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Abstract—In this paper, a novel solution for autonomous
robotic exploration is proposed. We model the distribution of
information in an unknown environment as an unsteady diffusion
process, which can be an appropriate mathematical formulation
and analogy for expanding, time-varying, and dynamic envi-
ronments. This information distribution map is the solution
of the diffusion process partial differential equation, and is
regressed from sensor data as a Gaussian Process. Optimization
of the process parameters leads to an optimal frontier map
which describes regions of interest for further exploration. Since
the presented approach considers a continuous model of the
environment, it can be used to plan smooth exploration paths
exploiting the structural dependencies of the environment whilst
handling sparse sensor measurements. The performance of the
approach is evaluated through simulation results in the well-
known Freiburg and Cave maps.

I. INTRODUCTION

Exploration in unknown environments is among the major
challenges for an autonomous robot. Autonomous exploration
should be efficient with regards to one or more criteria (min-
imum energy consumption, shortest path, reduced map and
localization uncertainties, reduced computational complexity),
and be performed with limited perception capabilities due to
sensor limitations.

Yamauchi [22] expressed the central question in exploration
as: “Given what you know about the world, where should
you move to gain as much new information as possible?”
Thus, exploration entails building a reliable and accurate
world model in which to evaluate such criteria. Currently,
almost all available exploration methods rely on planar grid-
based representations. Relying on grid-based maps, however,
ignores the structural dependency in the environment due to
the assumption of independence between cells. Moreover, the
use of grid-maps at a fixed resolution have scalability issues
both in the size of the area they can handle, and in the
dimension of the space to explore, leading to an increase in
computational complexity.

We tackle these two shortcomings of grid maps by devising
a continuous map representation that takes into account struc-
tural dependencies by learning the environment information
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distribution from sensor data. In this paper, information is
defined as the inverse of the environment’s structural variance.
This means that maximization of information (completion
of a map) leads to reduction of uncertainty in the envi-
ronment’s map. We model the distribution of information
in the environment as an unsteady diffusion process, which
is an appropriate mathematical formulation and analogy for
expanding, time-varying, and dynamic environments. We use
Gaussian Processes (GPs) as a regression tool in a Bayesian
framework to learn the information distribution map. The
resulting map is the solution of the diffusion process PDE
(partial differential equation) [16]. In contrast with frontier
based methods which extract frontiers from an occupancy
grid map, an optimal continuous frontier map is computed by
optimizing the process parameters. By clustering the frontier
map, possible goals for further exploration are extracted.

After a review of the work related to our approach (Sec-
tion II), in Section III we provide a brief introduction to
Gaussian Processes. Next, in Section IV, we introduce our
proposed information maps learned and inferred from GPs,
and in Section V we present the derivation of the frontier
maps as a result of modeling the information distribution as a
diffusion process. Sections VI and VII describe the process
of extracting goals for exploration and map regeneration,
respectively. Finally, sections VIII and IX describe simulation
results of the proposed approach on two well known mapping
data-sets and conclusion, including possible extensions to this
work.

II. RELATED WORK

Julid et al. [6] studied and compared seven methods for au-
tonomous exploration and mapping of unknown environments
on the basis of exploration time and mapping error, both for
single and cooperative mapping. The seven major approaches
analyzed are nearest frontier [23], cost-utility [3], behaviour-
based coordinated [8], coordinated [1], market-based coordi-
nated [24], integrated [10], and hybrid integrated [5]. The
comparison yielded conclusive results on the strategy to be
used depending on the type of scenario and number of robots
used. However, all of the techniques analyzed used occupancy
grids for map representation.

Valencia et al. [21] presented an active exploration strategy
that tackles the limitation of the granularity of the occupancy



grid by minimizing overall map and path entropies. Whereas
the map entropy is computed on an occupancy grid at a
very coarse resolution, the path entropy is the outcome of
maintaining a Pose SLAM [4, 20], a variant of SLAM in
which only the robot trajectory is estimated through the
observation of relative constraints between robot poses. In
the work presented here, we resort also to Pose SLAM for
localization and navigation, but maintain instead a continuous
information distribution map.

In [21] candidate goals were either frontiers [22], or loop
closing entropy minimizers. The paths to either frontiers or
loop closure candidates were computed as shortest paths in
a probabilistic roadmap [7]. Another strategy to compute
exploration paths is to treat the frontier between explored and
unexplored areas as boundary conditions, and the explored
area as a scalar potential field. The objective here is to
find optimal paths to the unexplored. Prestes e Silva et al.
[11] for instance, compute the gradient on this field solving
Laplace’s PDE with Dirichlet boundary conditions (setting
1 for obstacles and O for free cells). This gradient descent
direction indicates the path to the unexplored sections. Shade
and Newman [13] suggest the use of both Dirichlet and
Neumann boundary conditions, and extend the method to work
with octomaps. Optimal paths to the boundaries of unexplored
sections are computed using steepest descent on the associated
gradient field.

To cope with varying resolutions for the explored and un-
explored regions, Shen et al. [14] propose to map unexplored
regions sparsely and to determine the regions for further
exploration based on the evolution of a stochastic differential
equation that simulates the expansion of a system of particles
with Newtonian dynamics. The method is also presented for a
3D environment, although no considerations are made on how
to compute the path to the goal.

The above mentioned methods can consider uncertainty
in the occupancy cells but not take into account structural
correlations in the environment. The path to the boundary
computed on the scalar field assume a uniformly discretized
occupancy map. Recent developments in Bayesian regression
and classification methods, particularly from the machine
learning community, are providing strong mathematical tools
for continuous learning and inference in complex data sets.
Non-parametric kernel models, such as Gaussian Processes,
have proven particularly powerful to represent the affinity
of spatially correlated data, hence overcoming the traditional
assumption of independence between cells, characteristic of
the occupancy grid method for mapping environments [17].
The GP associated variance surface equates to a continuous
representation of uncertainty in the environment, which can be
used to highlight unexplored regions and optimize a robot’s
search plan. The continuity property of the GP map can
improve the flexibility of the planner by inferring directly on
collected sensor data without being limited by the resolution
of the grid cell [2].

In this paper, we propose an exploration method that
computes exploration goals on the GP associated variance

surface. However, training a unique GP for both occupied
and free areas results in a mixed variance surface and it is
not possible to differentiate between boundaries of occupied-
unknown and free-unknown space (see Fig. 6 in [17]). To
address this problem we propose training two separate GPs,
one for free areas and one for obstacles, and compute the
difference between them to come up with a unique information
distribution map for exploration.

III. GAUSSIAN PROCESSES

GPs are a non-parametric Bayesian regression technique
in the sense that they do not explicitly define a functional
relationship between inputs and outputs. Instead, statistical
inference is employed to learn dependencies between points
in a data set [12]. A GP f(z) is described by its mean, m(x),
and covariance (kernel) function, k(z, '), as

f(x) ~ GP(m(x), k(x,x")) (D

where x and z’ are the training and test (query) input vectors,
respectively. By assuming that the target data, y, is jointly
Gaussian, it follows

f(@) ~ N(p, %) )
where

p=E(f'le,y,2') = k(2 ) [k(z,2) +on 1] "'y, 3)
o? = k(2" 2') — k(2 2)[k(z, ) + 021 k(z,2), (@)

and o2 is the variance of the Gaussian observation noise and
f' represents the output values at the test locations.

IV. INFERRING INFORMATION
DISTRIBUTION MAPS WITH GPs

We maintain two GPs, one for free areas and another one for
obstacles. To this end, we assume that the robot is equipped
with a laser range finder and that local sensor measurements
are mapped into a global reference frame with Pose SLAM [4].

To compute the free area GP map, the training points are
sampled along the laser beam between the robot and the sensed
obstacles as in [17]. Computing the obstacle GP map is more
straight forward, as it is possible to use the measured points
in the global reference frame directly. In both instances the
target value can be simply set to one depending on the nature
of the map, i.e, a binary classification problem with static state:
obstacle or free.

The selection of an appropriate kernel lies at the heart of GP
regression. The covariance function places a prior likelihood
on the possible functions used to evaluate the dependencies
between the observations. Since environments are constructed
from sudden changes from free areas to obstacles, we are
interested in covariance and mean functions which produce
as sharp a distribution as possible. However, sharp kernels
are inappropriate for covering large free areas, or for learning
structural dependencies such as walls. This imposes a trade-off
between two competing objectives, smoothness to cover large
areas and structure, and sharpness to model discontinuities
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A regressed information distribution map for the Cave environment, with size of 20m X 20m. (a) Map of explored area, where the blue circles

are robot poses and the black points are relevant laser scans. (b) The obstacle distribution map A,. (c) The free space distribution map Af. (d) The overall
information distribution map A. For A,, Ay, data is locally normalized between 0 and 1 at each iteration.

well. To this end, we have chosen to use Matérn covariance
functions [15],
14
1 V2v|z — 2’|

ko) = 1 P R

V2v|z — 2|
K

)
where I" is the Gamma function, K, (-) is the modified Bessel
function of the second kind of order v, x is the character-
istic length scale, and v is a parameter used to control the
smoothness of the covariance.

The nice feature of this kernel is that with v = 5/2 and a
linear mean function, the resulting distribution maps are twice
mean square differentiable. This continuity of the distribution
map guarantees smooth planning on the information surface,
a feature particularly beneficial for planning in higher dimen-
sions.

Regressing our two GP maps with the sensor data during
navigation induces the most likely probability of occupancy
and free space. For a given query point in the map z, our
GPs predict mean values for its occupancy and free states
wi, and associated variances o?. By inverting these variances,
we can compute the information associated to that location,
Ai = 1/02. Querying over a uniformly sampled range of
robot locations, we assemble both an obstacle information
map, A,(z,t) : R? — R, and a free area information map,
As(z,t) : R? — R. With = representing a point in the map
and ¢ expressing the time.

In the classical occupancy mapping scenario, the state of a
cell can be seen as a binary state (obstacle or free), and one
usually computes the log odds I(z;) = logp(z;) — log(1 —
p(z;)), i.e., obstacle over free, which for Normal distributions
reduces to something of the form [(z;) = log(|X,,|/|2y,]) +
lzo, — to, ||220 — @y, — py, ||2Efi. To simplify the expression,
we assume equal mean values for free and obstacle states, i.e.,
no a priori knowledge. This simplification further reduces the
log-odds expression to the difference between the inverse co-
variances. With this simile, we define our desired information
distribution map as

A=A, —Af . (©)

Figure 1 illustrates an example of a regressed information
distribution map.

A. Selection of Training and Query Sets

Defining a reasonable training set is a key factor in GPs.
In our case, the training set consists of temporally annotated
measurement points in the global reference frame. Given that
each Pose SLAM pose is annotated with its corresponding
laser scan, and that such a map contains only such poses that
introduce a relevant amount of information change into the
map, the obvious choice is to use such sensor data to train the
GPs.

During open loop, each new pose in the map gives an
associated scan which is fed to the GP. These updates are local,
and seldom overlap previous learned regions in the domain of
the GP. At loop closure however, the whole map is recomputed
and a new training sample is produced for all scans at their
newly computed pose means. The map is updated globally and
so is the GP. In this way, we guarantee that flow of information
into the GP is equivalent to that in Pose SLAM.

A plausible query set could be a dense uniform distribution
over the entire GP domain. That is, sampling all areas covered
by the robot sensor range. However, a more efficient alternative
is to compute the query set locally over a moving window of
fixed size centered at the robot’s current pose and covering
the current sensor range.

B. Updating the Global Information Map

After inferring a local information map, we need to fuse
it with the global information map. The Bayesian committee
machine (BCM) [19], suggests an approach to combine esti-
mators which were trained on different data sets. Assuming
a Gaussian prior with zero mean and covariance 3 and each
GP with mean E(f’|D;) and covariance cov(f’|D;), where
D; = {(z,y);} is the dataset of observations used for each
process, it follows that

p
E(f'|D) =C™'Y cou(f'|D)) T E(f'|D;) (D)
=1
with

C = cov(f'|D)™" = —(p—1)(B) "+ _cov(f'|Di) ™" 8

i=1



where p is the total number of GPs. Note that in this paper,
E(f'|D;) represents information values from locally normal-
ized information distribution map.

V. INFORMATION DISTRIBUTION MODEL

As the robot explores the environment, the concentration of
information varies with time and depends on the location of
the sensed data. Therefore, the concentration of information is
a time-dependent scalar field over the explored areas and the
movement of the robot spreads the scalar field out as sensory
data fill unknown areas with information. This is an analogy
with reaction-diffusion processes and we can describe the
distribution of information similar to a dynamic system with
parabolic PDEs. Inherently, this mathematical form takes into
account time and space evolution of the information and even
its internal reaction combining newly detected and previously
gained data. The unsteady diffusion equation takes the form

OA 29
— =a"V*A —gA 9
D g )
where A(x,t) is the total concentration of information at pose
2 and at time ¢, and a2 and g are the diffusion constant and
the information disintegration rate, respectively.

1) Transient State: In contrast to the regular procedure
with diffusion processes, we are not interested in solving this
equation. We are interested instead in computing, at each
iteration, the residual

OA

R=——a?’V?A+gA .

ot (19)

This residual shows potential areas for further exploration.
Exploring these areas result in both, satisfying the informa-
tion distribution model and compensating for the difference
between ideal and regressed data.

To compute the optimal residual, we minimize the squared
norm of R

an

. 2
min ||vec(R)|5 .
min, [loec(R)|3

This optimization leads to optimal values for a* and g* in
each iteration and, accordingly, an optimal residual, R*. We
call the negative valued part of the optimal residual a frontier
map and compute it with

oA

R* _ = *2 2A *A 12

T VA +yg (12)
R* R* <0

}-{ 0 otherwise (13)

The imposed constraint to select only negative values in the
frontier map is a result of the construction of the information
map from obstacles and free areas. Only negative values
correspond to variations of information between known and
unknown areas, whereas positive values represent information
variation around obstacles.

2) Steady State: When %—? = 0 and g = 0, the reaction-
diffusion process PDE enters a steady state phase where the
behaviour is similar to Laplace’s equation. Hence, if after
optimizing the PDE parameters, the solution parameters are
close to zero, the PDE equation is not a valid proposition
anymore, and the frontier map can be obtained solving the
Laplace equation. In this case, the frontier map can be defined
as

F={-V?A: F<0}. (14)

On the other hand, for any scalar field it holds that the curl
of the gradient is always zero, therefore |V x VA| = 0, and
to exploit both equations concurrently in the frontier map we
can write

F={-V2A|V xVA|: F<0}. (15)

As a result of this separation between transient and steady
phases, the method considers both time and spatial evolution
of the environment. In the transient state, time evolution of the
map plays a key role and the most recent informative goals
are more relevant, whereas the steady state response offers
the possibility to cover all potential regions that have not yet
been explored. Fig. 2 shows the frontier surface evolution in
transient state during an exploration scenario in the Cave map.

VI. GoAL EXTRACTION

In this section, extraction of exploration goals together with
summarization of the proposed algorithm is presented. Once
the frontier map is computed, we can generate an arbitrary
number of targets on the map. The available continuous
frontier map shows the most recent informative regions on the
map, and we are free to choose the best target based on desired
requirements and priorities. Greedy techniques maximize the
difference between the information gain and the cost of an
action [18]. We propose a clustering method using the k-means
algorithm. Initially, a thresholded frontier map which contains
top 30% values (can be variable) is created. Afterwards, a
target which balances information gain and traverse distances
can be selected
1/2

f:max{fizami%—di ,1=1,2,..., M} (16)
where d; is the distance from the current robot pose to the i-th
cluster centroid (squared root to prevent steep variations), m;
is the mean value of the valid frontier points in the cluster, n;
is the number of points in the i-th cluster, IV is total number
of points, M is total number of clusters, and « is a factor
to relate information gain to the cost of motion. Algorithm 1
shows the overall procedure for exploration in a continuous
space, taking as inputs the local sensor measurements pjocqi

and the robot pose propo¢ in the global reference frame.

VII. MAP REGENERATION

In the proposed approach the traditional occupancy grid
map has been substituted by the information distribution map.
To show the viability of this map for planning, a simple
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Fig. 2.

thresholded information map containing the desired unoccu-
pied spaces for safe traversal has been used.

In practice, Pose SLAM may change the map significantly
due to loop closure. Large changes in the map can cause
notable shifts in robot pose, hence resulting in a low quality
information map. To solve this issue, one solution is to reset
and learn the information map with all the available data again.
A possible measure to detect such drift in the information
map can be efficiently calculated with the bounded measure
provided by Jensen-Shannon divergence [9]. The generalized
Jensen-Shannon divergence for n probability, pi,ps, ..., Pn,
with weights 7y, mo, ..., T, i8S

TSw(p1,p2, o pn) = HO mips) =Y miH(p:)  (17)
i=1 i=1

where H is the Shannon entropy function.

n

H(p) == pla:)log(p(z:))

i=1

(18)

and p(x;) is the probability associated to variable ;.

Alternatively, cumulative relative entropy by summing the
computed Jensen-Shannon entropy in each iteration can be
used. The cumulative relative entropy shows the information
map drift over a period of time and contains the history of
map variations. Consequently, the method is less sensitive to
small sudden changes.

Evolution of the frontier surface in the Cave map. The frontier map facilitates exploration goal extractions. The map is non-dimensional.

Fusion of local and global information maps as a mixture
of GPs inherently provides a smooth recovery of the map.
Alternatively, the proposed approach by Valencia et al. [21]
for replanning based on map entropy can also be considered
to improve the exploration strategy and avoid planning on
significantly altered maps.

VIII. RESULTS AND DISCUSSION
A. Maps with varying levels of detail

This section demonstrates the proposed approach through
exploration simulation in the Cave' and Freiburg? maps. These
maps represent varying difficulty of the environments which
test the capabilities of the method. The Cave map is small with
connected and clear walls. The Freiburg map is relatively large
in relation to Cave, and contains many points and disconnected
obstacles which make it a challenging environment to explore.

Figure 3 illustrates the fully explored Cave map. As it can
be seen in frame (a), by exploiting the information map data,
the robot was able to complete the map with a reduced set of
movements. Despite the sparse measurements in some regions,
the GPs are able to learn the information map, depicted
in Fig. 3(b), for goal extraction and planning. Note that
calculation of the information map as the difference between
obstacles and free areas map not only makes differentiation
between occupied-unknown and free-unknown parts possible,

IRadish: The robotics dataset repository.
2www.slam.org.
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(a) Exploration in Cave map, with size of 20m x 20m. The red lines and points show the planned path and the robot poses, respectively. The

green lines are detected loop-closure which caused small rotations in the map in this experiment. (b) Final information distribution map; In spite of the sparse
measurements in some locations, at the end of the experiment the whole map is completely explored based on the information map.

Algorithm 1 explorationIDM(p,-op0t, Piocail, T€SEL)

: Pglobal < tranSforngIObal<probot;plocal)
P Pfree < linesegmentation(pTobot7plocal)
. if firstFrame then
A=A, =Ar=0
optimize GPs hyperparameters ¢,, 05
. else if reset == true then
A=A, =Ar=0
end if
: x’o,x’f «+ testData(p;obot)
10: %o, ¢ < trainingData(pgiobar, P free)
2 05 < GP(0,, 7o, T,), 0F < GP(0f, 24, 7)
12: Ao < 1/02, A p 1/0]20
13: normalize A,, Ay
14: update Ay, Ay
150 A A, — Ay
16: find a*, g*
17: if%—?anndgzOthen
18:  F <+ {-V2A|V x VA|: F <0}
19: else
20 F <+ {R*:
21: end if
22: goal < goalExtraction(F, p,opot )
23: return goal

o - R S

—
—_

R* < 0}

it results in a sharper information map around an obstacle’s
corner which itself improves the performance of the planner
and obstacle avoidance technique.

Fig. 4 shows exploration results in the Freiburg map
(40m x 15m). In the illustrated example, the bottom frame
shows the computed transient frontier map and the extracted
goal in which valid regions for clustering and goal extraction
have negative values. As an advantage of planning in the

information map, when the robot reached the target, concurrent
map completion and increase in information or reduction of
uncertainty occurs. This inherent active link between explo-
ration and mapping is highly demanded and desirable for any
autonomous robotic scenario. However, structural complexity
of Freiburg map and its size cause a high computational
load and requires special computing facilities. Fig. 5 shows
the capabilities of the method to accommodate to varying
distributions of obstacles in a exploration run over the same
environment. In the region in the left part of the map, with little
obstacle density, the robot is commanded with larger motion
commands than in the right part of the map, in which there is
significantly more clutter, and the robot is commanded with
slow, short movements.

Stop criterion depends on application, but a common choice
in map completion is exploring till no frontier remains. Thus,
the stop criterion is 7 = () or in a more practical way
lvee(F)|loo < 0. In this research, all the presented results
are achieved with § = 0.09. Another useful measure is the
predefined relative entropy. No significant change of a map’s
relative entropy over a period of time means there is no
variation in the map and the robot is in a fully explored area.
In addition, cumulative relative entropy provides a measure to
control the desired quality of the information map. Therefore,
in trivial environments by selection of a higher threshold, it
can reduce computational time of the exploration strategy.

GP computations have been implemented with the Open
Source GP library in [12].

B. Comparison with gridmaps

Fig. 6 shows three points in time during a traditional
frontier-based exploration with grid maps, using the same
environment and specifications from the results shown in
Fig. 2, with a cell size of 0.2m x 0.2m. The robot is always
driven to the nearest frontiers, with size larger than 9 cells.
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Fig. 4. Exploration in Freiburg map which is a challenging environment
due to the many discontinuities, obstacles, and rooms. In the information
distribution map, fully and partially explored regions can be easily identified.
The information variation over boundaries of unexplored areas shows potential
regions for further exploration. The bottom frame shows the transient frontier
map, in which lower and negative values indicate regions of interest for goal
extraction. The extracted goal is shown with a purple circle and, as it can be
seen in the Pose SLAM map, the robot successfully moved toward the goal.

Besides the loss of information due to the discretization, such
a sequence makes evident the effect of the independence
assumption between cells. In Fig. 6 small frontiers appear
because the information of near free and occupied cells is not
propagated to the rest of the cells. Hence, when the robot has
eventually explored the larger frontiers, it might be driven to
such artifacts instead of more informative regions. In a more
realistic model, the occupancy in each place is not randomly
distributed as implicitly assumed by grid structures. Instead,
a spatial correlation between points in the map should exist
given the structured spatial nature of the world around us, and
this is exactly what is achieved with the proposed GP maps.

Pose SLAM map

(a)

Information distribution map

Fig. 5. Long-term exploration in the Freiburg map. In this run, the robot
has been successfully exploring the map with respect to the stop criteria for
a significantly larger period of time. note how in the eastern part of the map
there are discontinuities in obstacles, and it is more challenging for the robot
to explore. b) Final information distribution map.

Training values for free and occupied space are appropriately
propagated over the environment, thus generating well defined
frontiers as shown in Fig. 2.

IX. CONCLUSION

A solution to the robot exploration problem is proposed
in this work with the introduction of a novel information
distribution map. The main improvement that this solution
brings in relation to traditional mapping approaches is avoiding
the need to create an occupancy grid map, thus explicitly
avoiding the strong assumption of independence between cells,
which in turn facilitate accounting for structural dependencies
in the environment. Moreover, the solution is also a better fit
to efficient exploration of larger environments given the well-
known scalability issues of grid-maps at fixed resolutions, and
the increase in computational complexity that factor leads to.

It is also plausible to extract goals directly from the global
information distribution map. Although this map varies with
time, working with this map to extract potential exploration
goals is a time-independent calculation, and only the currently
available global information map is relevant at any given
instant. In addition, the multivariate and continuous nature of
the approach together with the possibility of iterative updating
appears promising for 3D applications.



(b)

Fig. 6. Three points in time during a frontier-based process using a grid map. Beyond the discretization effects, the effect of the independence assumption
between cells can be seen as small frontiers appearing since information of near free and occupied cells is not propagated to the rest of the cells.
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Resource Constrained Exploration in Reinforcement Learning

e Jen Jen Chung (The University of Sydney)
» Nicholas Lawrance (The University of Sydney)
« Salah Sukkarieh (The University of Sydney)

Abstract

This paper examines temporal difference reinforcement learning (RL) with
adaptive and directed exploration for resource-limited missions. The
scenario considered is for an energy-limited agent which must explore an
unknown region to find new energy sources. The presented algorithm uses a
Gaussian Process (GP) regression model to estimate the value function in
an RL framework. However, to avoid myopic exploration we developed a
resource-weighted objective function which combines an estimate of the
future information gain using an action rollout with the estimated value
function to generate directed explorative action sequences. The results show
that under this objective function, the learning agent is able to continue
exploring for better state-action trajectories when platform energy is high
and follow conservative energy gaining trajectories when platform energy is

low.
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» Stefan Williams (ACFR)
e Oscar Pizarro (ACFR)

Abstract

The problem of efficiently gathering information from large-scale, natural
environments applies to a wide variety of applications from planetary
exploration to remote sensing and environmental monitoring. This paper
addresses two issues which arise when using robotic platforms to explore
large-scale, natural environments. The first issue is efficient processing of
observed data, often from multiple sources, into a useful model of the
environment. In this paper, a benthic habitat model is created using in-situ
optical imagery collected by an autonomous underwater vehicle (AUV) and a
digital elevation model of the seafloor collected using ship-borne multibeam
echo-sounder data. To efficiently process large numbers of in-situ
observations a variational Dirichlet process model is used to categories the
AUV images. A broader model of the environment is established using these
observations and a Gaussian process classifier. Both models are Bayesian
and non-parametric. This data driven approach, frees human experts from
making narrow modelling assumptions and the burden of processing large
volumes of data. Once a habitat model is available, the second issue that
arises is to make effective use of the model to plan additional informative
surveys. In this paper a mutual information objective function is described
and used to select the optimal location to place a pre-specified survey
template. The modelling and exploration methods are demonstrated on real
marine data including two AUV deployments designed to test the proposed
planning objective function. The results show that the methods are
successful at modelling the environmental with little human intervention and
are able to recommend informative surveys.

Download PDE

Exploration in Information Distribution Maps

e Maani Ghaffari Jadidi (Univ. of Tech., Sydney)

» Jaime Valls Miro (Univ. of Tech., Sydney)

+ Juan Andrade-Cetto (Univ. of Tech., Sydney)

« Rafael Valencia (Institut de Robotica i Informatica Industrial)
e Gamini Dissanayake (Univ. of Tech., Sydney)

Abstract
In this paper, a novel solution for autonomous robotic exploration is
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proposed. The distribution of information in an unknown environment is
modeled as an unsteady diffusion process, which can be an appropriate
mathematical formulation and analogy for expanding, time-varying, and
dynamic environments. This information distribution map is the solution of
the diffusion process partial differential equation, and is regressed from
sensor data as a Gaussian Process. Optimization of the process parameters
leads to an optimal frontier map which describes regions of interest for
further exploration. Since the presented approach considers a continuous
model of the environment, it can be used to plan smooth exploration paths
exploiting the structural dependencies of the environment whilst handling
sparse sensors measurements. The performance of the proposed approach
is evaluated through simulation results in the well-known Freiburg and Cave
maps.

Download PDE

Bayesian Optimisation for Active Perception and Smooth Navigation

» Jefferson Souza (University of Sao Paulo)
 Roman Marchant (University of Sydney)

o Lionel Ott (University of Sydney)

» Denis Wolf (Universidade de S&o Paulo)

o Fabio Ramos (University of Sydney)

Abstract

A key challenge for long-term autonomy is to enable a robot to automatically
model properties of the environment while actively searching for better
decisions to accomplish its task. This amounts to the problem of exploration-
exploitation in the context of active perception. This paper addresses active
perception and presents a technique to incrementally model the roughness
of the terrain a robot navigates on while actively searching for paths that
reduce the overall vibration experienced during travel. The approach
employs Gaussian processes in conjunction with Bayesian optimisation for
decision making. The algorithms are executed in real-time on the robot while
it explores the environment. We present experiments with an outdoor vehicle
navigating over several types of terrains demonstrating the properties and
effectiveness of the approach.
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Sampling-based Planning for Sensor Scheduling in Constrained
Environments

» Marin Kobilarov (Johns Hopkins University)
o Gaurav Sukhatme (University of Southern California)
« Jerrold Marsden (California Institute of Technology)

Abstract

This paper considers the optimal estimation of the state of a dynamic
observable using a mobile sensor. The main goal is to compute a sensor
trajectory which minimizes the estimation error over a given time horizon
taking into account the uncertainty in the observable dynamics and its
sensing and respecting the constraints of the workspace. The main
contribution is a methodology for handling nonlinear stochastic dynamics
and environment constraints in a global optimization framework. It is based
on sequential Monte Carlo methods and sampling-based motion planning.
Three heuristic variance reduction techniques—utility sampling, shuffling, and
pruning—based on importance sampling, are proposed to speed-up
convergence. The developed framework is applied to two typical scenarios:
a simple vehicle operating in a planar polygonal obstacle environment; a
simulated helicopter searching for a moving target in a 3-D terrain.

Download PDFE

Efficient modeling of non-homogeneous field dynamics for distributed
robotic sampling

e Young-Ho Kim (Texas A&M University)
e Dylan Shell (Texas A&M University)

Abstract

Environmental monitoring is an important application for robotics. In a marine
setting this could involve estimating attributes such as water temperature or
pH. Selecting measurement locations intelligently for adaptive sampling
requires estimates of uncertainty across the region of interest and, recently,
several researchers have used linear least squares regression techniques to
estimate the values of such attributes and uncertainty. Dynamic fields
continue to pose a challenge for robotic sampling despite the fact that many
of the measured attributes change naturally over time. This is partly because
an evolving environment may have non-homogeneous spatial variability and
require continual re-sampling of the field or re-modeling of the field
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dynamics. This paper proposes an efficient modeling technique for treating
changing fields by augmenting Ordinary Kriging to enable representation of
the field’s (potentially nonhomogeneous) evolution through Bayes filtering of
parameters that characterize the underlying dynamics. The new modeling
approach not only enables adaptive path planning in the field but also leads
to a straight-forward formulation of the optimal workload distribution through
modification of an approximate graph partitioning algorithm. Using a
simulated multi-robot sampling scenario, we demonstrate and validate the
approach with simulated data. The experiments show good performance in
terms of cross-validation using real values and illustrate how dynamic fields
with hotspots are identified and modeled, in turn affecting the division of
labor.

Download PDFE

Fast Marching Trees: a Fast Marching Sampling-Based Method for
Optimal Motion Planning in Many Dimensions

e Lucas Janson (Stanford University)
« Marco Pavone (Stanford University)

Abstract

In this paper we present a novel probabilistic sampling-based motion
planning algorithm called the Fast Marching Tree algorithm (FMT*). The
algorithm is specifically aimed at solving complex motion planning problems
in high-dimensional configuration spaces. This algorithm is proven to be
asymptotically optimal and is shown to converge to an optimal solution
faster than its state-of-the-art counterparts, chiefly, PRM* and RRT*. An
additional advantage of FMT* is that it builds and maintains paths in a tree-
like structure (especially useful for planning under differential constraints).
The FMT* algorithm essentially performs a “lazy” dynamic programming
recursion on a set of probabilistically-drawn samples to grow a tree of paths,
which moves steadily outward in cost-to-come space. As such, this
algorithm combines features of both single-query algorithms (chiefly RRT)
and multiple-query algorithms (chiefly PRM), and is conceptually related to
the Fast Marching Method for the solution of eikonal equations. As a
departure from previous analysis approaches that are based on the notion of
almost sure convergence, the FMT* algorithm is analyzed under the notion
of convergence in probability: the extra mathematical flexibility of this
approach allows for significant algorithmic advantages and is of independent

interest. Numerical experiments over a range of dimensions and obstacle
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configurations confirm our theoretical and heuristic arguments by showing
that FMT returns substantially better solutions than either PRM* or RRT*.
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