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Abstract 

This thesis is concerned with the use of Statistical Process Control (SPC) charts for 

detection of change-point in distributions in quality control and surveillance problems. 

We derive explicit analytical formulas and develop numerical algorithms for evaluating 

important characteristics of "Exponentially Weighted Moving Average" (EWMA) control 

charts for a range of distributions. 

The most popular characteristics of a control chart are Average Run Length (ARL) -

the mean of observations/times that are taken before a system is signalled to be out-of-

control when it is actually still in-control, and Average Delay (AD) time- the mean of delay 

of true alarm times before a system that is actually out-of-control is signalled to be out-

of-control. An important property required of ARL is that it should be sufficiently large 

when the process is in-control to reduce a number of false alarms. On the other side, if the 

process is actually out-of-control then its AD should be as small as possible. Traditional 

methods that are used for evaluating chart characteristics include Markov Chain Approach 

(l\IICA), Integral Equation (IE) and Monte Carlo simulation (1viC) methods. Some crucial 

features of the methods are as follows: the MCA requires many matrix inversions and there 

is no theoretical proof of convergence of the method; the IE is most advanced method and 

it was used before only for Gaussian distribution; the IVIC is very time consuming. 

In this thesis, we find explicit formulas for ARL and AD of E\VMA in the case when 

observations are exponentially distributed. These explicit formulas can be applied to some 

other distributions , e.g. the P areto distribution. The numerical results obtained from our 

explicit formulas are compared with results obtained from the Monte Carlo simulation 

(MC) and Markov Chain Approach (MCA). We also compare the performance of the 

EWMA procedure with charts obtained with the CUSUM and Shiryayev-Roberts proce-

dures. The technique that we use to derive the formulas for an exponential distribution 

cannot be used to derive formulas for gamma and Wei bull distributions. However , we have 

developed a different method for evaluating the ARL and AD for the case of gamma and 

X 
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Weibull distributions . This method is based on a numerical solution of Integral Equations 

based on Gauss-Legendre integration rules to approximate the integrals. Numerical results 

for these distributions are compared with results from other approaches. 



Chapter 1 

Introduction 

Statistical Process Control (SPC) charts play a vital role in monitoring, measuring, control-

ling and improving quality in areas such as industrial statistics and manufacturing (Mason 

and Antony, 2000). In addition, SPC charts have been used in finance and economics (Er-

gashev, 2003; Golosnoy and Schmid, 2006) , computer sciences and telecommunications 

(Mazalov and Zhuravlev, 2002; Ye et al., 2002 , 2003), epidemiology (Sitter et al., 1990; 

Fris~n, 1992), environmental statistics (Basscville and Nikiforov, 1993), and in other areas 

of applications. 

lV!ost of the popular charts such as Shewhart, Exponential Weighted Moving Average 

(EWMA) , Oumulative Sum (CUSUM) and Shiryayev-Roberts (SR) charts have been de-

veloped for detecting changes in process means. The traditional Shewhart chart, which 

was first introduced by Shewhart (1931), is still widely used in many applications as it 

is useful for detecting large changes in process means. However, the Shew hart chart has 

been found to be inadequate for detecting small shifts in parameters. 

In the past few decades, CUSUM, Shiryayev-Roberts and EWMA charts have been pro-

posed as good alternatives to the Shewhart chart for detecting small shifts. The CUSUM 

chart was initially presented by Page (1954) . It has been shown that the CUSUM charts 

are asymptotically optimal under minimax type criteria (see details Lorden, 1971; Mous-

takides, 1986; Shiryayev, 1996) . The SR chart was first formulated for a continuous-time 

model by Shiryayev (1963) and Roberts (1966) considered a discrete-time model analogous 

of the former. Recently, this chart has attracted attention of many authors (see on Pollak 

and Siegmund, 1985, 1991; Mevorach and Pollak, 1991; Srivastava and Wu, 1993). The 

EWMA chart was initially introduced by Roberts (1959). It is a very flexible and effective 

chart for detecting small changes and has the advantage of showing robustness to non-

1 



1.1. Background to Problem 2 

normality (Borror et al., 1999; Stoumbos and Reysnolds , 2000 ; Montgomery, 2005) . Borror 

et al. (1999) have compared the Average Run Length (ARL) performance between She-

whart and EWMA charts for the case of non-normal distributions using Markov Chain 

Approach and shown that EWMA chart is more robust to the assumption of normality. 

In real applications, there are many situations in which the process data come from 

non-normal distributions such as exponential , Student-t or gamma (see for detail Borror 

et al. , 1998, 1999; Stoumbos and Reysnolds , 2000; Somerville et al. , 2002). Processes with 

data from these non-normal distributions need to be monitored by appropriate control 

charts . 

1.1 Background to Problem 

A control chart is a sequential procedure for detecting a change-point in sequentially 

observed data. In general, t hese data present observations of some industrial or manufac-

turing process which will be regarded as being in an in-control state if the mean of the 

data lies within target values . Then, if the mean falls above or below this target values the 

process will be regarded as being in an out-of-control state. An important property of a 

control chart is that it should detect a change to an out-of-control state as soon as possible , 

but at the sam.e time it should not give false alarms when t he process is still in-control. 

A cornmon characteristic used for comparing the performance of control charts is Aver-

age Run Length ( ARL) - the expected number of observations taken from an in-control 

process until the control chart falsely signals out-of-control. An ARL will be regarded as 

acceptable if it is large enough to keep the level of false alarms at an acceptable level. A 

second common characteristic used for comparing performance is traditionally called Av-

erage Delay (AD) time- t he expected number of observations taken from an out-of-control 

process until the control chart signals that the process is out-of-control. Ideally, the AD 

tin1e should be small as possible. 

Many methods for evaluating ARL and AD of EWMA charts have been discussed in 

the literature , e.g. Markov Chain Approach (MCA), Integral Equation approach (IE) and 

Monte Carlo simulation (MC). Roberts (1959), who was the first researcher to introduce 

the ARL for EWMA charts , used simulation to estimate the ARL. Later, Robinson and 

Ho (1978) nurnerically evaluated the ARL of EWMA chart using Edgeworth expansion for 

the probability density function (pdf) and cumulative distribution function ( cdf) of the 

procesl::i. Crowder (1987) used Integral Equations to find both ARL and AD for Gaussian 
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case . Lucas and Saccucci (1990) have evaluated the ARL by using a finite-state Markov 

Chain approximation. They provided tables of optimal parameters for EWMA designs and 

claimed t hat EWMA charts perform better than CUSUM charts for small and moderate 

shifts of Gaussian distribution. 

As discussed earlier, MCA, IE and MC are the most popular methods for evaluating 

the characteristics of EWMA. However, these methods have the following features: the IE 

method is a most advanced method but it requires a lot of programming and computation. 

MCA requires a discretisation of the continuity of the process into many steps and a large 

number of calculations of matrix inverse. MC is a simple to program and good for checking 

accuracy but it requires a large number of sample trajectories. Therefore this method is 

usually very time consuming; in addition, it is also difficult and laborious to find the 

optimal designs. 

The limitations of the MCA, IE and MC methods provide the motivation for finding 

explicit analytical formulas for evaluating ARL and AD. Since ARL of the EWMA chart 

depends on a control limit Hand a smoothing parameter A. there is the problem of findjng 

a set of optimal parameters (A.*, H*) for EWMA designs which will give a minimum of 

AD. 

1.2 Research Objectives and Contributions 

The objective of this thesis is concerned with the use of SPC charts for detecting change-

points in distributions . In particular, we focus on the performance of control charts for 

detecting change-point in distributions. We study analytical and numerical m.ethods for 

the derivation of formulas for ARL and AD of EWMA charts. 

One of the main aims of this thesis is to evaluate the characterist1cs of EWMA charts 

for detecting change-point in sequential data from exponential distribution. We derive 

analytical formulas for ARL and AD of EWMA charts by Integral Equation technique. 

Some of these results have already been published in Areepong and Novikov (2008). 

The suggested explicit formulas can be extended to some other distributions, e.g. the 

Pareto distribution, by a simple transformation. Explicit formulas are obtained in the 

form of infinite series . To use it we need to truncate the series. To check the accuracy of 

truncated series the results obtained from them are compared with the results obtained 

from MC and from some other methods. 

Unfor tunately, the technique that we use to derive analytical expressions for the expo-
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nential distribution cannot be used when the observations come from gamma or Weibull 

distributions. Consequently, we use numerical methods to solve the Integral Equations for 

ARL and AD for the case of gamma and Weibull distributions and two-sided exponential 

EWMA. To find a numerical solution of the Integral Equations, we use Gauss-Legendre 

integration rules to approximate the integrals (see details in Chapter 5 for details). The 

numerical results obtained from the Integral Equations for ARL and AD of EWMA and 

CUSUM charts are compared with results obtained from the MC and MCA methods. The 

results obtained for the EvVMA chart are also compared with results for the CUSUM and 

Shiryayev-Roberts charts. The explicit formulas for ARL and AD that we have derived 

have been found to be accurate, fast and easy to calculate in comparison with MCA, 

IE and M C. Tables of a set of optimal parameters for the design of EWMA charts are 

provided. 

1.3 Scope of Study 

The scope of study is as follows: 

1. We derived analytical explicit formulas for the case of exponential distribution. 

2. We used nurncrical methods to find solution of the Integral Equations for ARL and 

AD for the case of gamma and Weibul] distributions. 

3. Comparison of results 

We compared the accuracy of t he suggested analytical expressions for finding ARL 

and AD for EWMA charts with other standard methods- IE , MCA and MC. The 

performance of EWMA, CUSUM and Shiryayev-Roberts charts are cmnpared using 

simulation studies. 

4. The Computer programmes 

We used the Mathematica® package for numerical calculations with t he suggested 

explicit formulas. To find the numerical solution of Integral Equation we used Visual 

C.net package. We used the package R to simulate sample trajectories. 

1.4 Outline of Thesis 

The thesis is divided into six chapters: 
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• Chapter I is the introductory chapter of the thesis . It discusses the objectives and 

contributions of the thesis and gives this outline. 

• Chapter II introduces the statistical process control charts - Shewhart , EWMA, 

CUSUM and Shiryayev-Roberts charts for change-point detection and discusses 

properties and constraints for ARL and AD. 

• Chapter III presents definitions and basic results for standard methods for finding 

ARL and AD , such as Integral Equations, Markov Chain Approach and Monte Carlo 

Simulation. 

• Chapter IV discusses the derivations and proofs of the explicit formulas for ARL and 

AD for an EWMA chart when observations are from the exponential distribution. 

This chapter also contains a discussion of t he explicit formulas for Pareto distri-

bution. The numerical results are compared wit h MCA, IE and MC and optimal 

designs of EWMA are illustrated. 

• Chapter V discusses numerical methods for solving Integral Equations to obtain 

approximations for ARL and AD when observat ions are from gamrna or Weibull 

distribut ions. To solve t he equations, we use Gauss-Legendre Quadrature rules to 

approxi1nate integrals. T he con1parisons of the chart performance are studied be-

tween EvVMA, CUSUIVI and Shiryayev-Roberts procedures using simulation. 

• Chapter VI sumrnarizes the conclusions of the thesis and gives suggestions for further 

research. 

1.5 List of Publications and Presentations 

1. Areepong, Y. & Novikov, A. 2007. EWMA Control Charts for Change in exponential 

distribution. In Proceedings of International Conference of Mathematical Sciences, 

28-29 November, Bangi-Put rajaya, Malaysia (ICMS 2007) . 

2. Areepong, Y . & Novikov , A. 2008. Martingale Approach to EWMA Control Chart 

for Changes in exponential distribution. Journal of Quality M easurem ent and Anal-

ysis, 4(1): 197-203. 



Chapter 2 

Statistical Process Control Charts 

Statistical process control (SPC) charts are widely used in many areas of applications. In 

this chapter, we present some popular control charts and their basic characteristics under 

the conditions used in change-point detection. 

In Section 2.1, we discuss the most popular chart characteristics such as the ARL and 

AD. The charts under consideration are designed for independent random sequential obser-

vations. The Shewhart chart is described in Section 2.2, the Exponentially Weighted Mov-

ing Average (EWMA) chart is presented in Section 2.3, the Cumulative Sum (CUSUM) 

chart is discussed in Section 2.4 and the Shiryayev-Roberts (SR) is presented in Section 2.5. 

2.1 Chart Characteristics 

Let 6, 6, ... , ~t , t = 1, 2, .. . be sequentially observed independent random variables with a 

distribution F(x, a), where a is a parameter. It is usually assumed that there is an "in-

control" state with parameter value a= a 0 , and an "out-of-control" state with parameter 

value a =I= ao. It is assumed that the change from the in-control state to the out-of-control 

state occurs at some unknown time v which is called the change-point time (v ~ oo). We 

assume that the parameters for the in-control and out-of-control states are known. 

An important measure of the performance of chart characteristics is the speed of de-

tection of changes in a parameter. A good control chart should not give a "false alarm" 

signal that a process is out-of-control when it is still in-control, but it should quickly give 

a "true alarm" signal when a process goes out-of-control. 

Two measures that are commonly used to analyse the chart characteristics are the 

Average Run Length (ARL) and the Average Delay (AD) time . The ARL is the average 

number of observations that will occur before an in-control process falsely gives an out-

6 
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of-control signal. To reduce the number of false out-of-control signals a sufficiently large 

ARL is required. The AD is a measure of the average number of observations that will 

occur before an out-of-control process correctly gives an out-of-control signal. To reduce 

the time that the process is out-of-control, a small AD is required. Therefore the ARL and 

AD are two conflicting criteria that must be balanced to give an optimal control chart. 

All popular charts such as the Shewhart , CUSUM, Shiryayev-Roberts and EWMA 

charts (see e.g. Page , 1954; Woodall and Adams, 1993; Hawkins and Olwell, 1998) use a 

first passage time ( T) over a boundary as the alarm signal. 

For the case of a process that is always in the in-control state (i.e. there is no change 

in parameter value), we set v = oo. Then we define: 

(2.1) 

where Tis a given number (usually large) and E00 (.) is the expectation under the assump-

tion that observations ~t have the distribution F(x, o:0)(no change-points occurs). In the 

literature on quality control the quantity E00 (7) is called Average Run Length (ARL) of 

the chart . 

Another typical characteristic of a chart is obtained by minimizing the quantity 

(2 .2) 

where Ev(.) is the expectation under the assumption that a change-point occurs at ti1ne 

v . In practice, the condition (2.2) is usually calculated when v = 1. The expectation in 

(2 .2) is usually called Average Delay (AD) time. A control chart is regarded as having a 

near optimal performance if its AD is close to a minimum value. 

2.2 Shewhart Procedure 

The most commonly used control procedure is the Shewhart chart. This chart was first 

introduced by Shew hart ( 1931). In this chart, only the last observation is used to determine 

the alarm signal and all earlier observations are ignored. In general, this procedure is 

good for detecting a large change but is poor for detecting small changes in parameter 

values. Note that a large change observation will have very low probability of occurring if 

the process is in the in-control state. Therefore , one "out-of-control" observation should 

be sufficient to detect that the process is out-of-control. However, for small changes in 
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parameter , there will be a comparatively high probability that a single, small "out-of-

cont rol" observation occurs when the process is still in an in-cont rol state. Therefore, 

more t han one out-of-control observation will be required to confirm t hat t he process is 

actually out-of-control. 

A typical control chart is shown in Figure 2 .1. T he three horizontal lines are called 

the lower control limit (LCL), the central line ( CL) and the upper control limit (UCL). 

Typically, the LCL and UCL are defined as : 

LCL=ao-Ka and UCL=ao+Ka, 

where a is the standard deviation of the distribution and K is a constant. K is usually 

chosen as 3 for the case of standard Gaussian distribution. 

L 
I 
l\f 
I 
T 

Stopp1ua tUn E" 

~----------------
Sa1nple Iunnhe-I' or hm.E' 

Figure 2.1: Shewhart chart 

U pl) E'r routrol 
lhnit (UCL) 

C ~utralliu~ 

LowE-r r ontrol 
linut (LCI.) 

Let 6, 6, ... , ~t be independent and identically distributed random vaiables/observa-

tions with mean a 0 and variance a 2 . 

The stopping time of the Shewhart procedure is : 

l=inf{t>O:~t<LCL or ~t>UCL}. 

The ARL and AD characteristics of the Shewhart chart can be easily calculated and the 

error probabilities are as follows: 

• The probability of Type I error (Pr); it is a probability to produce an alarm signal 
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when there is no real change (false alarm) , 

• The probability of Type II error (Pn); it is a probability to have no signal when 

there is a real change (false negative) , 

A 1 
AD = E1 ( T) = ( p ) . 1- II 

If the ~t are normally distributed with mean 11 and standard deviation a- and if 3o- limits 

are used , then P1 = P([X- 111 > 3o-) = 0.0027 is the probability that any observation 

exceeds the control limits of an in-control process and ARL = (1/0.0027) = 370. 

2.3 EWMA Procedure 

The Exponentially Weighted Moving Average (EWMA) procedure was initially proposed 

by Roberts (1959). It is usually used to monitor and detect a small change in a process 

mean. More recent references on evaluation of characteristics of EWMA charts are Crow-

der (1987); Gan (199Gb); Lucas and Saccucci (1990); Knoth (2007) . 

The EW1v1A control chart is based on a weighted average Zt of current and previous 

data which is defined through the recurrence relation: 

Zt = (1 - A)Zt-1 + A~t, t = 1, 2, ... , (2.3) 

where ~t is a sequence of independent identically distributed random variables and A is 

a weighting constant with 0 < A < 1. The mean of the data distribution is E00 (~t)· 

Typically, the target mean is defined to be Eoo(~t) = ao and the initial value Zo is usually 

chosen to be this target mean, i.e. Z 0 = o:0 . 

By recursion of Equation (2.3) we see that the weights for each observation decrease 

geometrically by a factor (1 - A) for each time step: 

Zt = A~t + (1- A)[A~t-1 + (1- A)Zt-2] 

= A~t + (1 - A)A~t-1 + (1 - A) 2 Zt-2 

=A { ~t + (1- >.)~t- 1 + (1- >.) 2ft -2 } + (1- >.) 3 Zt-3· 
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Continuing the recursion for t steps, we obtain 

t-1 

Zt = ,\ L (l- ,\)J~t-J + (1- ,\)t z o. 
j=O 

Using Equation (2 .4) we can show that E(Zt) = a 0 as follows. 

Using the formula for the sum of a geometric progression, we obtain 

t-1 . 1 - (1 - ,\)t t 
,\ "'(1 -- ,\)J = ,\[-----] = 1- (1- ,\) . 
~ 1- (1- ,\) ]=0 

10 

(2 .4) 

After substituting this formula into Equation (2.4) and using the fact that E(~t-j) = ao 

for j = 0, 1, 2, ... , t- 1, we obtain 

t-1 

E(Zt) =A L(1 - ,\)J E(~t-j) + (1- ,\)tao 
j=O 

If the observations ~tare independent random variables with variance a 2 , then the variance 

of EWMA statistics Zt is 

(2 .5) 

To derive this equation, we note that 

t-1 

a~t = Var[A L(l - ,\)j ~t-j + (1 -,\)tao] 
j=O 
t-1 

= Var[A L(l - ,\)J~t-J] 
j=O 

t-1 t-2 t-1 

= A2 [L Var((1 - ,\)-i~t-j) + 2 L L Cov((1 - ,\)j~t -j, (1- ,\)k~t-k)] 
j=O j=0k=j+1 

t-1 

= (j2 A2 L(l - A)2j. (2.6) 
j=O 

t-1 
The expression 2.:::: (1 - ,\)2J is the sum of t terms of a geometric progression with ratio 

j=O 
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(1 - A) 2. Therefore the sum is : 

t-1 t-1 (( A)2)t 
""' (1- A)2j = ""' [(1- A)2F = 1- 1- 2 
~ ~ 1- (1- A) 
j=O j=O 

1 - (1 - A) 2t 
A(2 _ A) A(2- A) # 0, O<A<l. (2.7) 

Then, substitution of Equation (2. 7) into Equation (2 .6) leads to Equation (2.5) . 

Since 0 < 1 -A < 1, we have that (1- A) 2t -----+ 0 as t -----+ oo, and therefore from Equa-

tion (2.5) the asymptotic value of the variance is 

2 2 A 
azt =a 2- A (2.8) 

When constant upper and lower limits are preferred for detecting change-points, the stan-

dard deviation used in the limits is usually the asymptotic value. Using the expression in 

Equation (2.5), the upper control limit of the EWMA chart is the following: 

- fA 
UCL = Hu = ao +Lay 2_ A, 

and the lower control limit is: 

where Lis a constant to be chosen (see Figure 2.2(b)). The process will be declared to be 

in an out-of-control state when Zt > Hu or Zt < HL. 

The first passage time of an E~VMA chart is: 

TL,U = inf { t > 0 : Zt < H L or Zt > H u}. (2.9) 

In this thesis, we mainly discuss the case of a positive change in distribution which crossing 

the upper limit raises alarm. This is called an "upper-sided EWMA" procedure. We then 

use the notation H u = I-I. 

The first passage time of an upper-sided EWMA chart is: 

TH = inf { t > 0 : Zt > H} , (2.10) 

where H is the control limit. 
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The ARL of the EWMA chart depends on the control limit H and the smoothing 

parameter A. used in defining Zt. An EWMA chart will be regarded as having an optimal 

design if the values of the parameters (A. , H ) give a minimum AD after change in a process 

mean. 

-
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Figure 2.2: EWMA charts 
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The equations of the EWMA procedure can also be written in other forms. For exam-

ple, Moustakides et al. (2008) used the following equations: 

where ,M[ are the EWMA statistics, typically T/t = q(~t) where q(et) is likelihood ratio 

statistics and 0 < K < 1 is a weighted smoothing paran1eter. 

The first passage time of an EWMA chart is: 

where THr H is the corresponding two-sided passage t ime and 0 < HL < 1 < H u are L, U 

the lower and upper boundaries . T he case HL = 0 corresponds to t he one-sided EWMA 

procedure. 
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2.4 CUSUM Procedure 

A CUSUM chart was proposed by Page (1954). This procedure is defined by the statistics 

yt which satisfies the following equation: 

yt = max(Yt- 1 + q(~t), 0), t = 1, 2, ... , Yo= 0, (2. 11) 

where 

( ) _ l dF ( x, a) 
q x - og dF ( x, ao) · (2 .12) 

The first passage time of a CUSUM chart is given by: 

T A = inf { t > 0 : yt > A}, (2.13) 

where A is the control limit. 

Many modifications of CUSUM algorithms have been given in the literature (see e.g. 

Hawkins and Olwell, 1998; Montgomery , 2005). In this thesis, we consider CUSUM charts 

when observations are from exponential , Pareto, Weibull and gamma distributions. The 

CUSUM formulas for these four distributions are as follows: 

Exponential distribution. The density function of the exponential distribution is: 

l
~e- ~, x ~ 0 

f(x) = 
0, X< 0 

Then, from Equation (2.12), we can find the function q(x) to be as follows: 

dF(x, a) 
q(x) =log dF( . x , ao) 

ao x(__L_l.) 
= log[-e ao a] 

a 
ao 1 1 . 

= log - + x (- - -). 
a a 0 a 

Pareto distribution. The density function of the Pareto distribution is: 

aka 
f ( x) = a+ 1 , x ~ k, a > 0 and k > 0. 

X 
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We can find the function q(x ) to be: 

( ) 1 
dF(x , a) 

q x = og dF(x, ao) 
aka x(ao+ l ) 

-log[-- ] - x(a+l) aokao 

= log[~k(a-ao)X(ao-a)] 
ao 
a 

= log [ -] + (a - ao) log k + ( ao - a) log x . 
ao 

Weibull distribution. The density function of the Weibull distribution is: 

x2::0 

x< O 

We can find the function q(x) to be: 

Gamma distribution. the density function of a gamma distribution is: 

x<O 

Y..,T e can find the function q ( x) to be: 

ao k x( 1 1 ) q(x) =log[(- )e a- oo ] 
a 
ao 1 1 

= k log(-) + x(--- ). 
a ao a 

14 

CUSUM is usually considered as a candidate for an optimal chart under mini1nax 

criterion (Lorden, 1971 ; Shiryayev, 1996). In reality its performance (for moderate values 

of ARL and small changes in parameters) can be inferior to the performance of EWMA 

as already noted by Lucas and Saccucci (1990) for the case of a Gaussian distribution. 
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2.5 Shiryayev-Roberts Procedure 

The discrete time Shiryayev-Roberts procedure was first introduced by Roberts (1966) . 

Pollak and Siegmund (1985) compared SR and CUSUM procedures for detecting a change 

in the drift of a Brownian motion process based on the conditional average delay times. In 

addition, Srivastava and Wu (1993) compared the EWMA , CUSUM and SR procedures 

based on the steady-state distribution as advocated by Shiryayev (1963). In a more recent 

paper, Mahmoud et al. (2008) evaluated and compared the performance of CUSUM and 

Shiryayev-Roberts procedures using the Markov chain Approach. 

The Shiryayev-Roberts procedure is defined by the statistics Rt which satisfies the 

following equation 

Rt = (1 + Rt-l)q(~t) , t = 1, 2, ... , Ro = 0, 

where 
q(x) = dF(x, a) . 

dF(x, ao) 

The first passage time of a Shiryayev-Roberts proced'Ure is given by: 

T B = inf { t > 0 : Rt > B} , 

where B is the control limit. 

2.6 Discussion 

(2.14) 

Common characteristics of control charts which have been used to evaluate and compare 

the performance of different control charts are average run length ( ARL) and average 

delay time (AD) . Examples of the interpretation of ARL and AD are as follows. An 

ARL=1000 means that a false out-of-control signal will be given on average every 1000 

observations when the process is actually in-control. An AD=20 means that on average 

20 observations will be required of a process that is actually out-of-control before a true 

out-of-control signal is given. Therefore, in a good control chart, the ARL should be 

sufficiently long that false out-of-control signals are kept at an acceptable level , whereas 

the AD should be sufficiently short. 

The Shewhart procedure is well-known to be useful when large changes in mean be-

tween the in-control and out-of-control states are considered. The CUSUM, SR and 
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EWMA procedures perform better for the case of small changes in parameters . How-

ever, the analysis of CUSUM, SR and EWMA charts is much more complicated than the 

analysis of the traditional Shewhart procedure (Lucas and Saccucci , 1990; Srivastava and 

Wu, 1993) . CUSUM is known to be an efficient tool under some condit ions (Lorden, 1971 ; 

Shiryayev, 1996). The difference in performance of SR and CUSUM charts is significant 

only for detection of small changes in a mean of Gaussian distribution, for large changes 

they have the same performance (Moustakides et al. , 2009). EWMA procedures are in-

herently simpler than CUSUM and SR. Moreover , it is also known to be more robust with 

respect to assumptions about process distributions than CUSUM (Lucas and Saccucci, 

1990; Ergashev, 2003). 



Chapter 3 

Methods for Evaluating the 

Performance of EWMA 

Various methods for evaluating the performance of the EWMA procedure have been stud-

ied in the literature (see Yashchin, 1987; Gan, 1990a, 1991; Srivastava and Wu, 1993; Borror 

et al., 1998; Ye et al., 2002). Three standard methods that are often used to evaluate Av-

erage Run Length (ARL) and Average Delay (AD) time are the Markov Chain Approach 

(MCA), the Integral Equation (IE) and the Monte Carlo simulation (MC) methods. This 

chapter give a survey of these popular methods and gives a derivation of formulas for the 

ARL for the three methods. Section 3.1 contains a discussion of MCA, Section 3.2 gives 

a discussion of IE and Section 3.3 gives a discussion of MC. 

In this chapter, we present the basic theory, derivations and discussions based on the 

following references: Lucas and Saccucci (1990); Champ and Rigdon (1991); Ross (1996); 

Borror et al. (1998); F'u et al. (2002); Borovkov (2003); Montgomery (2005). 

3.1 Markov Chain Approach 

The Markov Chain Approach is one of the most effective methods for studying the charac-

teristics of CUSUM and EW:NIA procedures. This approach has been discussed by many 

authors (see for detail Brook and Evans, 1972; Lucas and Saccucci, 1990; Vardeman and 

Ray, 1985; Champ and Rigdon, 1991). 

Definition 1. A Markov Chain is a sequence of random variables X 1 , X 2 , X3, ... with the 

17 
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Markov property 

3.1.1 Properties of Markov Chains 

We define the probability of going from state Xi to state Xj in N steps as 

and the single-step probability as 

We call each move a step. If the chain is in state xi, then the probability of moving to state 

Xj at the next step is denoted by Pij. These probabilities are assumed to be independent 

of time and to be independent of any past states that the chain may have passed through 

to reach state Xi. These single-step probabilities are called transition probabilities and Pij 

is called the transition probability from state Xi to state Xj. 

A state Xi of a Markov Chain is called "absorbing" if it is impossible to leave this state. 

Therefore, the state Xi is absorbing if and only if 

Pii = 1 and Pij = 0, for i # j. 

3.1.2 Derivation of the ARL for Markov Chain 

Let Xt be a homogeneous Markov Chain with tates Xj, j = 1, 2, . .. , N, N + 1. We 

assume that states Xj, j = 1, 2, ... , N are in-control states and state XN+l is an out-of-

control state. The absorbing time Ti is the time such that, starting at an in-control state 

Xi, the chain reaches state XN+l for the first time, that is: 

Ti = inf{t > 0: Xt = XN+d, Xo =Xi, i::; N. 
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We first consider the case when the state XN+l is absorbing and the states Xi, i ~ N are 

all transient states, then t he matrix of transition probabilities has the form 

where 

P=[R or 
N 

R is the submatrix of transition probabilities (Pij) for states 1, ... ,N, 

I N is the unit N x N matrix, 

l N is the unit N x 1 vector (all elements are 1) , 

ON is zero N x 1 vector. 

The k stage transition probability matrix pk is useful for evaluating ARL because it 

contains the probability that the chain goes from one state to another state in k steps. 

This matrix is 

The vector (IN - R k) lN is the vector of transition probabilities from states i < N + 1 to 

the state N + 1 in k steps. Hence, 

P( T~ ~ k!Xo = Xi) = ele1nent[ (IN -- R k) lN ]( i) 

= sum of row (i) (IN - R k) 

(i)T( k) = PN I N-- R~ l N, 

where p }$T is the initial probability vector with 1 at ith position and 0 otherwise. Then 

P(ri = k!Xo =xi)= P(ri ~ k!Xo =xi)- P (ri ~ k - 1IXo =xi) 

= p~T(IN- Rk - (IN - Rk- 1))1N 

= p }$T (R k-1- Rk)lN. (3.1) 

Denote ARL of N approximation to ARL(N) based on Markov Chain N + 1 states it 
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describes above . Then using Equation (3 .1 ), we obtain 

00 

ARL(N) = L kP (Ti = kiXo =xi) 
k=O 
00 

= L k pwT (R k-1 - R k) l N 
k=O 
00 

= L PWT ((k + l)R k- k R k) l N 
k=O 
00 

= Lp}YTR kl N 
k=O 

- (i)T(I - R )- 11 - PN N N , (3.2) 

One may expect that when N--+ oo, ARL(N) and AD(N) converge to true values ARL 

and AD. However, we have failed to find any theoretical results of this type in the literature. 

In deriving Equation (3.2) , we have used the following theorem: 

00 00 

Theorem 3.1.1. If L Rk converges absolutely) then L Rk = (IN- R)- 1 . 

k=O k=O 
00 

Proof. If :Z: R k converges absolutely then we can multiply each term of the series by 
k=O 

another matrix and, in particular, we have the following relation 

00 00 

(IN- R) LRk = L(Rk- R k+l) 
k=O k=O 

00 00 

= LRk - LRk 
k=O k=1 

= R 0 =I. 

00 

Therefore, :Z: Rk = (IN - R) - 1 . 
k=O 

D 

3.1.3 The Procedure to Obtain ARL Using Markov Chain Approach 

For the Markov Chain Approach, the in-control states are defined as a set of discrete states 

in the region between a lower limit HL and an upper limit Hu. The region below f!L and 

above Hu is regarded as the absorbing state. The procedure to obtain the ARL using the 

MCA is then as follows : 

• Divide the interval between lower and upper bounds for in-control parameter values 
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( H L, H u) into N subintervals. These subintervals are used as the N in-control states 

of a Markov Chain. 

• Denote the midpoints of theN subintervals as mj, j = 1, 2, .. , N . Calculate a lower 

L j and upper Uj bound of the lh subinterval as follows: 

L . _ H (j - 1) ( H u - H L) 
J- L+ N ' 

U. _ H j(Hu - HL ) 
J- L+ N ' 

The midpoint of the jth subinterval is then 

0 

H 
2N 

~ 

"' 
H 
JV" 

3H 
2N 

m· = ~(L· + U·) = HL + (2j -1)(Hu- HL). 
1 2 1 1 2N 

• 

2H 
N' 

... 
l 

3H 
N 

Sub:btterval 

"' 

2() -1)H 
2N 

• 
(j --1)H )H 

lJ' N 

H 

L _________ ~:::~::~ ________ _j 
Figure 3.1: In-control region divided into N subintervals of the Markov Chain 

In this thesis, we are interested only in the one-sided case, i.e. the in-control region 

is between 0 and H u = H. Then the in-control states of the Markov Chain are 

defined as follows (see Figure 3.1): 

L. _ (j- 1)H 
J- N ' 

jH 
Uj=-N 

(3 .3) 

(3.4) 
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and the midpoint is defined as 

(2i- 1)H 
m·=----

t 2N . (3.5) 

• The next step is to const ruct the matrix R and the transition probabilities Pij. For 

EWMA statistics, the transition probability Pij is the probability that Zt will move 

from interval ito interval j. For the MCA, Zt-1 is assumed to be the midpoint , mi 

of the ith interval. Therefore , Pij is the probability of a transition from the midpoint 

of the ith interval to anywhere in the lh interval. This can be defined as 

Then, by using t he recurrence relation for the EWMA procedure, t he probability 

can be expressed as 

T he probability can be reduced to 

Pij = P(Lj < (1- >.)m,i + )..~t < Uj) 
L ·- (·1- /\)m· . U·- (1- >.)m· 

= P( 1 
).. t < ~t < 1 A t). 

Then, substituting for Lj , Uj using Equation (3.3) and (3.4) , we obtain 

(j-l)H .H 
-N- -· (1 -- >. )mi J.ff- (1 -- A)mi 

Pij = P[ A < ~t < --):---] 
= P[(j- 1)H _ (1 - >.)mi c j H _ (1 - A)mi). 

N A A < '""t < NA A 

Substit uting m i from Equation (3.5), we obt ain 

P·· =P[(j - 1)H _ (1 - >.) ((2i - 1)H ) c jH _ (1 - A)((2i- 1)H)] 
tJ N A A 2N < '""t < N A A 2N ' 

_ [H (2(j - 1) - (1- A)(2i - 1)) _ H (2j - (1 - A)(2i- 1))] 
- p 2N A < ~t < 2N A 
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then 

.. _ (H(2j- (1- A)(2i- 1))) _ (H(2(j -1)- (1- A)(2i - 1))) 
p 'LJ - F 2N A F 2N A ' 

where F( .) is the cumulative distribution function. 

• Construct the vector Pi(N) = [0, ... , 0, 1, 0, ... , 0], i = 1, 2, ... , N by a 1 x N matrix 

with 1 at ith coordinate and zeros elsewhere . 

• Calculate t he ARL by using Equation (3.2). 

3.2 Integral Equations 

Crowder ( 1987) used t he Integral Equation method to develop an approximation for the 

ARL of a Gaussian EWMA chart and obtained a Fredholm Integral Equation of the second 

kind. Champ and Rigdon (1991) used t his method to evaluate the ARL for both the 

CUSUM and EWMA charts and compared the results with results from MCA. Intensive 

studies of the Integral Equation have been carried out for the case of continuous-time 

processes by Srivastava and Wu (1993) and for the case of discrete processes by Srivastava 

and Wu (1997) . In this section we will give a summary of the main properties of the 

Integral Equation method that we will use in this thesis. 

3.2.1 The Integral Equation Method for Calculating ARL 

We assume that the EWMA statistic Zt is defined as in Equation (2.3). We first consider 

the EWMA procedure when 6, 6 , ... are i.i.d. with a probability density function f(y) . 

We assume that the system is in-control at timet if the EWMA statistic Zt is in the range 

HL ::; Zt ::; Hu and out-of-control if Zt > Hu or Zt < HL, where HL is a constant lower 

bound and Hu is a constant upper bound. We also assume that the system is initially in 

an in-control state u, i.e. Z 0 = u and HL ::; u ::; H u . 

We now define a function L(u) as follows: 

L(u) = Eoo(TL,u), Zo = u, (3.6) 

where T£ ,u is the stopping time defined in Equation (2.9) . Then L(u) is the ARL for 

initial value u. There are two possibilities for Z1 after the first observation , 6, is made. 
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If 6 gives an out-of-control value for zl ) then 

Z1 = (1 - A)Zo + A6 > H u or Z1 = (1 - A)Zo + A6 < H£ . 

In this case the run length will be 1 because there will be an immediate out-of-control 

signal. If 6 gives zl in an in-control state, then 

HL < (1- A)Zo + A6 < Hu. (3 .7) 

Then one observation will have been made and on average L(Z1 ) = L((1- A)Zo + A6) 

more observations will be made before an out-of-control signal occurs. The inequality (3.7) 

can be rewritten in the form 

HL - (1 - A)Zo Hu - (1 - A)Zo 
A < 6 < A . (3.8) 

The probability that 6 satisfies the bounds in Equation (3.8) for a probability distribution 

function !(6) is given by: 

H u - ( 1 - A)Zo 

H L -- (1 - A)Zo H u - (1 - A)Zo 
P( A < 6 < A ) = J f( y)dy, (3.9) 

where f(y) is the probability density function. 

Then, following the rnethod given in Champ and Rigdon (1991), if we let initial Zo = 'U 

and make the subst itution y = ~t, we can rewrite the formula for the L(u) defined in 

Equation (3.6) as follows: 

HL - (1 - A)u H u - (1 - A)u 
L(u) = (1 - P [------ < 6 < ---- --]) 

A A 
H u - (1 - A)u 

+ J (1 + L((l - .\)u + .\y) ) f(y)dy 
H & - ( 1- A)u 

A 

H u - ( 1 - A)u 

= 1 + J £ ((1 - .\)u + .\y)f(y)dy, 
H li -( 1 - A)u 

A 

or finally, on changing the integration variable , we obtain 
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Hu 
1 j y- (1- A)u 

L(u) = 1 + ~ L(y)f( A )dy. (3. 10) 

HL 

In this thesis we consider mainly the upper-sided case for nonnegative random variable ~t· 

Since Zt 2: 0 for the case of nonnegative ~t we can assume HL = 0 and H u =H. Then we 

get 
H 

L(u) = 1 + ~ j L(y)f(y- (\- >. )u)dy (3.11) 
0 

Note that the AD also can be found by Equation (3.11) where f(y) is the probability 

density function with an out-of-control parameter a. 

3.2.2 Numerical Methods for Solving the Integral Equation 

In general, the Integral Equations (3 .10) and (3.11) cannot be solved analytically for L(u) 

and it is necessary to use numerical methods to solve them. We shall use a quadrature 

rule to approximate the integral by a finite sum. Any quadrature rule is defined by a 

set of points { aj, j = 1, 2, ... , n} on the interval (0, .H] and a set of constant weights 

{wj, j = 1, 2, ... , n}. The approximation for an integral is of the form: 

H n 1 W(y)F(y)dy ~ L WjF(aj), 
0 j=l 

(3.12) 

where W(y) and F(y) are given functions. Different choices for the function W(y) and 

the sets of points and weights define different quadrature rules. The quadrature rules that 

we use in this thesis will be discussed in Chapter 5. 

Using the quadrature rule (3 .12), a numerical approximation .L( u) for Integral Equa-

tion (3.11) can be found as a solution of system of algebraic linear equations: 

- 1 ~ - a j - ( 1 - A) ai 
L(ai) = 1 + ~ ~ WjL(aj )f ( A ), i = 1, 2, . .. , n. (3.13) 

j=l 
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That is 

The above set of n equations in n unknowns can be rewritten in a matrix form as follows. 

We define a column vector L with components: 

Lj=L(aj) , j=1,2 , ... ,n 

and ann x n matrix R with matrix entries given by: 

The system of algebraic linear equations can then be written as the matrix equation: 

L = 1 + RL, 

where 1 is a column vector of n 1 's. Therefore 

L- RL = 1, 

or, equivalently, 

(I- R)L = 1. (3.14) 

This equation can be easily solved numerically to obtain the vector L and therefore the 

components L(aj) = Lj. After substituting the values for L(aj) into Equation (3.13) and 

replacing the ai by u, we obtain an approximation for the function L( u) as 

L(u) = 1 + ~ t w1L(aj)J(a1 - (~- A)u) 
j=l 

(3.15) 

One of the simplest quadrature rules is the composite trapezoidal rule in which the function 
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W (y) = 1 and t he points aj are n equally spaced points on the interval [0 , H] given by 

a 1 = 0, an = H , aj = (j - 1)h , j = 2, 3, .. . , n - 1, where h = n~l. The weights Wj are w1 = 
Wn = ~h and Wj = h , 2 ~ j ~ n- 1. On substit ut ing these values into Equation (3 .15) , 

we obtain an approximate formula for t he function L (u ) in Equation (3.11): 

L ( u) 1 + 2~ [ L ( o) J ( - ( 1 ~ A )u) + L (H ) J ( H - ( ~ - A) u)] 
+~ ~ L(aj)J ( aJ - ( ~ - .\ )u ) ' (3.16) 

where the values of L(aj) are the components of the solut ion vector L of Equation (3.14) . 

3.3 Monte Carlo Simulations 

Simulation studies can be used when exact analytical formulas are not available. MC 

simulation studies are also very useful for comparing t he performance of different charts, 

such as Shew hart, EWMA, CUSUM and SR , and for checking the accuracy of approximate 

formulas , e.g. those obtained for EWMA charts by the Markov Chain or Integral Equation 

methods described in sections 3.1 and 3.2. However, the simulation process is well-known 

to be very time consuming. In this thesis , we use MC simulation in order to compare the 

performance of EWMA, CUSUM and SR charts and to test the accuracy of the formulas 

and numerical results that we obtain for EWMA charts. 

The MC method is based on the Law of Large Numbers (LLN) and the Central Limit 

Theorem (CLT) (Ross, 1997; Borovkov, 2003) . 

Theorem 3 .3.1. {Strong Law of Large Numbers {SLLN)). Let Y1, Y2, ... , Yn be a sequence 

of independent identically distributed {i . i. d.) random variables with finite expected value 
n 2 - 1 E(Yi) = m and finite variance Var(Yi) = CJ . If Yn = n 2:: Yi, then 

i=l 

P { lim Yn = m} = 1. 
n--+CX) 

Let 
n 

2:: (Yi- m) 
~ - _i=_l __ _ 
n- y1riCJ 

X 

<I> (y) = ~ j exp{ -y
2 

}dy. 
v 2?T 2 

-(X) 

Theorem 3.3.2. {Central Limit Theorem {CLT)) . Let Y1 , Y2 , ... be a sequence of i.i.d. 
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random variables such that E (Yi) = m , EY/ < oo and Var(Yi) = CJ2 > 0. Th en 

d 
~n __., ~ rv N(O, 1) 

or, equivalently, for ally E ( -oc , oo) 

P(~n :S y) __., <I> (y) . 

Suppose that we want to compute the number 

H = E [g(Y)], 

where g(Y) is a given function andY is a random variable. If we can generate a sequence 

of independent random variables Y1, Y2, ... Yn, such that all Yi have the same distribution 

as Y, then according to SLLN we have 

1 n 
Hn :=- Lg(Yi) ~- E[g(Y)]. 

n 
i=l 

To estimate an accuracy of the approximation, we assume 

V ar(g(Y)) := CJ2 (g) < oo 

and note 
Var(Hn) = Var(g(Y)) = CJ2(g) _ 

n n 

Then, applying CLT we have a bound: 

I
II - Ii i < 3 CJ(g) 

n - fo 

with probability approximately equal to 0.997 .. . (for large n). The constant CJ2(g) is usually 

unknown but it can be estimated by: 
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3.4 Discussion 

A variety of methods for obtaining numerical approximations for ARL and AD for EWMA 

charts have been given in the literature. In this thesis, we shall obtain explicit formulas 

for the ARL and AD of EWMA charts for observations from an exponential distribution. 

Explicit formulas are unknown when observations are from gamma and Weibull distribu-

tions. In Chapter 5 we develop numerical approximations for these distributions by use of 

the Integral Equation method discussed in Section 3.2. 



Chapter 4 

EWMA Control Charts for 

Change in Exponential 

Distribution 

In this chapter, we study EWMA control charts designed to test changes in the Expo-

nential distribution. The structure of this chapter is as follows . In Section 4.1, we define 

the Exponential family of distributions. In Section 4.2, we use the method of Integral 

Equations to derive explicit formulas for ARL and AD of E\VMA charts for observations 

from an exponential distribution. In Section 4.3, we compare explicit formulas for Ex(eTb) 

for EWMA charts with the results of Jacobsen (2007). In Section 4.4, we compare results 

obtained from the suggested formulas for ARL and AD for EWMA charts with results 

obtained from Monte Carlo simulations and other 1nethods such as 1v1arkov Chain and In-

tegral Equation methods. In Section 4.5, we compare the results obtained for the EWIVIA 

charts with results obtained for CUSUIVI and Shiryayev-Roberts charts . In Section 4.6, we 

find optimal designs for EWMA charts for fixed values of ARL and parameter change (a). 

In Section 4.7, we present explicit formulas for the EWMA characteristics for observations 

from Pareto distribution. 

4 .1 'I,he Exponential Family of Distributions 

Definition 2. A density function is a member of the exponential family if it can be written 

in the f orm: 

f (x;"() = h(x)c('"'f)e(g(-y)t(x)), -oo < x < oo, ( 4.1 ) 

30 
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where h , c, g, t are known fun ctions and "/ is a constant parameter . Further, if t(x) = x, 

then the distribution is said to be in canonical form. The function g( "() is called a natural 

parameter when the distribution is in canonical form. 

Many of the well-known distributions can be put into this form. One example is shown 

in Example 1 

Example 1. Exponential distribution: 

( le-~ x2::0 
f(x) = a ' 

0 , X< 0 
(4.2) 

This can be written in the form 4.1 with h ( x) 1{x > 0} , c(a) l 
a' g(a) 

a' t(x) = x. 

Nate that 1 {.} is the indicator function, equal to one if the condition is true and 0 

otherwise. Furthermore, the natural parameter is g(a) = -~. 

1. Similarly, Bernoulli, Poisson, Normal, gamma, and inverse Gaussian distributions all 

belong to the exponential family and they can all be written in the canonical fonn. 

2. Lognormal and Weibull distributions also belong to the exponential family, but they 

can not be written in the canonical form. 

Let ~t, t = 1, 2, ... be sequentially observed independent random variables with a distribu-

tion F(x , a), where a is a parameter. We study the change-point detection problem, i.e. 

of detecting if and when the value of the parameter a changes. Recently, Sukparungsee 

and Novikov (2006) have used the martingale approach to derive approximate analytical 

formulas for ARL and AD in the case of a Gaussian distribution and some non-Gaussian 

distributions (see details Sukparungsee and Novikov, 2007). In this chapter, we are in-

terested in obtaining explicit formulas for the case when the observations are from an 

exponential distribution. 

The change-point model for the exponential distribution given in Equation ( 4.2) may 

be stated as follows . We assurne that: 

(

Exp(ao), 
~t t'.J 

Exp(a) , 

t = 1, 2, . .. , v- 1 
(4 .3) 

t = v , v + 1, ... , a > ao, 
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where a 0 and a are known parameters. Usually, the parameter value ao is assumed to 

define the in-control state and the parameter value a to define an out-of-control state. 

We assume that the value a 0 is maintained up to some unknown time v- 1 and that at 

time v the parameter value changes to the new value a > ao. The time v is called the 

"change-point t ime". 

4.2 Explicit Formulas for One-sided Exponential EWMA 

In this section we will first discuss the explicit analytical formulas obtained by Novikov 

(2006) for expectation of stopping times of a first-order autoregressive (AR(1)) process 

generated by observations from an exponential distribution. In his derivation of these 

formulas, Novikov used the theory of martingales. We will show how Novikov 's explicit 

formulas for AR(1) processes can be derived by the method of Integral Equations. We 

will then derive explicit formulas for the expectation of stopping times for a one-sided 

exponential EWMA process by adapting the AR(1) formulas. 

4.2.1 Expectation of stopping times for a first-order autoregressive pro-

cess 

Novikov (2006) studied a first-order autoregressive process AR(1) defined by: 

Xt = f3Xt-1 + TJt, t = 1, 2, ... , Xo = x, (4.4) 

where "lt is an independent identically distributed (i.i .d.) exponential variables with pa-

rameter 1 (rJt r-v Exp(1)) , where x and f3 E (0, 1) are given constants. The stopping time 

is given by 

Tb=inf{t>O:Xt>b}, Xo=x, b>x. (4.5) 

In this chapter notations Ex (.) denote the expectation given the initial condition Xo = 
x. Novikov (2006) derived explicit formulas for Ex(fJTb) and Ex(Tb), {) E (0, 1) , using the 

theory of martingales and obtained the following results for the case 'Tit rv Exp(1). 

Theorem 4.2.1. Let 0 < fJ < 1, 0 < x <b. Then for any {) E (0, 1) 

E (()Tb) = {)T(x, e) 
X T(b/ {3, {))) (4.6) 
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where 

Corollary 4.2.2. 

where 

T ( e) = ~ (f3x)k (e , f3)k o < e < 1. 
x, ~ k! ' 

k=O 

b 
Ex(rb) = G(/3) + 1 - G(x). 

G(x) = £: (f3x)k(~!,f3)k-l. 
k=l 
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(4.7) 

(4.8) 

(4.9) 

The functions (8, (3)k and ((3, (3)k _1 in Equations (4.7) and (4.9) are q-Pochhammer 

symbols from t he theory of q-series (see e.g. Andrews et al., 1999) : 

m IT (1 - e (Jj -l ) : = ( e, {3) m, ( e, (3) o = 1. (4.10) 
j=l 

Using this notation, we have 
m 

({3, f3)m = IT (1 - {3j). 
j=l 

We will now give another proof of Corollary 4.2.2. 

Proof. We define a function Q(x ) as follows: 

( 4.11) 

where I{X1 > b} and I{X1 :::; b} are indicator functions. Note that on the set {X1:::; b} , 

E (TbiXI) = 1 + Q(XI)· Then, we have 

Hence, for x:::; b, the function Q(x) is a solution of the following Integral Equation: 

Q(x) = 1 + Ex(I{Xl :S b}Q(XI)). 

Since P{X1 > y} = P{6 > y -(Jx } = ef3x-y, X 1 = (3x+ 6 > (Jx t his equation can be 

written in the following form 

Q(x ) = 1 + l Q(y)eilx- ydy 
,Bx 

( 4. 12) 
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or, equivalently, 

(4 .13) 

Obviously, Q(x ) is a continuous function for x < b. The last expression implies that Q(y) 

is also a continuously differentiable function for x < b. 

Differentiating the left hand side of ( 4.13) , we obtain 

Different iating t he right hand side of (4.13), we have 

d 1b - [e-(3x + Q (y)e-Y dy] = -{3e-(3x- {3Q (f3x)e-(3x 
dx (3x 

and hence we obtain 

or, equivalently, 

Q'(x) = f3Q(x)- {3Q(f3x)- {3. (4.14) 

To solve this equation we try a power series solut" on of the form 

(4.15) 

where the coefficients C and ck , k = 1, 2, ... are to be chosen so that Q(x) is a solution of 

Equation ( 4.14). 

Differentiating Equation ( 4.15) we obtain 

00 k-1 00 k 00 k 
Q'( ) = "' CkX = "' Ck+lX = ' Ck+lX 

X L..t (k --- 1)! L..t k! Cl + L..t k! 
k=l k=O k=l 

(4 .16) 

Next , we substit ute Equations (4 .16) and (4.15) into Equation (4.14) and obtain 

00 k 00 k 00 ({3 ) k 
Cl + "' Ck+lX = {3C + {3"' CkX _ {3C _ {3 "' Ck X _ {3 

L..t k! L..t k! L..t k ! 
k=l k=l k=l 

= ~ ckf3(l - {Jk)xk _ {3 
L..t k! 
k=l 
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and therefore we must have c1 = - f3 and 

00 k 00 ( k) k 
""""" ck+1x = """"" ckf3 1 - f3 x . 
~ k! ~ k! ( 4.17) 
k=1 k=1 

Since the coefficients of xk on the left and right hand sides of Equation ( 4.17) must be 

equal, we obtain the following recurrence relation for the coefficients CkJ k = 1, 2, ... , 

( 4.18) 

The solution of Equation ( 4.18) can be obtained by induction for k ~ 1 given c1 = -{3 . 

We obtain 

and therefore 

c2 = c1f3(1 - {3) = - {32 (1 - {3) 

c3 = c2f3(1 - {3) = -{33(1- /3)( 1 - {32 ) 

C4 = C3j3(1- {3) = -{34(1- {3)(1 - {32)(1 - {33 ) 

k-1 
Ck = -{3k II (1- f3j) = -f3k(f3, ,B) k--1, k = 1, 2, ... , 

j=1 

where ({3, f3)k- 1 is the q-Pochham1ner symbol defined in Equation (4.10). 

(4.19) 

Then, on substituting Equation (4.19) into Equation (4.15), we obta1n the result 

Ex(rb) = Q(x) = C- f ((3x)k(~;f3)k_, = C- G(x) , ( 4.20) 
k=1 

where 

G(x) = f ((3x)k(~!,f3)k-1 ( 4.21) 
k=1 

and G(O) = 0. 

Now we show that 

C = G(b/{3) + 1. ( 4 .22) 
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To see this , we note that substitution of x = 0 into Equation ( 4. 12) gives 

and t herefore 

Eo(Tb) = C = 1 + fob Q(y)e-Ydy , 

c = 1 + l [c- G(y)]e-Ydy , 

C = 1 + C(1 - e - 6) -16 
e-YG(y)dy , 

Ce-b = 1 - l b e- YG(y)dy 

Eo(Tb) = C = e6 - e6 fob e- YG(y)dy . 
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( 4.23) 

Next, we need to find J~ e-YG(y)dy. Now, from Equation (4. 20), we have G(x) = C- Q(x) 

and therefore, from Equation ( 4.14) 

d 
dx G(x) = {3G(x)- {3G({3x) + {3 

which imply that 

_:!_(e-f3xG(x)) = -{3e-f3xG(x) + e-f3xG' (x) 
dx 

= -{3e-0TG(x) + e--f3x[f3G(x)- (3G(,f3x) + ,6] 

= --{3e-{3xG(,6x) + {3e-{3x . 

Integrating with respect to x on the interval [0, b/ {3] both parts of the last equation we 

obtain 

1
b/f3 d . 1 b/f3 1b/f3 -(e-f3x G(x))dx = -{3 e-f3xG(f3x)dx + {3 e-f3xdx. 

o dx o o 

After changing t he integration variable to y = {3x, we have 

or, equivalently, 

( 4. 24) 



4.2. Explicit Formulas for One-sided Exponential EWMA 

Hence, substituting Equation ( 4.24) into Equation ( 4.23), we find 

eb- eb fob e-YG(y)dy 

eb- (eb- G(b/(3)- 1) 

G(b/ (3) + 1. 

Finally, Equations ( 4.25) and ( 4.21) together with ( 4.20) imply 

Ex(Tb) = Q(x) = C- G(x) = G(b/(3) + 1 - G(x), 

where 

G(x) = f= (f3x)k(:!· f3)k_, 
k=l 

The proof of convergence of the series 

We have that 0 < (3 < 1. Since 

k 

(fJ ,fJh-1 = IT (1 - f3j) < 1 
j = l 

t hen 

IG(x) I :S f= (f3~1) k ({3, f3lk-l :S f= (f3~1) k = e~x 
k=l k=l 
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( 4.25) 

D 

and the series f (.61:!1)k = ef3x is convergent for Vx E JR . Then based on the comparison 
k=l 

test we can claim that the series G ( x) is absolute convergent for V x E lR and 0 < (3 < 1. 

The proof of Corollary 4.2.2 is complete. 

4.2.2 Expectation of Stopping Times for a One-sided EWMA Procedure 

In this subsection, we adapt the explicit formulas of Corollary 4.2 .2 to obtain formulas 

of ARL and AD for an EWMA procedure for the change in the exponential distribution. 

For convenience, we will let the in-control parameter ao = 1 and assume that the out-of-

control parameter a > 1, i.e. the in-control parameter has the exponential distribution e-t 

and the out-of-control parameter has the distribution ~e-tfa. Note that , for the AR(1) 

process considered in Subsection 4.2.1 , the random variable 'TJt is assumed to have the 

exponential distribution E xp(1). 
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The definit ion of an EWMA process Zt is as follows (see Equation (2 .3) ) 

Zt = (1- A)Zt -1 + A~t , t = 1, 2, ... , Zo = ao = 1 ( 4.26) 

and the stopping time for a one-sided case is considered as the following form 

TH = inf { t > 0 : Zt > H}. ( 4.27) 

It is convenient to define a new variable Zt = 'lt. Then ( 4.26) can be written as follows: 

- 1 
Zo = ~ - ( 4.28) 

Equation (4.28) can be expressed in the form of the AR(1) formula in Corollary 4.2.2 by 

setting (1- A) = {3, ~t = rJt t'V Exp(1) , x = 1 and lf: = b. The stopping time for the Zt 

process is then: 
- H 

TH = inf { t > 0 : Zt > -:\}, 

where by Corollary 4.2.2 , 

where 

then we obtain 

( ) Loo (1- >.)k(1)k(1- A, 1- A)k-1 (( H )k ) 
El TH = 1 + -- - 1 . 

>: -x- k! 1 - A 
k=1 

( 4.29) 

( 4.30) 

( 4.31) 

( 4.32) 

The expectation of stopping time in Equation ( 4.30) corresponds to the ARL defined for 

an EWMA process in Equation (2.1). In terms of the EWMA statistics, Corollary 4.2.2 

can be restated as follows (note that the notation Ex for the AR( 1) process has been 

changed to the notation E00 for the EWMA process): 

Proposition 4.2.3. The ARL of one-sided exponential EWMA 'is: 

( 4.33) 

where G(x) is defined in Equation (4.31). 
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We now show that, by a suitable modification of the AR(1) formulas, we can obtain an 

EWMA formula for AD in the case of observations from the exponential distribution. We 

assume that the process is initially in the in-control state ao = 1, i.e. the out-of-control 

EWMA process has Z0 = 1. We also assume that the observations from the out-of-control 

distribution are given by ~t "' Exp(a). The AR(1) formulas assume that the distribution 

is Exp(1). To obtain the formulas for an Exp(a) distribution from the formulas for an 

Exp(1), we note that if ~t "'Exp(a), then rJt = ~ "'Exp(1). Therefore, we replace ~t in 

Equation ( 4.26) by CXTJt and obtain: 

Zt = (1- .\)Zt-1 + ACXTJt, t = 1, 2, ... Zo = ao = 1 ( 4.34) 

and the stopping time for a one-sided case is typically 

TH = inf { t > 0 : Zt > H}. (4.35) 

Equation (4.34) can be transformed into the same forrn as the AR(1) relation in Equa-

tion ( 4.4) by making the substitutions Zt = f~ and (3 = 1 - .\. The EWMA equation is 

then: 

with the stopping Lime 

- 1 
Zo =a.\' rJt "'Exp(1) , 

- I-I 
TH = inf {t > 0 : Zt > \}, CX/\ 

where from Corollary 4.2.2, 

H 1 
El(T.JL) = G( .\( .\) ) + 1- G(-,) 

.X a.X a 1- CX/\ 

and G(x) is defined in Equation (4.31). 

( 4.36) 

( 4.37) 

( 4.38) 

The expectation of stopping time in Equation ( 4.38) corresponds to the AD defined 

for the EWMA process in Equation (2.2) with v = 1. In terms of the EWMA statistics, 

Corollary 4.2.2 can be restated as follows (note that the notation Ex for the AR(1) process 

has been changed to the notation E1 for the EvVMA process): 

Proposition 4.2.4. The AD for one-sided exponential EWMA is: 

( 4.39) 
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where G(x) is defined in E quation (4.31). 

4.3 Comparison of Numerical Results for Ex( ()Tb) 

In this part, we shall discuss the case when 771 in Equation ( 4.4) is exponentially dis-

tributed and we shall compare the explicit formula in Theorem 4.2.1 for Ex(B7b) with 

results obtained by Jacobsen (2007). 

Jacobsen (2007) considered an autoregressive process for the case where random vari-

ables 17t have a distribution function of the form: 

( 4.40) 

where 0 < p ~ 1 and q = 1- p . He then assumed that the functions p+ and p - are linear 

combinations of exponentials , where p + is a distribution function concentrated on [0 , oo) 

given by: 
r r 

p +(dt) = L G:kJ.-lke- J-L ktdt (t > 0) , with L O:k = 1 ( 4.41) 
k=l k= l 

and p - is a distribution function concentrated on ( -oo, 0] given by 

r it IF- (dt) < oo . 
l r- oo,o] 

( 4.42) 

J acobsen (2007) used the Laplace transform method to derive explicit formulas for Ex (fFb) . 

T he Laplace t ransform L + of p + is given by 

( 4.43) 

The Laplace transform L - of p- is given by 

( 4.44) 

Jacobsen (2007) stated and proved Theorem 4.3.1 (formulated below) for an autoregressive 

process 

Xt = f3 Xt - l + rJt , Xo =X, 17t rv F(dt) , ( 4.45) 
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where 0 < {3 < 1, F is defined in Equations (4.40), (4.41) and (4.42), the stopping time is 

Tb = inf { t > 0 : X t > b} 

and the overshoot Xb := XTb - b. 

Theorem 4 .3 .1. Assume that m ::; r, 0 < f) < 1 and 0 < (3 < 1. Th en for ( ~ 0 and 

x:s; b 
r oo 

Ex( fJTbe-(Xb) = L L Cmj( fJ )e!3j !-Lmx, 
m=1 j=1 

where the coeffi cients Cmj ( 8) are defin ed as foll ows: 

For j ~ 2 and c:no = 1, 

where 
j-1 

c:n,j-1 = IT (pL+(-{3l Jlm) + qL -( fJ lJlm)) with p+ q = 1 
l=1 

and the column vector C1(8) := (cm(8))1<m<r is given by 

wit.h M( fJ ) the r x r-m atrix with entries 

( 4.46) 

( 4.4 7) 

( 4.48) 

(4.49) 

In particular, the formula in Theorem 4.2.1 for Ex(fFb) is applicable for the case when 

random variables in ( 4.45) are exponentially distributed. To compare the results we sub-

st itute the values o:k = Jlk = p = r = 1 and ( = 0 into the formulas in Theorem 4.3 .1. 

If we substitute these values into Equation ( 4.46) , we obtain 

00 

Ex(fJ 7 b) = L C1j (fJ )e131 x. 
j=1 
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Then substitution of Equation ( 4.4 7) into Equation ( 4.46) gives t he result: 

00 

Ex({Fb) = en(B)e,6x + 2: e1j(B)e,6Jx 
j=2 
00 j-1 

_ ( ) ,6x ~ ( ) (jJ -1 II 1 ,L)J x - en e e + L..., en e (1 - f3 l) e . 
j=2 l=1 

Then from Equation ( 4.48) , we obtain 

Then for t he value of M- 1 (8) = Mn (B) in Equation (4.49), we obtain 

00 

( ) 
_ ~ j * 1 (,6H1_1)b 

Mn e - 1 + e L....- e e1,j ( 1 _ [3]+1) e 
]=0 

1 00 (,6J+1_1 )b 
- 1 e * (,6-1)b e ~ (jJ * e - + e1,0 ( 1 - {3) e + L..., e 1,j -(1--- [3-]+_1_). 

J=1 

Note that ei,0 = 1, then 

Then, on substituting Equation ( 4.51) into Equation ( 4.50), we find 

00 +1 
ee-b ~A1- 1 (B)e,6x + ee-b L (jJ- tjJ X 

j=1 n (1-,61) 
1=1 

e<f1-1)b 00 
. j 1 ec.e.i·-l-1-l)b 

1 + e (1-,6) + e 2: (jJ IT (1-,61) (1-,L)J+l) 
]=1 l=1 

00 "+1 
(j ( e/3 X + 2: (jJ jef1J x ) 

j=1 n (1-,Gl) 
1=1 

(j ( e,a X + f (jJ jef1J+ 1 x ) 

j=1 n (1-,GI) 
1=1 

00 . 

eb + 2: (j j j ef1Jb 

j=1 n (1-,GI) 
l=l 
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( 4.50) 

( 4.51) 

( 4.52) 

We can now compare the results from t he AR(1) formula for Ex((}Tb) given in Equa-
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tion ( 4.6) with the results from the adapted Jacobsen formula given in Equation ( 4.52). 

For the comparison we used numerical methods to compute 200 terms of the sums in the 

two formulas. The results are shown in Table 4.1. It can be seen t hat the results from the 

two formulas are the same even though the two formulas have very different forms. 

Table 4.1: Comparison of the numerical results for Ex(f)Tb) 

Ex((;Fo) 
() X b {3 Formula ( 4.6) Formula ( 4.52) 

0.25 1 2 0.01 0.043552 0.043552 
2 3.5 0.2 0.014324 0.014324 

0.5 1 2 0.01 0.120118 0.120118 
2 3.5 0.2 0.040315 0.040315 

0.75 1 2 0.01 0.290416 0.290416 
2 3.5 0.2 0.107763 0.107763 

The Jacobsen formula given in this subsection is valid for a one-sided AR(1) process 

in the case of a distribution consisting of a linear combination of exponential random vari-

ables. Jacobsen (2007) gives a generalization of the one-sided results and obtains formula 

for a two-sided AR(1) process for linear combinations of exponential random variables. 

4.4 Comparison of N urnerical Results for ARI.~ and AD with 

Other Methods 

In this section, we compute the nurnerical values for ARL and AD from Equation ( 4.33) 

and Equation (4.39) wit h parameters (.\ = 0.01 , I-I = 1.1071) and compare them with 

values obtained from the Integral Equation (IE) , J\1arkov Chain (MCA) and Monte Carlo 

(MC) methods. We also compare the CPU times required to compute the numerical 

values for ARL and AD. The results of the comparison are shown in Table 4.2 for a range 

of values of the parameter value a. Note that a = 1 is the value assumed for the in-

control parameter and therefore this row gives the values of the ARL. The rows for a > 1 

correspond to values of the out-of-control pararneter and therefore these rows give values 

for AD. The numbers in each cell in the table represent the value of ARL or AD and in 

parentheses () the CPU time for the calculation. The table shows that the results from the 

suggested formulas and the IE and MCA methods are close to the MC simulation results. 

However , the table also shows that the computational time for evaluating the suggested 

formula is nmch less than the CPU times required for the other methods. For example, 
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when a= 1, the CPU time required to evaluate the suggested expression is 0.13 seconds 

compared with CPU times required for the IE, MCA and MC runs of 130, 158 and 5074 

seconds , respectively. 

Table 4.2: Comparison of ARL and AD values with other methods 
Row 1 gives ARL values and the other rows give AD values, .\=0.01 and H =1. 1071. 
The numbers in parentheses () are CPU t imes in seconds. 

a Formulas Integral Equation MCA Monte Carlo 
( 4.33) and ( 4.39) (106 ) 

1.0 500 .03 500.397 500.276 499.87±0.508 
(0 .13) (130) (158) (5074) 

1.1 135.029 137.475 135.211 134.85±0.12 
(0 .14) (131) (158) (1403) 

1.2 68.670 69.275 68.788 68.663±0.052 
(0.14) (131) (158) (711) 

1.3 44.956 44.009 45.042 44.944±0.031 
(0 .14) (135) (154) (475) 

1.4 33.281 32.717 33.347 33.282±0.021 
(0.13) (129) (159) (352) 

1.5 26.429 26.045 26.483 26.434±0.016 
(0.14) (129) (158) (282) 

1.6 21.949 21.667 21.995 21.933±0.013 
(0 .14) (130) (159) (234) 

1.7 18.799 18.581 18.839 18.804±0.011 
(0.13) (130) (158) (205) 

1.8 16.468 16.293 16.502 16.4 73± 0.009 
(0.14) (130) (159) (179) 

1----

~ 
14.673 14.529 14.704 14.666±0.008 
(0 .14) (130) (158) (163) 
13.250 L 13.129 13.278 13.251±0.007 

__ JQ~_L_ (130) l (159) (147) 0 
--' 

4.5 Comparison ofEWMA, CUSUM and Shiryayev-Roberts 

Charts: Exponential case 

In Table 4.3 and Figure 4.1 we present results for ARL and AD calculated for EWMA from 

our Equations ( 4.33) and ( 4.39) and compare them with results of Monte Carlo simulations 

for EWMA, CUSU:rvi and Shiryayev-Roberts charts. The optimal parameter values used 

for the EWMA were H = 1.33379 and A= 0.03024, the boundary value used for CUSUM 

was A = 3.84 and the boundary value used for Shiryayev-Roberts was B = 700. The 

Monte Carlo simulation results were obtained from a sequence of 106 runs. 

Obviously, the numerical results from the suggested formulas are very close to Monte 
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Carlo simulation results for all values of ex. A comparison of t he AD values for EWMA, 

CUSUM and Shiryayev-Roberts procedures shows that the EWMA values are less t han 

the CUSUM and Shiryayev-Roberts values for a < 1.3, slightly less t han CUSUM values 

for 1.4 :::; a < 1.7 and slightly greater than CUSUM values for a ~ 1.7. T hat is , the 

EWMA chart performs better than CUSUM for small values of ex . The performance of 

EWMA is superior to Shiryayev-Roberts for all of the range of parameter changes o:. 

Table 4.3: The numerical results for ARL and AD obtained from formula ( 4.33) and ( 4.39) 
and simulation results of EWMA, CUSUM and Shiryayev-Roberts charts: exponential case 

Row 1 contains ARL values and the other rows contain AD values. 

ARL and AD 
(}; Formulas Monte Carlo simulation 

( 4.33) and ( 4.39) EWMA CUSUM SR 
boundary 1.33379 1.33379 3.84 700.00 

1.0 999.877 999.372± .942 998.165±.991 999.658± .305 
1.1 251.711 251.098±.234 300.358±.286 285.440±.081 
1.2 109.684 109.655±.093 129.174± .116 129.203±.032 
1.3 64.205 64.188±.049 72 .276±.059 77.286±.017 
1.4 44.153 44.156±.031 47.700±.036 54.396±.010 
1.5 33.363 33.384±.022 36.860±.025 42.078±.007 

I 
1.6 26.755 26.732±.017 27.225±.019 34.572±.005 
1.7 22.335 22.308±.014 22.187±.015 29.264±.004 
1.8 19.186 19.185±.011 18.633± .012 25.533±.003 
1.9 16.835 16.837±.010 16.036±.010 22.748±.003 
2.0 15.017 15.020±.009 14.832±.009 20.451±.002 
2.5 9.884 9.888±.005 8.479±.006 13.951±.001 
3.0 7.496 7.510±.004 7.113±.004 10.735±.001 
5.0 4.126 4.125±.002 3.416±.002 5.969±.001 
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Figure 4.1 : Curves of AD for EWMA, CUSUM and Shiryayev-Roberts charts : exponential 
case 

4 .6 Choices of Optimal Parameters for Exponential EWMA 

Charts 

In this section, we first describe a procedure for obtaining optimal designs for exponential 

EWMA charts. The criterion used for choosing optimal values for the EWMA weight 

parameter (>.) and alarm boundary pararneter (H) is minimisation of AD for a given in-

control parameter value a 0 = 1, ARL = T and a given out-of-control parameter value 

(n). We compute optin1al (.A*, H*) values forT= 500, 1000, 3000, 5000 and n1agnitudes 

of change. Plots of the optimal parameter values are shown in Figure 4.2 and a table of 

the values is given in Table 4.4. 

The numerical procedure for obtaining optimal parameters for EWMA designs 

1. Select an acceptable in-control value of ARL and decide on the change parameter 

value (a) for an out-of-control state. 

2. For given a and T, find optimal values of .A* and H* to minimise the AD values 

given by Equation ( 4.39) subject to the constraint that ARL=T in Equation ( 4.33), 

i.e. >. * and H* are solutions of the optimality problem: 

minAD = G( At A))+ 1 - C(~), 
>.,H a 1 - a"' 

( 4.53) 
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subject to: 
H 1 

ARL = T = G ( >. ( 1 _ >.) ) + 1 - G ( ~), ( 4.54) 

where G(x) is given by Equation 4.31. 

The numerical results in terms of optimal EWMA weight ( >. *), optimal alarm boundary 

(H*) and minimal AD (AD*) are shown in Table 4.4 and Figure 4.2. For example, if we 

want to detect a parameter change from a 0 = 1 to a= 1.5 and the ARL value is T = 500, 

then the optimality procedure given above will give optimal parameter values>.* = 0.02648 

and H* = 1.25116. On substituting the values for a, >. * and H* into Equation ( 4.39) we 

obtain an optimal AD value of AD* = 26.569. This optimal AD value agrees with the value 

of AD* = 26.57 that we computed from rvrc for the same parameter values. Obviously, 

the suggested explicit formulas for evaluating ARL and AD are very effective alternatives 

to MC and other approaches. As shown in Table 4.2, the use of the suggested explicit 

formulas for ARL and AD can greatly reduce the computation times as compared with 

IE, MCA and MC approaches. 

l9 

18 

17 

5.5 
8.5 0' = 3 5 

a=3 
5.45 

5.4 
C.2 0.3 0.4 0 5 5.35 

(a) T=500 (b) T = lOOO 

Figure 4.2: Curves of AD for optimal exponential EWMA designs 
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Table 4.4: Optimal design parameters and AD for one-sided exponential EWMA 

a T=500 
,\* H* AD* AD 

(Simulation ) 
1.5 0.02648 1.25116 26.569 26.570±0.056 
1.6 0.03902 1.34459 20.176 21. 761±0.04 7 
1.7 0.05044 1.41958 18.083 18.089±0.039 
1.8 0.06063 1.48419 15.499 15.511±0.034 
1.9 0.07042 1.54385 13.534 13.568±0.030 
2.0 0.07991 1.59985 11.998 12.006±0.027 
2.5 0.12346 1.84285 7.645 7.627±0.167 
3.0 0.16213 2.04427 5.662 5.686±0.013 
3.5 0.19625 2.21739 4.552 4.557±0.010 
4.0 0.22673 2.36935 3.853 3.852±0.009 
5.0 0.27912 2.62673 3.028 3.027±0.007 
a T=1000 

1.5 0.03024 1.33379 33.364 33.205±0.070 
1.6 0.03891 1.40302 26.636 26.661±0.018 
1.7 0.04745 1.46715 22.012 21.992±0.046 
1.8 0.05588 1.52751 18.674 18.684±0.040 
1.9 0.06417 1.58483 16.169 16.494±0.011 
2.0 0.07233 1.63953 14.231 14.211±0.030 
2.5 0.11079 1.88362 8.845 8.834±0.006 
3.0 0.14533 2.08819 6.446 6.449±0.014 
3.5 0.17630 2.26679 5.122 5.124±0.004 
4.0 0.20423 2.42482 L 4.294 4.292±0.003 
5.0 _0 .25268 --'-269488 2:32~-'-~.329±~002 --r--·---
a T=3000 

1.5 0.02552 1.36332 44.856 44.814±0.089 

I 
1.6 0.03223 1.42811 35.122 35.154±0.070 
1.7 0.03906 1.48974 28.553 28.600±0.057 
1.8 0.04578 1.54863 23.970 23.970±0.048 
1.9 0.05253 1.60510 20.548 20.550±0.041 
2.0 0.05922 1.65938 17.931 17.914±0.036 
2.5 0.09218 1.91015 10.810 10.812±0.007 
3.0 0.12178 2.12150 7.724 7.726±0.005 
3.5 0.14718 2.29718 5.664 6.045±0.013 
4.0 0.17311 2.47226 5.010 5.012±0.003 
5.0 0.21604 2.75752 3.810 3.811±0.003 
a T=5000 

1.5 0.02348 1.37026 50.378 50.394±0.097 
1.6 0.02967 1.43500 39.179 39.163±0.024 
1.7 0.03594 1.49682 31.732 31. 722±0.019 
1.8 0.04191 1.55319 26.485 26.4 75±0.016 
1.9 0.04853 1.61299 22.624 22.619±0.014 
2.0 0.05477 1.66781 19.684 19.732±0.039 
2.5 0.08487 1.91556 11.7 42 11.7 41±0.007 
3.0 0.11256 2.12897 8.329 8.324±0.005 
3.5 0.13781 2.31680 6.485 6.491±0.004 
4.0 0.16087 2.48471 5.347 5.346±0.004 
5.0 0.20152 2.77539 4.037 4.034±0.003 
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4 . 7 Explicit Formulas for One-sided Pareto EWMA 

4. 7. 1 EWMA for Pareto Distribut ion 

Heavy-tailed distributions appear in many real world applications, e.g. in finance and 

economics (Mandelbrot, 1963), hydrology (Anderson and Meerschaert , 1998) and teletraf-

fic (Resnick and Starica, 1995). 

Definition 3. The distribution of a random variable X 1 , X2 , ... with distribution function 

F is said to have a heavy tail if 

lim e>-x P(X > x) = oo for all A> 0. 
x->oo 

( 4.55) 

A typical example of a heavy-tailed distribution is a power-tailed distribution, i.e. a 

distribution for which P(X > x) = ax-a for constants a > 0 and parameter a > 0. For 

this power-tailed distribution lim e>-xax-a = oo for all A> 0. 
X-->00 

The simplest case of a power-tailed distribution is the Pareto distribution which is 

defined by the following function 

k 
P ( (t > x) = (-)a, x ~ k, a and k > 0. 

X 

The change-point problem for a Pareto distribution is a follows. Let ~t, t = 1, 2, ... be 

sequentially observed independent random variables with Pareto distribution given by: 

. ~Pareto(k , ao), 
f,t rv 

Pareto(k: a), 

t = 1,2, ... ,v-1 

t = v, v + 1, ... , a < ao. 

Mazalov and Zhuravlev (2002) have derived analytical expressions for the basic charac-

teristics of the CUSUM chart for the Pareto case. However, no approximate formulas for 

the basic characteristics of the EWMA chart have so far been published. 

In this section we derive the basic characteristics for a Pareto distribution. A common 

method used to transform a Pareto distribution to an exponential distribution is to take 

logarith1ns of the Pareto observations. For example, if the Pareto distribution has the 

form: 
k 

P(f,t > x) = (-r\ 
X 
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then taking the logarithm we get: 

P(log(~) > x) = P(~ > ex )= P(~t > kex) 

= ( _!":____ r~ = e -ax 
kex 

50 

( 4.56) 

and therefore log(¥) has the exponential distribution with E(log(¥ )) = ±· Therefore, if 

~t """'Pareto(k, a) then log(¥)"""' Exp(1/cx) and rJt =ex log(¥) """'Exp(1). 

For the Pareto distribution, we define the EWMA recurrence relation by: 

~t Zt = (1 - .\)Zt-1 +.\log( k ), Zo = 1 ( 4.57) 

and the stopping t ime by 

TH = inf ( t > 0 : Zt > H) . ( 4.58) 

Equation (4.57) can be transformed to t he st andard AR (1) form of Equation (4.4) with 

rJt """' E xp(1) by the substitutions 

;:; Zt - 1 ~t 
Zt = (1/a).\ ' Zo = (1/a).\ ' {3= (1 - .\), rJt = a log( k ), 

where for the in-control Pareto distribution a= cxo = 1. 

Therefore, it can be seen that the ARL and AD for the case of a Pareto distribution 

can also be calculated by using the closed-form formulas for the exponential distribution. 

The explicit formulas are as follows : 

Proposition 4 . 7.1. Explicit formulas for A RL and A D of one-sided E WMA for Pareto 

distribution: 

( 4.59) 

( 4.60) 

where 
G(x) = f _Ul- .\)x )k (l k~ ~-=.__.\h-1 . 

k=l 



4. 7. Explicit Formulas for One-sided Paret o EWMA 51 

4.7.2 Comparison for EWMA, C U SUM and Shiryayev-Roberts Char t s: 

Pareto case 

In this subsection, we compare the numerical results for ARL and AD calculated from 

Equation ( 4.59) and Equation ( 4.60) for EWMA with the results of Monte Carlo simu-

lations. In the Monte Carlo simulations we use EWMA, CUSUM and Shiryayev-Roberts 

charts to obtain values for ARL and AD. For the EWMA chart we used optimal parameter 

values ,\ = 0.03024 and H = 1.33379, for CUSUM the boundary value A = 3.84 and for 

Shiryayev-Roberts the boundary value B = 700. As for the exponential case in Section 4.5 

the parameter values for EWMA, CUSUM and Shiryayev-Roberts charts were chosen so 

that the ARL has the given value T = 1000 for an in-control parameter value ao = 1. 

The results of the comparison are shown in Table 4.5 and Figure 4.3. The results 

show that the performances of the EWMA, CUSUM and Shiryayev-Roberts charts with 

the Pareto observation are similar to their performances for exponential observations. 

For example, for T = 1000 and a = 1/2.0, CUSUM gives AD = 14.832, EWMA gives 

AD = 15.02 and Shiryayev-Roberts gives AD = 20.451 and therefore CUSUM is better for 

this change. However, EWMA shows a better performance than CUSUM and Shiryayev-

Roberts charts for s1nall values of change. 

Table 4.5: The numer1cal results for ARL and AD obtained from formulas ( 4.59) and 
( 4.60) and simulation results of EW1\1A, CUSUM and Shiryayev-Roberts charts: Pareto 
case 

Row 1 contains ARL values and the other rows contain AD values. 

ARL and AD 
(k,a) Formulas Monte Carlo simulation 

( 4.59) and ( 4.60) EWMA CUSUM SR 
boundary 1.33379 1.33379 3.84 700.00 

r-· (1,1.0) 999.877 999.372±.942 998.165±.991 999.658±.305 
(1,1/1.1) 251.711 251.098±.234 300.358±.286 285.440±.081 
(1,1/1.2) 109.684 109.655± .093 129.174± .116 129.203±.032 
(1 ,1 /1.3) 64.205 64.188±.049 72.276±.059 77.286±.017 
(1,1/1.4) 44.153 44.156±.031 4 7. 700±.036 54.396±.010 

(1,1/1.5) 33.363 33.384±.022 36.860±.025 42.078±.007 
(1,1/1.7) 22.335 22.308±.014 22.187±.015 29.264±.004 
(1 ,1 /2.0) 15.017 15.020±.009 14.832±.009 20.451±.002 
(1,1/2.3) 11.412 11.407±.006 10.468±.002 15.933±.002 
(1 ,1 /2.5) 9.884 9.888±.005 8.479±.006 13.951±.001 
(1,1/2.7) 8.746 8.748±.005 8.055±.002 12.405±.002 
(1,1/3.0) 7.496 7.510±.004 7.113±.004 10.735±.001 
(1,1/3.5) 6.118 6.121±.004 6.014±.001 8.839±.001 
(1,1/4.0) 5.222 5.226±.003 5.010±.001 7.569±.001 
(1,1/5.0) 4.126 4.125±.002 3.416±.002 5.969±.001 
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Figure 4.3: Curves of AD for EWMA, CUSUM and Shiryayev-Roberts charts: Pareto case 

4. 7.3 Choices of Optimal Parameters for Pareto EWMA Procedure 

The optimal designs for Pareto EWMA procedures can be obtained by the same optimiza-

tion procedure that was used in Section 4.6. The results are presented in Table 4.6 and 

Figure 4.4 for ARL values ofT = 500, 1000, 3000, 5000, in-control parameter a = 1 and 

a range of out-of-control (a) values . For example, given T = 1000 and a = 1/2.5 , the 

optimal design for those pararneters is for optimal smoothing parameter,\* = 0.11079 and 

alarm boundary H* = 1.88262. The minimal value of the AD is AD* = 8.845. For the 

same parameter values the AD value from MC simulation is AD= 8.834. 

·a. a 

\"=1 1; 381 
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Figure 4.4: Curves of AD for optimal Pareto EWMA designs 
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Table 4.6: Optimal design parameters and AD for one-sided Pareto EWMA 
(k,a) T=500 

)..* H* AD* AD 
(Simulation ) 

(1,1/1.5) 0.02648 1.25116 26.569 26.570±0.056 
(1 ,1 /1. 7) 0.05044 1.41958 18.083 18.089±0.039 
(1,1/2 .0) 0.07991 1.59985 11.998 12.006±0.027 
(1,1/2 .3) 0.10684 1.75180 8.936 8.937±0.019 
(1,1/2.5) 0.12364 1.84285 7.645 7.627±0.167 
(1,1/2.7) 0.13961 1.92745 6.693 6. 704±0.015 
(1,1/3.0) 0.16213 2.04427 5.662 5.686±0.013 
(1,1/3.5) 0.19625 2.21739 4.552 4.557±0.010 
(1,1/4 .0) 0.22673 2.36935 3.853 3.852±0.009 
(1,1/4.5) 0.25420 2.50473 3.374 3.379±0.007 
(1,1/5.0) 0.27912 2.62673 3.028 3.027±0.007 

(k,a) T=1000 
(1,1/1.5) 0.03024 1.33379 33.364 33.205±0.070 
(1' 1/1. 7) 0.04745 1.46715 22.012 21.992±0.046 
(1,1/2.0) 0.07233 1.63953 14.231 14.211±0.030 
(1,1/2.3) 0.09588 1.79072 10.427 10.432±0.007 
(1,1/2.5) 0.11079 1.88262 8.845 8.834±0.006 
(1,1/2.7) 0.12506 1.96863 7.689 7.692±0.005 
(1,1/3.0) 0.14533 2.08819 6.446 6.449±0.014 
(1 ,1/3 .5) 0.17630 2.26679 5.122 5.124±0.004 
(1,1/4.0) 0.20423 2.42482 4.294 4.292±0.003 
(1,1/4.5) 

I 
0.22956 2.56650 3.732 3. 731±0.003 

(1,1/5.0) 0.2f)268 2.69488 3.327 3.329±0.002 
(k,a) T=3000 

(1 ,1/1.5) 0.02552 1.36332 44.856 44.814±0.089 
(1,1/1.7) 0.03906 1.48974 28.553 28.600±0.057 
(1 ,1/2.0) 0.05922 1.65938 17.931 17.914±0.036 
(1,1/2.3) 0.07955 1.81649 12.873 12.872±0.008 
(1,1/2.5) 0.09218 1.91015 10.810 10.812±0.007 
(1,1/2.7) 0.10436 1.99828 9.315 9.318±0.006 
(1,1/3.0) 0.12178 2.12150 7.724 7.726±0.005 
(1,1/3.5) 0.14718 2.29718 5.664 6.045±0.013 
(1,1/4.0) 0.17311 2.4 7226 5.010 5.012±0.003 
(1,1/4 .5) 0.19356 2.60906 4.034 4.308±0.009 
(1,1/5.0) 0.21604 2.75752 3.810 3.811±0.003 

(k,a) T=5000 
(1 ,1/1.5) 0.02348 1.37026 50.378 50.394±0.097 
( 1,1 /1. 7) 0.03594 1.49682 31.732 31. 722±0.019 
(1,1/2.0) 0.05477 1.66781 19.684 19. 732±0.039 
(1,1/2.3) 0.07310 1.82123 14.036 14.032±0.009 
(1,1/2.5) 0.08487 1.91556 11.742 11.7 41±0.007 
(1,1/2.7) 0.09625 2.00446 10.086 10.084±0.006 
(1,1/3.0) 0.11256 2.12897 8.329 8.324±0.005 
(1,1/3.5) 0.13781 2.31680 6.485 6.491±0.004 
(1,1/4.0) 0.16087 2.48471 5.347 5.346±0.004 
(1,1/4.5) 0.18052 2.62604 4.583 4.585±0.003 
(1,1/5.0) 0.20152 2.77539 4.037 4.034±0.003 



Chapter 5 

N urnerical Solutions for Integral 

Equations 

As mentioned in Chapters 3 and 4, there are many methods that have been used for 

evaluating ARL and AD for EWMA charts. In Chapter 4 we have obtained explicit 

formulas for ARL and AD for EWMA charts for observations from the exponential and 

Pareto distributions. However, in other cases explicit formulas for ARL and AD are 

unknown. In these cases, values for ARL and AD can be obtained by numerical methods, 

such as the Integral Equation or Markov Chain method, or by Monte Carlo simulation. 

In this chapter, we use the Integral Equations rnethod described in Section 3.2 to 

find numerical values for ARL and AD for EWMA charts for observations from gamma 

and \.Veibull distributions and for CUSUM charts for observations from exponential and 

gamma distributions. In real applications , particularly in industry and manufacturing, 

the observations have often gamma and Weibull distributions, e.g. tirne between failure 

in reliability trials and the cumulative number of iterns inspected (Xie et al., 2002; Borror 

et al., 2003; Liu et al., 2007; Zhang et al., 2007). 

Integral Equations were first used by Crowder (1987) for approximating ARL and AD 

for Gaussian distribution. Later, Champ and Rigdon (1991) intensively studied them by 

comparing the run length distributions obtained from the Integral Equation technique and 

MCA for the case of Gaussian distribution (see detail Gan, 1990a, 1992; Srivastava and 

Wu, 1993, 1997; Rao et al., 2001). 

The outline of this chapter is as follows: 

• In Section 5.1 we present the Nystrom method for obtaining numerical solutions to 

Integral Equations. The method is based on numerical quadrature rules to evaluate 

54 
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integrals. We discuss some standard quadrature rules for approximating integrals 

such as t he composite Midpoint rule, composite Trapezoidal rule, composite Simp-

son's rule and t he Gaussian rules . 

• In Subsection 5.2.1 we use the Nystrom method to calculate the ARL for the EWMA 

chart for the gamma distribution. We then compare the values for ARL with t he 

values obtained by other methods such as MCA and MC. 

• In Subsection 5.2.3 we use the Nystrom method to calculate the ARL for the EWMA 

chart for the Weibull distribution. We compare the values for ARL with the values 

obtained from other methods such as MCA and MC . In Section 5.3 we study the 

Integral Equation for CUSUM chart and study some examples when observations 

are from exponential and gamma distributions. 

5.1 The Nystrom Method 

The Nystrom m.ethod was developed for obtaining numerical solutions of Integral Equa-

tions in Press et al. (1992); Atkinson (1997); Atkinson and Han (2005). The Integral 

Equations method for calculating the ARL are of the type called Fredholm Integral Equa-

tions of the second kind (see for example, Wieringa, 1999). 

Definition 4. A Fredholm Integral Equation of the second kind is of the form: 

.\x(t)- in K(t , s)x(s)ds = y(t) , tED, (5.1) 

where A is a scalar, K(s, t) is a given function called the kernel of the equation and y(t) 

is a given function. D is a closed and bounded set in IR.m, m :2: 1. The problem is to find 

values of the scalar A and the function x(t) such that the Fredholm Integral Equation (5.1) 

holds. 

Several authors have investigated numerical methods for finding solution of Equa-

tion (5.1) with use of numerical quadrature rules to approximate the integral (see for 

detail Atkinson, 1997; Baker, 1977; Kress , 1999) . 

The method is as follows. Let K(t , s) be continuous for all t, s E 7J. A numerical 

quadrature rule is then used to approximate the integral in Equation (5.1). As explained 

in Subsection 3.2.2, a quadrature rule for an interval Dis defined by the choice of a function 

W(s) , a set of points {sk , k = 1, 2, ... , n} and a set of weights {wk , k = 1, 2, ... , n} such 
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that : 

(5.2) 

where g(s) is a function to be integrated. The points {sk} are often called the nodes of 

t he rule and the function W ( s) is often called a weight function. 

Using the quadrature scheme of Equation (5 .2) to approximate the integral in Equa-

tion (5.1), we obtain 

n 

Axn(t) - L wkK(t, sk)xn(sk) = y(t), t E V , (5.3) 
k=l 

where Xn(s) is an approximation for x(sk) 

To find the solution at the quadrature node points {si, i = 1, 2, ... , n} , we need to solve 

the following system of linear algebraic equations: 

n 

Axn(si)- L WkK(si, sk)xn(sk) = y(si) , i = 1, ... , n. (5.4) 
k=l 

This system of equations is called the Nystrom interpolation formula (Atkinson, 1997). In 

the next subsection, we will describe some of the standard quadrature rules that we will 

use to obtain numerical solutions of the Integral Equations for the ARL of EWMA and 

CUSUM charts. 

5.1.1 Numerical Quadrature 

In this thesis, we will use the composite midpoint rule , the composite trapezoidal rule; the 

composite Simpson's rule and the Gauss-Legendre rule to obtain numerical solutions of the 

Nystrom interpolation formula. We will now give a surnmary of each of these quadrature 

rules. 

The main criteria used in selecting the function W ( s), the set of points { s k, k = 

1, 2, ... , n} and the weights { Wb k = 1, 2, .. . , n} to integrate 1b W(s )g(s )ds are a.s 

follows. First, the function W ( s) is chosen so that a set of polynomials will give a good 

approximation to the function g( s) to be integrated. The sets of points and weights are 

t hen chosen so that the quadrature rule is exact if g( s) is replaced by the highest possible 

degree polynomial for the given choice of points . 
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5.1.2 Midpoint Rule 

Consider the problem of integrating a function g(s) over [a, b], where [a, b] is a finite 

interval. The value W ( s) = 1 is chosen and a set of equally spaced points is used. The 

interval [a, b] is subdivided into n subintervals {[sk_1, sk], k = 1, 2, . .. , n} of equal width 

h = b~a by using equally spaced points sk = so+ kh for k = 0, 1, 2, ... , n, where so = a 

and Sn = b. For the midpoint rule the set of nodes is chosen as the midpoints mk of 

the subintervals. The midpoints are given by mk = ~(sk_ 1 + sk) = a+ (k- ~)h. The 

weights Wk for each midpoint are chosen to be 1. On each subinterval , the midpoint rule 

will integrate a constant function exactly. For integrating a general function g ( s) over an 

interval [a, b] , the composite midpoint rule for n subintervals is obtained by combining the 

rules for the subintervals and the result is: 

n 1 
M(g, h)= h L g(a + (k- 2)h) . 

k=1 

The algorithm for numerical approximation to the integral g(s) over [a, b] is given by: 

Composite Midpoint Rule Algorithm. If a function g(s) is sampled at the n mid-

points of the subintervals defined by the n + 1 equally spaced points Sk = a + kh for 

k = 0, 1, .. . , n, where h = b~a and so = a and Sn = b, then the composite midpoint rule 

approximation for the integral is given by: 

1b n 1 
g ( s) ds ~ h L g (a + ( k - 2) h). 

a k=1 

Remark. It has been shown by Champ and Rigdon (1991) that t he n1idpoint rule and 

MCA produced the closed approximations for ARL. 

5.1.3 Trapezoidal Rule 

For trapezoidal rule , the function W(s) = 1, the interval of integration [a , b] is finite and 

the set of points is equally spaced. The interval [a , b] is subdivided into n subintervals 

{[sk_1, sk], k = 1, 2, ... , n} of equal width h = b~a by using equally spaced points Sk = 

so+ kh for k = 0, 1, 2, ... , n , where so =a and Sn =b. The weights are chosen so that on 

each subinterval of width h , a polynomial of degree 1 (i.e. the monomials 1 and s) will be 

integrated exactly by the rule. This choice gives equal weights ~ h at the end points of a 

subinterval. The composite trapezoidal rule for n subintervals is obtained by combining 
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the rules for the subint ervals. The composite rule is: 

h n 
T (g, h) = 2(g(a) + g(b)) + h L g(sk) (5.5) 

k=1 

and the algorithm for numerical approximation to t he integral g( s) over [a, b] is given by: 

Composite Trapezoidal Rule Algorithm. If a function g(s) is sampled at then+ 1 

equally spaced points sk = a+ kh for k = 0, 1, ... , n, where h = b~a and so = a and Sn = b, 

then the composite trapezoidal rule approximation for the integral is given by: 

b n-1 1 g(s)ds"' ~(g(a) + g(b)) + h L g(sk) 
a k=1 

(5.6) 

5.1.4 Sim pson's Rule 

For Simpson's rule , the function W(s) = 1, the interval of integration [a , b] is finite and 

the set of points is equally spaced. The interval [a , b] is subdivided into 2n subintervals 

{ [sk- 1, .sk], k = 1, 2, ... , 2n} of equal width h = b2na by using equally spaced points {sk = 
so+ kh , k = 1, 2, ... , 2n} , where so = a and s2n = b. The basic Simpson's rule applies 

t o 2 subintervals and is obtained by choosing the weights at t he 3 points { s2k , s2k+1 = 
s2k + h , s2k+2 = s2k + 2h} so that the monomials {1 , s, s 2} are integrated exactly by the 

rule. The weights at the 3 points are { 1 h, ~ h, 1 h}. It can be shown that the rule then also 

integrates a monomial s3 exactly. The composite Simpson 's rule is obtained by combining 

the rules for t he subintervals of width 2h. T he composite rule is 

h 4h n 2h n- 1 

S(g, h)= 3(g(a) + g(b)) + 3 L g(s2k-1 ) + 3 L g(s2k) 
k=1 k=1 

(5 .7) 

and t he algorithm for numerical approximation t o t he integral g(s) over [a, b] is given by: 

Composite Simpson's Rule Algorithm. If a function g(s) is sampled at the 2n + 1 

equally spaced points Sk = a+ kh for k = 0, 1, ... , 2n , where h = b2na and so = a and 

s2n = b, then the composite Simpson's rule approximation for the int egral is given by: 

1b h 4h n 2h n- 1 

a g( s) ds ~ 3 (g(a) + g(b)) + 3 t;g(s2k- 1) + 3 t;g(s2k) · (5.8) 
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5.1.5 G aussian Rules 

In the midpoint , trapezoidal, and Simpson's rules , the integration interval [a, b] is finite , 

the function W ( s) = 1 and the set of points { s k, k = 1, 2, .. . , n} is equally spaced . In 

Gaussian rules, the integration interval can be infinite, the weight function W(s) might 

not equal 1, and the set of points { sk, k = 1, 2, .. . , n} is not equally spaced. In a Gaussian 

rule of the form: 
b n 1 W(s)g(s)ds"' ~ wkg(sk) (5.9) 

the positions of the n points and the n weights { w k, k = 1, 2, ... , n} are chosen so that 

the rule will integrate exactly the 2n monomials {1, s, s2 , ... , s2n-l } , i.e. every polynomial 

in s of degree less than or equal to 2n - 1 will be integrated exactly. 

A basic result used in the theory of Gaussian integration (David and Rabinowitz , 1967; 

Press et al., 1992) is that for each interval [a, b] and function W(s), there exists a set of 

orthogonal polynomials {Pk ( s), k = 0, 1, 2, . .. } such that Pk ( s) is a polynomial in s of 

degree k that has exactly k distinct real zeros on the interval [a, b] and such that 

1b l = 0 if k =I l W(s) Pk(s)pt(s)ds 
a i= 0 if k = l 

The Gaussian rule for a given interval [a , b] and weight function W(s) is usually named 

after the set of orthogonal polynomials for the interval and function. The 1nost commonly 

used Gaussian rules are as follows: 

Gauss-Legendre: 

W(s) = 1, -1:Ss:Sl. 

The orthogonal polynomials are the Legendre polynomials { Pk ( s), k = 0, 1, 2, ... } . 

Gauss- Chebyshev: 

- 1 :::; s:::; 1. 

The orthogonal polynomials are the Chebyshev polynomials {Tk(s), k = 0, 1, 2, ... }. 

Gauss-Hermite: 
2 W(s) = e-s , -00 < s < 00 . 

The orthogonal polynomials are the Hermite polynomials {Hk(s), k = 0, 1, 2, ... }. 

Gauss-Laguerre: 

0 :::; s :::; 00. 
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The orthogonal polynomials are t he Laguerre polynomials { L k ( 8), k = 0, 1, 2, . .. } . 

5.1.6 Theory of Gaussian Integration 

We will now give a summary of t he t heory of Gaussian integration rules. This summary 

is based on Stroud and Secrest (1966); Isaacson and Keller (1966); At kinson (1989, 1997); 

P ress et al. ( 1992). 

Using the weight function W ( 8), we define an inner product 

(f, g) = l W(s)f(s)g(s)ds . 

A set of orthogonal polynomials Pk ( 8) satisfies 

k=l 

A set of orthogonal polynomials can be constructed for any given interval [a, b] and weight 

function W ( 8) by applying the Gran1-Schmidt orthonalization process to the rrwnomials 

1, 8, 8 2 , .. .. However, the Legendre, Chebyshev, Hennite and Laguerre polynomials have 

been extensively studied because of their importance in many fields and there are now 

many well-·known methods available for constructing these polynomials that are much more 

efficient than the Grarn-Sc:hmidt process. These methods include the three-term recurrence 

relations, the Rodrigues' fonnulas or the generating functions (see detail , Abramowitz and 

Stegun, 1964). 

As stated above, the goal in constructing a Gaussian rule is to find a set of n nodes 

and n weights such that 

b n 1 W(s)g(s)ds = ~ wkg(sk) + E (5 .10) 

is exact (c = 0) if g(8) is a polynomial of degree less than or equal to 2n -- 1. Note that a 

polynomial of degree 2n - 1 is a linear combination of 2n monomials { 1, 3, 8 2 , ... , 8 2n-l} 

and therefore the exactness condition consists of 2n conditions that can be solved to obtain 

values for then nodes and n weights. 

T he fi rst step in constructing a Gaussian rule is t he selection of the n nodes { 8 k, k = 
1, 2, . . . , n}. T he method is as follows . Let g( 8) be a polynomial of degree 2n- 1. Dividing 
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by the orthogonal polynomial Pn ( s) gives 

g ( S) = Pn ( S) Q n -1 ( S) + R ( S), (5 .11) 

where both Qn- 1 (s) and R(s) are polynomials of degree less than or equal ton- 1. If we 

multiply by the weight function and integrate both sides, we get 

1b W(s)g(s)ds = t W(s)pn(s)Qn-l(s)ds + t W(s)R(s)ds. (5 .12) 

The first integral on the right of Equation (5 .12) is zero because any polynomial of degree 

less than or equal to n - 1 can be expressed as a linear combination of the orthogonal 

polynomials {po,p1, ···,Pn-1 }, and so must be orthogonal to Pn· Now, we look at the Gauss 

rule for this integral. We find that: 

b n 

0 = 1 W(s)pn(s)Qn-1 (s)ds = ~ WkPn(sk)Qn-l(sk)· 

The rule will be exact for this integral if t he n nodes are chosen so that Pn ( s k) = 0, k = 
1, 2, . .. , n, i.e. if then nodes can be chosen as zeros of t he orthogonal polynomial Pn(s). 

As noted above, it is known that an orthogonal polynomial Pn(s) always has exactly n 

distinct real zeros on the interval [a, b] and therefore it is always possible to choose n 

distinct real nodes for a Gaussian rule as the zeros of the orthogonal polynomial Pn ( s). 

Note also that the n nodes { s k , k = 1, 2, . . . , n} are the zeros of Pn ( s) and therefore the 
n 

polynomial Pn ( s) can be factorized in the form Pn ( s) = An IT ( s - s k), where An is the 
k=1 

coefficient of sn in Pn ( s). 

The next step is to choose then weights. From Equation (5 .12), the rule will be exact 

for all polynomials of degree less than or equal to 2n - 1 if: 

b b n 1 W(s)g(s)ds = 1 W(s)R(s)ds = ~ wkR (sk), (5. 13) 

R( sk) for all polynomials R( s) of degree less 

than or equal ton- 1. 

We now int roduce another special set of polynomials , the Lagrange interpolating poly-
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nomials, defined by: 

n 

II s- sz 
Lk (s) = 

Sk- Sz l=l,lf.k 
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k = 1, 2, . . . , n. 

The Lagrange polynomials are of degree n- 1 and Lk(s) is equal to one at s = sk , and 

zero at all the other points sz for l i= k. Because of these properties, they are called 

interpolating polynomials of degree n - 1. 

Now, since R ( s) is of degree less than or equal to n - 1, we can write it as a sum of 

Lagrange polynomials , so that 

n n 

k=l k=l 

Then, combining this expression with Equation (5.10) and (5.13), we obtain 

b n b 1 W(s)g(s)ds = ~ g(sk )[ 1 W(s)Lk(s)ds], 

where we can identify the term in square brackets as the weight wk. To simplify the 

computation of the weights , we can express t he Lagrange polynomials in terms of the 

orthogonal polynomial Pn(s) and its derivative p~~(s) as follows. As noted above, we have: 

n n 

Pn(s) =An II (s - sz) and therefore p~(sk) =An II (sk - sz). 
l=l 

Then, we have fork= 1, 2, ... , n that 

n 

II s- sz Lk(s) = 
l=l,lf.k Sk - Sz 

l=l, lf.k 

Pn(s) Pn(s) 

An algorithm for finding the weights and nodes of a Gaussian quadrature rule is as 

follows: 

1. Find the set of orthogonal polynomials {Pk(s), k = 0, 1, 2, . . . } with respect to the 

weight function W ( s) on the interval [a, b]. 

2. Nodes: For a rule with n nodes, choose the n nodes as the n zeros {sk, k 

0, 1, 2, .. . , n- 1} of the orthogonal polynomial Pn(s) of degree n. 
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3. Weights: Calculate then weights from the formula: 

jb Pn(s) 
w k = W ( s) ( ) , ( ) ds. 

a S - Sk Pn Sk 

It has been shown by Isaacson and Keller (1966 , pp.333-334) and Atkinson (1989, 

p.275) that an equivalent formula for the weights is: 

An(Pn,Pn) 
W k = - Pn+ 1 ( S k) P~ ( S k) ' (5 .14) 

where An is the coefficient of sn in Pn ( s). 

Gauss-Legendre Quadrature 

If W (s) = 1 and [a , b] = [- 1, 1], the orthogonal polynomials are the Legendre polynomials: 

Po(s) = 1 

P1(s) = s 
1 2 P2(s) = 2(3s ·- 1) 

The nodes for the rule can be obtained using a zero finding algorithm such as Newton's 

method. A useful formula for the weights can be obtained by substituting the identity 

into Equation (5.14) to obtain: 

2 
wk =- k = 1, 2 , ... , n. 

(n + 1)P~(sk)Pn (sk ) ' 
(5 .15) 

Ext ensive tables of values for the nodes and weights of Gauss-Legendre rules are avail-

able in the literature. For example, Abrarnowit z and Stegun (1964) give t ables of values 

of nodes and weights for the st andard Gaussian quadrature rules. 

In this thesis we are using the Mathematica® package for computations. The "Gaussian-

Quadrature" package in Mathematica® gives values for both the nodes and weights for n 

point quadrature rules for a given interval [a, b] . 
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5 .1 . 7 Properties and Error Analysis of the Nystrom Method 

In this subsection we discuss some basic properties of the Nystrom method, including 

sufficient conditions for convergence, rate of convergence, and errors for the quadrature 

rules described in Subsection 5.1.1. 

The ~ystrom method is implemented with the finite linear system in Equation (5.4), 

but the error analysis must be carried out using the system of Integral Equations in 

Equation (5.3). Following (Atkinson, 1997) , we write the original Fredholm Integral 

Equation (5.1) in an operator form as (.X - K)x = y and the Integral Equation (5.3) 

as (.X - Kn)Xn = y. Atkinson (1997) then proves the following theorem which gives suffi-

cient conditions for the convergence of the Nystrom method. 

Theorem 5.1.1. (Atkinson, 1991, p.101) Let D be a closed and bounded set in JRm, 

some m 2:: 1, and let K(t, s) be continuous fort, s E D . Assume the quadrature scheme 

of Equation (5.9) is convergent for all continuous functions on D. Further, assume that 

the Integral Equation (5.1) is uniquely solvable for given y E C(.D), with A =F 0. Then for 

all sufficiently large n, say n 2:: N, the approximate inverses (.\ - Kn)- 1 exist and are 

uniformly bounded, 

with a suitable constant c5 < oo. For the eq'uation (.X- K)x = y and (.X- Kn)Xn = y , 

llx- Xnlloo :S II (,\- Kn) - 1 1111 (K- Kn)xlloo 

(5 .16) 

From the error bound in Equation (5.16), the speed with which llx- xnlloo converges 

to zero is bounded by the numerical integration error given by: 

Now, we have (,\- K)x = y and (.\- Kn)Xn = y and therefore (.\- I< )x = (.X- Kn)Xn. 
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Therefore, we have 

and then , 

(A - K n)(x - Xn) =AX- Kn X - (A- Kn) Xn 

=AX - K nx - (A- K) x 

= (K - Kn) x 
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(5.17) 

Then combining Equation (5.17) wit h the error bound in Equation (5.16), we obtain 

1[.\ _ ~nlloo II (K - Kn)xlloo :0: ll x- Xnlloo :0: Csii(K - Kn)xl!oo, for all n > N, 

which shows t hat llx -- xnlloo and II (K - Kn)xlloo have t he same rate of convergence to 

zero. Thus the rate of convergence of Jlx- xn ll oo is t he same as t he rate of convergence of 

a quadrature rule of the form in Equation (5.9) to the exact value of the integral: 

l K(t, s)x(s)ds . 

Error bounds for quadrature rules 

The error bounds for the quadrature rules given in this subsection were obtained from Atkin-

son (1989, 1997). The error bounds are obtained by finding t he lowest degree monomial 

that is not integrated exactly by the rule. For the t rapezoidal rule , the lowest degree not 

integrated exactly is 8 2 , for Simpson's rule the lowest degree is 8 4 and for a Gaussian rule 

wit h n nodes the lowest degree is 8 2n. 

Composite Trapezoidal Rule For a function g E C 2 ([a , b]) the error in t he trapezoidal 

rule approximation to I: g(8)ds for a uniform grid of (n + 1) points wit h h = b~a is given 

by: 

where T(g, h) is t he composite trapezoidal rule formula given in Equation (5.5). 

Composite Simpson's Rule For a function g E C4 ([a , b]) the error in the Simpson 's 

rule approximation to I: g(8)d8 for a uniform grid of (2n+ 1) points wit h h = b2na is given 
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by: 

1b b- a 
g( s)ds- S (g, h)= --h4f4 (~n) 

a 180 
for some ~n E (a , b) , 

where S(g , h) is t he composite Simpson's rule formula given in Equation (5.7). 

Gaussian Quadrature Rules For a Gaussian rule with n nodes W k and weights Sk for 

a weight function W ( s) and integration interval [a, b] , a Gaussian rule is of the form: 

where En is t he error term. It can be shown (see e.g. Atkinson, 1997) t hat an error bound 

in an asymptotic sense is: 

with 

and 
1T 

en ~ - as n ~ oo. 4n 

For infinitely differentiable integrands, Nfz is bounded or tends to zero as l ~ oo. As 

pointed out by Atkinson (1997) , this gives some intuition for why Gaussian rules can be 

very accurate and lead to a very rapidly convergent method for solving Fredholm Integral 

Equations. 

A cornparison of the error terms for the trapezoidal, Simpson)s and Gaussian rules 

suggests that, for the same number of nodes , Gaussian rules will give higher accuracy 

than Simpson's rule which in turn will give higher accuracy than the trapezoidal rule. We 

have not given the error term for the midpoint rule. However, it has similar accuracy to 

the t rapezoidal rule. 

In the next subsection, we give numerical comparisons of the different rules. For the 

Gaussian rule, we will only consider the Gauss-Legendre rule as t his is the appropriate 

Gaussian rule for approximation ARL. 

5 .1.8 Numerical Comparisons 

In this part, we compare the numerical results obtained by Integral Equations with results 

by Monte-Carlo simulat ions. We solve the integration equations using t he four quadrature 

rules, composite midpoint rule, composite t rapezoidal rule, composite Simpson 's rule and 
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Gauss-Legendre rule , discussed above . In the numerical tests we assume that observations 

are from gamma distribution with parameter k = 2 and that a typical set of EWMA chart 

parameters is ,.\ = 0.05 and H = 2.45. Numerical values for ARL are computed for an 

in-control parameter value a 0 = 1 and numerical values for AD are computed for a range 

of out-of-control parameter values, a= 1.1 , 1.3, 1.5 , 1.7, 1.9, 2.0. The CPU times have been 

obtained for each computation. The results of the tests are shown in Table 5.1. 

It can be seen from Table 5.1 that all of the Integral Equation methods give results of 

similar accuracy for ARL and AD for the gamma distribution and that the ARL and AD 

values are in good agreement with values from the MC simulations. The CPU times for 

the different quadrature rules are similar with the CPU times in increasing order being 

Gauss-Legendre, Simpson's, Midpoint , and Trapezoidal rule. This ordering of CPU times 

agrees with the error estimates for the different quadrature rules given in subsection 5.1.7. 

Because the Gauss-Legendre rule is expected to give higher accuracy for a given number 

of nodes than the other rules, we will use it in all further computations. 

Table 5.1: Comparison of approximations for ARL and AD from Integral Equations and 
Monte Carlo Simulation 

(k,a) 

(2,1.0) 

(2 ,1.05) 

The a= 1 row gives ARL, the other rows give AD values. 
The numbers in parentheses () are CPU times in seconds. 

Integral Equations 
Midpoint Trapezoidal Simpson's rule Gauss-Legendre 
218.789 218.793 218.834 218.854 
(31.141) (32.110) (30. 719) (27.018) 
114.005 114.017 114.03 114.054 

Monte Carlo 
Simulations 

218. 735±0.217 

114.021±0.086 (31.875) (33.906) (30.075) (27.688) 
~------+-~-----~~ ----~----------~ 

69.652 69.662 69.667 69.666 
(31. 735) (32.407) (30.516) (27.006) (2,1.1) 69.969±0.064 

22.562±0.017 (2,1.3) 22.541 22.545 22.545 22.544 
(31.844) (34.969) (30.515) (26.826) 

12.833±0.009 (2,1 .5) 12.836 12.837 12.838 12.837 
(33.313) (33.078) (31. 703) (26.356) 

9.002±0.006 (2,1.7) 9.001 9.002 9.002 9.002 
(32.291) (33.140) (31.531) (27.145) 

(2,1.9) 6.988 6.989 6.989 6.989 
(32.275) (32.890) (31.625) (27.366) 6.985±0.004 

6.306 6.307 6.307 6.306 
L-~2 ' 2 "~~--(32204) ___ _@_3.453) ____ (30~72) ___ ._ ___ (27.~~---'-~·309±~00~-
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5.2 Integral Equations for EWMA Chart 

We have not been able to apply the same methods to the gamma and Weibull distributions 

t hat we used in Chapter 4 to derive explicit formulas for ARL and AD for the exponential 

dist ribution. In this chapter we have developed alternative techniques t o compute ARL 

and AD for these distributions based on numerical solution of Integral Equations . In this 

section we evaluate t he ARL and AD for EWMA charts for t he case of gamma and Weibull 

distributions using t he algorit hm discussed in Section 3.2. For t he integration nodes and 

weights in Equation (3.13), we use Gauss-Legendre quadrature rule values. 

5.2.1 EWMA for Gamma Distribution 

In this part, we shall discuss the case when ~t have a gamma distribut ion . T he probability 

density function is then defined by the following function: 

xk-1e-~ 
f(x) = f (k)ak , x 2:: 0 and k, a> 0. 

The change-point model is the following: 

I
Gamma(k, ao) , 

~t '""" 
Gamma(k, a), 

t = 1, 2, ... , 1/ - 1 

t = v, v + 1, ... , a > rYo. 

1. Comparison of numerical results for ARL and AD for gamma EWMA chart 

by the Integral Equation method with other methods 

In Table 5.2, we compare the numerical results for ARL and AD for a Gamma(2 , 1) 

obtained from the Integral Equation method with results obtained from MCA and Monte 

Carlo simulation for parameter values -\=0.01 and H =2.15. The table shows t hat the 

outputs obtained by IE and J\IICA methods are very similar and close to MC results. T he 

choice of method for calculating ARL values should therefore be made based on other 

factors (e.g. CPU times, available software or ease of programming) . 
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Table 5.2: Comparison of approximations ARL and AD obtained from Integral Equations 
with MCA and Monte Carlo Simulation: gamma case 

(k,a) Integral Equations MCA Monte Carlo 
Simulations 

(2,1.0) 495.915 496.365 495 .662±0.509 
(2,1.05) 181 .825 181.528 181.924±0.215 
(2,1.1) 96 .237 96.418 96.364±0.078 
(2,1.2) 46.821 46.932 46.836±0.031 
(2,1.3) 30.486 30.562 30.277±0.177 
(2,1.4) 22.591 22.648 22 .597±0.012 
(2,1.5) 17.978 18.025 18.001±0.092 
(2,1.6) 14.962 14.999 14.968±0.007 
(2,1.7) 12.840 12.871 12.828±0.062 
(2,1.8) 11.267 11.299 11.266±0.005 
(2,1.9) 10.054 10.084 10.055±0.005 
(2,2.0) 9.091 9.118 9.096±0.041 

2. Comparison ofEWMA, CUSUM and Shiryayev-Roberts Charts: Gamma 

case 

For gamma distribution, we have compared results obtained for ARL and AD from the In-

tegral Equation method with the results of Monte Carlo simulations for EWMA, CUSU11 

and Shiryayev-Roberts charts. The results are shown in Table 5.3 and Figure 5.1 for a 

value of T=lOOO, for an in-control parameter value a = 1.0 and for out-of-control pa-

rameter values a from 1.05 to 2.0. The ARL and AD values for the Integral Equation 

method were calculated from Equation (3.15) . For the gamma E\VMA we obtain a pair 

of optimal parameter values of >-=0.05 , H =2.6588, for the CUSUM procedure we used a 

boundary value A=4.3105 and for the Shiryayev-Roberts procedure we used a boundary 

value B=615.5. The results in Table 5.3 show that for small changes (a < 1.6), the AD 

values obtained from the Integral Equation method and the MC of EWMA charts are less 

than the values obtained from either CUSUM or Shiryayev-Roberts. For larger changes, 

a > 1.6 , the CUSUlv1 values for AD are less than the other procedures. For the smaller 

values of a, the EWMA chart gives a smaller value of AD than the Shiryayev-Roberts 

chart. For the larger values of a, the values of AD from the EWMA are slightly less than 

Shiryayev-Roberts. For given T = 1000, the performance of the EWMA chart is supe-

rior to CUSUM and Shiryayev-Roberts charts for small shifts , but that CUSUM performs 

better than EWMA and Shiryayev-Roberts for moderate to large shifts. Further , EWMA 

performs appreciably better than Shiryayev-Roberts for small shifts and has comparable 

performance for large shifts. 
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Table 5.3: The numerical results for ARL and AD obtained from Integral Equation and 
simulation results of EWMA, CUSUM and Shiryayev-Roberts charts: gamma case 

ARL and AD 
(k,a) Integral Monte Carlo simulations 

Equations EWMA CUSUM SR 
boundary 2.6588 2.6588 4.3105 615.5 

(2 ,1.0) 
(2 ,1.05) 
(2 ,1.1) 
(2,1.2) 
(2 ,1.3) 
(2 ,1.4) 
(2,1.5) 
(2,1.6) 
(2 ,1. 7) 
(2 ,1.8) 
(2 ,1.9) 
(2,2.0) 
(2 ,3.0) 
(2 ,4.0) 

400 

350 

300 

250 
c 
c:( 200 

150 

100 

50 

0 

1000.237 999 .215±.306 1000.560±.320 1001.480±.308 
381.025 381.717±.275 456.420±.306 445.750±.295 
191.260 191.277±.193 373.906±.228 216.365±.062 
73.578 74.037±.051 103.848±.043 84.017±.021 
40.824 41.061±.037 51.023±.031 47.099±.010 
27.404 27.362±.015 31.464±.022 31.989±.006 
20.463 20.557±.015 21.995±.014 24.373±.004 
16.311 16.314±.010 16.574±.011 19.739±.003 
13.573 13.557±.007 13.191±.008 16.634±.003 
11.640 11.653±.006 10.896±.007 14.458±.002 
10.207 10.200±.005 9.253± .006 12.752±.002 
9.104 9.132±.005 8.045±.005 11.482±.002 
4.588 4.602± .003 3.581 ± .002 5.997± .001 
3.237 3.247± .002 2.469± .002 4.219±.001 

- -

_l 

\ 
--~-------------------~ 

~~-----t-------------l 
. \ I . \ \ 

I \\\ I 
·-~~ 
~,, 

~ ... 
- -

(2 ,1 .1) (2 .12) (2 ,13) (2 ,1.4) (2,1 .5) (2,1 .6) (2,1 .7) (2 .1 8 ) (2.1.9) (2,2.0) (2 ,3 .0) (2,4 .0) 

--+- EWMA: H = 2 6588 --CUSUM. A = 4.3105 ~ IE: H =2.6588 ~ Sh~ryaye,.Robe rt s : 8=615 5 

Figure 5.1: Curves of AD for EWMA, CUSUl\II and Shiryayev-Roberts charts: gamma 
case 

5.2.2 Choices of Optimal Parameters of Gamma EWMA Procedure 

Using the Integral Equation t echnique, we can easily find the approximation for optimal 

parameters (-A*, H *) of EWl\IIA designs . The parameter values for approximated optimal 

EWMA designs for values of T=500 ,750 and 1000, magnitudes of change a= 1.1, 1.2 , 1.3, 

1.4, 1.5 , 1.6, 1.7, 1.8, 1.9, 2 and in-control parameter a = 1 are shown in Table 5.4. This 
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table gives values for the optimal pairs of parameters (A*, H*) , and the minimal AD* for 

each size of changes. Figure 5.2 shows the curves of optimal AD when fixed in-control 

T=500 and 1000 and magnitudes of change a=1.3, 1.5 and 1.8. 

Table 5.4: Optimal design parameters and AD for one-sided gamma EWMA 

(k, a) T=500 
A* H* AD* MC 

(2,1.1) 0.01 2.1343 84.239 84.297±0.220 
(2,1.2) 0.02 2.2770 48.949 48.078±0.111 
(2,1.3) 0.03 2.3844 31.053 31.105±0.066 
(2,1.4) 0.04 2.4808 22.121 22.120±0.045 
(2 ,1.5) 0.06 2.6535 16.888 16.872±0.035 
(2,1.6) 0.08 2.810 13.523 13.529±0.028 
(2,1. 7) 0.09 2.8841 11.207 11.251±0.023 
(2,1.8) 0.11 3.0267 9.539 9.578±0.020 
(2,1.9) 0.13 3.1632 8.288 8.282±0.017 
(2,2.0) 0.14 3.230 7.320 7.307±0.015 
(k, a) T=750 
(2,1.1) 0.01 2.1570 103.675 

I 
103.239±0.236 

(2,1.2) 0.02 2.3133 58.328 58.582±0.141 
(2,1.3) 0.03 2.4272 35.890 36.073±0.075 
(2,1.4) 0.04 I 2.529 25.114 25.176±0.051 
(2,1.5) 0.06 2.7115 18.957 18.983::1::0.039 
(2,1.6) 0.07 2.7960 15.055 15.084±0.031 
(2 ,1.7) 0.09 2.9555 12.401 12.406±0.025 
(2 ,1.8) 0.10 3.0320 10.502 10.514±0.021 
(2,1.9) 0.12 3.1795 9.084 9.084±0.018 
(2,2.0) 0.13 3.2512 7.992 8.003±0.016 --
(k, a) T=1000 --------

-o~cfl-12.17i3_l_117 .315 -117 .361±0.289 (2,1.1) 
(2 ,1.2) 0.02 2.3375 65.385 65.351±0.144 
(2,1.3) 0.03 2.4558 39.463 39.593±0.081 
(2,1.4) 0.04 2.5614 27.290 27.293±0.055 
(2,1.5) 0.05 2.6588 20.463 20.454±0.040 
(2,1.6) 0.07 2.8383 16.159 16.197±0.033 
(2,1. 7) 0.08 2.9226 13.261 13.237±0.026 
(2,1.8) 0.10 3.0835 11.194 11.182±0.023 
(2,1.9) 0.11 3.1610 9.656 9.699±0.019 
(2,2.0) 0.12 3.2368 8.477 8.493±0.017 
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Figure 5.2 : Curves of AD for optimal gamma EWMA designs 

5.2.3 EWMA for Weibull Distribution 

The Wei bull distribution has been used to model the lifetimes of objects, including physical 

system components (Beldica et al., 2002) and also to model distributions of available 

computer resources (Xu et al., 1999). 

Let ~t, t = 1, 2, ... be sequentially observed independent random variables. The change-

point model is the following: 

( 

W eibull (k, ao), 
~t ,...._ 

Weibull(k, a), 

t=1,2, ... ,v--1 

t = v, v + 1, ... , a > ao. 

1. Comparison of numerical results for ARL and AD for Wei bull EWMA chart 

by the Integral Equation with other methods 

The numerical results shown in Table 5.5 for ARL and AD were obtained for a W eibull (2, 1). 

The parameter values used were .\=0.01 , H=0.9351 and in-control parameter a=l. The 

results obtained by IE method were computed from Equation (3.15). As for the gamma 

case results shown in Table 5.2, the nmnerical results for the different methods are all 

approximately the same. 
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Table 5.5: Comparison of approximate ARL and AD values obtained from Integral Equa-
tions with MCA and Monte Carlo Simulation: Weibull case 

(k,a) Integral Equations MCA Monte Carlo 
Simulations 

(2,1.0) 499.577 499.346 492.264±0.504 
(2,1.05) 136.815 137.086 136.752±0.178 
(2 ,1.1) 69.386 69.581 69.433±0.051 
(2 ,1.2) 33.198 33.331 33.174±0.019 
(2,1.3) 21.686 21.778 21.671±0.011 
(2 ,1.4) 16.142 16.210 16.143±0.008 
(2 ,1.5) 12.896 12.951 12.892± 0.005 
(2,1.6) 10.769 10.814 10. 772±0.004 
(2 ,1.7) 9.268 9.307 9.268±0.004 
(2,1.8) 8.153 8.187 8.151± 0.003 
(2,1.9) 7.293 7.322 7.298± 0.003 
(2,2.0) 6.609 6.635 6.607± 0.003 

2. Comparison for EWMA, CUSUM and Shiryayev-Roberts Charts: Weibull 

case 

We have compared results obtained for ARL and AD from the Integral Equation method 

with the results of Monte Carlo simulations for EWMA, CUSUM and Shiryayev-Roberts 

charts . T he results are shown in Table 5.6 and Figure 5.3 for a value of T=1000, for an 

in-control parameter value a = 1.0 and for out -of-control parameter values a from 1.05 

to 4. The ARL and AD values for the Integral Equation method were calculated from 

Equation (3.15) . For the Weibull EWl\!IA we obtain a pair of optimal parameter values of 

>-=0 .15, 11 =1.3061 , for the CUSUM procedure we used a boundary value A=4.4931 and 

for the Shiryayev-Roberts procedure we used a boundary value B=450.20. The numerical 

results show t hat EWMA performs better than Shiryayev-Roberts and CUSUM for de-

tection of very small shifts, but when a > 1.3 CUSUM charts have the best performance 

with Shiryayev-Roberts having the next best and EWMA having t he worst performance . 
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Table 5.6: The numerical results for ARL and AD obtained from Integral Equation and 
simulation results of EWMA , CUSUM and Shiryayev-Roberts charts : Weibull case 

ARL and AD 
(k,a) Integral Monte Carlo simulations 

Equations EWMA CUSUM SR 
boundary 1.3061 1.3061 4.4931 450.2 

(2,1.0) 999.623 998.842±.313 1000.310±.319 1001.00±.316 
(2,1.05) 354.691 353.897±.202 374.604±.219 343.181±.248 
(2,1.1) 160.904 157.753±.049 162.191±.050 149.909±.045 
(2,1.2) 52.805 51.801±.015 51.842±.015 49.740±.013 
(2,1.3) 26.181 25.867±.007 25.489±.006 25.859±.058 
(2,1.4) 16.356 16.262±.003 15.926±.004 16.967±.035 
(2,1.5) 11.670 11.667±.003 11.370±.002 12.503±.024 
(2,1.6) 9.042 9.063±.002 8.802±.002 9.879±.018 
(2,1. 7) 7.385 7.432± .002 7.157±.001 8.127±.01.5 
(2,1.8) 6.258 6.317±.001 6.033±.001 6.926±.012 
(2,1.9) 5.446 5.501±.001 5.195±.001 6.015±.011 
(2 ,2.0) 4.834 4.905±.001 4.585±.001 5.327±.001 
(2,3.0) 2.464 2.499± .001 2.247±.001 2.574±.001 
(2,4.0) 1.810 1.827±.001 1.650±.001 1.832±.001 
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Figure 5.3: Curves of AD for EWiv1A, CUSUM and Shiryayev-Roberts charts: Weibull 
case 

5.2.4 Choices of Optimal Parameters of Weibull EWMA Procedure 

Table 5. 7 contains approximations for optimal values of parameters (..\ *, H*) when ob-

servations are from a Weibull distribution. The values were calculated numerically for 

t he one-sided EWMA case from Equation (3 .15). These optimal values were obtained by 

minimising AD values when fixed ARL values of 500, 750 and 1000, in-control parameter 
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ao=1 and the sizes of parameter change, a= 1.1, 1.2 , 1.3, 1.4, 1.5 , 1.6, 1.7, 1.8, 1.9, 2. The 

numerical results from the Integral Equation approximations closed to the results from 

the Monte Carlo simulations. A curves of AD for a range of magnitudes of change are 

shown in Figure 5.4. 

Table 5.7: Optimal design parameters and AD for one-sided Weibull EWMA 

(k, a) T=500 
).* H* AD* MC 

(2,1.1) 0.01 0.9351 69.386 69.315±0.161 
(2,1.2) 0.03 1.0081 33.120 33.084±0.070 
(2,1.3) 0.08 1.1331 19.143 19. 762±0.044 
(2,1.4) 0.12 1.2124 13.443 13.422±0.029 
(2,1.5) 0.18 1.3160 9.926 9.942±0.023 
(2,1.6) 0.23 1.3947 7.756 7.747±0.018 
(2 ,1. 7) 0.28 1.4689 6.308 6.280±0.014 
(2,1.8) 0.33 1.5401 5.289 5.285±0.012 
(2,1.9) 0.39 1.6232 4.545 4.562±0.01 
(2,2.0) 0.45 1.6913 3.985 3.968±0.009 
(k, a) T=750 
(2,1.1) 0.01 0.9438 85.986 86.252±0.192 
(2,1.2) 0.03 1.0208 38.234 38.259±0.079 
(2,1.3) 0.07 1.1286 22.251 22.254±0.048 
(2,1.4) 0.11 1.2144 14.940 15.028±0.033 
(2 ,1.5) 0.15 1.2898 10.939 10.952±0.023 
(2,1.6) 0.19 1.3459 8. 134 8.120±0.018 
(2,1.7) 0.26 1.4707 6.858 6.852±0.015 
(2,1.8) 0.31 1.5463 5.721 l5.722±0.013 
(2,1.9) 0.34 1.6049 4.893 4.901±0.011 
(2,2.0) 0.40 1.6768 4.271 4.271±0.009 

-(k,a)-t-------'-------'----- -------
T=1000 

(2,1.1) 0.01 0.9501 99.577 99.223±0.268 
(2 ,1.2) 0.03 1.0293 42 .001 42.007±0.087 
(2,1.3) 0.07 1.1402 24.087 24.123±0.052 
(2,1.4) 0.10 1.2077 16.038 16.046±0.034 
(2,1.5) 0.15 1.3061 11.670 11.682±0.025 
(2,1.6) 0.19 1.3772 9.008 9.015±0.019 
(2,1.7) 0.25 1.4764 7.257 7.250±0.016 
(2,1.8) 0.29 1.5391 6.032 6.056±0.013 
(2 ,1.9) 0.35 1.6301 5.145 5. 145±0.011 
(2 ,2.0) 0.39 1.6893 4.476 4.4 79±0.010 
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Figure 5.4: Curves of AD for optimal Weibull EWMA designs 

5.2.5 EWMA for Two-sided Exponential Distribution 

The EWMA control chart for the exponential Distribution was introduced by Gan (1998) 

who calculated the ARL by using a differential equation. Calzada and Scariano (2003) 

studied the Integral Equation and JVIarkov Chain Approach for computing the ARL for a 

two-sided EWMA. 

In this section, we develop numerical algorithms for evaluating ARL and AD of the 

two-sided EWJVIA for the exponential case. 

Recall Equation (3.11) 

Hu 
1 I y - (1- ,\)u L(v,) = 1 + ":\ L(y)J( ,\ )dy. 

HL 

The function L(u) can be approximated by using a quadrature rule as in Equation (3.15). 

As for the gamma and Weibull distributions , we have solved the approximate Integral 

Equations using the Gauss-Legendre rule. In Table 5.8 we compare the results for ARL 

and AD from the Integral Equation method with the results of Monte Carlo simulation 

for an example of a two-sided EWMA for an exponential distribut ion. The results show 

that the Integral Equation approach can be an effective alternative to MC . 
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Table 5.8: Comparison of approximation ARL and AD values obtained from Integral Equa-
tion for two-sided EWMA with values obtained from Monte Carlo Simulation: exponential 
case 

ARL and AD 
a Integral Equations Monte Carlo Simulation 

boundary HL = 0.5, H u = 1.142 
1.0 1000.4330 997.3360± 0.061 
1.1 212.1590 212.5500±0.057 
1.2 98.3429 99.2717±0.023 
1.3 62.1264 62.1938±0.012 
1.4 45.0981 45.0486±0.008 
1.5 35.3701 35.3208±0.006 
1.6 29.1173 29.1217±0.005 
1.7 24.7726 24. 7870±0.004 
1.8 21.5829 21.5834±0.003 
1.9 19.1439 19.1297±0.003 
2.0 17.2193 17.2474±0.003 

5.3 Integral Equations for CUSUM Chart 

We assurne that the CUSUM statistic yt is defined as in Equation (2.11) where 6,6, ... 
are i.i.d. with a continuous distribution given by a probability density f(x). For example, 

in the case of exponential distribution it can be shown that 

, ao 1 1 yt = rnax(Yt- 1 + wg(-) + x(-- -), 0), t = 1, 2, ... , Yo= 0, 
a ao a 

where ao and a are in-control and changed parameters and the stopping time is defined 

in Equation (2.13). In general, the CUSUM chart can be rewritten as a sequence with 

Ut = max(Ut-l + ~t- k, 0), t = 1, 2, ... , Uo = 0. 

The first passage time of a CUSUM chart is given by: 

Th = inf { t > 0 : yt > h} , 

where h is the control limit, then k = - tf(~)) and h = ( 1 ~l) when the observations 
ao Q ao Q 

are exponential distributed. 

Let L(u) = E00 (Th) be the ARL of the CUSUM procedure after it is reset at u E [0, h]. 
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It can be shown (Page, 1954; Rao et al. , 2001) that the ARL satisfies the Integral Equation: 

L(u) = 1 + L(O)F(k- u) + 1h L(x )f(x + k - u)dx, (5. 18) 

where F (.) is the distribut ion function of the sample statistic. 

As shown in Section 3.2 a quadrature rule can be used to approximate the integral 

equation (5.18) by a solut ion of syst em of algebraic linear equations of t he form : 

n 

L (ai) = 1 + L(a 1)F (k- ai) + L wj L (aj) f (aj + k - ai), i = 1, 2, . .. , n . (5.19) 
j = l 

T hat is 

n 

L(al) = 1 + L(al)[F(k- a1) + w1j(k)] + L L(aj)wjf(aj + k- a1) 
j=2 

n 

L(a2) = 1 + L(a1)[F(k- a2) + w1 J (a1 + k- a2)] + L L(aj)wjf(aj + k- a2) 
.7=2 

n 

L(an) = 1 + L(al)[F(k- an)+ w1J(a1 + k- an)]+ L L(aj)Wjj(aj + k- an)· 
j=2 

The above set of n equations inn unknowns can be rewritten in a matrix form as follows. 

We define a column vector L with components: 

and ann x n matrix R with matrix entries given by: 

R = 

Equation (5.19) can then be written in t he matrix form: 

(I -- R )L = 1 , 

Wnf(an + k- al) 

Wnf(an + k- a2) 

(5 .20) 

where I is an n x n identity matrix and 1 is a column vector of n 1 's. On substitut ing 
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t he values for L (aj) obtained from solving Equation (5 .20) into t he right-hand side of 

Equation (5. 19) and replacing t he ai by u in the left-hand side, we obtain an approximation 

for the function L ( u) as 

n 

L (u) = 1 + L(al) F (k- u) + L wj L (aj) f (aj + k - u). 
j=l 

(5 .21) 

Table 5.9 shows a comparison of the numerical results for ARL and AD for exponential 

CUSUM obtained from Equation (5 .21) with the results of a Monte Carlo simulation. 

Table 5.10 shows a similar comparison for gamma CUSUM. The approximate values for 

ARL and AD obtained from the Integral Equation method are reasonable when compared 

with MC values. The numerical Integral Equation method is a useful approach when 

explicit expressions are not obtainable for ARL and AD. 

Table 5.9: Comparison of approximation ARL and AD values obtained from Integral 
Equation with values from Monte Carlo Simulation: exponential CUSUM case 

ARL and AD 
a Integral Equations Monte Carlo Simulation 

boundary H = 2.0 
f--· . 

127.4410±0.391 1.0 125.5580 
1.1 68.6524 68.5035±0.202 
1.2 43 .2107 42.8563±0.121 
1.3 30.2241 29.9420±0.080 
1.4 22.8092 22.6519±0.058 
1.5 18.1793 18.1058±0.045 

I 1.6 14.9756 14.9756±0.035 
1.7 

I 
12.8263 12.8263±0.029 

1.8 11.2188 11.2188±0.026 
1.9 

I 
9.9715 9.9715±0.022 

2.0 9.0037 9.0037±0.019 
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Table 5.10: Comparison of approximation ARL and AD values obtained from Integral 
Equation with values from Monte Carlo Simulation: gamma CUSUM case 

(k,a) ARL and AD 
Integral Equations Monte Carlo Simulation 

boundary H = 2.5 
(2 ,1.0) 145.7420 145.2710±0.44 7 
(2,1.1) 62.2807 63.6040±0.189 
(2,1.2) 34.7026 34.8817±0.097 
(2,1.3) 22.5154 22.4857±0.058 
(2,1.4) 16.2347 16.267 4±0.034 
(2,1.5) 12.5820 12.5659± 0.029 
(2,1.6) 10.2526 10.2325±0.023 
(2,1. 7) 8.6592 8.6400±0.018 
(2,1.8) 7.5094 7.5112±0.016 
(2,1.9) 6.6442 6.6137±0.013 
(2,2.0) 5.9713 5.9647±0.012 



Chapter 6 

Conclusion and Recommendations 

for Further Research 

6 .1 Overall Conclusion 

In this thesis, we have presented explicit formulas for ARL and AD of one-sided EWMA 

charts for the case of an exponential distribution. We have shown that the suggested for-

mulas are easy to calculate and program. The explicit formulas obviously take the com-

putational time much less than other methods such as Markov Chain Approach (MCA), 

Integral Equation method (IE) and Monte Carlo (MC) simulation rnethods. The explicit 

formulas for the exponential distribution can be applied to some other distributions, e.g. 

the Pareto distribution. Using the explicit formulas , we have been able to provide tables 

for the optimal weights , boundaries and approxirnations for ARL and AD for one-sided 

EvVMA charts for the exponential and Pareto distributions. 

For gamma and Weibull distributions it is not possible to obtain explicit formulas for 

ARL and AD by the methods we used for the exponential and Pareto distributions. For 

the gamma and Weibull distributions we obtained values for ARL and AD by numerical 

solution of the Integral Equations. We have examined the efficiency of different quadrature 

rules that can be used for numerical integration. These rules are the midpoint rule, the 

trapezoidal rule, Simpson's rule and the Gauss-Legendre rule. For most of our calculations 

we have used the Gauss-Legendre rule because this rule has better error bounds than the 

midpoint, trapezoidal and Simpson's rules. Using the midpoint rule to solve the equations 

of the Integral Equation method is equivalent to the Markov Chain Approach (MCA). 

We have also applied the Integral Equation method to evaluate ARL and AD for two-
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sided EWMA charts for the exponential distribution. These numerical results have been 

compared with MC and found to be very close to MC. 

We have compared the effectiveness of the EWMA, CUSUM and Shiryayev-Roberts 

procedures for detecting small , moderate and large changes in sequential observations for 

the exponential , Pareto, gamma and Weibull distributions . The comparison of the control 

charts has been based on Average Run Length (ARL) and Average Delay (AD) criteria. 

For all distributions considered in this thesis , we have shown that the performance of 

EWMA charts is superior to CUSUM and Shiryayev-Roberts charts for small changes 

and that the performance of CUSUM charts is superior to EWMA and Shiryayev-Roberts 

charts for moderate to large changes . 

6.2 Recommendations for Further Research 

In this t hesis , we have presented explicit analytical formulas and developed numerical 

algorithms for evaluating important characteristics of EWMA control charts for some 

distributions. However , there are further studies t hat can be made in areas of sequential 

change-point detection. Some possible areas of fut ure study are as follows: 

• Explicit formulas could be developed for two-sided EWMA charts when observat ions 

are from the exponential distribution. In additional , explicit formulas for finding 

ARL and AD for the multivariate control chart should be considered. 

• In this thesis we have assumed that a change in the process occurs at the very 

beginning , the so-called zero-state. However , other changes should be considered 

including t he so-called steady-stat e. 

• In this thesis , we have assumed that observations are i.i .d. random variables. How-

ever , in real applications t hey could be serially-correlated observations such as in 

AR(l ), M A (l) etc. Serially-correlated data often appear in finance and insurance. 

The Int egral Equations could be used t o analyse this seri ally-correlated dat a . 



Appendix A 

Codes for Simulation and 

Calculation by Mathematica® 

T he appendix provides all the Mathematica ® codes used in simulations for the expectation 

of the first alarm t ime of EW MA chart. For Monte Carlo simulations t he expectation can 

be approximated by the average of first alarm t ilnes observed in trials. 

A .l Exponential case 

A .l.l Simulation AllL for one-sided exponential EWIVIA chart 

Clear[ee, X, Y,j, H]; H = 1.1405; n = 10"6; lamp= 0.01; 

ee:=- Log[ . .iV[RandomO, 20]); SeedRandomQ; tO= TimeUsed0; 

X =O;j =0; 

Do[ 

{For[i = 1; Y = 1, Y < H , i++, Y = Y (1 -lamp)+ lamp1ee], j = j + i - 1, 

X= X+ (i - 1)"2}, {k , 1, n}]; 

av = N[j/n] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed 11 

TimeUsed0 - tO 

A.1.2 Simulation AD for one-sided exponential EWMA chart 

Clear[ee, X, Y,j, H] ; H = 1.1405; n = 10"6; lamp= 0.01; 

ee:=- Log[N[Random0 , 20]]; SeedRandomO; tO= TimeUsed0; 
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A.l. Exponential case 

X=O;j=O; 

Do[ 

{For[i = 1; Y = 1, Y < H, i++, Y = Y(1 -lamp)+ lampl.5ee],j = j + i- 1, 

X= X+ (i -1)"2}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 

"Time Used" 

TimeUsed0- tO 

A.1.3 Simulation ARL for one-sided exponential CUSUM chart 

Clear[ee,X, Y,j];H = 3.84;n = 10"6;cc = -Log[l.5];aa = 1-1/1.5; 

ee:=- Log[Random0]; SeedRandomO; tO= TimeUsed0; 

X =O;j =0; 

Do[ 

{For[i = 1; Y = 0, Y < H , i++, Y = Max[O, Y + eeaa + cc]], X= X+ (i- 1)"2, 

j = j + i- 1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed" 

TimeUsedQ- tO 

A.1.4 Simulation AD for one-sided exponential CUSUM chart 

Clear[ee, X, Y,j]; H = 3.84; n = 10"6; cc = -Log[l.5]; aa = 1- 1/1.5; 

ee:=- Log[RandomO]; SeedRandomO; tO= Time Used[]; 

X =O;j = 0; 

Do[ 

{For[i = 1; Y = 0, Y < H , i++, Y = Max[O, Y + 1.1eeaa + cc]], X= X+ (i- 1)"2, 

j = j + i- 1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed" 

TimeUsed0 - tO 
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A. 1.5 Simulation ARL for one-sided exponential Shiryayev-Roberts chart 

Clear[ee, X , Y , j, aO, a , b] ; aO = 1; a= 1.5; b = 700.001; n = 10"6; 

ee:= - Log[RandomO]; SeedRandomO; tO = Time U sed0; 

X = O;j = 0; 

Do[ 

{For [i = 1; Y = 0, Y < b , i++, Y = (1 + Y) ( ~0 ) Exp [l.Oee (do -~)]], 

X= X+ (i- 1)"2,j = j + i- 1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed 11 

TimeUsed0- tO 

A.1.6 Simulation AD for one-sided exponential Shiryayev-Roberts chart 

Clear[ee, X, Y,j, aO, a, b]; aO = 1; a= 1.5; b = 700.001; n = 10"6; 

ee:= - Log[Random[]]; SeedRandomO; tO= TimeUsed0 ; 

X = O;j = 0; 

Do[ 

{For [i = 1; Y = 0, Y < b, i++, Y = (1 + Y) (~0 ) Exp [1.2ee (do - ~ ) ] ] , 

X= X+ (i - 1)"2,j = j + i -1}, {k, l,n}]; 

av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed11 

TimeUsedO - tO 

A.2 Pareto case 

A.2 .1 Simulation ARL for one-sided Pareto EWMA chart 

< < Statistics'ContinuousDistributions' 

Clear[ee, X, Y,j, b] ; H = 1.142; n = 10"6; lamp= 0.01; alf = 1; tO= TimeUsed0; 

ee:=Random[ParetoDistribution[1, 1/alfJ]; 

SeedRandomO; 

X= O;Y = 1;j =0; 

Do[ 



A.2. Pareto case 

{For[i = 1; Y = 1, Y < H, i++, Y = (1 -lamp)Y + lampLog[ee]] , X= X+ (i- 1)"2, 

j = j + i- 1}, {k, 1, n}] 

av = Nfjjn] 

Sqrt[(X/n - av"2)/n] 
11 TimeUsed 11 

TimeUsedQ- tO 

A.2.2 Simulation AD for one-sided Pareto EWMA chart 

< < Statistics'ContinuousDistributions' 

Clear[ee, X, Y,j, H]; b = 1.142; n = 10"6; lamp= 0.01; alf = 1.1; tO= TimeUsedQ; 

ee:=Random[ParetoDistribution[1, 1/ alfj]; 

SeedRandomO; 

X= O;j =0; 

Do[ 

{For[i = 1; Y = 1, Y < b, i++, Y = (1 -lamp)Y + lampLog[ee]], X= X+ (i- 1)"2, 

j = j + i -- 1}, {k, 1, n}] 

av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed11 

TimeUsedQ - tO 

A.2.3 Simulation ARL for one-sided Pareto CUSUM chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J.] · H = 4 096· n - 10"6· a:O - 1· a1 - 1/1 5· r - 1· cc - Log[ad] · '''' . ,- '-,- .,-,- ' 
ee:=Random[ParetoDistribution[r, aO]]; SeedRandomQ; tO= TimeUsedQ; 

X= O;j = 0; 

Do[ 

{For[i = 1; Y = 0, Y <II, i++, Y = Max[O, Y + cc + (al- aO)r 

+(aO- a1)Log[ee]]], X= X+ (i- 1)"2,j = j + i- 1}, {k, 1, n}]; av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed11 

TimeUsedQ- tO 
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A.2. Pareto case 

A.2.4 Simulation AD for one-sided Pareto CUSUM chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J.] · H = 4 096· n = 10A6. aO = 1· a1 = 1/1 5· r = 1· cc = Log[a1] · ' ' ' ' . ' ' ' . ' ' ' 
ee:=Random[ParetoDistribution[r, a1]]; SeedRandomO; tO= TimeUsedQ; 

X=O;j=O; 

Do[ 

{For[i = 1;Y = 0, Y < H ,i++, Y = Max[O, Y +cc+ (a1- aO)r 

+(aO- a1)Log[ee]]], X= X+ (i- 1)A2,j = j + i- 1}, {k, 1, n}]; av = N[jjn] 

Sqrt[(X/n- avA2)/n] 

"TimeUsed" 

TimeUsed0 -tO 

A.2.5 Simulation ARL for one-sided Pareto Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J·]· b = 4 095· n = 10A6· al£0 = 1· alf1 = 1/1 5· cc =Log [alfl] · 
' ' ' ' . ' ' ' . ' alfO ' 

ee:=Random[ParetoDistribution[l, alfO]]; SeedRandomD; tO= TimeUsedQ; 

X =O;j = 0; 

Do[ 

{For (i = 1; Y = 0, Y < b , i++, Y = (1 + Y) (~) ee<alfO-alfl)] , 

X= X+ (i -l)A2,j = j + i -1}, {k, 1, n}]; 

AbsoluteTimeD ·- a; 

av = 1V[jjn] 

Sqrt[(X/n- avA2)/n] 

"TimeUsed" 

TimeUsed0- tO 

A.2.6 Simulation AD for one-sided Pareto Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J·]· b = 4 095· n = 10A6. al£0 = 1· alf1 = 1/1 5· cc =Log [alfl] · ' ' ' ' . ' , ' • ' alfO , 

ee:=Random[ParetoDistribution[1, alfl]]; SeedRandomD; tO= TimeUsed0; 

X= O;j = 0; 

Do[ 

{For [i = 1; Y = 0, Y < b , i++, Y = (1 + Y) (~) ee<alf0-alf1)] , 
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A.3. Gamma case 

X= X+ (i - 1)"2,j = j + i - 1}, {k, 1, n}] ; 

AbsoluteTimeO - a; 

av = N[ijn] 

Sqrt[(X/n - av"2)/n] 

"TimeUsed" 

TimeUsed0 - tO 

A.3 Gamma case 

A.3.1 Simulation A RL for one-sided Gamma EWMA chart 

< < Statistics'ContinuousDistributions' 

Clear[ee, X , Y,j, H] ; H = 2.1964; n = 10"6; aO = 1; lamp= 0.01; 

ee:=Random[GammaDistribution[2, a:O]]; SeedRandomO; tO= TimeUsed0; 

X= O;j =0; 

Do[{For[i = 1; Y = 2, Y < H , i++, Y = Y(1 -lamp)+ lampee],X =X+ (i- 1)"2, 

j = j + i - 1}, {k, 1, n}];AbsoluteTimeO - a; 

av = N[ijn] 

Sqrt[(X/n - a.v"2)/n] 
11 TimeUsed " 

TimeUsed0- tO 

A.3.2 Simulation AD for one-sided Gamma EWMA chart 

< < Statist ics'ContinuousDistributions' 

Clear[ee, X, Y,j, H]; H = 2.1964; n = 10"6; aO = 1.5; lamp= 0.01; 

ee:=Random[GammaDistribution[2, a:O]] ; SeedRandomO; tO = TimeUsed0 ; 

X= O;j = 0; 

Do[ 

{For[i = l;Y = 2, Y < H , i++, Y = Y(1-lamp) + lampee],X = X+ (i -- 1)"2, 

j = j + i - 1}, {k , 1, n}];av = N[ijn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed" 

TimeUsedO -tO 
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A.3. Gamma case 

A.3.3 Simulation ARL for one-sided Gamma CUSUM chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y J·]· H = 4 3105· n = 10"6· r = 2· aO = 1· ad= 1 5· ' ' ' ' . ' ' ' ' . ' 
ee:=Random[ GammaDistribution[2, aO]]; 

SeedRandomO;tO = TimeUsed0; 

X= O;j = 0; 

Do[ 

{For[i = 1; Y = 0, Y < H , i++, Y = Max[O, Y + rLog[~] - eeC:1 - do)]], 
X= X+ (i- 1)"2,j = j + i- 1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed 11 

TimeUsedO- tO 

A.3.4 Simulation AD for one-sided Gamma CUSUM chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y J·]· H = 4 3105·n = 10"6·r = 2·a0 = 1·od = 15· ' ' ' ' . ' ' ' ' . ' 
ee:=Random[GammaDistribution[2, cd ]] ; 

SeedRandomO; tO= TimeUsedO; 

X= O;j =0; 

Do[ 

{For[i = 1; Y = 0, Y < H , i++, Y = Max[O, Y + rLog[~] - eeC;1 - do)]], 
X= X+ (i -1)"2,j = j + i -1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed11 

TimeUsed0 - tO 
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A.3.5 Simulation ARL for one-sided Gamma Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y J. av]· b = 615· n = 10"6· r = 2· aO = 1· a1 = 1 5· ' ' ' ' ' ' ' ' ' . ' 
ee:=Random[ GammaDistribution[2, aO)]; 

SeedRandomO;tO = TimeUsed0; 



A.4. Weibull case 

X= O;j = 0; 

Do[ 

{For [i = 1;Y = o, Y < b ,i++, Y = (1 + Y) (~~rExp [ee (do- ; 1 )]], 

X= X+ (i -1)"2,j = j + i -1}, {k, 1,n}]; 

av = N[jjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed" 

TimeUsed0- tO 

A.3.6 Simulation AD for one-sided Gamma Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J. av]· b- 615· n = 10"6· r = 2· aO = 1· a1 = 1 5· ' ' '' ' - ' ' ' ' . ' 
ee:=Random[GammaDistribution[2, a1]]; 

SeedRandomO;tO = TimeUsed0; 

X= O;j =0; 

Do[ 

{For [i = 1;Y = o, Y < b ,i++, Y = (1 + Y) (~~rExp [ee (do- ; 1 )]], 

X= X+ (i- 1)"2,j = j + i- 1}, {k, 1, n}]; 

av = N[jjn] 

Sqrt[(X/n - av"2)/n] 

"TimeUsed" 

TimeUsed0 - tO 

A.4 Weibull case 

A.4.1 Simulation ARL for one-sided Weibull EWMA chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J. H] · H - 0 9501· n - 10"6·lamp - 0 01· a = 1· r = 2· , , , ' ' - . ' - ' - . ' ' ' 
ee:=Random[WeibullDistribution[r, a]]; SeedRandomO; tO= TimeUsed0; 

X =O;j = 0; 

Do[ 

{For[i = 1; Y = 0.886227, Y < H, i++, Y = Y(1 -lamp)+ lampee],j = j + i- 1, 

X= X+ (i- 1)"2}, {k, 1, n}] ; 

av = N[jjn] 
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A.4. Weibull case 

Sqrt[(X/n- av"2)/n] 

"Time Used" 

TimeUsedO - tO 

A.4.2 Simulation AD for one-sided Weibull EWMA chart 

< < Statistics'ContinuousDistributions' 

Clear[ee, X , Y,j,H];H = 0.9501;n = 10"6;lamp = 0.01;a = l.5;r = 2; 

ee:=Random[WeibullDistribution[r, a]]; SeedRandomO; tO = TimeD sed0; 

X= O;j =0; 

Do[ 

{For[i = 1; Y = 0.886227, Y < H, i++, Y = Y(1 -lamp)+ lampee],j = j + i- 1, 

X= X+ (i- 1)"2}, {k, 1, n}]; 

av = NLi/n] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed" 

TimeUsed0- tO 

A.4.3 Simulation ARL for one-sided Weibull CUSUM chart 

< < Statistics' ContinuousDistributions' 

Clear[ee, X, Y,j, av]; b = 4.4931; n = 10"6; r = 2; a:O = 1; a1 = 1.5; 

ee:=Ran.dom[WeibullDistribution[r, 1]]; 

SeedRandomO; tO = TimeUsedD; 

X= O;j = 0; 

Do[ 

{For [i = 1; Y = 0, Y < b, i++, Y =Max [0, Y + rLog [~] + eer {~r- air)]], 
X= X+ (i- 1)"2,j = j + i- 1}, {k, 1, n}]; 

av = N[i/n] 

Sqrt[(X/n- av"2)/n] 
11 Time Used" 

TimeUsed0 - tO 

91 



A.4. Weibull case 

A.4.4 Simulation AD for one-sided Weibull CUSUM chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J. av] · b = 4 4931· n = 10A6. r = 2· o:O = 1· o:1 = 1 5· ' ' ' ' ' . ' ' ' ' . ' 
ee:=Random[WeibullDistribution[r, 1.1]]; 

SeedRandomQ;tO = TimeUsedQ; 

X= O;j = 0; 

Do[ 

{For [i = 1; Y = 0, Y < b, i++, Y =Max [0, Y + rLog [~] + eer (~r- air)]], 
X= X+ (i- 1)A2,j = j + i -1}, {k, 1, n}]; 

av = Nfjjn] 

Sqrt[(X/n- avA2)/n] 

"TimeUsed11 

TimeUsedQ- tO 
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A.4.5 Simulation ARL for one-sided Weibull Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J. av] · b = 460· n = 10A6. r = 2· o:O = 1· o:1 = 1 5· ' ' ' ' ' ' ' ' ' . ' 
ee:=Random[WeibullDistribution[r, o:O]]; 

Seed.Random0; tO = TimeUsedQ; 

X= O;j =0; 

Do[ 

{For [i = 1; Y = o, Y < b, i++, Y = (1 + Y) (~~r Exp [<eeY (ca~)r - (ai)r) ]] , 
X= X+ (i -1)A2,j = j +i -1},{k,1,n}]; 

av = Nfjjn] 

Sqrt[(X/n- avA2)/n] 
11 TimeUsed11 

TimeUsedQ - tO 

A.4.6 Simulation AD for one-sided Weibull Shiryayev-Roberts chart 

< < Statistics'ContinuousDistributions' 

Clear[ee X Y. J. av] · b = 460· n = 10A6. r = 2· o:O = 1· o:1 = 1 5· ' ' ' ' ' ' ' , ' . , 
ee:=Random[WeibullDistribution[r, o:1 ]] ; 

SeedRandomO;tO = TimeUsed0; 



A.4. Weibull case 

X=O;j=O; 

Do[ 

{For [i = 1; Y = 0, Y < b , i++, Y = (1 + Y) (~~r Exp [ (eeY ( (a~)r - (a~)r)]] ' 
X= X+ (i -1)"2,j = j + i -1}, {k, 1,n}]; 

av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 
11 TimeUsed 11 

TimeUsed0- tO 
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Appendix B 

Mathematica® Codes for 

Algorithms of Obtaining Optimal 

Designs of EWMA 

B .l Procedure for obtaining optimal paramet er values 

In Appendix B, we show the codes for finding the optimal parameters of EW MA designs 

(>..* , H*) from the explicit expression for the exponential distribution. 

One-sided exponential EWMA chart 

Step 1: Needs["Statist ics'"] 

Clear[lamp, H , a, T, QQ, FF]; T = 1000; a = 3; 
k-1 

QQ[H_, lamp_, alpha_]:=N[Sum[(H/(alamp))"k/(k!) ll (1 - (1 - lamp)" j), { k, 1, 100}]] 
j = l 

k-1 
+1- N[Sum[((1 -lamp)/(alamp))"k/(k!) IT (1- (1 -lamp)"j) , {k, 1, 100}]]; 

j=l 
myinv[lamp_]:=H j.FindRoot[N[QQ[H, lamp, 1], 20] == T, {H, 1, 3}]; 

k- 1 
FF[lamp_]:=N[Sum[(myinv[lamp]/(alamp))"k/(k!) IT (1 - (1- lamp)"j), {k, 1, 100}]] 

j=l 
k- 1 

+1- N[Sum[((1 -lamp)/(alamp))"k/(k!) IT (1- (1 -lamp)"j), {k, 1, 100}]]; 
j=l 

Plot[FF[lamp], {lamp, .01, .5}] 

FM = FindMinimum[FF[lamp], {lamp, .01, .5}] 

AD = First[FM] 

ww = lam.pj.Last[FM] 

hh = myinv[ww] 
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B.l. P r ocedur e for obtaining optimal parameter values 

0. 5 

{6.44636, {.A---+ 0.145325}} 

6.44636 

0.145325 

2.08819 

Step 2: < < Statistics'ContinuousDistributions' 

Clear[ee, Y,j, alf, av, n]; n = 10"6; a= ww; m =a; 

ee:=- Log[RandomDJ; SeedRandomO; tO= TimeUsed0; 

X =O;j = 0; 

Do[{For[i = 1; Y = 1, Y < hh, i++, Y = Y(l- a)+ amee], X= X+ (i- 1)"2, 

j = j + i- 1}, {k, 1, n}];av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed 11 

TimeUsed0- tO 

6.44996 

0.0142089 

TimeUsed=6.438 

Step 3: < < Statistics'ContinuousDistributions' 

Clear[ee, Y,j, alf, av, n]; n = 10"6; a= ww; m = 1; 

ee:=- Log[RandomDJ; SeedRandomO; tO= TimeUsed0; 

X= O;j =0; 

Do[{For[i = 1; Y = 1, Y < hh , i++, Y = Y(1 -a)+ alee], X= X+ (i- 1)"2, 

j = j + i- 1}, {k, 1, n}];av = Nfjjn] 

Sqrt[(X/n- av"2)/n] 

"TimeUsed 11 

TimeUsedO- tO 

994.244 
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3.15602 

TimeUsed=815 .391 

B.2 Calculation codes for obtaining numerical method 

for Integral Equations 

B.2.1 Integral Equation by Midpoint rule for Gamma EWMA 

< < Statistics'ContinuousDistributions' 

Clear[fdist, L, Lu, La, r, s, m, H, a, w, .A, i, j, R]; H = 2.45; 

m = 1000; k = 2; a= 2.0; .A= 0.05; h = Hjm; tO= TimeUsedD; 

a= Table[(j - 1/2)h, {j, 1, m }]; 

weights= Table[H/m, {j, 1, m}] ; 

f[x_] :=If[x > 0, (xA(k- 1)Exp[-x/a])/(Gamma[k]aAk), 0]; 

[. . ]· weights[[j]]/[(a[fj]]-(1-.\)a([i]])/.\] . r L ,J-. .\ , 

R = Table[r[i,j], {i, 1, m}, {j , 1, m}]; 

newR = IdentityMatrix[m]- R; 

R2 = Inverse[newR.]; 

vector! = Table[l, { i, 1, m }]; 

La= R2.vector1; 

L[u_] = 1 + (1/.A) ET=1 weights[LiJ]La[Li]]/[(a[fj]]- (1- .A)u)/.A]; 

L[2] 

"TimeUsed" 

TimeUsedD -tO 

Midpoint 

6.30613 

T ime Used 

32.204 

B.2.2 Integral Equation by Gauss-Legendre for Gamma EWMA 

< < Statistics'ContinuousDistributions' 

< <NumericalMath'GaussianQuadrature' 
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Clear[L, Lu,La,r,m,H,a,w,.A,i,j,R,k,a];H = 2.15;m = 500;.A = 0.1;k = 2;a = 1; 

tO= TimeUsed0;GaussianQuadratureWeights[m, 0, H]; 

a= GaussianQuadratureWeights[m, 0, H][[All, 1]]; 

weights= GaussianQuadratureWeights[m, 0, H][[All, 2]]; 

f[x_]: =If[x > 0, (x"(k- 1)Exp[-x/a])/(Gamma[k]a"k), 0] ; 

[. . ]· weights[fj]]f[(a[fjJ]-(1-A)a[[i]])/A]. r L,J-. X , 

R = Table[r[i,j], {i, 1, m}, {j, 1, m}]; 

newR = IdentityMatrix[m]- R; 

R2 = Inverse[newR] ; 

vector1 = Table[1, {i, 1,m}]; 

La= R2.vectorl; 
m 

L[u_] = 1 + (1/.A) Eweights[fj]]La[fj]]f[(a[fj]]- (1- .A)u)/.A]; 
j=1 

L[2] 
11 TimeUsed 11 

TimeUsed0 - tO 

14.3582 

T imeUsed= 55.484 

B.2.3 Integral Equation by Trapezoidal for Gamma EvVMA .. 

< < Statistics'ContinuousDistribut ions' 

Clear[Lu,La, r,m, H,a,w, .A, i, j ,R];H = 2.15; m = 500; k = 2;a = l;.A = 0.1; 

h = H jm; tO= TimeUsedO ;a = Tablefjh, {j , 0, m } ]; 

weights = Table[I£[1 ~ j ~ m - 1, h, h/2] , {j, 0, m }]; 

f[x_]:=If[x > 0, (x"(k- 1)Exp[- xja])/(Gamma[k]a"k) , 0); 

[. . ]· weights(fj]]f((a[fj])-(1-A)a[[i]])/A]. r L,J- . A , 

R = Table[r[i, j] , {i, 1, m + 1}, {j, 1, m + 1}]; 

newR = ldentityMatrix[m + 1] - R; 

R2 = lnverse[newR] ; 

vector! = Table[ I, { i , 1, m + 1 }] ; 

La= R2.vectorl; 
m 

L[u_] = 1 + (1/.A) Eweights[fj]]La[fj]]f[(a[fj]]- (1- .A)u)/.A]; 
j=1 

L[2] 
11 TimeUsed" 
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TimeUsed0 - tO 

14.3494 

Time U sed=46. 797 

B.2.4 Integral Equation by Simpson's rule for Gamma EWMA 

< < Statistic8ContinuousDistribution8 

Clear[fdist, L, Lu, La, r, s, m, H, a, w, A, i,j, R]; H = 2.45; m = 500; k = 2; o: = 2.0; 

A= 0.05; h = H/(2m); tO= TimeUsed0; 

a = Tablefjh, {j, 0, 2m}]; 

weights= Table[Iffj==O, h/3, lffj ==2m, h/3, 

If[FractionalPartfj /2] == 0, (2h)/3, (4h)/3]]], {j, 0, 2m}] ; 

f[x_]:=If(x > 0, (x"(k- 1)Exp[-x/n:])/(Gamma[k]o:"k), 0]; 

[. . ]· weights[[i]]/[(a[[j]]-(1-.X)a[(i]])/.X] . r L,J-. .X , 

R = Table[r[i,j], {i, 1, (2m)+ 1}, {j, 1, (2m)+ 1}]; 

newR = IdentityMatrix[(2m) + 1]- R; 

R2 = Inverse(newR]; 

vector1 = Table[1, {i, 1, (2m)+ 1}]; 

La= R2.vectorl; 

L[u_.] = 1 + (1/A) EJ:-!1 weights[fj]]La[fj]]/((a(fj]]- (1- A)u)/A]; 

L[2] 
"TimeUsed 11 

TimeUsedO- tO 

Simpson 

6.30662 

TimeUsed=30.672 

B.2.5 Integral Equation by Gauss-Legendre for exponential CUSUM 

< <Statistics'ContinuousDistributions' 

< <NumericalMath'GaussianQuadrature' 

Clear[edist,L,Lu,La,r,rr,k,s,m,H,a,w,i,j,R];H = 3.5/c;m = 400;o:O = 1;o: = 1.3; 

k = -Log[o:O/o:] / C.:o - ~) ; c = (do- ~); 

edist = ExponentialDistribution[1/1.9]; 



B.2. Calculation codes for obtaining numerical method for Integral Equatiotl9 

GaussianQuadratureWeights[m, 0, H]; 

a= GaussianQuadratureWeights[m, 0, H][[All, 1]]; 

weights= GaussianQuadratureWeights[m, 0, H][[All, 2]]; 

f[x_]:=If[x > 0, (1/1.9)Exp[-x/1.9], 0]; 

rr[i_,j_]:=CDF[edist, (k- a[[i]])] + weights[fj]](f[a[[j]] + k- a[[i]]]); 

r[L,j_]:=weights[fj]]f[a[[j]] + k- (a[[i]]/1)]; 

R = Table[lffj<=1, rr[i,j], r[i,j]], {i, 1, m}, {j, 1, m}] ; 

newR = IdentityMatrix[m] - R; 

R2 = Inverse[newR] ; 

vector1 = Table[1, {i, 1, m}]; 

La= R2.vector1; 

L[u_] = 1 + La[[1]]CDF[edist, (k- u)] + E}:1 weights[fj]]La[fj]]J[a[[j]] + k- u]; 

L[O] 

8.49154 

B.2.6 Integral Equation by Gauss-Legendre for Gamma CUSUM 

< <Statistics'ContinuousDistributions' 

< <NumericalMath'GaussianQuadrature' 

Clear[edist,L,Lu,La,r,rr,k, s,m,H,a,w,i,j,R];p = 2;H = 2.5/c;m = 400;a0 = 1; 

a1 = 1.5; k = -(pLog[aO/al]) / (~0 - ~1 ) ; c = (do - ~1 ); 
edist = GammaDistribution[p, aO]; 

GaussianQuadratureWeights[m, 0, H]; 

a= GaussianQuadratureWeights[m, 0, H][[All, 1]]; 

weights= GaussianQuadratureWeights[m, 0, H] [[All, 2]]; 

f[x_]:=lf[x > 0, (x"(p- 1)Exp[-x/aO])/(Gammafp]aO"p), 0]; 

rr[i_,j_] :=CDF[edist, (k- a[[i]])] + weights[fj]](f[a[[j]] + k- a[[i]]]); 

r[i_,j_]:=weights[fj]]J[a[[j]] + k- (a[[i]]/1)]; 

R = Table[lffj<=1,rr[i,j), r[i,j]], {i, 1, m}, {j, 1, m}]; 

newR = ldentityMatrix[m] - R; 

R2 = Inverse[newR] ; 

vector1 = Table[1, {i, 1, m}]; 

La= R2.vector1; 

L[u_] = 1 + La[[1]]CDF[edist, (k- u)] + E}:1 weights[fj]]La[fj]]f[a[fj]] + k- u]; 
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L[O] 

144.432 

B.3 Calculation codes for obtaining numerical results of 

MCA 

B.3.1 Exponential case 

< < Statistics'ContinuousDistributions' 

Clear[n, i,j, x, ARL]; 

a= 1; n = 500; A = 0.1; H = 1.1; tO= TimeUsed0; 

fdist = ExponentialDistribution[a]; 

transmat1 = Table[CDF[fdist, H(2j- (1- A)(2i- 1))1(2 * n *A)] 

- CDF(fdist, H(2(j- 1) - (1 - A)(2i - 1))1(2 * n *A)], {i, 1, n} , {j, 1, n}]; 

transmat1 I ITableForm; 

newR1 = IdentityMatrix[n] - transmat1; 

R1 = Inverse[newRl]; 

vectorP = Table(Iffj == Floor[niH] + 1, 1,0], {j, 1,n}]; 

vector1 = Table[1, {j, 1, n}]; 

ARL = vectorP.Rl.vector1 

"Time Used" 

TimeUsedO- tO 

14.7308 

TimeUsed=24.86 

B.3.2 Weibull case 

< < Statistics'ContinuousDistributions' 

Clear[n, i,j, x, ARL]; 

a = 1; n = 900; A = 0.01; H = 0.9351; tO = TimeUsedQ; 

fdist = WeibullDistribution[2, a]; 

transmat1 = Table[CDF(fdist, H(2j- (1- A)(2i- 1))1(2 * n *A)] 

--CDF[fdist, H(2(j -- 1) ·- (1 -- A)(2i- 1))1(2 * n *A)], {i, 1, n}, {j, 1, n}]; 

transmat1 I ITableForm; 
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newR1 = IdentityMatrix[n] - transmat1; 

R1 = Inverse[newR1] ; 

vectorP = Table[If[j == Floor[0.886227n/ H] + 1, 1, 0] , {j, 1, n}] ; 

vector1 = Table[1, {j, 1, n}] ; 

ARL = vectorP.Rl.vector1 

"TimeUsed" 

TimeUsed0 - tO 

499.346 

Time U sed=995 .422 

101 



Bibliography 

Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions 

with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover 

printing, tenth gpo printing edition. 

Anderson, P. and Meerschaert, M. (1998). Modeling river flows with heavy tails. 

Water Resources Research, 34:2271- 2280. 

Andrews, G. E., Askey, R., and Roy, R. (1999). Special Functions. Cambridge 

University Press. 

Areepong, Y. and Novikov, A. A. (2008) . Martingale approach to EWMA control 

chart for changes in Exponential distribution. Journal of Quality Measurement 

and Analysis, 4:197- 203. 

Atkinson, K. E . (1989). A n Introd'uction to Numerical Analysis. Wiley, New York. 

Atkinson, K . E. (1997). Th e Numerical Solution of Integral Eq'uations of the Sec-

ond Kind. Cambridge Monographs on Applied and C01nputational Mathematics, 

Cambridge University Press. 

Atkinson, K. E. and Han, W. (2005). Theoretical Numerical Analysis: A Functional 

Analysis Framework. Springer Science+Business Media, LLC . 

Baker, C. T. H. (1977). The Numerical Treatment of Integral Equations. Oxford, 

UK: , Clarendon Press. 

Basseville , IVI. and Nikiforov, I. (1993). Detection of Abrupt Changes: Theory and 

Applications. Prentice-Hall , Englewood Cliffs. 

Beldica, C . E., Hilton, H. H., and Hinrichsen, R. L. (2002). Viscoelastic beam damp-

ing and piezoelectric control of deformations , probabilistic failures and survival 

102 



BIBLIOGRAPHY 103 

times analytical and massively parallel computational simulations. In Working 

Paper, Bologna. Seventh International Conference on High Performance Comput-

ing in Engineering (HPC 2002). 

Borovkov, K. (2003). Elements of Stochastic Modelling. World Scientific, New Jersey-

Singapore. 

Borror, C. M., Champ, C. W., and Rigdon, S. E. (1998) . Poisson EWMA control 

charts. Journal of Quality Technology, 30:352- 361. 

Borror, C. M., Keats , J . B. , and Montgomery, D. C. (2003). Robustness of the time 

between events CUSUM. International Journal of Production Research, 41:3435-

3444. 

Borror, C. M., Montgomery, D. C., and Runger , G. C. (1999). Robustness of the 

EWMA control chart to Non-normality. Journal of Quality Technology, 31:309-

316. 

Brook, D. and Evans , D. A. (1972). An approach to the probability distribution of 

Cusum run length. Biometrika, 59:539- 548. 

Calzada, M. E. and Scariano, S. M. (2003). Reconciling the Integral Equation and 

Markov Chain Approach for computing EWMA average run lengths. Comm'uni-

cations in Statistics: Simulation and Computation, 32:591- 604. 

Champ, C. W. and Rigdon, S. E. (1991). A comparison of the Markov chain and the 

integral equation approaches for evaluating the run length distribution of quality 

control charts. Communications in statistics. Simulation and computation, 20:191-

204. 

Crowder, S. V. (1987). A simple method for studying run length distributions of 

exponentially weighted moving average charts. Technometrics , 29:401-407. 

David, P. J. and Rabinowitz , P. (1967). Numerical Integration. Blaisdell Publishing 

Company. 

Ergashev, B. A. (2003). On a CAPM monitoring based on the EWMA procedure. 

In Working Paper. Presented at 9-th International Conference of the Society for 

Computational Economics and Finance. 



B IB LIOGRAPHY 104 

Frisen , M. (1992) . Evaluations of methods for statistical surveillance. Statistics in 

Medicine , 11:1489- 1502. 

Fu, J . C., Spiring, F. A. , and Xie, H. (2002). On the average run lengths of quality 

control schemes using a Markov chain approach. Statistics fj Probability Letters, 

56:369- 380. 

Gan, F. F. (1990a). Monitoring observations generated from a binomial distribution 

using modified exponentially weighted moving average control chart. Journal of 

Statistical Computation and Simulation, 37:45-60. 

Gan, F. F. (1990b). Monitoring poisson observations using modified exponentially 

weighted moving average control charts . Communications in Statistics-Simulation 

and Computational, 19:103- 124. 

Gan, F. F. (1991). An optimal design of CUSUM quality control charts. Journal of 

Quality Technology, 23:279- 286. 

Gan, F . F. (1992). Exact run length distributions for one-sided exponential CUSUM 

schemes. Statistica Sinica, 2:297- 312. 

Gan , F. F. (1998). Designs of one-and two-sided exponent ial E\VMA chart. Journal 

of Q1.wlity Technology, 30:55- 69 . 

Golosnoy, V. and Schmid, W . (2006). EWNIA control charts for monitoring optimal 

portfolio weights . Sequential Analysis, 26:195- 224. 

Hawkins, D . M. and Olwell, D. H. (1998). Cumulative sum charts and chart'ing for 

quality improvement. Springer Verlag, New York, NY. 

Isaacson, E. and Keller , H. B. (1966). Analysis of Numerical Methods. Wiley, New 

York. 

Jacobsen, M. (2007). Exit times for a class of autoregressive sequences and random 

walks. Dept. of Applied mathematics and Statistics) University if Copenhagen. 

Vl orking paper. 

Knoth, S. (2007). Accurate ARL calculation for EWMA control charts monitoring 

normal mean and variance simultaneously. Sequential Analysis, 26:251- 263. 

Kress, R. (1999). Linear Integral Equations. Springer-Verlag, New York, 2nd edition. 



BIBLIOGRAPHY 105 

Liu, J. Y. , Xie, M., Goh, T. N., and Chan, L. Y. (2007). A study of EWMA chart 

with transformed exponential data. Int ernational Journal of Production Research, 

45 :743- 763. 

Lorden, G. (1971). Procedures for reacting to a change in distribution. Annals of 

Mathematical Statistics , 42:1897- 1908. 

Lucas, J. M. and Saccucci, M. S. (1990). Exponentially weighted moving average 

control schemes: properties and enhancements. Technometrics, 32:1- 29. 

Mahmoud , M.A. , Woodall , W. H., and Davis, R. E. (2008). Performance comparison 

of some likelihood ratio-based statistical surveillance methods. Journal of Applied 

Statistics, 35:783- 798. 

Mandelbrot, B. (1963). The variation of certain speculative price. Journal of Busi-

ness, 36:394- 419. 

Mason, B. and Antony, J. (2000). Statistical process control: an essential ingredi-

ent for improving service and manufacturing quality. Managing Service Quality, 

10:233- 238. 

I\t1azalov, V. V. and Zhuravlev , D. N. (2002). A method of Cumulative sums in the 

problem of detection of traffic changes in computer networks. Programming and 

Computer Software, 28:342- 348. 

Mevorach, Y. and Pollak, M. (1991). A small sample size comparison of the CUSUM 

and Shiryayev-Roberts approaches to change point detection. American Journal 

of Mathematical and Management Sciences, 11:277- 298. 

Montgomery, D . C. (2005). Introduction to Statistical Quality Control. Chichester: 

Wiley, New York, 5 th edit ion. 

Moustakides, G. V. (1986). Optimal stopping times for detecting changes in distri-

butions. Annals of Statistics , 14:1379- 1387. 

Moustakides, G. V. , Polunchenko, A. S. , and Tartakovsky, A. G. (2008). 

A numerical approach to comparative efficiency analysis of quickest 

change-point detection procedures. R esearch paper (see http:/ jwww-

scf. usc. edujrvpolunchejpdf/M oustakides&Polunchenko& Tartakovsky-SSOB. pdf) . 



BIBLIOGRAPHY 106 

Moustakides, G. V. , Polunchenko, A. S., and Tartakovsky, A. G. (2009). Numerical 

comparison of CUSUM and Shiryayev-Roberts procedures for detecting changes 

in distributions . Communications in Statistics, Theory and Methods, submitted. 

Novikov , A. A. (2006) . Levy-driven Ornstein-Uhlenbeck processes: survey of results 

on first passage times. Lecture notes presented at the conference "Stochastic 

Calculus with Jumps" . University of Angers , May 3-9,2006. 

P age, E . S. (1954). Continuous inspection schemes. Biometrika, 41 :100- 114. 

Pollak, M . and Siegmund, D. (1985). A diffusion process and its applications to 

detecting a change in the drift of Brownian motion. Biometrika, 72:267- 280. 

Pollak , M. and Siegmund, D. (1991). Sequent ial detection of a change in a normal 

mean when initial value is unknown. A nnals of Statistics, 19:394-416. 

Press, W . H., Teukolsky, S. A. , Vet terling, W . T. , and Flannery, B . P . (1992). 

Numerical Recipes in C: The Art of Scientific Computing. Cambridge University 

P ress. 

Rao, B. V., Disney, R . L., and Pignatiello, J. J. (2001 ). Uniqueness and convergence 

of solutions to average run length integral equations for cumulative sum and other 

control charts. liE Transactions, 33:463-469. 

Resnick, S. and Starica, C. (1995). Consistency of Hill 's estimator for dependent 

data. Journal of Applied probability, 32:139-167. 

Roberts, S. W . (1959). Control chart tests based on geometric moving average. 

Technometrics, 1:239-250 . 

Roberts, S. W . (1966). A cmn parison of some control chart procedures. Technom et-

rics, 8:411- 430. 

Robinson , P . B. and Ho, T . Y . (1978) . Average run lengths of Geometric moving 

average charts by numerical methods. Technom etrics, 20:85-93. 

Ross, S. M. (1996). Stochastic Processes. vViley, New York , 2nd edit ion. 

Ross , S. M. (1997). Introduction to Probability Models. Academic Press. 

Shewhart , W . A. (1931 ). Economic Control of Quality of Manufactured Product. 

Van Nost rand , New York . 



BIBLIOGRAPHY 107 

Shiryayev, A. N. (1963). On optimum methods in quickest detection problems. 

Th eory Probability and Its Applications, 8:22- 46. 

Shiryayev, A. N. (1996). Minimax optimality of the method of cumulative sums 

(CUSUM) in the case of continuous time. Russian Mathematical Surveys , 51:750-

751. 

Sitter, R. R., Hanrahan, 1., DeMets, D. , and Anderson, H. (1990). A monitor-

ing system to detect increased rates of cancer incidence. American Journal of 

Epidemiology, 132:123-130. 

Somerville, S. E., Montgomery, D. C., and Runger , G. C. (2002). Filtering and 

smoothing methods for mixed particle count distributions. International Journal 

of Production Research, 40:2991-3013. 

Srivastava, M. S. and Wu, Y. (1993). Comparison of EWMA, CUSUM and 

Shiryayev-Roberts procedure for detecting a shift in the mean. Annals of Statis-

tics, 21:645- 670. 

Srivastava, M. S. and Wu, Y. (1997). Evaluation of optimum weights and average 

run lengths in EWMA control schemes. Communications in Statistics: Theory 

and M ethods, 26:1253- 1267. 

Stoumbos , Z. G. and Reysnolds , M. R. (2000). Robustness to non-normality and 

autocorrelation of individuals control charts for monitoring the process mean and 

variance. Journal of Statistical Computation and Simu,lation, 66:145--187. 

Stroud, A. H. and Secrest , D. (1966). Gaussian Quadrature Formulas. Prentice-Hall, 

Englewood Cliffs, N.J. 

Sukparungsee, S. and Novikov, A. A. (2006). On EWMA procedure for detection of 

a change in observations via martingale approach. KMITL Science Journal; An 

International Journal of Science and Applied Science, 6:373- 380. 

Sukparungsee, S. and Novikov, A. A. (2007). Analytical approximations for average 

run lengths in EWMA charts in case of light-tailed distributions. In International 

Conference of Mathematical Sciences, Bangi-Putrajaya, Malaysia (ICMS 2007). 

Vardeman, S. and Ray, D. (1985) . Average run lengths for CUSUM when observa-

tions are exponentially distributed. Technometrics , 27:145- 150. 



B IBLIOGRAPHY 108 

Wieringa, J. E. ( 1999). Statistical process control for serially correlated data. P hd 

t hesis , University of Groningen, Groningen, the Netherlands . 

Woodall , W . H. and Adams, B. M. (1993) . The st atistical design of CUSUM charts. 

Quality Engineering, 5:559- 570 . 

Xie, M., Goh , T . N., and Ranj an, P. (2002). Some effective control chart procedures 

for reliability monitoring. R eliability Engineering and System Safety, 77: 143- 150. 

Xu, J., Kalbarczyk, Z. , and Iyer, R. K. (1999). Networked windows NT system 

field failure data analysis. In P ROC '99: Proceedings of the 1999 Pacifi c R im 

In ternational S ym posium on Dependable Computing, page 178, Washington, DC, 

USA. IEEE Computer Society. 

Yashchin, E. (1987). Some aspects of the theory of statistical control schemes. IBM 

Journal of Research and Development, 31:199-205. 

Ye, N., Borror, C., and Zhang, Y. (2002). EWMA techniques for computer intrusion 

detection through anomalous changes in event intensity. Quality and Reliability 

Engineering International, 18:443- 451. 

Ye, N., Vilbert , S., and Chen, Q. (2003). Computer intrusion detection through 

EWMA for autocorrelated and uncorrelated data. IEEE Transactions on Relia-

bility, 52:75-82. 

Zhang, C. W. , Xie, M., Liu, J. Y., and Goh, T . N. (2007). A control chart for the 

Gamma distribution as model of time between events. International Journal of 

Production Research, 45:5649-5666. 


	Title Page

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	Chapter 2
Statistical Process Control Charts
	Chapter 3 Methods for Evaluating the Performance of EWMA
	Chapter 4 EWMA Control Charts for Change in Exponential Distribution
	Chapter 5 Nurnerical Solutions for Integral Equations
	Chapter 6 Conclusion and Recommendations for Further Research
	Appendix A
	Appendix B
	Bibliography



