obtaining other favourable properties [12]. For example, the 205 

influence of co-solvent concentration on the initial mean droplet diameter, polydispersity index, turbidity and 206 

storage stability of nanoemulsions formed using spontaneous emulsification was investigated by Saberi and co-207 

workers. One co-solvent investigated was propylene glycol (PG). This study found that transparent 208 

nanoemulsions displaying smaller droplets and a narrower polydispersity index could be obtained by using a PG 209 

concentration of approximately 30-40% however the same nanoemulsions were highly unstable during storage 210 
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showing significant droplet size growth [49]. Thus the characterization of nanoemulsions is an important 211 

consideration in their production and storage stability. Formulations are typically characterised for particle size, 212 

surface charge, drug content, morphology, stability and viscosity, all of which are important factors for their 213 

efficacy. 214 

 215 

2. Nasal delivery of nanoemulsions 216 

2.1 Local delivery 217 

Traditionally, nasal drug delivery has been exploited for the treatment of local ailments of the nose and 218 

paranasal sinuses including allergic or infectious rhinitis, sinusitis, nasal polyposis, nasal infections and nasal 219 

congestion [4, 50]. Commonly administered drugs for these ailments include decongestants (ephedrine, 220 

oxymetazoline, phenylephrine, tramazolin, naphazoline and xylometaxolin), corticosteroids (beclamethasone, 221 

budesonide, fluticasone, mometasone and triamcinolone), antihistamines (azelastine and levocabastine), mast 222 

cell stabilisers (chromoglycate) and anticholingergics (ipratropium) [1, 51, 52]. However to the authors’ 223 

knowledge no nanoemulsion formulations have been proposed or developed for local delivery. One possible 224 

reason for this is that nanoemulsions increase the permeability of drug across the nasal mucosa resulting in 225 

increased systemic concentration, which is not desirable for local delivery where the goal is to attain therapeutic 226 

concentrations of drug at the treatment site, avoiding systemic absorption [53]. 227 

 228 

2.2 Systemic delivery 229 

It is well known that nasal drug administration is a viable means to obtain systemic drug delivery. This is 230 

reflected in the number of nasal formulations currently marketed for systemically acting drugs such as those for 231 

the treatment of migraine (butorphanol, ergotamine, sumatriptan and zolmitriptan), pain (fentanyl), diabetes 232 

insipidus (desmopressin), opioid overdose (naloxone) prostate cancer (buserelin) and post-menopausal 233 

osteoporosis (calcitonin) and the multitude currently under investigation including cardiovascular (propranolol, 234 

carvedilol and nifedipine), antiviral (acyclovir and zanamivir) and anti-emetic drugs (metoclopramide, 235 

ondansetron and scopolamine hydrobromide) [8, 50, 54, 55]. Nasal delivery offers the potential for rapid 236 

absorption and fast onset of action, whilst avoiding hepatic first pass metabolism. For these reasons it has been 237 

postulated for the delivery of proteins and peptides, which are difficult to administer by other routes, poorly 238 

soluble drugs or those with low oral bioavailability, for the treatment of acute pain, nausea and vomiting and for 239 
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critical situations or circumstances where rapid onset of action is vital such as in the case of opioid overdose and 240 

seizures [50, 56].  241 

Research has shown that nanoemulsion drug delivery systems can significantly improve the transport of drugs 242 

across the nasal mucosa resulting in higher bioavailability compared to conventional nasal solutions or 243 

suspensions. Furthermore drugs with low oral bioavailability have been shown to display increased systemic 244 

bioavailability following the nasal administration of nanoemulsions [57-60].  245 

Zolmitriptan (ZT) is a 5-HT1B/1D receptor partial agonist used in the acute treatment of migraine and related 246 

vascular headaches which undergoes first-pass metabolism resulting in poor oral bioavailability (≤40%) [61]. 247 

Currently ZT is available on the market in both conventional and orodispersable oral formulations and as a nasal 248 

spray. A study by Yu et al was conducted to compare the rate of absorption and efficacy of positively and 249 

negatively charged nanoemulsions with a conventional ZT nasal solution [57]. Nanoemulsions were prepared 250 

using high-pressure homogenisation and were composed of egg lecithin, ZT and medium chain triglycerides as 251 

oil phase and egg lecithin, poloxamer 188, glycerol, disodium EDTA and benzalkonium bromide in water as the 252 

aqueous phase. To create the two charged nanoemulsions oleic acid as a negative charge inducer was added to 253 

the aqueous phase (ZTNE-1) or stearylamine as a positive charge inducer was added to the oil phase (ZTNE-2). 254 

A simple ZT nasal solution (ZTS) was prepared by dissolving citric acid, hydrogen phosphate and ZT in water 255 

and adjusting to a pH of about 5. ZTNE-1 exhibited creaming within 24 hours at pH of 6, considered the more 256 

suitable for nasal administration, and was thus terminated from the study. On the contrary ZTNE-2 was found to 257 

be stable and. increased the absolute bioavailability of ZT in beagle dogs by approximately 30% compared to 258 

ZTS, reduced the Tmax from 1.3 hours in the ZTS to only 0.58 hours and increased the Cmax from 16.3 ng/ml to 259 

39.7 ng/ml [57]. These results indicate that the cationic nanoemulsion formulation was superior to the 260 

conventional solution in terms of onset of action and bioavailability, appearing a promising approach for the 261 

improvement of migraine therapy.  262 

Another example is that of nitrendipine (NDP), a potent antihypertensive drug which undergoes extensive first 263 

past metabolism, resulting in a low oral bioavailability of only 10-20%. Jain and Patravale conducted a study to 264 

enhance the bioavailability of NDP through a nanoemulsion formulation for nasal delivery. The NDP 265 

nanoemulsion was composed of NDP solubilised in Caproyl 90, Tween 80, Transcutol P and Solutol HS-15. 266 

NDP absorption from the nanoemulsion formulation provided rapid onset of action (tmax 1 hour vs. 3 hours for 267 

the oral formulation) and a relative bioavailability of 60.44%, significantly higher than the oral formulation. The 268 
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daily administration of the formulation over four consecutive weeks had no effect on the histology of the nasal 269 

mucosa [58]. 270 

A study by Mahajan and Dinger investigated the efficacy of an artemether nanoemulsion for nasal delivery and 271 

found similar results [59]. Artemether is a low molecular weight, lipid soluble, methylether derivative of 272 

artemisinin with low oral bioavailability (~40%). Artemether is an antimalarial drug and is highly effective 273 

against the blood stages of plasmodium and multi drug-resistant plasmodium falciparum [62, 63]. In cases of 274 

severe malaria oral medications are not well tolerated due to vomiting and convulsions, therefore fostering 275 

research into alternative administration routes . In this study the artemether nanoemulsion was prepared using a 276 

spontaneous emulsification method (titration method) and was comprised of ethyl oleate, Tween 20, Capmul PG 277 

8 and artemether. The study, conducted on excised sheep nasal mucosa concluded that using the nanoemulsion 278 

formulation resulted in a high amount of artermether permeating through the mucosa, with 93% of the drug 279 

loaded crossing the membrane within 5 hours. However, it should be noted that this study lacked a control 280 

formulation and the true relevance of the results may be somewhat skewed [59].  281 

Interestingly, one study investigated the use of a nanoemulsion gel with the aim to increase nasal bioavailability 282 

via increased residence time [60]. In this study Honsy and Banjar produced a zaleplon nanoemulsion composed 283 

of 15% Miglyol, 30% Labrasol and 10% PEG 200 using the aqueous titration method. This nanoemulsion was 284 

then gelled with 0.5% Carbopol to produce a pH dependent in situ gelling system containing dispersed droplets 285 

between 35 to 73 nm. Zaleplon is a non-benzodiazepine sedative-hypnotic drug used in the short-term 286 

management of insomnia [64, 65]. Following oral administration it undergoes extensive first pass metabolism, 287 

resulting in only 30% bioavailability and shows a delayed onset of action due to poor aqueous solubility [60]. 288 

Compared to intranasal zaleplon aqueous suspension, the nanoemulsion gel increased permeation nine-fold with 289 

the gel showing 75% permeation of the drug dose compared to only 8.5% obtained with the aqueous suspension. 290 

Furthermore, in comparison to the marketed tablet the nanoemulsion gel increased bioavailability of zaleplon 8 291 

times. This increase in absorption displayed by nanoemulsions was suggested to be a result of both reduced 292 

particle size and presence of surfactants. This is highly plausible as surfactants are reported to increase 293 

membrane permeation by altering the structural integrity of the nasal mucosa and allowing the opening of tight 294 

junctions [53, 66]. 295 

  296 
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2.3 Mucosal Vaccination 297 

Vaccinations induce a long-lived protective immune response via the production of specific T and B cells as 298 

well as readily circulating antibodies [67]. Nasal vaccination with live-attenuated viruses effectively induces 299 

systemic and humoral immunities, however carries the inherent risk of viruses reverting back to their pathogenic 300 

state and causing disease, particularly in immunocompromised as well as in young (< 2 years) and the elderly 301 

patients. Alternative methods including the use of killed or purified antigen, or custom-made epitopes are safer, 302 

however are poorly immunogenic and often require an adjuvant to produce a sufficient immune response. 303 

Vaccine adjuvants including vaccine carriers are administered in conjunction with antigens and provide an 304 

immunostimulatory and/or immunomodulatory effect [67-69]. However, well characterised, effective and safe 305 

mucosal adjuvants are lacking [70].  306 

The mucosal membranes provide a large surface area for the entry of many pathogens, with most infections of 307 

the intestinal, respiratory and genital tract entering the body via this route [71]. In humans the respiratory tract is 308 

the most common site of entry for many clinically significant pathogens including influenza, adeno-, corona- 309 

and respiratory syncytial- viruses, mycobacteria tuberculosis and streptococcus pneumonia to name a few [72]. 310 

Furthermore the nasal mucosa is of particular interest in the pathogenesis of respiratory infection as it is the 311 

body’s first point of contact with inhaled pathogens [8, 71]. For this reason intranasal vaccination has been 312 

recognized as a potential route of non-invasive immunisation, particularly for the prophylaxis of respiratory 313 

diseases and extensively researched [71]. Currently there is one nasal vaccination product approved for human 314 

use on the market, Flumist®, a live-attenuated vaccine for influenza prophylaxis [8, 68, 69]. 315 

Nasal vaccination has been shown to have a number of advantages over traditional vaccination methods. 316 

Perhaps the most important and significant of these is the induction of both humoral and cellular immunity 317 

providing immunization at multiple mucosal sites, such as the lungs and genital tract in addition to the nasal 318 

application site. Injected vaccines are generally poor inducers of mucosal immunity, on the contrary nasal 319 

vaccination allows for enhanced disease protection based on an immune response at the site of infection [69, 73, 320 

74]. Other advantages include non-invasiveness, reduced potential for injury and infection due to needle free 321 

administration, improved patient compliance and ease possibility of self-administration. Moreover, trained 322 

personnel for administration is not required, therefore reducing costs and maintaining suitability for use in mass 323 

immunisation programs [69, 75]. In recognition of the potential for nasal vaccination the Centre for Disease 324 
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Control and Prevention, the World Health Organisation and Global Alliance for Vaccines and Immunization 325 

have all expressed their support for the development of nasal immunisation delivery systems [69].  326 

Nanoemulsions were originally developed for use in mucosal vaccines due to their broad antimicrobial activity. 327 

In viruses this is thought to occur through inactivation via physical disruption of the viral envelope, potentially 328 

allowing the development of preservative free vaccines. However, nanoemulsions were later recognised to 329 

possess promising mucosal adjuvant properties [76-78]. Nanoemulsions are unique adjuvants in that they can 330 

elicit a non-inflammatory immune response when mixed with protein antigens and are as a consequence much 331 

more than inert vehicles for antigen delivery. In fact, they induce the production of robust mucosal immunity, 332 

high serum titres and a cellular immune response through the activation of cytokine production by the epithelial 333 

cells and the induction of dendritic cell trafficking (Figure 2) [69, 72, 73]. The mucosal immune response has 334 

been attributed to the internalisation of the nanoemulsion droplets by the nasopharyngeal mucosa and 335 

subsequent activation of Toll-Like-Receptors (TLR), specifically TLR-2 and TLR-4 [69, 70, 79]. In addition to 336 

their potent adjuvant ability, nanoemulsions have a long shelf life at non-refrigerated temperatures (weeks to 337 

months in some cases) and thus can be used in developing countries where the provision of reliable refrigerated 338 

transport is lacking [68, 78]. The antigen stability at ambient temperature is believed to result from the antigen 339 

becoming embedded in the oil droplets of the nanoemulsion thus preserving the immunostimulating epitopes 340 

from degradation [80].  341 

<Figure 2> 342 

The W805EC nanoemulsion formulation is the most widely studied nanoemulsion adjuvant for nasal 343 

administration [81, 82] with trials in several animal models (including mice, ferrets and guinea pigs) conducted 344 

using ovalbumin [68, 72, 73, 77] respiratory syndical virus [78], anthrax [70], influenza [69, 76, 78], HIV [83] 345 

and Burkholderia cenocepacia, an important infection cause for immunocompromised individuals and those 346 

with cystic fibrosis [84]. The W805EC nanoemulsion is an optimised formulation manufactured by the NanoBio 347 

Corporation (Ann Arbor, MI, USA) using high speed emulsification method to obtain an O/W emulsion with 348 

droplets of 200 – 600 nm. It is composed of 64% soybean oil, 1% cetylpyridinium chloride (CDC), 5% Tween 349 

80 and 8% ethanol in water. The W805EC formulation is a balance of both FDA-approved excipients and desired 350 

characteristics such as potency and stability of the antigen/nanoemulsion formulation [79].  351 

A study by Stanberry and co-workers was conducted to determine the safety and immunogenicity of W805EC 352 

nanoemulsion as an adjuvant for the administration of seasonal influenza antigens [69]. In this Phase 1 human 353 
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clinical trial involving 199 healthy adult volunteers, W805EC nanoemulsion was administered with Fluzone® 354 

(approved inactivated seasonal influenza antigen) without safety concerns, significant adverse effects or dose-355 

limiting toxicity observable at the highest concentration evaluated (20% W805EC) [69, 79]. Furthermore, the 356 

novel formulation elicited both systemic and mucosal immunity following a single administration allowing the 357 

production of an immune response at the site of infection, with particular benefit for populations at high risk of 358 

contagion. This study concluded that the W805EC nanoemulsion mucosal vaccine elicited an immune response 359 

to the inactivated influenza virus greater than a control vaccine not containing the nanoemulsion as an adjuvant 360 

and comparable to that induced by the marketed formulation Flumist® [69].  361 

Another study investigated if the accurate and reliable delivery of nanoemulsion based vaccines to the nasal 362 

mucosa could face a significant challenge: antigens may undergo functional changes due to protein unfolding 363 

caused as a consequence of the shear forces applied upon device actuation [68]. In this study W805EC 364 

nanoemulsion was administered to mice in conjunction with a monomeric protein, ovalbumin (OVA), a 365 

particulate antigen, hepatitis B surface antigen (HBsAg) or an enzyme, alkaline phosphatase (AlkP). Two 366 

different commercially available nasal spray devices (Pfeiffer SAP-62602 multidose pump and the BD Hypak 367 

SCF 0.5 ml unit dose AccusprayTM) were used to evaluate the effect of dose administration on proteins sensitive 368 

epitopes. This study concluded that despite significant differences in spray characteristics including droplet size, 369 

spray angle, plume width and ovality ratios between the two devices, nanoemulsions were not physically or 370 

chemically altered and retained the same potency following device actuation, suggesting that specially 371 

engineered devices are not required for the delivery of nanoemulsion-based vaccines [68]. 372 

 373 

2.4 Nose-to-brain delivery 374 

Drug delivery to the CNS, despite the relatively high blood flow to the area, is significantly hindered by the 375 

presence of both the blood brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB) [9]. Although 376 

it is possible for systemically administered compounds with favourable characteristics such as low molecular 377 

weight and high lipophilicity to penetrate the BBB and reach the brain parenchyma, their use is limited as high 378 

doses are required to achieve therapeutic levels in the CNS, typically eliciting significant adverse effects [85, 379 

86]. Alternative CNS delivery methods include intracerebroventricular, intrathecal or intraparenchymal 380 

injections. However these methods are not suitable for drugs requiring multiple doses as they are invasive, risky, 381 

expensive and require surgical intervention [9, 85]. The delivery of drugs to the CNS via nasal administration 382 
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provides a promising and novel alternative to these invasive methods, enabling drugs to circumvent the BBB 383 

thereby providing direct and rapid delivery to the brain [85].  384 

There are three main pathways by which drugs can reach the CNS following nasal administration, namely: A) 385 

the olfactory nerve pathway, which innervates the olfactory epithelium of the nasal mucosa and terminates in the 386 

olfactory bulb, B) the trigeminal nerve pathway, which innervates both the respiratory and to a lesser degree the 387 

olfactory epithelium of the nasal mucosa and terminates in the pons or olfactory bulb respectively and C) the 388 

vascular pathway [4, 85]. Figure 3 outlines these three brain-targeting pathways for nose to brain delivery. Of 389 

these, the olfactory and/or trigeminal nerve pathways are believed to predominate and provide a means of direct 390 

drug delivery via axonal (slow) or perineural (fast) transport from the sub-mucosal space of the nose into the 391 

cerebrospinal fluid (CSF) compartment of the brain (Figure 4) [4, 87]. In particular the olfactory 392 

‘neuroepithelium’ is unique in the body and present exclusively in the nasal cavity as it is the only part of the 393 

CNS that is in direct contact with the external environment [4]. The vascular pathway provides a secondary, 394 

indirect mechanism of delivery, whereby the drug is firstly absorbed into systemic circulation and subsequently 395 

transported across the BBB [4, 85].  396 

<Figure 3> 397 

Direct nose to CNS transport of nanoemulsions has been demonstrated using a number of different drugs 398 

including risperidone [89, 90], olanzapine [91], ziprasidone [92], curcumin [93], saquinavir [94], rizatriptan 399 

[95], carbamazepine [96], ropinirole [97], sumatriptan [98], clonazepam [99], tacrine [100] and zolmitriptan 400 

[101]. Interestingly, the majority of these studies investigated the use of mucoadhesive formulations obtained by 401 

either the addition of chitosan [90-93], polycarbophil [98, 99, 101] or by the preparation of a gel formulation 402 

[95, 96] and found these to be superior to simple nanoemulsion formulations for CNS delivery.  403 

<Figure 4> 404 

A study conducted by Kumar et al [90] investigated the effectiveness of nanoemulsions for the delivery of 405 

risperidone to the brain via the nose. Risperidone is an approved antipsychotic drug available in tablet, oral 406 

liquid and orally disintegrating tablet formulations that exhibits low bioavailability due to both extensive first-407 

pass metabolism and relatively poor and non-specific brain delivery, resulting in numerous side-effects. This 408 

particular study compared the uptake of risperidone solution (RS), risperidone nanoemulsion (RNE) and 409 

risperidone mucoadhesive nanoemulsion (RMNE) following nasal administration (i.n) as well as RNE 410 

administered intravenously (i.v). The drug solution (RS) was prepared by combining risperidone, ethanol, 411 
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propylene glycol and distilled water. The RNE was prepared using the titration method and was composed of 412 

risperidone, Campul MCM, Tween 80, Tanscutol, propylene glycol and distilled water. Finally, chitosan was 413 

added to the RNE formulation to produce the mucoadhesive RMNE formulation. This study found that the 414 

concentration of risperidone in the brain of rats was significantly higher at all the time points following the 415 

intranasal administration of the RME formulation. Furthermore after 0.5 hours the brain to blood ratios 416 

following the administration of RS (i.n), RNE (i.n) and RMNE (i.n) and RNE (i.v) were 0.617, 0.754, 0.948 and 417 

0.054 respectively, demonstrating the superiority of the formulations administered intranasally over the 418 

intravenous administration for drug delivery to the CNS. The results were explained by a direct nose-to-brain 419 

transport and the bypass of the BBB [90]. Moreover, of the formulations tested the RMNE formulation was 420 

found to have the highest percentage of drug targeting efficiency (%DTE) and nose-to-brain direct transport 421 

percentage (%DTP) which was nearly two-fold higher compared to the RS and RNE formulations, further 422 

illustrating the benefit of the mucoadhesive nanoemulsion formulation in CNS drug delivery (Figure 5) [90, 94]. 423 

The same authors obtained similar results with other antipsychotic drug, i.e. olanzapine and ziprasidone [91, 424 

92]. 425 

<Figure 5> 426 

Another study by Vyas et al [99] conducted using clonazepam found similar results. Clonazepam is a 427 

benzodiazepine derivative used in the treatment of status epilepticus. This study compared a clonazepam 428 

solution (CS), clonazepam microemulsion (CME) and clonazepam mucoadhesive microemulsion (CMME) 429 

administered intranasally as well as CME administered intravenously for effectiveness of drug delivery to the 430 

CNS in rats. The CS was prepared by the addition of clonazepam to distilled water and ethyl alcohol mixture. 431 

The CME was composed of medium chain triglyceride, polyoxyethylene-35-ricinoleate, polysorbate 80 and 432 

propylene glycol and prepared using the titration method with a droplet size of approximately 15.21 nm. The 433 

CMME was prepared by the addition of polycarbophil to the CME formulation previously described and 434 

contained droplets of about 11.27 nm. This study found that the time for the drug to reach maximum 435 

concentration (Tmax) was much faster following the nasal administration of drugs, with a Tmax of 1-2 hours for 436 

the brain compared to 2-4 hours for the blood. Furthermore the concentration of drug in the brain following 437 

intranasal administration of CME and CMME was found to be significantly higher than intravenously 438 

administered CME at all the time points. The systemic bioavailability (AUC) and maximum concentration 439 

(Cmax) of clonazepam after intravenous administration was significantly higher than that elicited from the 440 
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intranasal administration of the drug microemulsion (CME) and solution CS. The CMME formulation instead 441 

produced an AUC and Cmax comparable to that produced by the intravenous formulation probably due to the 442 

increased retention time produced by the polycarbophil mucoadhesion. In the brain, the CME and CMME 443 

produced significantly higher AUC and Cmax compared to the CS following nasal administration, suggesting that 444 

the microemulsion formulation was responsible for this improvement. Moreover, the CMME produced the 445 

highest %DTE and %DTP followed by the CME, highlighting the great brain targeting potential of 446 

nanoemulsion formulations [99]. 447 

In a study by Samia et al [96] carbamazepine (CBZ) was loaded into a mucoadhesive nanoemugel (MNEG) and 448 

compared to intravenously administered CBZ solution in propylene glycol or propylene glycol alone. CBZ is an 449 

orally administered anti-epileptic drug with low solubility in water and slow and irregular gastrointestinal 450 

absorption leading to delayed brain uptake and a number of peripheral side effects. The nanoemulsion was 451 

prepared using the titration method containing oleic acid, labrasol and distilled water, the MNEG was then 452 

prepared by the addition of xanthan gum to the nanoemulsion previously prepared. Although no specific 453 

quantitative results were published, qualitative data indicates that the CBZ-MNEG is superior with those mice 454 

treated with CBZ-MNEG displaying a significantly delayed onset of convulsion and an increased protection 455 

from electric shocks. 456 

Another antiepileptic drug, amiloride, was investigated using a mucoadhesive nanoemulsion for nose-to-brain 457 

delivery [102]. The optimized formulations presented mean droplet size around 10 nm and pH just below 6. The 458 

nasal administration of the nanoemulsion did not produce irritation or toxicity on nasal goat mucosa. However 459 

the scanty preliminary data were not followed by further publications about the antieplileptic effects of the 460 

formulation. 461 

Tacrine is a centrally acting, non-competitive, reversible, acetylcholinesterase inhibitor with an oral 462 

bioavailability between 10 and 30%, used in the treatment of Alzheimer’s disease [103]. A study by Jogani et al 463 

investigated the effectiveness of tacrine microemulsion (TME) and mucoadhesive microemulsion (TMME) for 464 

brain targeting and for memory improvement in scopolamine-induced amnesic mice. The TME was produced 465 

using the titration method. Biodistribution studies of tacrine solution and microemulsion formulations following 466 

intravenous and intranasal administration were evaluated. These studies found that the Tmax was lower following 467 

nasal administration (60 mins) compared to intravenous administration (120 mins) suggesting selective nose-to-468 

brain transport. Furthermore, the concentration of tacrine in the brain was 2-fold higher following the intranasal 469 
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administration of the TMME formulation compared to the tacrine solution. Those mice treated with the TMME 470 

formulation were also the fastest to regain memory [100].  471 

 472 

3. Conclusions and perspectives 473 

Nanoemulsions have a number of significant and unique advantages favourable for drug delivery via a several 474 

administration routes. Of note is their ability to increase drugs absorption/permeation and bioavailability. In 475 

particular, they have demonstrated great potential in nasal drug delivery, not only as drug carriers for systemic 476 

and nose-to-brain delivery but also as an active component of mucosal vaccinations. Currently, nanoemulsions 477 

have not been proposed for the treatment of local ailments of the nose, however in the future this may become 478 

an area of interest. Another interesting application would be the delivery of peptides and proteins to the CNS 479 

using nanoemulsions. However, a better understanding of the mechanisms related to the nanoemulsion 480 

absorption enhancement through the nasal mucosa and molecule transport to the brain is required to further 481 

advance this formulation approach. Concerning the safety of nanoemulsions, additional in vitro and toxicology 482 

studies appears to be necessary to determine the effect of these formulations on the nasal mucosa and cilia. 483 

Finally, clinical studies should be conducted in order to confirm the superiority of nanoemulsion formulations 484 

over traditional one before nanoemulsion-based nasal products will be available on the market. 485 
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Figure Captions 734 

Figure 1: Physiological, physicochemical, formulation factors and device factors influencing nasal absorption 735 
and methods to increase nasal absorption (modified from [4, 8, 55]). 736 

Figure 2: Mechanism of action of nasal vaccination (modified from [81, 82]). 737 

Figure 3: Brain targeting pathways following nasal administration [4, 88]. 738 

Figure 4: Direct nose to brain pathways (modified from [85, 87]).  739 

 A shows the olfactory nerve pathway whereby the nerves penetrate the epithelial layer of the nasal 740 

 mucosa providing both axonal (slow) and perineural (fast) absorption pathways. 741 

 B shows the trigeminal nerve pathway. The nerves do not penetrate the epithelial layer in this case and 742 

 terminate in the lamina propria, only allowing absorption via axonal (slow) transport. 743 

Figure 5: Gamma scintigraphy image showing the distribution of the radioactivity in rats after the 744 
administration of (A) risperidone nanoemulsion intravenously (RNE), (B) riepseridone mucoadhesive 745 
nanoemulsion intranasally (RME), (C) risperidone nanoemulsion intranasally (RNE) (reproduced with 746 
permission from [90]).  747 
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Table 1. Advantages and limitations of nasal drug delivery (adapted from [1, 4-7]).  748 

 749 

  750 

ADVANTAGES LIMITATIONS 

• Highly vascularized 

• Highly permeable  

• Increased bioavailability of many drugs 

• Reliable, safe, non-invasive and 

convenient  

• Avoidance of first-pass metabolism 

o Small dosage volume of only 25-200 µL  

o Mucociliary clearance (MCC) 

mechanism  

o Impaired drug absorption in case of nasal 

congestion  

o Improper administration technique could 

cause inefficient deposition 

OPPORTUNITIES UNIQUENESS 
 Large surface area increased by the 

presence of microvilli  

 Fast onset of action 

 Wide range of options for the delivery of 

hydrophobic, hydrophilic and/or high 

molecular weight compounds (>1kDa) 

 Potential differences in absorption and 

permeability potential between the 

different regions of the nasal cavity  

 Lower enzyme levels compared to the 

gastrointestinal tract and liver  

 Direct transport from the nose to the 

central nervous system (CNS) is possible 

bypassing the Blood Brain Barrier 

 Nasal lavage to remove unabsorbed 

excess drug if needed 
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Table 2. Discriminating properties of macro-, nano- and microemulsions. 751 

 Macroemulsion Nanoemulsion Microemulsion 

Droplet size >1000 nm <500 nm <100 nm 

Polydispersity Large Small Small 

Stability Kinetic High Kinetic Thermodynamic 

Ostwald ripening Yes Yes No 

Coalescence Yes No No 

Sedimentation/Creaming Yes No No 

Surfactant 
Concentration 1-3 wt % 4-8 wt % 10-30 wt % 

Appearance White Translucent Translucent 

Production High energy methods High or low energy 
methods Spontaneous 

References [13, 19, 20] [13, 20-22] [13, 19-21, 23] 
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