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Abstract 23 

 24 

Coral cell cultures made from reef-building scleractinian corals have the potential to aid in the pursuit 25 

of understanding of the cnidarian-dinoflagellate symbiosis. Various methods have previously been 26 

described for the production of cell cultures in vitro with a range of success and longevity. In this 27 

study, viable tissue spheroids containing host tissue and symbionts (coral explants) were grown from 28 

the tissues of Fungia granulosa. The cultured explants remained viable for over two months and 29 

showed morphological similarities in tissue structure and internal microenvironment to reef-building 30 

scleractinian corals. The photophysiology of the explants (1 week old) closely matched that of the 31 

parent coral F. granulosa. This study provides the first empirical basis for supporting the use of coral 32 

explants as laboratory models for studying coral symbioses. In particular, it highlights how these 33 

small, self-sustaining, skeleton-free models can be useful for a number of molecular, genetic and 34 

physiological analyses necessary for investigating host-symbiont interactions at the microscale. 35 

 36 

Introduction 37 

 38 

Cnidarian-dinoflagellate symbioses are widespread in the marine environment, with the most well-39 

known and arguably most ecologically important being that of scleractinian, reef-building corals 40 

(Furla et al. 2005; Rosic and Dove 2011). Historically, molecular, genetic and physiological analyses 41 

of cellular processes in corals have been difficult to conduct mainly because of the physiological 42 

complexities associated with differentiating processes and responses from the different organisms that 43 

make up the coral holobiont: namely the cnidarian animal, the photosynthetic dinoflagellate and other 44 

microbial partners (Reshef et al. 2006). In addition, many analyses are hindered by the presence of a 45 

calcium carbonate skeleton or the calcification process, which utilises the calicoblastic layer to 46 

deposit calcium carbonate (Davy et al. 2012). To get around these problems, many studies have made 47 

use of symbiotic dinoflagellates (belonging to the genus Symbiodinium) freshly isolated from the coral 48 

host to investigate the physiology of the symbiotic counterpart. While this method of investigation 49 



 
 

helps to differentiate the dinoflagellate response from the animal, the act of isolating and/or culturing 50 

Symbiodinium in vitro is unlikely to be directly representative of conditions in hospite. In symbiosis, 51 

the intracellular environment regulated by the host cell has different chemical properties than that of 52 

seawater (such as osmotic potential), and changing these conditions can induce stress responses in the 53 

cultured cells that would otherwise not be present (Wang et al. 2011). Understanding of the coral 54 

symbiosis would be greatly enhanced if it were possible to maintain cultures of symbiotic 55 

zooxanthellae still encased in their host endoderm cells, but without the calicoblastic layer. However, 56 

while such a culture would allow for detailed investigations of the symbiosis at the single cell level, 57 

all attempts to isolate and maintain such cell lines have previously proven unsuccessful (Gates and 58 

Muscatine 1992).  59 

 60 

Recent work on coral tissue has led to new techniques for producing cultures of host tissue containing 61 

viable symbionts that have been reported to survive between 52 h (Nesa and Hidaka 2009) and 1 62 

month (Domart-Coulon et al. 2001) with one reporting survival of more than 3 years (Vizel et al. 63 

2011).  In particular, solitary fungiid corals have been key in developing and improving culturing of 64 

coral tissues because they possess the ability to repair and regenerate their tissue and use budding as a 65 

mode of survival when repair is impossible (Kramarsky-Winter and Loya 1996). In their study, tissue 66 

fragments removed from budding Fungia granulosa were shown to develop into planula-like balls 67 

that settled, attached and grew into new, fully differentiated individual corals.  68 

 69 

Previous studies on coral explants have described various methods for producing a skeleton-free coral 70 

and have shown coral explants to be good representatives or models of coral holobiont tissue (Nesa 71 

and Hidaka 2009; Vizel et al. 2011), in that they contain ectoderm and endoderm cells separated by a 72 

mesoglea (Tambutté et al. 2007). However, to date there has been no investigation into the actual 73 

physiology of explants or their physiological response to environmental conditions, nor a comparison 74 

of that response to whole parental corals. 75 



 
 

In this study, using the solitary free-living coral F. granulosa, the internal microenvironment and 76 

tissue morphology of coral explants was characterised and the photophysiology of explants were 77 

compared with that of the parent coral F. granulosa. The aim of this study was to determine the 78 

suitability of these explants as model organisms for detailed studies into coral symbioses and validate 79 

their usefulness for studying tissue functions and processes such as those involved in cnidarian-80 

dinoflagellate symbiosis, cell interactions, proliferation, growth and differentiation and disease, 81 

without the skeleton.  82 

 83 

Materials and Methods 84 

 85 

Coral Collection 86 

Individual solitary corals of the species F. granulosa were collected from the lagoon at Heron Island, 87 

Great Barrier Reef, Australia (151° 55´ E, 23° 26´ S) and maintained in shaded aquaria (< 100 μmol 88 

photons m–2 s–1) at ambient lagoon temperature (25 °C) for 1 week before being transported to the 89 

University of Technology, Sydney, where they were maintained at 25 ± 0.5 °C, at a salinity of 34 ppt 90 

and pH 8.2. Corals were maintained at 200 μmol photons m-2 s-1 of light, provided by metal halide 91 

lamps (400 W, Ablite with 40 W Power-Glo fluorescent bulb) in a 12:12 h light:dark cycle.  92 

 93 

Explant production and viability 94 

Explants were produced following the method described in Vizel et al. (2011) with a few 95 

modifications. Briefly, coral fragments were removed by cutting a small wedge of skeleton and tissue 96 

(approximately 1.5 cm in width and 2 cm in length) from the parental coral with a pair of bone cutters. 97 

Each sample was left to stand for 2 h in filtered seawater (FSW, 0.22 μm) containing antibiotics 98 

(Gentamicin and Kanamycin, both 50 μg ml-1, Life Technologies Australia Pty Ltd, Mulgrave, 99 

Victoria) in order to minimise bacterial contamination. Coral tissue, consisting of both ectoderm and 100 

endoderm, was gently peeled from the skeleton using fine forceps and placed into autoclaved 101 



 
 

borosilicate glass dishes (Schott-DURAN®, GmbH, Germany) containing 50 ml FSW and antibiotics 102 

(see above). Tissue fragments were broken into smaller pieces and skeleton fragments were carefully 103 

removed with a sterile transfer pipette. After 24 h, explants ranging between 400 – 800 µm in 104 

diameter began to form. Any viable explants (characterised as negatively buoyant round motile balls 105 

containing both Symbiodinium and host tissues encased in a mucus layer) were then transferred to new 106 

sterile glass petri-dishes containing FSW and antibiotics, and maintained at a density of up to 30 107 

explants per dish. The antibiotic treatment was applied for the first two days, after which explants 108 

were maintained in antibiotic-free FSW to allow explants to re-establish their microbiota. At this 109 

stage, a small piece of pink encrusting coralline algae (Lithothamnion sp.) was added to each dish to 110 

provide cues to the growing explants, as it is known to induce coral metamorphosis (Heyward and 111 

Negri 1999). Every three days, explants were transferred into clean petri dishes with fresh FSW and 112 

coralline algae. This modified culturing method was used because preliminary trials did not yield 113 

viable explants in the absence of antibiotics, due to strong bacterial growth. Tests for long-term 114 

negative effects of the antibiotics on the explant symbiont health using PAM fluorometry were also 115 

conducted and the data showed no measurable effect of the long-term antibiotic treatment compared 116 

with those washed after only 2 days of exposure (data not shown). However, to minimise any 117 

potential undetectable effects, treatment with antibiotics was limited to only the first two days, until 118 

explant formation. Cultured explants were maintained under 100 µmol photons m-2 s-1 of light 119 

(Aquablue Plus T5 HO fluorescent light system; Giesemann Aquaristic GmbH, Nettetal, Germany) on 120 

a 10:14 h light:dark regime. Light intensity was measured with a light meter (Li-250A, Li-Cor, 121 

Lincoln, Nebraska, USA) and the temperature of the culture was maintained at 25 ± 0.5 °C using a 122 

25W aquarium heater (Aqua One, Ingleburn, NSW). Explant viability was monitored for 63 days 123 

using chlorophyll a fluorescence (see method below). 124 

 125 



 
 

Morphology  126 

Explant morphology through optical sectioning was visualised using an upright epifluorescence 127 

microscope (Olympus BX51) equipped with a DP70 CCD colour camera. Fluorescence was detected 128 

using various filter sets: red for Symbiodinium chlorophyll autofluorescence (excitation 688 nm/ 129 

emission 679-754 nm), narrow green (excitation 470 nm/ emission 510-550 nm) and wide blue 130 

(excitation 330-385 nm/ emission 420 nm) for host fluorescent pigment proteins. Images were 131 

captured using the DP Controller software (version 1.2.1.108; Olympus Optical Co. Ltd). Individual 132 

symbiont and animal endoderm cell viability was assessed using the viability stain Glycine, N,N'-133 

[[3',6'-bis(acetyloxy)-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthene]-4',5'-134 

diyl]bis(methylene)]bis[N-[2-[(acetyloxy)methyoxy]-2-oxoethyl]-, bis[(acetyloxy)methyl] ester/ N/A 135 

(referred to as Calcein-AM; 8 µM final concentration) and nucleic acid stain 2,5'-Bi-1H-136 

benzimidazole, 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-/ 23491-52-3 (referred to as Hoechst; 137 

4 µM final concentration; both Life Technologies, Australia Pty Ltd). Explants were incubated in 138 

these stains for 40 min, and then washed in FSW before being flattened onto a slide using a cover slip 139 

to break apart the internal structure. Individual cells were imaged (400x final magnification) on an 140 

inverted fluorescence microscope (Nikon Eclipse Ti, Nikon Instruments Inc., Melville, NY, USA) 141 

using the standard filters TxRed (red fluorescence), FITC (green fluorescence) and DAPI (blue 142 

fluorescence) for chlorophyll autofluorescence, Calcein-AM and Hoechst, respectively. 143 

 144 

Chlorophyll a fluorescence 145 

Explant viability was estimated by measuring symbiont chlorophyll a fluorescence every three days 146 

over a two-month period. Variable fluorescence was measured using a Pulse Amplitude Modulated 147 

(PAM) fluorometer (Imaging PAM –Max/K, RGB, Walz GmbH, Effeltrich, Germany), mounted on a 148 

compound microscope (Axiostar plus, Zeiss, Germany). Explants were placed onto a microscope 149 

well-slide and dark-adapted for 10 min prior to measurements. Measurements were taken (200x final 150 

magnification) using Imaging Win software (V2.32 FW Multi RGB; Walz GmbH, Effeltrich, 151 



 
 

Germany). Following 10 min dark-adaptation, minimum fluorescence (FO) was recorded before 152 

application of a high intensity saturating pulse of light (saturating pulse width = 0.8 s; saturating pulse 153 

intensity > 3000 µmol photons m-2 s-1), where maximum fluorescence (FM) was determined.  From 154 

these two parameters the maximum quantum yield of PSII was calculated as FV/FM = (FM-FO)/FM 155 

(Schreiber 2004). For more detailed photophysiological investigation, steady-state light curves 156 

(SSLC) were conducted on 1-week old explants. Explants were placed onto a microscope well-slide in 157 

a solution of 7% MgCl2 (to reduce movement - see below), and dark-adapted for 10 min prior to 158 

measurements. Seven actinic light levels (5, 20, 29, 84, 157, 203, 313 µmol photons m-2 s-1) were 159 

applied for 3 min each before recording the light-adapted minimum (FT) and maximum fluorescence 160 

(FM') values. For comparison between explant physiology and that of a coral, a nine-step SSLC  was 161 

also conducted on F. granulosa using the Imaging PAM (Max/K, Walz GmbH, Effeltrich, Germany) 162 

at similar actinic light levels (11, 21, 36, 81, 111, 231, 336, 461, 701 µmol photons m-2 s-1) for 3 min. 163 

From the SSLCs, photophysiological parameters, dark-adapted maximum quantum yield of PSII 164 

(FV/FM), light-adapted effective quantum yield (ΦPSII), non-photochemical quenching (NPQ) and 165 

relative electron transport rate (rETR) were obtained (see Schreiber 2004 for details). The rETR from 166 

the SSLCs were fitted to a double exponential function and all photosynthetic parameters from the 167 

curve fit; light utilisation efficiency (α), minimum saturating irradiances (EK), and maximum relative 168 

electron transport rate (rETRMAX), were obtained as described in Ralph & Gademann (2005).  169 

Following all chlorophyll a fluorescence measurements, explants were transferred back into FSW and 170 

left for 30 min in darkness before FV/FM was re-measured in order to assess any negative effect of the 171 

MgCl2 treatment.  172 

 173 

To prevent ciliary-activated rotation of the explants during microscopy measurements, a 7% 174 

magnesium chloride (MgCl2) solution in FSW (0.22 μm) was used. Magnesium chloride is a 175 

commonly used method for anaesthetising animal cells (Messenger et al. 1985), because it only 176 

inhibits movement while allowing cellular processes to continue. In a preliminary experiment using 177 

the Imaging PAM, no significant difference in effective quantum yield of PSII (ΦPSII) was detected 178 



 
 

between the explants anaesthetised in MgCl2 and non-anaesthetised explants (F1, 10 = 0.681, p = 0.428, 179 

n = 6), and explants regained ciliary activity within 5 mins of being transferred back into FSW.  180 

 181 

Microprofiling 182 

Oxygen and pH microprofiling was used to characterise the internal chemical and metabolic regions 183 

of 1-week old explants. Explants were positioned on a layer of solidified, saline agar  (0.75%, 35 ppt) 184 

in a petri-dish and a single droplet of dissolved agar (Agar for microbiology, Fluka Analytical, Sigma-185 

Aldrich, USA), pre-cooled in a water bath to just above gelation temperature (35 °C), was placed on 186 

top of each explant to encase them. The drop of agar cooled and solidified almost immediately, 187 

minimising potential temperature shock. While the agar fixed the explant in place, it did not prevent 188 

the explant from spinning around its own axis inside the agar, indicating that the explant was still 189 

alive and active. The petri dish with the fixed explant was then positioned in a temperature controlled 190 

(25 ± 0.5 °C) flow chamber (flow rate approx. 2 cm s-1) and left to acclimate for at least 20 min before 191 

profiling. Light was supplied (at close to growth irradiance, approximately 90 µmol photons m-2 s-1) 192 

via a fibre optic tungsten-halogen light source (KL-2500, Schott, Germany) equipped with a 193 

collimating lens.  194 

 195 

Oxygen and pH profiles were measured on individual explants with a Clark type oxygen microsensor 196 

(Ø = 25 µm, 90% response time < 2 s, stirring sensitivity < 1%) and a pH microsensor (Ø = 50 µm, 197 

90% response time < 10 s) (both Unisense A/S, Denmark) with an external standard 2 mm reference 198 

electrode (Ionode LLC, Australia). Both sensors were connected to a multimeter (Unisense A/S, 199 

Denmark), which in turn was connected to a laptop computer onto which the acquired signal was 200 

logged using dedicated software (SensorTrace Pro v.3.1.1, Unisense A/S, Denmark). The oxygen 201 

microsensor was calibrated according to the manufacturer protocol immediately prior to 202 

measurements using a freshly prepared sodium thiosulfate solution (10% w/w) and air-bubbled FSW 203 

at experimental temperature (25 °C) as 0% and 100% air saturation values, respectively. The pH 204 



 
 

electrode was calibrated via a linear fit to the millivolt output measured in pH 4, 7 and 10 buffers, 205 

resulting in a slope of ~54 mv pH-1.  206 

 207 

The microsensors were positioned and moved via a micro-profiler stepper motor (Unisense A/S, 208 

Denmark) controlled by software (SensorTrace Pro). Before each profile, the microsensor was 209 

positioned at the surface of the explant (defined as 0 mm depth) viewed through a stereo-microscope 210 

supported by an articulating arm. Each profile was started at a distance above the surface of the 211 

explant (0.5 - 1.0 mm) and all profiles were carried out in steps of 25 and 100 µm for oxygen and pH, 212 

respectively. For dark profiles, the microsensor was positioned at the explant surface under low light, 213 

after which the light was turned off and the explant was left to dark acclimate for 15 min prior to 214 

profiling. Due to the inherent fragility of the explants, profiling was kept to a minimum in order to 215 

ensure maximum structural integrity over the series of light/dark O2 and pH measurements. As a 216 

result, no replicate measurements were carried out on the same individual explant. To determine the 217 

net photosynthetic response time of the explants, oxygen concentrations were measured during a 218 

series of light/dark cycles. Using the same flow chamber set up as the microprofiles, the oxygen 219 

sensor was positioned with a manual micromanipulator at the centre of the explant, while the light 220 

was switched on and off in 5 min intervals and oxygen concentration logged every 2 s using the data 221 

acquisition software (SensorTrace Basic, Unisense A/S, Denmark). All microsensor measurements 222 

were conducted on individual explants for all profiles (n = 3). 223 

 224 

Results 225 

 226 

Explant viability and morphology 227 

Explants ranged in diameter between 430-800 μm with an average volume of 1.7×106 ± 7.3×107 μm3 228 

(mean ± SD; n = 12). They were viable for over two months, where the effective quantum yield of 229 

PSII (ΦPSII) remained constant for 63 days (0.517 ± 0.007; n = 32). While measurements were not 230 



 
 

continued beyond 63 days, explants remained viable for an additional 2 months (personal 231 

observation).  232 

 233 

The multiple layers of host tissue present in whole explants were investigated via light microscopy 234 

(Fig. 1). The images clearly show the internal complexity of these organisms and highlight the 235 

similarity in tissue structure to reef-building corals (Fig. 1a-c). Light microscopy revealed a thin 236 

surface ectoderm (Ec) coated with a mucus layer (Ml) and external cilia (not visible in these images) 237 

forming the outer part of the explant (Fig. 1a). Also visible is an intermediate mesogleal (Me) tissue 238 

layer bordering the inner edge of the ectodermal membrane (Fig. 1b).  Similar structures can be seen 239 

in an optical section of the parental F. granulosa coral (Fig. 1c), with an outer ectoderm and 240 

zooxanthellae housed in endodermal tissue. Closer inspection of the endodermal tissue and inner 241 

cavity of the explants shows individual symbiotic zooxanthellae (Zs) surrounded by host cnidarian 242 

endodermal (En) cell membranes with host nuclei (N) (Fig. 1d). In addition, some zooxanthellae, not 243 

encased in a host animal cell (Z), were also identified (Fig. 1d). Epifluorescence microscopy showed 244 

the explants to contain a suite of blue, green and yellow fluorescent pigment proteins in the host 245 

tissue, as well as the red autofluorescence from the chlorophyll in the plastids of the zooxanthellae 246 

(Fig. 1e, f). 247 

 248 

Steady-state light curves 249 

Steady state light curves (SSLC) that were performed on the explant show a decline in effective 250 

quantum yield of PSII (ΦPSII) from 0.6 at the lowest irradiance (5 µmol photons m-2 s-1) to 0.15 at the 251 

highest irradiance (313 µmol photons m-2 s-1; Fig. 2a). This was countered by a concomitant rise in 252 

non-photochemical quenching (NPQ) with increasing irradiance, reaching a maximum of approx. 1.5 253 

a.u at maximum irradiance (Fig. 2a). A comparable response was measured in the parent coral F. 254 

granulosa, where ΦPSII declined from 0.6 to 0.16 and an increase in NPQ 1.5 a.u at maximum 255 

irradiance (700 µmol photons m-2 s-1; Fig. 2b). Comparison of relative electron transport rate (rETR) 256 



 
 

measured in the explants and corals showed a difference in magnitude of around 50% (Fig. 2c, d) with 257 

the rETRMAX for the explant (46.96 ± 8.19 a.u) being half of that measured in F. granulosa (105.55 ± 258 

6.82 a.u; Table 1). Minimum saturating irradiance (EK) for the explant was 58.91 ± 11.2 µmol photons 259 

m-2 s-1 compared with 177 ± 6.9 µmol photons m-2 s-1 in the F. granulosa (Table 1). Light utilisation 260 

efficiency (α), was higher for the explant (0.8 ± 0.02 a.u) compared with the coral (0.59 ± 0.02 a.u). 261 

Independent-samples t-test comparing FV/FM for the explants and whole coral showed no significant 262 

difference.  263 

 264 

O2 and pH profiles 265 

Oxygen profiles showed that in two out of the three explants measured, the tissue became hyperoxic 266 

in the light (up to 280 ± 84 µmol l-1), as a result of symbiont photosynthesis, and hypooxic in the dark 267 

(down to 112 ± 19 µmol l-1) due to combined animal and symbiont respiration (Fig. 3a, b). In the case 268 

of the third explant, no net evolution of O2 was observed during the light and dark cycles, (Fig. 3c); 269 

however, in all cases, the O2 concentration was higher in the light than in the dark. The pH of the 270 

explants followed a similar pattern; decreasing in the dark by an average of 0.5 pH units from the 271 

outer edge of the explant (pH 8.23 ± 0.04) to an internal pH 7.77 ± 0.09 and increasing in the light by 272 

up to 0.6 pH units from the outer edge to an average of pH 8.55 ± 0.41 inside the explant (Fig. 3). As 273 

expected, the explant with no net O2 evolution showed no increase above ambient pH in the light (Fig. 274 

3c).  275 

 276 

The explants showed a rapid response to changes in light conditions; reaching maximum and 277 

minimum internal oxygen equilibria concentrations in less than 5 min after onset of illumination or 278 

darkness, respectively (Fig. 4). Steady state oxygen production was reached within the first few 279 

minutes of irradiance (90 µmol photons m-2 s-1), providing further confirmation for the 3 min used to 280 

obtain steady state fluorescence in the explants.  While dark equilibrium oxygen concentrations did 281 

not vary much between individual explants, stabilising between 96 and 122 µmol l-1, the equilibrium 282 



 
 

concentration in the light varied considerably, stabilising at 134, 219 and 368 µmol l-1 in individual 283 

explants 1, 2 and 3, respectively (Fig. 4). This variability can most likely be explained by the 284 

differences in symbiont densities (data not shown). Only one of the three explants reached hyper-oxic 285 

conditions in the light (Fig. 4, black symbols), but all showed a net increase in oxygen concentration 286 

in the light.  287 

 288 

Discussion 289 

 290 

Explant production has been described previously (Kopecky and Ostrander 1999; Domart-Coulon et 291 

al. 2001; Domart-Coulon et al. 2004; Nesa and Hidaka 2008; Vizel et al. 2011; Lecointe et al. 2013), 292 

where viability has varied considerably, from 52 h (Nesa and Hidaka 2009), to more than 3 years 293 

(Vizel et al. 2011). The explants cultured here, using a modified version of the method described by 294 

Vizel et al. (2011), remained viable for more than 2 months with no apparent indications of reduced 295 

viability, suggesting that the explants were stable and able to survive significantly longer.  296 

 297 

The average size of 'healthy' explants (defined in this study as having an effective quantum yield of 298 

PSII > 0.5 measured at growth irradiance) closely match those from earlier studies (Nesa and Hidaka 299 

2009; Lecointe et al. 2013), with the exception of a few larger explants (up to 1500 µm), which were 300 

generally seen to have a lower survival rate (< 14 days, personal observation). The larger explants 301 

often possessed an internal, fluid-filled cavity lined with cilia, a feature also described by Lecointe et 302 

al. (2013). This morphological development minimises tissue thickness and thus increases 303 

O2 availability through the tissue, potentially allowing the explant to grow larger than would 304 

otherwise be possible. The observed lower viability of the larger explants may be the result of a 305 

reduced symbiont to host tissue ratio, at least in cases where symbiont density is low. This would 306 

result in increased metabolic demands on the larger explants due to a relatively low amount of carbon 307 

that is being generated by symbiont photosynthesis (Manzello and Lirman 2003; Starzak et al. 2014). 308 



 
 

Interestingly, Nesa and Hidaka (2009) found no correlation between survival and explant size, 309 

however, the overall viability of their explants was less than three weeks, suggesting they may not 310 

have been stable or environmental conditions were not favourable for long-term survival.  311 

 312 

Microscopy revealed coral explants possess similar arrangement and tissue components as found in 313 

scleractinian corals (Kopecky and Ostrander 1999; Domart-Coulon et al. 2001; Kramarsky-Winter et 314 

al. 2008) with the exception of the calicoblastic layer (Fig. 1a-c). Explants in this study had an outer 315 

ectoderm covered in cilia and mucus, an endodermal cavity containing intracellular symbionts 316 

(zooxanthellae) and a mesogleal layer separating the two tissues (Fig. 1a, b), similar to the parental F. 317 

granulosa (Fig. 1c). Finer detail showed that the symbiotic zooxanthellae (Zs) were encased in host 318 

endodermal tissue (En), a feature common with whole corals (Gates et al. 1992). This comparable cell 319 

type composition provides a better means for investigating how nutrients and carbon are transferred 320 

between the host and symbiont at a microscale (Davy and Cook 2001; Furla et al. 2005). Green 321 

fluorescent pigments (GFP) were observed throughout the endodermal tissue (Fig. 1f) and were 322 

heterogeneous in their spatial distribution. This heterogeneity indicates random organisation of the 323 

tissues, in contrast to some adult corals, where a concentrated ring of GFP like molecules can often be 324 

seen around the oral disk of the polyp (Lecointe et al. 2013).  The function of fluorescent pigments in 325 

corals have been attributed to two contradictory processes involving light-regulation; 1) they provide 326 

photoprotection under high-light conditions, through the dissipation of excess energy at wavelengths 327 

of low photosynthetic activity (Salih et al. 2000; Dove et al. 2008), and 2) they can enhance light 328 

availability and hence photosynthesis under low-light conditions (Kawaguti 1969; Salih et al. 2000). 329 

In some instances they are proposed to do both, depending on the position of the fluorescent pigment 330 

relative to the zooxanthellae (Dove et al. 2001). In present study, it is possible that they fulfil a dual 331 

role, as the explants were grown at relatively low light, and showed relative sensitivity to very high 332 

light (Fig. 2).  333 

 334 



 
 

The lack of difference between the maximum quantum yield of PSII (FV/FM) of the explants and the 335 

whole parent coral provides evidence for no or limited change in the photosynthetic efficiency and 336 

health of the coral tissue from its natural coral morphology to its new explant morphology (Table 1). 337 

In general, the PAM data showed similar patterns in both the explants and the whole coral, typical of 338 

high- and low-light acclimated photosystems (Fig. 2). The capacity of corals to acclimate to changes 339 

in growth irradiance, such as those likely to occur following physical disturbances on reefs or from 340 

competition for space, have been shown in studies comparing sun and shade-adapted corals, 341 

harbouring the same Symbiodinium clades (Anthony and Hoegh-Guldberg 2003; Ulstrup et al. 2006). 342 

In this study, all photophysiological parameters measured in the SSLCs for the explants were 343 

approximately half of those determined in the whole parental coral, where, at the same light level, the 344 

ΦPSII of the explants was roughly half that measured in F. granulosa and the NPQ was the same for 345 

explants at 310 µmol photons m-2 s-1 as it was for the parental corals at double that irradiance (700 346 

µmol photons m-2 s-1). These differences can be attributed to the differences in growth irradiance 347 

(Ralph and Gademann 2005), where explants were grown at 50% of the light level of the parental 348 

corals (Fig. 2). The rETRMAX, EK and increased α in the explant compared with the coral are typical 349 

differences with respect to shade versus high-light acclimated phototrophs (Anthony and Hoegh-350 

Guldberg 2003), and provides further support for the influence of growth irradiance on the differences 351 

in photophysiological response. Shade-adapted corals tend to have a higher α and a lower EK 352 

compared with high light adapted corals (Anthony and Hoegh-Guldberg 2003), which can be seen in 353 

the explants with a lower growth irradiance compared with the corals. The fact that rETRMAX was 354 

almost exactly 50% of that measured in the parental coral, also fits with work by Ralph and 355 

Gademann (2005), who found the differences between the rETRMAX values of shade and high-light 356 

acclimated seagrass matched the differences in their respective growth irradiance (in their case a 6 357 

fold difference).  358 

 359 

Microprofiling revealed an expected increase in photosynthetic activity with increasing explant 360 

colouration (symbiont density) (Fig. 3), resulting in higher internal concentration of O2 as well as 361 



 
 

increased pH in the light, and conversely higher respiration rate (lower O2 concentration) and lower 362 

pH in the dark. The higher pH in the light than in the dark (Fig. 3), suggests an increase in carbon 363 

dioxide uptake during photosynthesis. These results are similar to those found in previous studies on 364 

the microenvironment of scleractinian corals, where photosynthesis in the light resulted in a build-up 365 

of O2 in the tissue and a pH of up to 8.6, whereas in the dark, O2 concentration was reduced to < 2% 366 

air saturation and pH dropped to between 7.3 and 7.4 (Kühl et al. 1995).  In two of three explants, 367 

profiling revealed O2 accumulation in the light (130-170% saturation), indicating that those particular 368 

explants were net autotrophic (Fig. 3a, b). While the respiration rate of corals vary between species 369 

and depth (Stambler et al. 2008), most previous studies suggests that, in shallow waters, the coral-370 

algal association is largely autotrophic, with photosynthetic production by the algae well exceeding 371 

respiration of algae and coral (Coles and Jokiel 1977). It is therefore likely that viable explants will 372 

generally be net autotrophic, as a result of a favourable ratio between animal tissue and symbiont 373 

density and activity.  374 

 375 

The fast (< 5 min) equilibration between oxygen production and consumption in the explants (Fig. 4) 376 

is comparable to oxygen responses that have been measured in corals (Kühl et al. 1995). However, in 377 

contrast to the findings of Kühl et al. (1995), none of the explants investigated in this study became 378 

anoxic in the dark. This is likely due to their small size, and a large surface area to volume ratio, thus 379 

allowing for a sufficient supply of O2 to be exchanged from the water-column.  380 

 381 

Investigating stress responses at the cellular or tissue level are essential to better understand the 382 

cnidarian-dinoflagellate symbiosis (Nesa and Hidaka 2009). This study has shown that coral explants, 383 

produced from pieces of tissue, are photosynthetically viable and morphologically similar to coral 384 

tissue at the micro scale, and therefore may constitute a model system with which to further our 385 

understanding of cnidarian-dinoflagellate interactions. The small size of the explants allows for easy 386 

manipulation under different environmental conditions, and the lack of a skeleton makes them ideal 387 

for live imaging as whole organisms or investigating responses at the individual cell level. In addition, 388 

these traits (comparable tissue structure and skeleton-free) make them potentially good model 389 



 
 

organisms for studying the optical properties of coral tissue. This method of culturing coral tissue 390 

opens up the possibility for studying coral physiology, symbiosis and development of corals and it 391 

allows for the use of modern microscale techniques to investigate the effects of environmental stresses 392 

on these fundamental biological concepts.  393 
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Figure Legends 507 

 508 

Fig 1 Explant structure (1 week old) showing; a & b) differential interference contrast (DIC) of 509 

zooxanthellae (Z), the ectoderm (Ec), mucus layer (Ml), endoderm (En) and mesoglea (Me) at two 510 

different focal planes (200x, scale bar 50 µm), c) structure of an optical section from Fungia 511 

granulosa including; zooxanthellae (Z), the ectoderm (Ec) and endoderm (En) (200x, scale bar 50 512 

µm), d) endosymbiotic zooxanthellae (Zs) cells (red) in a coral explant, surrounded by Calcein-AM 513 

stained cnidarian endoderm (En) cells (green) with Hoechst-stained nuclei (N) (blue) and 514 

zooxanthellae (Z) not encased in a host animal cell (400x, scale bar 10 µm), and explant 515 

autofluorescence using e) wide blue and f) narrow green filters on the epifluorescence microscope 516 

(200x, scale bar 50 µm).  517 

 518 

Fig 2 Effective quantum yield of photosystem II (ΦPSII; grey triangles), and non-photochemical 519 

quenching (NPQ; black circles) as a function of irradiance for a) the explants grown at 100 µmol 520 

photons m-2 s-1 (1 week old), b) Fungia granulosa grown at 200 µmol photons m-2 s-1. Relative 521 

electron transport rate (rETR) as a function of irradiance for c) explants and d) F. granulosa.  522 

Fluorescence images of e) a dark-adapted explant at 200x magnification taken on the Microscopy 523 

Imaging PAM and f) dark-adapted F. granulosa taken at the beginning of the light curve on the Maxi 524 

Head Imaging PAM. Data represent the mean ± SE (n = 3-4). Scale bar on e) is 100 µm and f) is 2cm.   525 

 526 

Fig 3 Oxygen concentration (circle symbols; top x-axis) and pH (triangle symbols; bottom x-axis) 527 

profiles of individual explants (1 week old) in the light (white symbols) and dark (black symbols). 528 

The solid black line indicates the top of the explant (defined as 0 mm depth) and the dotted line shows 529 

the position of the bottom of the explant. 530 

 531 

Fig 4 The oxygen concentration of three individual explants (1 week old) measured in 5 min 532 

light:dark cycles using an oxygen microelectrode. The bars along the horizontal axis indicate the 533 



 
 

periods of darkness (black) and 90 μmol photons m-2 s-1 (white). The respective diameters of the 534 

explants measured were 1 = 648 µm, 2 = 852 µm and 3 = 1010 µm. The dotted line indicates the 535 

oxygen saturation point in seawater (220 µmol l-1) under experimental conditions. 536 
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