Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

Chao Chen¹,²* Derek Eamus¹,²,³,⁴ James Cleverly²,⁴ Nicolas Boulain² Peter Cook¹,⁵

¹National Centre for Groundwater Research and Training (NCGRT), School of Environment, Flinders University, Adelaide, SA, 5001, Australia
²Plant Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
³NCGRT, University of Technology Sydney
⁴Australian Supersite Network, Terrestrial Ecosystem Research Network, University of Technology Sydney
⁵Water for a Healthy Country National Flagship, Commonwealth Scientific and Industrial Research Organisation, Division of Land and Water, Glen Osmond, Adelaide, SA 5064, Australia

* Corresponding author (chao.chen@uts.edu.au)
Abstract

For efficient and sustainable utilization of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (*Acacia aneura*) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981–2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory canopy and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601 mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Both climate variability and vegetation dynamics exerted significant controls on annual recharge. The simulated annual recharge ranged from 58 to 672 mm when only climate effects were considered; but this range was greatly reduced to 0 to 48 mm when vegetation water-use was accounted for. Understanding such effects under the observed historical climate conditions gave significant insight into assessing potential impacts of interactions amongst climate variability and land use/land cover change on groundwater resources management in arid and semi-arid regions.
1. Introduction

(2) Groundwater is a valuable natural resource, which not only supports human activities, but also has a key role in sustaining the health of wide-spread groundwater dependent ecosystems (Eamus et al., 2006; Jha et al., 2007). Sustainable water resource management is a major challenge for water resource managers in arid and semi-arid regions (Fernandez et al., 2002), where excessive and unsympathetic groundwater abstraction can degrade vegetation health (Clifton and Evans, 2001, Donohue et al., 2007). Vegetation dynamics in arid and semi-arid regions largely depend on soil water availability, which in turn, result in a number of complex hydrologic processes (Gee et al., 1994; Porporato et al., 2002; Scanlon et al., 2005; Garcia et al., 2011). Climate variations, which lead to changes in vegetation structure and/or its water-use, can have a follow-on impact on recharge to groundwater under vegetation. With increasing demand for water and a changing climate regime, it is crucial to better understand the hydrological role of vegetation for developing sustainable groundwater management and mitigating the environmental impacts of groundwater development. A key aspect of this role is that of transpiration, a major component of catchment water balances, to which biological productivity is intimately coupled (Berry et al., 2005; Chen et al., 2010). Understanding the effects of climate variations on vegetation water-use and groundwater recharge is particularly important in arid and semi-arid Australia, where limited water resource availability already constrains regional development. As climate change is a growing concern in water management globally, including Australia, knowledge of the responses of catchment water balance to local climate is important for developing adaptive climate change strategies and sustainable groundwater resource management.

(3) Studies of these complex problems can be conducted in field conditions and much has been learnt about the relationship between growth, photosynthesis and the water cycle (Farrington, 1989; Thorburn et al., 1993; Zhang and Schilling, 2006). However, field experiments are time consuming, relatively expensive and difficulties in up-scaling from limited numbers of observations are readily apparent (Singh et al., 2006). To overcome this, process-based models that link hydrology and plant ecophysiology have been developed that provide useful tools to investigate interactions amongst
energy, water and momentum balances of the soil-vegetation-atmosphere system across multiple spatial and temporal scales (Baird et al., 2005; Guswa et al., 2002; Laio et al., 2001; Zhang et al., 1996). Studies of modelling these coupled behaviours have been attempted previously (Gerten et al., 2004; Kucharik et al., 2000). In one such study of the effects of climate on recharge across Australia, numerical modelling showed that the role of climate drivers varies across soil and vegetation types (Barron et al., 2012). Crosbie et al. (2011) simulated the effects of climate change on recharge in the Murray-Darling Basin and found that recharge was increased despite a modelled decrease in rainfall and increased temperature. This was a result of reduced transpiration due to the effect of high temperature stress on vegetation growth. In contrast, recharge increased with rainfall when coupled to a 3°C temperature increase in the Upper Nile Basin, but increases in evapotranspiration (ET) lead to reductions in recharge at higher temperature (Kingston and Taylor, 2010). Although these studies provide useful information for developing applicable water management practices, there is still a lack of systematic analysis of the effects of climate variability on vegetation water-use and consequential recharge in arid and semi-arid regions.

(4) Mulga (Acacia aneura and related species) is a low-to-medium height (2–8 m) tree, dominating arid and semi-arid zones between approximately 20 °S and 31 °S in coastal Western Australia and throughout the continental interior. Mulga occupies almost 20% of the Australian continent and overlies many significant aquifers including the Great Artesian Basin. Covering such a large portion of continental Australia, vegetation water-use and recharge beneath the Mulga-dominated woodland are assumed to contribute significantly to regional water budgets (Eamus et al., 2013). Mulga is functionally a savanna as it consists of a discontinuous tree layer over a grassy understory with highly seasonal rainfall. This pattern is more pronounced in arid central Australia where rainfall variability is skewed towards very large event cycles (Berry et al., 2011; Morton et al., 2011) and groundwater is an important water source as a result of unreliable surface water. As such knowledge of the magnitude of recharge is critical to the development of sustainable strategies to allocate limited groundwater. To-date, no studies have investigated the responses of groundwater recharge to climate and Mulga-dominated vegetation in arid and semi-arid regions.
The objective of this study was to produce a detailed mechanistic understanding of the dynamic links between vegetation water-use and climate, and their influence on groundwater recharge through application of a physiologically-based model of the soil-plant-atmosphere continuum. The primary purpose of this study was to test the hypothesis that recharge of groundwater is largely dependent on the rate of water-use of vegetation growing in an arid region of Australia. The aims of this study were to: 1) parameterise the WAVES model to allow simulation of plant growth and water balance components in the Ti-Tree Basin using field data; 2) quantify the responses of plant growth and vegetation water-use to climate variability and the corresponding effects on groundwater recharge.

2. Materials and methods

2.1. Study site and data for model test

This study was performed in the Ti Tree Basin, located 150 km north of Alice Springs, in the Northern Territory of Australia, and 180 km north of the Tropic of Capricorn (Figure 1). The area of the basin is approximately 5,500 km², and comprises undulating sand plains with alluvial deposits along ephemeral drainage lines. Vegetation includes large areas of spinifex under sparse woodland of Bloodwood (Corymbia opaca) and low trees, including Acacia coriaceae and Hakea macrocarpa. The sand plains contain patches of Mulga scrubland (Acacia aneura s.lat.) and the major rivers are lined with River Red Gums (Eucalyptus camaldulensis var. obtusa). Due to low rainfall, groundwater in the basin is an important resource for stock, irrigation of small-scale horticultural cropping, and town and community supplies. Over most of the basin, the water table is between 20 and 50 m below the land surface. Recharge to the groundwater needs to be determined to ensure that the resource is properly managed.

The study site is located on the western margin of the Ti-Tree Basin (22.28S, 133.25E, a.s.l. 600 m) (Figure 1). The site is located within a tropical arid zone with hot summers and warm winters. The average rainfall at the nearest meteorological station (Territory Grape Farm Station 015643; 1981–2012 average) is approximately 333 mm, and annual pan evaporation is about 3109 mm. The ecosystem is an Acacia aneura (Mulga) savanna woodland with an average canopy height of 6.5 m,
which consists of a discontinuous tree layer over a grassy understory. The soil is characterised as a red kandosol (sand:silt:clay 74:11:15).

(8) An eddy covariance (EC) tower was located on a flat plain between the Hanson and Woodforde Rivers. This tower is a member of the OzFlux network, which distributes data and maintains data quality standards (Cleverly, 2011). Potential fetch is 11 km to the east and 16 km to the south. EC data collection from a 13.7 m tower was initiated on 2 September 2010. Total solar radiation was measured 12.2 m above the ground with a CNR1 (Kipp & Zonen, Delft, The Netherlands). Air temperature and relative humidity were measured 11.6 m above the ground using an HMP45C (Vaisala, Helsinki, Finland). Precipitation was measured with a CS7000 (Hydrologic services, Warwick, NSW, Australia), centred in a 10 m × 15 m clearing at the top of a 2.5 m mast. Frequency of micrometerological measurements was 10 Hz with a 30-minute covariance interval.

(9) Soil samples were collected using a slide hammer (AMS Soil Core Sampler, Envco: The Environmental Collective, Auckland, New Zealand) to extract intact cores (38 mm diameter × 10 cm depth to a maximum depth of 1.4 m) for laboratory analysis. The experimental site has a fairly uniform soil profile and dry bulk density varies only slightly, ranging from 1.67 g cm⁻³ at the surface to 1.86 g cm⁻³ at a depth of 1.4 m. Consequently we assumed that the soil could be simulated as a single layer. Soil hydraulic characteristics required by the model (see below and Table 1) were derived from the ASRIS v1 database (Johnston et al., 2003). Rooting depth of Mulga is generally shallow (likely <5 m depth) and studies indicate that Mulga does not access soil water below 5m, even in drought conditions (Anderson et al., 2008; Hill and Hill, 2003). Therefore a soil column of 4 m was chosen considering a relatively shallow rooting depth for Mulga at this site. Soil moisture was measured in two vertical arrays under mulga and understory habitats using TDR probes inserted at the 45° angle (CS610, Campbell Scientific, Townsville, Australia). Insertions were at 10 cm, 60 cm and 100 cm representing average soil moisture across depths of 10–30, 60–80 and 100–120 cm, respectively. All soil measurements were collected on a separate CR1000 and stored on the CR3000 via Pak-Bus communications. Soil moisture measurements were made at the mid-point of each 30-
minute output interval. For model calibration (see below), soil water was averaged without weighting across the two habitat types (Mulga trees and understory grasses).

(10) Leaf area index (LAI) was derived from images acquired with a digital camera (Canon DSLR) equipped with a short focal lens (18 mm). Five 100 m long transects in E, SE, S, SW and W directions were established around the flux tower. Upward and downward images were taken every 10 metres. To compute LAI for the Mulga and the understory, images were acquired with (a) the camera looking to the sky at the nadir (0°) and (b) inclined down (looking at the soil) at 57.5° from the vertical (Weiss et al., 2004) for canopy and understory, respectively. These images for canopy were analyzed with a Matlab (Matlab R2012, The Mathworks, Natick, MA, USA) program based on algorithms obtained from MacFarlane et al. (2007), and those for understory were analyzed with the CANEYE (version 6.3) software (https://www4.paca.inra.fr/caneye). Canopy LAI was calculated from the fraction of cover porosity based on the fraction of foliage cover and the fraction of crown cover for each image, while understory LAI was computed and corrected using the clumping index derived from fisheye images, based on the method proposed by MacFarlane et al. (2007). Total LAI calculated as the sum of the canopy and understory components was compared to the product MOD15A2 centered on the coordinate of the tower (8-Day Composite (Collection 5), 1 km wide × 1 km length) from the MODIS Land Product Subsets project (http://daac.ornl.gov/MODIS/). To ensure the highest quality, the 8-day composite LAI (Collection5) product was used only when QC filter conditions (FparLai QC < 32) were met.

(11) A more detailed description of the study site and measurements can be found in Cleverly et al. (2013b) and Eamus et al. (2013).

2.2. Forcing energy-balance closure

(12) Studies of the surface energy balance showed that surface energy fluxes (λE+H; λE: latent heat; H: sensible heat) were frequently underestimated by about 10–30% relative to the surface available energy (Rn-G-S; Rn: net radiation; G: soil heat flux; S: canopy heat storage) (Constantin et al., 1998; Barr et al., 2000, 2001; Wilson et al., 2002; Li et al., 2005). A close examination of flux data
measured in the current study revealed that 24 h average closure rate (D) \[D=(H+\lambda E)/(Rn-G)\] was 74% without accounting for canopy heat storage, which was expected to be relatively minor in short canopies with minimal biomass (Wilson et al., 2002). Wilson et al. (2002) accepted flux data for analysis when canopy heat storage was missing, provided that the vegetation height was less than 8m, as observed at our Mulga site. The use of flux data to validate biophysically-based models requires that conservation of energy is satisfied (Twine et al., 2000). Therefore, the measured energy budget must be closed by some method. Here the energy balance was closed each half-hourly period by attributing the residual energy to both \(H\) and \(\lambda E\) according to the observed Bowen-ratio for that half hourly period.

2.3. WAVES model

(WAVES) (Water Atmosphere Vegetation Energy and Solutes) is a coupled water and carbon ecohydrological model that predicts dynamic interactions within the soil-vegetation-atmosphere system at a daily time step (Dawes and Hatton, 1993; Zhang et al., 1996). In WAVES, soil water movement in both the unsaturated and saturated zones is simulated using a fully finite difference numerical solution of the Richards equation (Berry et al., 2005). Modelling of the unsaturated zone using the Richards equation allows water movement in the soil profile to be modelled under dry conditions. For each soil type, an analytical soil model proposed by Broadbridge and White (1988) was employed to describe the relationships among water potential, volumetric water content and hydraulic conductivity. Evapotranspiration was estimated by the Penman-Monteith approach (Monteith and Unsworth, 2008). Leaf stomatal conductance was calculated by the equation developed by Ball and Leuning (Ball, 1987; Leuning, 1995), which was scaled to canopy scales using the method proposed by Sellers (Sellers et al., 1992). The micrometeorological feedback of the sensitivity of transpiration to a marginal change in stomatal conductance at the stand level is regulated by a dimensionless decoupling coefficient proposed by McNaughton and Jarvis (1991). The rate of plant growth in the presence of different availabilities of light, water and nutrients was estimated by an integrated rated methodology of Wu (1994), which is an empirical model without resolving the details.
of chemical and mechanical controls on photosynthesis. Water is extracted for transpiration by roots, which is distributed along the root profile according to root density distribution and water availability in each soil node (Ritchie et al., 1986). The WAVES model is able to simulate plant physiology, which allows changes in environmental factors (temperature, solar radiation, rainfall) to impact water use by vegetation and recharge. WAVES predicts the dynamic interactions and feedbacks between these processes. Thus, the model is well suited to investigations of hydrological and ecological responses to changes in land management and climatic variation. WAVES emphasises the physical aspects of soil water fluxes—physiological control of water loss through transpiration. It can be used to simulate the hydrological and ecological effects of scenario vegetation management options (e.g. for recharge control), or the water balance implications of changed climatic conditions. A more detailed modelling strategy and description of WAVES is provided in Dawes et al. (1998), Zhang and Dawes (1998) and Zhang et al. (1996). Most recently, WAVES has successfully reproduced field observations at a point scale (Dawes et al., 2002; Crosbie et al., 2008; Martin et al., 2008; Cleverly et al., 2013b) and has been used to investigate trends in recharge under different soil and vegetation combinations at regional scales (Crosbie et al., 2010, 2011, Barron et al., 2012).

(14) WAVES requires three types of data for parameterisation: meteorology, soil and vegetation. The meteorological data required include daily maximum and minimum temperatures, average vapour pressure deficit, precipitation, precipitation duration, and total solar radiation. The soil data include information on soil layering, along with several hydraulic parameters: soil water conductivity K_s (m d$^{-1}$), saturated water content θ_s (m3 m$^{-3}$), air-dry volumetric water content θ_d (m3 m$^{-3}$), length of capillary λ_c (m), and characteristic soil water retention curve C. The Broadbridge-White soil model was used to generate a file containing a table of values of soil-water potential, water content, and hydraulic conductivity to allow WAVES to simulate the movement of soil water with the Darcy-Richard’s equation.
246 2.4. Model calibration and application

(15) Before model calibration, prior vegetation parameters for the Mulga site were adapted from the recommended values for eucalypt trees and for summer annual pastures for the understory habitats contained in the WAVES manual (Dawes et al., 1998). The WAVES model was further calibrated with MODIS and observed LAI, field-measured soil water content and ET during September 2010–August 2011. The vegetation parameters were subsequently modified following calibration and their derived values for the Mulga and understory habitats are listed in Table 2. The calibrated model was then validated using the experimental eddy covariance flux data during September 2010–December 2012.

(16) Three statistical parameters were used to quantify model performance. These were: 1) the coefficient of determination for \(y = \alpha x + \beta \) line \((r^2) \), the root mean square error (RMSE) and model efficiency (ME, Nash and Sutcliffe, 1970):

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2} \tag{1}
\]

and

\[
ME = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (O_i - O_{avg})^2} \tag{2}
\]

where \(O_i \) is the \(i \)th observed value, \(P_i \) is the \(i \)th simulated value, \(O_{avg} \) is the average value of the observations and \(n \) is the total number of data pairs. The RMSE values indicate the extent to which the simulations are overestimating or underestimating observed values. ME represents the degree to which variations in measured values are accounted by the model.

(17) After validation, the WAVES model was run with historical climate data (1981–2012) to assess effects of climate variability on vegetation growth, water use and the corresponding controls on deep drainage, below 4 m of the soil profile, which hereafter is referred to as recharge. During years when ET represented less than 100% of annual precipitation, the remainder of the water budget deficit
drained below the bottom of the model (4 m) because runoff is only local in Mulga woodlands on
very flat terrain, such as at this site (0.2%; Cleverly et al., 2013a; Eamus et al., 2013). The parameter
values of vegetation (Mulga and understory), soil and initial conditions for model calibration were
used. The simulations were undertaken for both the Mulga and understory. The 32 years of historical
climate data were obtained from the nearest meteorological station, Territory Grape Farm
(http://www.bom.gov.au) and were extracted from SILO (Jeffrey et al., 2001), an enhanced climate
database hosted by the Queensland Climate Change Centre of Excellence.

3. Results and Discussion

3.1. Model calibration and validation

The performance of the WAVES model was evaluated by comparing simulated LAI, soil
water content and ET (Figure 2–5). Although knowledge of LAI is vital to any mechanistic
understanding of the hydrological role of vegetation (Eamus et al., 2006), it is difficult to measure
across large spatial scales and difficult to simulate due to spatial and temporal variability. To assess
model performance, the simulated total LAI (over storey plus understory) was compared to field
assessment of LAI (7 measurement campaigns) and MODIS LAI (Figure 2). In general, simulations
of total LAI followed the seasonal patterns of both observed total LAI and MODIS LAI well (Figure
1a). MODIS derived landscape LAI generally ranged between 0.22 and 0.90 during the study period,
with a single peak value between late February and early March for each year (0.90 in 2011 and 0.51
in 2012). Simulated total LAI ranged between 0.24 and 0.75 and reached a single peak between late
February and early March (0.75 in 2011 and 0.48 in 2012), which was comparable to MODIS trends
and ranges. The model was able to explain about 54% of the variation in MODIS LAI (0.10 RMSE)
(Table 3).

Good agreement was also obtained between simulated LAI of the canopy and understory and
the corresponding LAI field observations (Figure 2b, c). The model explained about 93% of the
variation in observed understory LAI (0.04 RMSE). An abrupt decrease in observed canopy LAI
occurred in late January 2011, even with the receipt of substantial precipitation (Figure 2, 3), possibly
because of measurement error. When this single value was excluded, the overall performance of the
model in simulating canopy LAI explained 65% of its variation (0.05 RMSE, Table 3). In this
simulation, LAI was optimised to maintain a match between modelled and measured values of ET,
resulting in a smaller r^2 with canopy LAI than in the understorey (Table 3) due to extreme variability
in leaf physiology, water status and responses to moisture and heat stress of Mulga as a “stress
endurer” (Winkworth, 1973; O’Grady et al., 2009; Cleverly et al., 2013a; Eamus et al., 2013).
Without considering natural variability in physiological parameters, the values of ME for both
understory and canopy LAI were close to 1 (Table 3), thus indicating that the slope of the relationship
between measured and modelled LAI was close to 1:1 (Whitley et al., 2013).

(20) In general, soil water content (10- and 60-cm depths) and ET were simulated very well,
although there were notable periods when the model did not match the measurements (Figures. 4, 5).
The model was able to explain about 70% of the variation in soil water content (0.03 m3 m$^{-3}$ RMSE)
during the experimental period (Table 3). Likewise, the model explained about 96% of the variation in
cumulative ET with an RMSE of 1.07 mm d$^{-1}$ (Table 3). Most importantly, ET and soil moisture
content were largest in the summer, smallest in the winter, and followed a pulse-response pattern
regardless of season (cf. Figures. 3, 4, 5). These results are consistent with a previous study at this
site, wherein ET responded with a large, rapid increase after rainfall pulses larger than 2.5 mm, which
was followed immediately by exponentially declining ET (Eamus et al., 2013). However, the model
used in this study tended to overestimate the magnitude of soil water content responses to rainfall,
particularly when precipitation was very high (October 2010 to January 2011, cf. Figures. 3, 4).
Failure to account for areas of restricted infiltration due to the occurrence of a spatially heterogeneous
hardpan at this site (Cleverly et al., 2013a) would lead to anomalies in modelled soil moisture profiles.
In contrast, daily values of measured ET (0–5.9 mm) were marginally larger than simulated values (0–
5.1 mm). Notwithstanding differences between simulated values and measurements, the model
matched measurements of ET and soil water content very well, which was indicated by values of ME
that were close to 1 (Table 3).
We conclude from these results that the calibrated WAVES model is effective at simulating the responses of vegetation water-use and recharge in the study area, particularly with the climate variability in the region (Cleverly et al., 2013a; Papalexiou and Koutsoyiannis, 2013). Previous applications of WAVES include ecohydrological examinations of climate, vegetation water balances (Zhang et al., 1999a, b; Wang et al., 2001; Yang et al., 2003). Thus, WAVES was found to provide a reliable framework for evaluating ecohydrological responses of soil and vegetation to large-scale variations in climate.

3.2. Climate variations from 1981 to 2012

Climate in the last 30 years (1981–2012) varied with large fluctuations in precipitation (97–833 mm yr⁻¹; Figure 6). Variations in mean annual mean temperature (21.2–23.4 °C), solar radiation (20.7–23.1 MJ m⁻² d⁻¹) and VPD (1.3–2.1 kPa) were uniformly low during years when precipitation was large (Figure 6). The large variation in annual precipitation supply is typical of central Australia, where two types of storm systems generate moisture: the Australian low and the monsoon depression (Kong and Zhao, 2010; Berry et al., 2011). The probability of receiving precipitation from either storm system is small (Berry et al., 2011), which was shown in the years when annual rainfall was less than 100 mm (Figure 6). However, when both types of storm systems occur simultaneously, extraordinarily large amounts of precipitation can be received (Kong and Zhao, 2010), thereby causing the eight-fold range in rainfall shown in Figure 6. The negative temporal correlation of precipitation against radiation, temperature and VPD was indicative the ameliorating effects of cloudiness, rainfall and evaporative cooling on summer temperature regimes (Cleverly et al., 2013a). Interestingly, a decreasing trend was seen since 2000 although the precipitation in 2010 was extremely high.

Figure 7 shows the large monthly variability in climatic conditions. Monthly mean temperature and solar radiation were highly seasonal: temperature ranged between 13.6 and 29.8 °C in July and January, respectively (Figure 7a), while solar radiation ranged from 15.9 to 26.2 MJ m⁻² over
the same period (July to January; Figure 7b). Precipitation was also highly seasonal, with more than
50% of precipitation falling in the three summer months (wet season, December to February) and
more than 80% falling during the monsoon season (November through April; Figure 7c). Interestingly,
VPD in the wet season was almost three times larger than in the dry season (June to August) (Figure
7d) due to high temperatures that compensated for the large absolute humidity during the summer. In
contrast, VPD in the tropical savannas of northern Australia are smaller in the wet season than during
the dry season, even though the range of mean monthly VPD values are similar in both locations (cf.
Figure 7 and Whitley et al., 2011). The continental climate at this site is characterised by a distinct
summer wet season, a large difference between winter and summer temperatures, and the large values
of insolation that occur in tropical semi-arid regions (Figure 7), where the occurrence of cloud-free
conditions is common even during the wet season (Cleverly et al., 2013a).

3.3. Vegetation growth affected by climate variability

(24) Figure 8 illustrates inter-annual variations in simulated annual mean LAI of the canopy and
understory during 1981–2012. Due to large inter-annual climate variability (Figure 6), simulated LAI
of both the canopy and understory also displayed large inter-annual variations. Simulated LAI of the
canopy ranged from 0.12 to 0.35 with an average of 0.25, while that of the understory ranged from
0.07 to 0.21 with an average of 0.13. Interestingly, an obvious decreasing trend was shown in
simulated understory LAI (Figure 8), reflecting the effect of the extended recent drought (Figure 6).
Due to strong seasonal variation in climate, especially precipitation and temperature (Figure 7),
seasonal variation in simulated understory LAI was large, ranging from 0.03 in September to a
maximum of 0.36 in February (Figure 9a). In contrast, simulated tree canopy LAI showed only a
small range in seasonal variation (0.22–0.28), reflecting the evergreen drought- and heat-tolerant
sclerophyllous nature of Acacia phyllodes (Eamus et al., 2013). The “bulge” in the simulated
understory LAI from November through March (Figure 9a) coincided with the wet season (Figure 7c)
and reflects the precipitation dependent understory of forbs, shrubs and grasses, the latter of which are
comprised of species using the C₃ and C₄ photosynthetic pathways (Cleverly et al., 2013b). These
responses of the understory to rainfall predominantly determine the intra-annual variation in total LAI (Figure 9a), as has been noted recently in a field study of this site (Eamus et al., 2013).

(25) The different responses of the tree canopy and understory LAI to climate variations illustrates that the growth of Mulga and understory is responsive to different driving factors. At the inter- and intra-annual scales, variations in simulated LAI of the *Acacia* were equally uncorrelated to temperature, solar radiation, precipitation and VPD, with no single factor showing a significant correlation coefficient (Table 4). In contrast, understory LAI responded positively to smaller VPD and lower temperature at the intra-annual time scale (Table 4). These negative correlations at the inter-annual time scale are indicative of the negative correlation between temperature and precipitation at this site (section 3.2). In contrast, intra-annual variation in understory LAI were positively and significantly correlated to temperature and precipitation (Table 4). For the understory, monsoon-season precipitation was the most important factor driving variation in LAI, in agreement with extensive analyses by Ma et al. (2013), who compared phenological patterns along the 1100 km North Australian Tropical Transect.

3.4. Vegetation and climate interactions: vegetation water-use controls recharge

(26) Simulated vegetation water-use displayed strong seasonal variations (Figure 9b), as recently observed in eddy covariance data for this site (Eamus et al., 2013). In Mulga, the largest rate of water-use occurred during early summer (December and January), reflecting the influence of summer rainfall, high temperature and large VPD in these months (Figure 7). In the understory, the largest rates of water use occurred in late summer (February) reflecting summer rainfall, high temperatures, large VPD and the increases in understory LAI that occurred throughout the summer (Figure 9a). These simulations demonstrate (a) that the major drivers of seasonal changes in vegetation water-use are different for the understory and overstory; and (b) the importance of vegetation dynamics in controlling the partitioning of water fluxes between ET and recharge in this arid region.

(27) Reliable estimates of vegetation water-use and recharge are critical for evaluation and optimal management of water resources. The importance of climate and vegetation in controlling the
components of the water cycle at this Mulga site is shown by the simulations of vegetation water-use and groundwater recharge as a function of climate for the period 1981–2012 (Figures 9 and 10). Annual water-use showed large year-to-year variability for both Mulga and understory; varying from 54 to 584 mm for the Mulga and from 3 to 35 mm for the understory. Mean annual water-use by the Mulga and understory was 232 and 19 mm, respectively (Figure 10). Total annual water-use by vegetation ranged from 64 to 601 mm, representing 44 to 100% of annual precipitation (Figures 6c and 10).

(28) Figure 11 shows the simulated annual recharge, with and without vegetation, at the Mulga site during 1981–2012. Annual recharge varied greatly and ranged from 0 to 48 mm, with an average of 6 mm, representing 1.8% of precipitation on average. Due to large climate variability, the simulated values of recharge without vegetation effects ranged from 58 to 672 mm with an average of 236 mm. This accounted for 18–100% of annual precipitation, highlighting the importance of vegetation for controlling recharge. Moreover, the difference in annual recharge between simulations that did and did not include the presence of vegetation was much smaller in dry years than in wet years (data not shown), which indicates the ability of vegetation to reduce recharge in water-limited environments. These values assume that permeability of the soil is equivalent in vegetated and un-vegetated patches. However, bare soil patches are common in Mulga as surface expressions of an impermeable hardpan (Cleverly et al., 2013a) from which local redistribution of rainfall creates run-on zones beneath the vegetation (Dunkerley and Brown, 1995; Ludwig et al., 2005).

(29) There was almost no recharge when annual precipitation was less than 400 mm, which is nearly 100 mm above average (306 mm; http://www.bom.gov.au), and very little recharge (less than 6 mm, annual mean average) occurred in almost 70% of years (Figure 12a). However, large variations in rates of recharge occurred for different years that had similar total annual rainfall. For example, there was about 47.6 mm of recharge in 2001 when annual rainfall was 470.9 mm (circled with open circle; Figure 12a) but there was no recharge in 1991 when rainfall was 458.7 mm (circled in Fig 12a). This large difference in recharge despite similar annual rainfall is likely to be because of the effect of carry-over of soil water from one year to the next. In 2000, there was about 743.3 mm of rainfall
(Figure 6c), which exceeded water demand by vegetation and thus excess rainfall was stored in the soil and in the following year rain was received by a wet soil profile and this “pushed” recharge to deeper layers. In contrast, in 1990, there was only 221.0 mm which, was almost entirely used by vegetation (Figure 10). As a result, rain in 1991 was received by a much drier soil profile and water not used by vegetation was stored in the soil instead of generating recharge. Such a carry-over effect has previously been demonstrated in semi-arid grasslands and woodlands (Flanagan et al., 2011; Raz-Yaseef et al., 2012). Furthermore, due to the rapid response of Mulga to precipitation, rainfall intensity does not show significant effects on recharge (Figure 12b). The coefficient of variation (CV) of simulated annual recharge was 1.67, much larger than that of annual precipitation (CV = 0.47). This indicates that annual recharge was more variable than annual precipitation and this is most likely due to water-use by vegetation. The simulated recharge showed little seasonal variations due to low values as a result of precipitation used by vegetation (Figure 13).

(30) Simulated recharge was significantly affected by all climatic variables (temperature, solar radiation, rainfall, rainfall intensity and VPD) (Table 4). This occurs because all of these factors, singly and in combination, determine (a) rates of ET at daily and seasonal scales (Whitley et al., 2009); (b) seasonal patterns in LAI (Ma et al., 2013); and (c) from the interaction of (a) and (b), partitioning of rainfall into transpiration, soil evaporation and deep drainage (Figures 8, 10, 11).

(31) Absolute values of fluxes estimated by our model are subject to some uncertainty, although the temporal patterns which are of primary interest in this paper are likely to be reliable. In particular, previous studies in the Ti-Tree Basin have estimated spatially and temporally averaged recharge of approximately 2 mm/yr, although much of this might occur as infiltration through ephemeral streams with negligible recharge across other areas of the basin (Harrington et al., 2002). Uncertainties in model predictions arise due to errors in model parameters and due to simplifications inherent in the way that the model represents the hydrological system (often termed structural errors). In this study, drainage below 4 m has been equated with recharge, although the rooting depth of mulga remains somewhat uncertain. If it is deeper than 4 m, then a lower mean recharge flux would be calculated (data not shown). The absolute values of recharge will also be sensitive to soil hydraulic parameters.
Although these are able to be partially determined through calibration to observed water content data, water content data are not available below 1.2 m, and this also introduces some uncertainty in the drainage rate. Precipitation has been measured with a tipping-bucket raingauge, which has some local random errors in precipitation measurements (Ciach, 2003) and arid zone precipitation is also highly spatially variable (Lemos et al., 2002). This will also affect the absolute value of drainage.

Our results demonstrate that climate-vegetation interactions exert strong controls on rates of recharge through their impact on LAI and hence vegetation water-use. Knowledge of the interactions amongst all three factors and their controls on groundwater recharge can be used to assess potential impacts of climate variability and land use/land cover change on vegetation health and groundwater availability and has a regional application to management of groundwater resources. Our analyses did not show obvious relationship between modelled recharge and rainfall amount and rainfall intensity (Figure 12). Inter-annual variability in rainfall is magnified 2- to 4-times in variability in modelled recharge. This indicates that, for an adequate water resources assessment, there is a need to account for the effects of historical variability in climatic conditions and vegetation dynamics on renewable groundwater resources. As the effect of vegetation on groundwater recharge is significant (Figure 11), it is likely that if land use was to change significantly in response to climate change, the indirect effect of climate change on recharge may be larger than changes in rainfall or temperature. Thus, understanding vegetation response to inter-annual variability of climate should be central in any attempt to predict hydrologic change (Troch et al., 2009).

4. Conclusions

To allocate groundwater resources optimally it is important to consider both the water requirement of vegetation and the interaction of vegetation structure and function and their interactions with climate. Physically-based ecohydrological models are useful tools that can be used to investigate responses of vegetation and the components of a site’s water balance to climate variability. In this study, a biophysically based model, WAVES, was applied to examine physiological
and hydrological responses of vegetation to climate variations in an arid zone landscape dominated by
an *Acacia* (Mulga) savanna woodland. We found that:

- The WAVES model was able to reasonably reproduce the dynamics of vegetation growth, vegetation water-use and changes in soil water content in this arid zone landscape. Thus we can use WAVES to investigate the interactions between climate and vegetation and the components of the site’s water balance.

- Simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory canopy and 0.07 to 0.21 for the understory, as a result of large inter-annual climatic variability, especially precipitation.

- From the model simulations with long-term climate data we showed that climate variability greatly affected vegetation water-use and hence groundwater recharge. Simulated annual water-use by vegetation (Mulga & understory) ranged from 64 to 601 mm. The largest rate of vegetation water use was due to high temperature and adequate precipitation in summer months (December to February). Annual recharge when vegetation was excluded from the simulations was highly variable and this variability was mostly dependent on variation in inter-annual precipitation, which ranged from 58 to 672 mm.

- Comparison of recharge between with and without vegetation effects indicated that vegetation exerted strong controls on recharge, which was simulated to reduce recharge by 54 to 653 mm per year. Relative reductions in recharge due to vegetation were larger in dry years than wet years, reflecting the enhanced ability of vegetation to reduce recharge in water-limited environments.

(33) The results give an insight into assessing potential impacts of climate variability and land use/land cover change on groundwater resources management.

Acknowledgements.

(34) This work was supported by grants from National Centre for Groundwater Research and Training (NCGRT) and the Australian Government’s Terrestrial Ecosystems Research Network (TERN) (www.tern.gov.au). This work was supported also by OzFlux and the Australian Supersite Network, both parts of TERN and the latter of which is a research infrastructure facility established under the
National Collaborative Research Infrastructure Strategy and Education Infrastructure Fund–Super
Science Initiative, through the Department of Industry, Innovation, Science, Research and Tertiary
Education. We are grateful to Professor Qiang Yu for his useful suggestions.

References

Rangeland Society Biennial Conference’. (Ed. D. Orr) 4 pages. (Australian Rangeland Society:
Australia).

Baird, K. J., J. C. Stromberg, and III. T. Maddock (2005), Linking riparian dynamics and groundwater:
an ecohydrologic approach to modeling groundwater and riparian vegetation, *Environ. Manage.*, 36,
551–564.

221–224.

Barr, A. G., A. K. Betts, T. A. Black, J. H. McCaughey, and C. D. Smith (2001), Intercomparison of
33550.

Barron, O. V., R. S. Crosbie, W. R. Dawes, S. P. Charles, T. Pickett, and M. J. Donn (2012), Climate

Berry, G., M. J. Reeder, and C. Jakob, 2011: Physical mechanisms regulating summertime rainfall
over northwestern Australia, *J. Clim.*, 24, 3705–3717.

Berry, S. L., G. D. Farquhar, and M. L. Roderick (2005), Co–Evolution of Climate, Soil and
Vegetation, *Encyclopedia of hydrological sciences*.

Constantin, J., M. G. Inclan, and M. Raschendorf (1998), The energy budget of a spmce forest: field measurements and comparison with the forest-land-atmosphere model (FLAME), *J. Hydrol.*, 2, 12213:2 2-35.

Martin, M., R. Silberstein, K. Smettem, and C. C. Xu (2008), Identifying Sources of Uncertainty in Groundwater Recharge Estimates Using the Biophysical Model WAVES. In: Lambert, Martin (Editor); Daniell, TM (Editor); Leonard, Michael (Editor). Proceedings of Water Down Under. Modbury, SA: Engineers Australia; Causal Productions, 2161–2169.

Whitley, R. J., B. E. Medlyn, M. J. B. Zeppel, C. M. O. Macinnis-Ng, D. Eamus (2009), Comparing the Penman–Monteith equation and a modified Jarvis–Stewart model with an artificial neural network to estimate stand scale transpiration and canopy conductance. J. Hydrol., 373, 256–266.

Figure 1. The Ti-Tree Basin, central Australia (small black square on inset map) and the study site (Modified from Harrington et al., (2002)). Potentiometric contours indicate the general direction of groundwater flow is to the east and north from the western and southern margins, respectively.
Figure 2. Comparison of total leaf area index (LAI) from digital photography (measured), MODIS and that of simulations (a). Comparison of measured and simulated component contributions of canopy (b) and understory (c) LAI from 3 September 2010 to 9 May 2012.
Figure 3. Daily precipitation measured at the study site during September 2010–December 2012.
Figure 4. Comparison of measured and simulated soil water content at 10 cm (a) and 60 cm (b) depths from 1 Sep 2010 to 31 December 2012.
Figure 5. Comparison of measured and simulated daily ET (a) and cumulative ET (b) at Alice Spring flux station from 3 September 2010 to 31 December 2012.
Figure 6. Annual mean temperature (a), annual mean solar radiation (b), annual precipitation (c) and annual mean vapour pressure deficit (VPD) (d) during 1981–2012.
Figure 7. Mean monthly air temperature (a), mean monthly solar radiation (b), monthly precipitation (c) and mean monthly vapour pressure deficit (VPD) (d).
Figure 8. Simulated annual mean LAI of the canopy and understory from 1981 to 2012.
Figure 9. Simulated monthly mean LAI of the canopy, understory and their total (a); simulated monthly water use of the Mulga, understory and their total (b).
Figure 10. Simulated annual water use by the Mulga and understory from 1981 to 2012.
Figure 11. Simulated annual recharge with vegetation (vegetated) and without vegetation (non-vegetated) during 1981–2012.
Figure 12. Relationships between annual recharge and annual precipitation (a) or rainfall intensity (b) during 1981–2012. Rainfall intensity is calculated by computing the moving average of the daily rainfall series applying a 7-day window, and then aggregating the averaged rainfall values that were above a threshold of 5 mm d$^{-1}$ (e.g., Barron et al., 2012).
Figure 13. Simulated monthly recharge with vegetation during 1981–2012.
Table 1. Soil layers and parameters estimated for the soil model simulations

<table>
<thead>
<tr>
<th>Soil layer</th>
<th>Soil depth (m)</th>
<th>Texture</th>
<th>K_s (m d$^{-1}$)</th>
<th>Θ_s (cm3 cm$^{-3}$)</th>
<th>Θ_d (cm3 cm$^{-3}$)</th>
<th>λ_c (m)</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0–4</td>
<td>sandy loam</td>
<td>1.0</td>
<td>0.33</td>
<td>0.06</td>
<td>0.04</td>
<td>1.02</td>
</tr>
</tbody>
</table>

K_s, saturated hydraulic conductivity

Θ_s, saturated soil water content

Θ_d, air-dry volumetric water content

λ_c, characteristic length

C, shape parameter related to soil texture and structure
Table 2. Derived parameter values for the canopy and understory

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Mulga</th>
<th>Understory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minus albedo of the canopy</td>
<td>__</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>1 minus albedo of the soil</td>
<td>__</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>Rainfall interception coefficient</td>
<td>__</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Light extinction coefficient</td>
<td>__</td>
<td>-0.65</td>
<td>-0.50</td>
</tr>
<tr>
<td>Maximum carbon simulation rate</td>
<td>kg C $^{-2}$ d$^{-1}$</td>
<td>0.028</td>
<td>0.01</td>
</tr>
<tr>
<td>Slope parameter for the conductance model</td>
<td>__</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Maximum plant available soil water potential</td>
<td>m</td>
<td>-150</td>
<td>-150</td>
</tr>
<tr>
<td>IRM weighting of water</td>
<td>__</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IRM weighting of nutrients</td>
<td>__</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Ratio of stomatal to mesophyll conductance</td>
<td>__</td>
<td>0.03</td>
<td>0.8</td>
</tr>
<tr>
<td>Temperature when the growth is 1/2 of optimum</td>
<td>ºC</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Temperature when the growth is optimum</td>
<td>ºC</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Year day of germination</td>
<td>d</td>
<td>-1</td>
<td>310</td>
</tr>
<tr>
<td>Degree-daylight hours for growth</td>
<td>ºC hr</td>
<td>-1</td>
<td>47000</td>
</tr>
<tr>
<td>Saturation light intensity</td>
<td>umol m$^{-2}$ d$^{-1}$</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Maximum rooting depth</td>
<td>m</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Specific leaf area</td>
<td>LAI kg C$^{-1}$</td>
<td>17.5</td>
<td>24</td>
</tr>
<tr>
<td>Leaf respiration coefficient</td>
<td>kg C kg C$^{-1}$</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td>Stem respiration coefficient</td>
<td></td>
<td>0.0001</td>
<td>-1</td>
</tr>
<tr>
<td>Root respiration coefficient</td>
<td></td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>Leaf mortality rate</td>
<td>fraction of C d$^{-1}$</td>
<td>0.0004</td>
<td>0.0002</td>
</tr>
<tr>
<td>Above-ground partitioning factor</td>
<td>__</td>
<td>0.15</td>
<td>0.3</td>
</tr>
<tr>
<td>Salt sensitivity factor</td>
<td>__</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Aerodynamic resistance</td>
<td>s m$^{-1}$</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 3. The coefficient of determination, root mean square error (RMSE) and model efficiency (ME) of simulated LAI, soil water and ET.

<table>
<thead>
<tr>
<th>Item</th>
<th>r^2</th>
<th>RMSE</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total LAI (MODIS)</td>
<td>0.54</td>
<td>0.10</td>
<td>0.41</td>
</tr>
<tr>
<td>Understory LAI (Observed)</td>
<td>0.93</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Canopy LAI (Observed)</td>
<td>0.65</td>
<td>0.05</td>
<td>0.77</td>
</tr>
<tr>
<td>Soil water</td>
<td>0.70</td>
<td>0.03 cm3 cm3</td>
<td>0.65</td>
</tr>
<tr>
<td>ET</td>
<td>0.98</td>
<td>1.07 mm d$^{-1}$</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Table 4. Pearson correlation coefficients between climate variables and vegetation, LAI or recharge.

<table>
<thead>
<tr>
<th>Time scale</th>
<th>Climate variables</th>
<th>LAI</th>
<th>Recharge with vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Canopy</td>
<td>Understory</td>
</tr>
<tr>
<td>Inter-annual</td>
<td>Mean temperature</td>
<td>0.11</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>Solar radiation</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Total amount</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Intensity</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>VPD</td>
<td>0.08</td>
<td>-0.28</td>
</tr>
<tr>
<td>Seasonal</td>
<td>Mean temperature</td>
<td>0.08</td>
<td>0.80*</td>
</tr>
<tr>
<td></td>
<td>Solar radiation</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>Precipitation (total amount)</td>
<td>-0.20</td>
<td>0.97*</td>
<td>–</td>
</tr>
<tr>
<td>VPD</td>
<td>0.23</td>
<td>0.72*</td>
<td>–</td>
</tr>
</tbody>
</table>

VPD, vapour pressure deficit

** Correlations are significant with p < 0.01