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Abstract

The paper considers the problem of completing a
set of parallel if-then rules that provides a partial
description of how a conclusion variable depends on
the values of condition variables, where each vari-
able takes its value among a finite ordered set of
labels. The proposed approach does not require the
use of fuzzy sets for the interpretation of these labels
or for defining similarity measures, but rather relies
on the extrapolation of missing rules on the basis of
analogical proportions that hold for each variable
between the labels of several parallel rules. The
analogical proportions are evaluated for binary and
multiple-valued variables on the basis of a logical
expression involving Fukasiewicz implication. The
underlying assumption is that the mapping partially
specified by the given rules is as regular as suggested
by these rules. A comparative discussion with other
approaches is presented.

Keywords: Commonsense reasoning; analogical
proportions; incomplete information; if-then rules

1. Introduction

Since information is often partially missing in prac-
tice, or is at least not explicitly stated, reasoning
under incomplete information is a problem that has
been much studied in different artificial intelligence
settings during the last three decades. Still, diverse
instances of this problem class exist. The setting
of default rules with exceptions which are to be ap-
plied to an incompletely described situation has es-
pecially been studied in non-monotonic reasoning
(see e.g., [1, 2]). However, there are other forms
of reasoning under incomplete information, such as
reasoning with sparse parallel (fuzzy) rules (see e.g.,
3, 4, 5)).

In the following, we consider the problem of rea-
soning from a collection of parallel if-then rules of
the form “if Xy is A; and ... and X, is A,, then
Y is B” where the A;’s and the B’s are labels be-
longing to ordered domains; for instance, the labels
associated with the domain of X; could be ‘small’,
‘medium’, and ‘large’. This rule base may be incom-
plete in the sense that for some combination of the
labels of the condition variables X;, there may not
be a corresponding rule. Such a problem may be
handled by considering that the A;’s and the B’s
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are represented by fuzzy sets. Still, in a computing
with words [6] perspective, one may not require the
use of fuzzy sets for the interpretation of linguistic
terms (as in the early proposal made in [7]), or at
least one may want that the inference be symbol-
ically processed independently from any semantic
interpretation associated with particular fuzzy sets
[8].

This means that we look for a qualitative ap-
proach which does not rely on measuring similar-
ity, but rather assumes that the mapping from the
X;’s to Y which is partially described by the set
of available rules, is sufficiently “regular” for ex-
trapolating missing rules. Such problems are of-
ten encountered when stating recommendations, or
multiple criteria evaluations. For instance, specify-
ing the daily requirements of the human body in
calories may involve such rules as “if the amount
of physical activity is small and the age is young,
the calorie needs are medium”. As another exam-
ple, we may have rules such as “if the price is mod-
erately expensive and the surface is large and the
location is rather good, the apartment to rent is
satisfactory”. Clearly, when there are several con-
ditions and the number of possible labels for each
attribute increases, the number of rules rapidly be-
comes prohibitive, and a mechanism for completing
an incomplete rule base becomes of interest.

In the following we propose an approach based on
a recently developed formal model of analogical pro-
portions [9, 10] in order to cope with this problem.
The paper is organized as follows. The next sec-
tion provides a short background on the evaluation
of analogical proportions for binary and multiple-
valued features. We then explain how this tool may
be useful for extrapolating rules, discuss several as-
pects of the approach, before concluding.

2. Analogical proportions

An analogical proportion is a statement of the form
“a is to b as ¢ is to d”, and is usually denoted by
(a:b:c:d). A formal study of analogical propor-
tions has first been proposed by Lepage in [11] in
a computational linguistics perspective some years
ago, and has further been developed in [12]. These
authors proposed a definition of analogical propor-
tions, which was restated in a different, simpler but
equivalent way in [9]. The underlying idea is that
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Table 1: The 6 cases where an analogical proportion
holds

the analogical proportion (a : b :: ¢ : d) holds if and
only if “a differs from b as c differs from d” and “b
differs from a as d differs from ¢” (see [10]).

2.1. Binary case

Let us assume that a, b, ¢ and d denote vectors
of the values of n features Fi, ..., F,, which are
assumed to be binary valued for the moment, i.e.,
a=(ay,...,an), b= (b1,...,bn), c = (c1,...,¢n),
and d = (dy,...,d,), with a;,b;, ¢, d; € {0,1}. Let
A ={Fla; =1}, B = {.7:]'|bj =1}, C = {Filer, =
1}, and D = {F|d; = 1}. Then the analogical
proportion can be equivalently stated

Let A denote the
Fn} and

e in a set-valued form.
complementary set of A in {F1, oy
A—B=AnNDB. Then

Definition 1 (a: b :: ¢: d) holds if

(A—B=C-D)and (B—A=D-0C).

Thus, “A : B” refers to the set operation that
transforms A into B by deleting the elements
of A — B and adding the elements of B — A.

e in a Boolean logic form. Let — and A
denote and

negation conjunction, —
and = the associated implication and
equivalence (z — y = -(z A —y),
x =y = (x — y Ay — z)). Then it

can be shown that the logical counterpart of
the above definition writes:

Definition 2 (a : b =
1,....,n,

¢ : d) holds if Vi

((ai = b)) = (i — di))A((bi — a;) =
These two equivalent definitions clearly satisfy

the three postulates generally considered as being

characteristic of analogical proportions:

e (a:b:a:b)and (a:a::b:b) (identity)

e (a:bc:d) = (c d ::a:b) (symmetry)

e (a:buc:d)= (a:c:b:d) (central permu-
tation).

The six patterns that make the quaternary
connective (a; : b; 1 ¢; : d;) true are given in
Table 1. For the 10 other 4-tuples of binary values,

(di — ¢i)).

929

(a:b:c:d)is false. As can be seen, the analogical
proportion (a; : b; :: ¢; : d;) holds either when a;
and b; (resp. ¢; and d;) are identical, or when the
changes from a; to b;, and from ¢; to d; take place
in the same direction simultaneously (see the two
last lines of Table 1).

It is worth noticing in Table 1 that changing
the 1’s into 0’s leaves the table unchanged, which
expresses that the evaluation of an analogical pro-
portion does not depend on the way it is encoded.
Namely, it would be the same, when describing a
situation, to state that a property holds or that its
negation is false.

2.2. Multiple-valued case

The evaluation of analogical proportions has been
extended to multiple valued situations, i.e., when
a;,bj,ck,d; € [0,1]. It has been advocated in [13]
that an appropriate extension of Definition 2 is ob-
tained by choosing

e x Ay =min(x,y)
e r —»y=min(l,1 —z+y)
erx=y=1—|z—y|

Then it can be checked that (a; : b; ::¢; 1 d;) =1
if and only if |a; — b;| = |¢; — d;| and a; < b; &
¢; < d;. This expresses that the amount of change
from a; to b;, and from ¢; to d; is the same and is
in the same direction. In the particular case where
only the 3 values 0, 2 5, 1 are used, the analogical
proportion holds at the degree 1 only for the 19
patterns given in Table 2.

It is important to notice that the above opera-
tions make sense on finite ordered scales [14, 15, 16],
which makes them more compatible with a qualita-
tive reading. Still, the use of Lukasiewicz implica-
tion (and the associated equivalence) requires that
the distance between two successive levels in the
scale be always the same. For instance, the patterns
in Table 2 do not require a numerical interpretation.
One may as well use the ordered scale {T,«, L} in-
stead of {1,%,0}. However, considering that the
analogical proportion (T : « :: o : L) holds implic-
itly assumes that T differs from « as « from L, in
a strict reading. One might also use a more per-
missive view of graded analogical proportions that
would be defined from acceptable patterns directly,
forgetting that they have been generated through
Fukasiewicz implication, and where the levels would
only be regarded as ordered.

2.3. Inference principle

Assume we have three vectors (ai,...,an,ant1),
(b1, ..., bn,bry1), (€1,...,¢nyCny1) providing com-
plete descriptions of three situations according to
n + 1 variables, which are all valued in [0, 1] (or in
a discrete subset of it including the bottom and top



a; bl C; dl
11 1 1 1
9 | L 1 1 1

2 2 2 2
3/]0 0 0 0
411 1 0 0
505 5 0 0

2 2 1 1
6|0 0 3 3
7L L1
8 |1 1 % 4
910 0 1 1
(1 0 1 0
m|1r 3 1 3
201 1 1 1
B30 3 0 %
14 % 0 %+ 0
53 1 0 3
16 | 0 % % 1
71 5 35 0
84 0 1 3
9(0 1 0 1

Table 2: The 19 cases where an analogical propor-
tion perfectly holds in the tri-valued case

elements 0 and 1). Now consider that we have a
fourth piece of data d = (dy,...,d,), which is in-
complete in the sense that d,, 1 is unknown. In case
this new piece of data forms an analogical propor-
tion in a component-wise manner for each of the first
n variables, one may consider to apply an inductive
step that amounts to assume that an analogical pro-
portion still holds for the (n + 1)th variable. This
corresponds to adopt the following general pattern

Vi € [1,n], a;:b; ¢ d; holds

: dp+1 holds

It simply means that if the known part of d is in
formal analogical proportion with the correspond-
ing known parts of a, b and c¢ then it should also be
true for the unknown part of d. This is obviously
a form of reasoning that is not sound, but which
may be useful for trying to guess unknown values.

Ant1 t bt it Cngt

In order to do that, we should also be
able to compute d,y+; from the fact that
Gnt1 : bpy1 i €pg1 @ dpyr holds. In the Boolean
case, the solution z of an equation of the form
a :b: c: x may not exist. Indeed, the patterns
1:0:0:2and 0:1::1:x have no solution.
When the solution exists, it is unique and is given
by £ = ¢ = (a = b) as first suggested in [17] (see
[9]). In the multiple-valued case, it can be checked
that there exists an x such that a : b :: ¢ :  holds
at degree 1 if and only if x = ¢+ b —a € [0,1]
[13]. When it exists, the solution is unique. In this
paper, we also use equations of the forma : x :: x : b
whose unique solution is given by x = “T“’.

Let us consider an example (slightly modified
from [9]) in order to illustrate the inference pro-
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cess. Assume a base of cases describing houses to
let. In the example, we consider three features: na-
ture (villa (1) or apartment (0)), air conditioning
(equipped (1) or not (0)), and price (cheap (1) or
expensive (0)). Assume we know the three cases:

a = (villa, equip., expen.) = (1,1,0)

b = (villa, not-eq., cheap) = (1,0, 1)

¢ = (apart., equip., expen.) = (0,1,0)

Assume now a fourth house described by d =
(apart., not-eq., z) = (0,0, z) for which one has to
guess its price category. After checking that for the
first two variables we have an analogical proportion
between a, b, ¢, and d (indeed in terms of truth val-
ues we have (1 : 1 :0:0), and (1:0::1:0)),
one may assume that it also holds for the other
components and the unique solution of the equa-
tion (0 :1:0:2) =1isa = 1, which means
“cheap” here.

A refined version of the example can be de-
scribed in a graded manner as e.g., a = (1,1,0),
b = (1,07%)7 ¢ = (0,1,0), where the degrees
may stand for the extent to which the price is
cheap. Using Lukasiewicz implication, one gets
d = (0,0, %), i.e. the price of d should be between
cheap and expensive.

Some comments are in order. First, this example
illustrates the fact that the inference mechanism is
more productive than the one underlying standard
case-based reasoning [18], as pointed out in [19, 9],
since d is not similar to any of a,b, and ¢, strictly
speaking. Rather, it exhibits an adaptation mecha-
nism that exploits the differences between the cases
put in parallel. Besides, if we see the (n+ 1)th vari-
able as referring to a class, and the n other vari-
ables as attributes describing situations in terms of
possibly relevant features, we are faced with a clas-
sification problem, i.e. a learning-like task where a
new item has to be classified on the basis of avail-
able examples. This idea first discussed in [10], has
given encouraging results on preliminary examples
[20]. The rule completion problem that we consider
in this paper, and that we handle with this approach
in the next section, is slightly different in the sense
that we may assume that all the variables are rele-
vant for predicting the conclusion value (since they
appear in the rules available in the base). This is
not the case in classification problems where some
components of the description vectors may be irrel-
evant, and thus need not be involved in analogical
proportions. Moreover, in the classification prob-
lem, analogical proportions that are approximately
true (i.e., true to a degree less than 1) may be ac-
ceptable, while in the following we are going to re-
quire perfect analogical proportions.

3. Extrapolating missing rules

We are now in position to apply the analogical pro-
portion based inference mechanism to the comple-



tion of a set of rules. Let us first consider some
examples, before laying bare the underlying princi-
ple.

3.1. Examples
Example 1. Assume we know the two rules

rule 1 “if X is small and X5 is small then Y is
large”

rule 2 “if X; is small and X5 is large then Y is
small”

where the possible labels associated with variables
X1, X5, and Y are small, medium, or large. Then,
if we wonder what may be a plausible conclusion for
the rule

rule 3 “if X7 is small and X5 is medium then Y
is ..

we may observe that a kind of analogical proportion
of the form rule 1 : rule 3 :: rule 3 : rule 2 holds.
Indeed, one may consider that we have for variable
Xi: small : small :: small : small, which certainly
holds on the basis of pure identity, and for variable
Xo we get small : medium :: medium : large,
which holds as much as the increase from “small”
to “medium” is the same as the increase from
“medium” to “large”. In fact, this sounds just like
the analogical proportions 0 : 0 :: 0 : 0 (for variable
Xi)and 0: 4 2 1 :1 (for variable X5) encountered
in the previous section. On this basis, one may
conclude for rule 3 that “Y is medium” since
large : medium :: medium : small should hold as
well. Indeed, it can be checked that the unique
solution of 1:z::z:0isx = %; see e.g. Table 2.

Let us now consider a modified version of the
previous example.

Example 2. Assume the two rules are now:

rule 1 “if X; is large and X5 is small then Y is
large”

rule 2 “if Xj is small and Xz is large then Y is
small”

Looking for a plausible conclusion for the rule

rule 3 “if X7 is medium and X5 is medium then
Yis.”

on the basis of the analogical proportion
rule 1 : rule 3 :: rule 3 : rule 2, which corre-
sponds for variable X; to 0 : % : % : 1, and for
variable Xo to 1 : % :: % : 0, leads again to the
conclusion “Y is medium” (by solving an equation
of the form 1: z ::  : 0).

Clearly, more than 3 rules may be involved as in
the following example:
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Example 3 Assume we have the following rules
in the base:

rule 1 “if X; is small and X is large then Y is
large”

rule 2 “if X is small and X5 is small then Y is
small”

rule 3 “if X; is large and X5 is large then Y is
large”

and we look for a plausible conclusion for the rule

rule 4 “if X; is large and X5 is small then Y is

Then, the analogical inference leads to Y is small”,
on the basis of the patterns 0 : 0 :: 1 : 1 and
1:0:1:0.

3.2. Principle and assumptions

In the above examples, several assumptions are
implicitly made. First, the domain of the variables
is a discrete, totally ordered set of labels. In the
examples, small is indeed smaller than medium,
itself smaller than large. Moreover, it is also tacitly
assumed that the distance between two successive
labels is always the same, in order to make the
the domain of the variables isomorphic to scales
such as {0,1}, {0, %, 1}, {0, %, %, 1}, {0, %, %, %, 1},
{O,%,%,%,%,l} and so on. Then, it becomes
possible to compare differences between two labels.
Note also that it is not required to use the same
scale for each variable. Besides, one may insert
abstract labels in the scale, if one wants to express
that some labels are not at equal distance from
their predecessor and their successor.

Second, it is also assumed that the mapping
that relates the variables X;, ..., X,, to Y is
monotonically increasing (or decreasing) w.r.t.
each variable. While this puts a theoretical re-
striction on the kind of rule bases that may be
considered, the assumption seems to be satisfied
when the rules model generic knowledge (rather
than factual knowledge such as observations or
specifications), and the conditions that appear are
sufficiently atomic. Moreover, if the mapping is
not monotonic, it can usually be made monotonic,
e.g. by refining the conditions or by adding ap-
propriate context information. It can be shown
that the analogical inference mechanism preserves
monotonicity. In particular, if the labels in the
condition part of the incomplete rule are between
the labels of two other rules for each variable (with
respect to the ordering associated with its domain),
then this also holds for the labels in the conclusions.

The analogical inference mechanism enforces that
the same amount(s) of increase (or decrease) on the



X,;’s w.r.t. any value always has the same amount of
effect on Y. For instance, in Example 1, the amount
of increase from small to medium being the same
from medium to large for X, it should lead to sim-
ilar decreases for Y (from large to medium, and
from medium to small). Still, the inference in Ex-
ample 2, may be found more adventurous than in
Example 1, since in this latter example, the vari-
ation of only one variable causes the variation of
Y, the other variable remaining constant, while in
Example 2, there are simultaneous variations of X3
and Xs.

Note that this assumption of linearity essentially
means that, in absence of further information, we
complete the knowledge base in a way which is as
simple as possible, and therefore as natural as pos-
sible. Also note that while the mapping underlying
the rule base is assumed to be linear w.r.t. the
numerical representation of the labels, it is not re-
quired that the mapping is linear w.r.t. any under-
lying quantitative domains. For example, matching
“cheap”, “moderate” and “expensive” with a 3-level
scale in an analogical proportion pattern does not
necessarily mean that we consider the actual price
difference between cheap and moderate prices to be
equal to the actual price difference between mod-
erate and expensive prices (as already suggested at
the end of section 2.2).

It should also be noticed that the analogical infer-
ence cannot always produce a result. For instance,
in Example 2, from

rule 1 “if X is large and X5 is small then Y is
large”

rule 2 “if Xj is small and Xz is large then Y is
small”

nothing can be concluded for a rule of the form

rule 3 “if X is large and X5 is medium then Y is

7

which would rather require to know a rule with
conditions
“if X7 is large and Xs is large”.

Still, it is possible to get different conclusions
when the number of rules is large enough, as shown
on the following abstract example.

Example 4 Assume we have 5 rules relating
X1, X5, X3 to Y, corresponding to the following
vectors (1,1,1,1), (3,1,1,1), (1,0,1,1), (3,0,1, 1),
and (0,1,1,1). Note that the 5 rules do not
violate the monotonicity condition. Then from
(1,1,1,1), (1,0,1,1) (0,1,1,1), we conclude z = 1
for the incomplete rule (0,0,1,z), while from
(1,1,1,1), (3,0,1,3), (3,1,1,1), we get © = 1
for the incomplete rule (0,0,1,z). In such a case,
there is no apparent reason to prefer a conclusion
to the other, and it is advisable to conclude that
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or large.

1), i.e., for instance, Y is medium

The fact that several distinct conclusions may
be obtained should not be seen as a crippling de-
fect. As said in the previous section, the analog-
ical proportion-based inference mechanism cannot
in general guarantee sound conclusions. This is al-
ready true for case-based reasoning. So we may have
two kinds of attitude:

e either we severely restrict the application of the
inference mechanism to particular patterns for
which the inference may become sound under
strong hypotheses like the linearity of the un-
derlying mapping. In such a case, cautious re-
sults are obtained, but which are guaranteed to
be sound with respect to some natural seman-
tics.

e or we allow for a more extensive use of the infer-
ence mechanism, and one may only obtain de-
feasible, and sometimes multiple, conclusions.
In case of multiple conclusions, combining them
disjunctively is natural inasmuch as they are all
possible. Note that such an optimistic strat-
egy is common in approaches to non-monotonic
reasoning as well as information fusion.

4. Further remarks and extensions

In the previous section, we have outlined a method
for completing a rule base by enforcing analogical
proportions. Some further remarks are worth men-
tioning regarding some specific aspects of the ap-
proach.

4.1. Tteration of the completion process

First, the inference process may have to be iterated
for getting an answer to some completion query.
This is the case in the following example, where the
rule base includes the three rules:

e “If X; is small and X5 is medium then Y is
medium” (1)
e “If X, is large and X2 is medium then Y is
medium” (2)
e “If X7 is medium and X5 is small then Y is
large” (3)
Suppose we want to complete the rule
e “If X7 is medium and X5 is large then Y is 7777
The conclusion cannot be obtained directly. To get
it, however, we might first derive the following rule
e “If X7 is medium and X5 is medium then Y is
medium” (4)
since (1):(4)::(4):(2) holds, and then we get the so-
lution
e “If X; is medium and X, is large then Y is
small” (5)
since (3):(4)::(4):(5) holds also.



4.2. Making use of explicit monotonicity
information

We may also think of supplementing the analogi-
cal inference by exploiting the information on the
monotonicity of the underlying mapping. For in-
stance, if we only have the two rules “If X is very
small then Y is very small” and “If X is small then
Y is small”, one may conclude in case where “X
is large” at least that “Y is small V medium V
large V very large”, if the mapping is increasing and
if we work with five labels (“very small”, “small”,
.oy “very large”). Note that here the use of dis-
junction acknowledges the imprecision of the result
rather than referring to conflicting conclusions as
above in the previous section.

4.3. Finite sets of labels on continuous
domains

The proposed approach supposes that we are work-
ing with discrete domains, i.e. the labels are viewed
as distinct granules. In case of continuous do-
mains, one may need to view the labels as inter-
vals rather than as discrete points. For instance,
consider the variable “price” with [0, 1] as normal-
ized domain, and the four labels “cheap”, “moder-
ate”, “expensive”, “exorbitant”. These four labels
may be associated with sub-intervals such as [0, ],
[, B, 18,7], [7,1]. Suppose we have the equation
cheap moderate moderate x. Applying
the equation z = ¢ + b — a to the intervals yields
x =2x[a, 5] = [0,a] = [a,20]. If B is taken to
be equal to %, we get the conclusion = = [a, 1], i.e.
xr = moderate V expensive V exorbitant, which
is a more cautious conclusion than the one obtained

by solving the equation

cheap : moderate :: moderate : x
at the label level, which gives *+ = expensive.
Thus, the compatibility with continuous domains
may lead to prefer more imprecise conclusions.
One might even go one step further by con-
sidering fuzzy set-valued analogical proportions,
rather than interval-valued analogical proportions
as above. Then, we would obtain a fuzzy set rep-
resentation for z (using the extension principle),
which would have to be linguistically approximated
in terms of the label vocabulary. However, this
seems too sophisticated to be useful in practice.

4.4. Softening the induction step

The fact that analogical proportion equations yield
precise solutions (at least for discrete universes)
may sometimes look too adventurous in our rule
completion problem. Indeed, suppose we use the
labels {very-small, small, medium, large, very-large},
then completing the two rules “If X is very-small
then Y is very-small” and “If X is very-large then
Y is very-large” by “If X is medium then Y is
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medium” may seem quite precise: one might con-
sider that “Y is small V medium V large” would
be more realistic. One way of implementing such
a strategy would be to replace the precise solution
of the analogical proportion equation by a possi-
bility distribution, whose core contains the conclu-
sions that can be obtained from perfect solutions
to analogical proportions. The support of the pos-
sibility distribution would then also contain those
labels that can be obtained as approximate solu-
tions of the equation, i.e. those solutions which give
a truth-value less than 1 (but strictly greater than
some threshold) to the analogical proportion. In
this way, we implicitly take into account the fact
that e.g. the change from very-small to small may
not be exactly the same as the change from small
to medium, as well as the fact that some small ir-
regularities are somewhat plausible to occur.

5. Concluding remarks

Fuzzy set theory offers a quantitative framework
for approximate reasoning [21], interpolative rea-
soning [22, 23, 4, 3, 5], and similarity-based rea-
soning. Thus, [24] adapts the solution of an already
solved situation to a similar new situation according
to the degree of resemblance between these two sit-
uations. These approaches take advantage of fuzzy
set membership function based representations.

In this paper, since such representations are not
always available (especially when we are not on uni-
dimensional numerical universes), we have followed
another road for interpolating or extrapolating new
rules from a rule base. We have outlined a new ap-
proach where a new rule is inferred from two or three
other rules under conditions expressed in terms of
analogical proportions. This approach is qualita-
tive, and may in some sense be viewed as an at-
tempt at computing with words [6] since it can be
processed at a purely symbolic level.

Another qualitative approach to the same prob-
lem has recently been proposed by the authors [25],
using the notion of betweenness as primitive in the
setting of Gérdenfors conceptual spaces. In this lat-
ter approach, the basic inference pattern involves
two rules, while in the approach presented here, it
relies on three rules (which is also to be compared
with case-based reasoning where a current situation
is matched with only one rule at a time).

Besides, the proposed approach completes the
partial knowledge about a mapping on the basis of
a generic principle of regularity which is enforced
through the satisfaction of analogical proportions,
just as a least commitment principle is used in [26]
for completing preferences between multiple crite-
ria evaluations while taking into account the mono-
tonicity of the underlying evaluation process and
the relative importance of criteria.
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