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Abstract: 10 

In 2008 a runaway chemical reaction caused an explosion at a methomyl unit in West Virginia, USA, 11 

killing two employees, injuring eight people, evacuating more than 40,000 residents adjacent to the 12 

facility, disrupting traffic on a nearby highway and causing significant business loss and interruption. 13 

Although the accident was formally investigated, the role of the situation awareness (SA) factor, i.e. a 14 

correct understanding of the situation, and appropriate models to maintain SA, remain unexplained. 15 

This paper extracts details of abnormal situations within the methomyl unit and models them into a 16 

situational network using dynamic Bayesian networks. A fuzzy logic system is used to resemble the 17 

operator‟s thinking when confronted with these abnormal situations. The combined situational 18 

network and fuzzy logic system make it possible for the operator to assess such situations 19 

dynamically to achieve accurate SA. The findings show that the proposed structure provides a useful 20 

graphical model that facilitates the inclusion of prior background knowledge and the updating of this 21 

knowledge when new information is available from monitoring systems. 22 

Keywords: Situation awareness, Situation assessment, Abnormal situations, Methomyl unit, Accident 23 

analysis. 24 

1. Introduction 25 

On Thursday 28 August 2008 a runaway chemical reaction occurred at a methomyl production facility 26 

in Institute, West Virginia, USA. Highly flammable solvent sprayed from a 4,500 gallon pressure vessel 27 

known as a residue treater and immediately ignited, killing two employees and injuring eight firefighters 28 

and contractors. The intense fire burned for more than four hours, more than 40,000 residents were 29 

evacuated to shelter-in-place for over three hours, and the highway was closed for hours because of 30 

smoke disruption to traffic. The Chemical Safety Board (CSB) investigation team determined that the 31 

runaway chemical reaction and loss of containment of the flammable and toxic chemicals was the result 32 
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of deviation from the written start-up procedures and included the bypassing of critical safety devices 33 

intended to prevent such a condition occurring. A poor process mimic screen, which could not provide 34 

adequate situation awareness (SA) for the board operator, was another important contributing factor (CSB 35 

2011). The tragic event at Institute is an example of the difficulties experienced with regard to loss of SA, 36 

poor SA or lack of SA, all of which are now popular terms in accident investigation reports. However, SA 37 

itself is not the only cause of accidents (Dekker 2013). In the case of the Texas City, TX BP Amoco 38 

Refinery explosion on 23 March 2005, in which 15 workers were killed and 170 injured, several failed 39 

control instrumentation and alarms caused an overfilled and over-pressurized tower to discharge a large 40 

quantity of flammable liquid into the atmosphere, while the control room operator could not maintain 41 

accurate SA when monitoring this complex, fast moving environment, and an ignition created one of the 42 

worst industrial disasters in recent US history (Pridmore 2007).  43 

A situation is a set of circumstances in which a number of objects may have relationships with one 44 

another and the environment, and situation awareness (SA) is knowing and understanding what is going 45 

on around you and predicting how things will change (Vincenzi et al. 2004). To date, several SA models, 46 

such as Endsley (1995), Bendy and Meister (1999), and Adams et al. (1995) have been developed; 47 

however, Endsley‟s model has undoubtedly received the most attention. This three-level model describes 48 

SA as “the perception of the elements in the environment within a volume of time and space, the 49 

comprehension of their meaning and the projection of their status in the near future” (Endsley 1995). The 50 

three-level model describes SA as an internally held product, comprising three hierarchical levels (i.e. 51 

perception, comprehension, and projection), that is separate from the processes called situation 52 

assessment used to achieve it (Endsley 1995). In fact, situation assessment models explain the main 53 

features and general principles about how people process information and interact with the environment 54 

to maintain their SA. The primary research into SA came from the aviation industry, when a review of 55 

aircraft accidents showed that poor SA was the main causal factor. It was also found that most of the 56 

errors occurred when data were unavailable or difficult to discriminate or detect (level 1). About 20% of 57 

errors involved lack of, or an incomplete mental model, use of an incorrect mental model, over-reliance 58 

on default values, and miscellaneous other factors (level 2). In addition, around 3.5% of errors involved 59 

over-projection of current trends or miscellaneous other factors (level3). Another review in offshore 60 

drilling accidents by Sneddon et al. (2013) showed that 40% of such accidents are related to SA, and the 61 
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majority of those SA errors (67%) occurred at the perceptual level, 20% concerned comprehension, and 62 

13% arose during projection. Therefore, this is not a problem limited to aviation, but one faced by many 63 

complex systems when combining and presenting the vast amounts of data available from many 64 

technological systems in order to provide true SA is a challenge. 65 

In complex systems, SA level 1 is highly supported through the various heterogeneous sensors and 66 

appropriate signal-processing methods to extract as much information as possible about the dynamic 67 

environment and its elements, but regarding SA levels 2 and 3, there is still a need for appropriate and 68 

effective methods to support operators to infer real situations and to project their status in the near future 69 

(Fischer et al. 2011, Jones et al. 2011). In maritime security, an automated system has been developed 70 

that has the ability to recognize any deviance from normal behavior (Van den Broek et al. 2011). In 71 

military services, there are several SA systems, such as (Ghanea-Hercock et al. 2007) and (Smart et al. 72 

2007), that are able to collect, filter and present different sources of data, and also support some form of 73 

low-level data fusion and analysis. However, these systems are not able to provide a deep, semantic 74 

modeling of the domain and are consequently unable to generate conclusions. Their users have to 75 

integrate information by themselves to assess and project a future situation, so a system architecture has 76 

been developed by Baader et al. (2009) that focuses on using formal logic and an automated theorem to 77 

build an SA system in a more useful way. In the force protection domain, Brannon et al. (2009) used 78 

machine learning techniques to project a threat index. They took into account various inputs such as 79 

binary, categorical, and real-valued data to generate attributes including confidence levels, as well as 80 

evidence in support of, or against the assessment. In the aviation domain, an SA system called the tactile 81 

situation awareness system (TSAS) has been developed by Kim and Hoffmann (2003) to improve the SA 82 

of pilots in simulated rotorcraft under high-load working conditions. Rather than presenting visual or 83 

aural information for the efficient delivery of SA, this system relies on a wearable suit equipped with a 84 

tactile device that provides an intuitive human computer interface with three-dimensional space. In the 85 

domain of nuclear power plants, Kim and Seong (2006) proposed a computational model of situation 86 

assessment that projects the states of the environment probabilistically when receiving information from 87 

indicators. Fischer and Beyerer (2012) also applied automated projection in surveillance systems where 88 

situations of interest in the maritime domain are recognized by calculating probabilities for the situations, 89 

given evidence obtained from observable characteristics. Although the application of SA systems is not 90 
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limited to the above domains, its application in safety-critical environments such as process control is 91 

very rare. Most prior system safety studies in these environments focus on the deviation of the process 92 

from an acceptable range of operation. Therefore, in the development of operator support systems, the use 93 

of quantitative knowledge and hardware failures has been relied on significantly. Most of these research 94 

studies focus on the identification of operation faults (Qian et al. 2008) or the prediction of process 95 

variables (Juricek et al. 2001) that will violate an emergency limit in the future; however, further research 96 

showed that when faults occur, human operators have to rely on their experience under working pressure 97 

to understand what is going on and to contribute a solution (Klashner and Sabet 2007). When an 98 

abnormal situation occurs in a safety-critical system, operators firstly recognize it by receiving an alarm, 99 

and secondly need to understand what is happening in the plant by situation assessment. During the 100 

situation assessment process, operators receive information from observable variables or other operators 101 

and process the information to establish situation models based on their mental models (Kim and Seong 102 

2006).  103 

This study aims to introduce a methodology to model and analyze the SA factor in abnormal situations 104 

that can be utilized in the development of operator support systems. To identify abnormal situations, this 105 

paper uses risk indicators. Therefore, when a hazardous situation is defined as a possible circumstance 106 

immediately before harm is produced by the hazard, an abnormal situation is defined as a hazardous 107 

situation if its risk is not acceptable. This definition can also help operators to understand the hierarchy of 108 

investigations (i.e. a situation with a higher risk has priority over other situations to be investigated). The 109 

paper uses Bayesian networks to model situation models based on a control room operator‟s mental 110 

models, and it also relies on risk level projections to show whether the situation is abnormal or not, and 111 

provides the priorities. A human-system interface based on the proposed approach is designed for the 112 

methomyl unit environment and the performance of the system is investigated through real data collected 113 

from the unit.  114 

The paper is organized as follows. Section 2 presents our methodology for modeling and analyzing the 115 

SA factor. The process of the residue treater and timeline of events are explained in Section 3. The 116 

performance and results of the proposed methodology in the residue treater environment are presented in 117 

Section 4. The conclusion and future work are summarized in Section 5. 118 

 119 
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2. Modeling and analyzing situation awareness 120 

The use of Bayesian networks (BNs) in situation assessment configuration of dynamic and complex 121 

domains has several advantages in comparison with other situation assessment methods that use other 122 

artificial intelligence tools such as expert systems (Naderpour and Lu 2012a) and neural networks 123 

(Naderpour and Lu 2012b). First, it includes nodes and directed arcs to express the knowledge, and new 124 

information can be transmitted by directed arcs between nodes. Second, knowledge in the component can 125 

be updated, whereas updating knowledge in expert systems is difficult. Third, it already has expert 126 

knowledge encoded in its construction, while neural networks must learn knowledge via datasets, 127 

assuming training data are available. Lastly, the cumulative effect of situations based on new evidence is 128 

very suitable for SA continuity, whereas this feature does not exist in other artificial intelligence tools 129 

(Naderpour et al. 2014a).  130 

In the following sections, general information about BNs, and how a situational network can be 131 

developed and analyzed, are explained.  132 

2.1. Bayesian networks 133 

A situation is a set of circumstances in which a number of objects may have relationships with one 134 

another and the environment. Therefore, conventional BNs can be considered as a representation of static 135 

cause–effect relations between objects in a situation. From this point of view, a BN is a directed acyclic 136 

graph whose nodes correspond to objects and the arcs between nodes represent dependencies or direct 137 

causal influences between objects. The parameters of a BN determine the strength of the probabilistic 138 

relations between its nodes. Each node in the BN has a set of mutually exclusive and collectively 139 

exhaustive states with a probability distribution conditional on the states of its parent nodes, or an 140 

unconditional distribution if the node does not have any parents. The conditional and unconditional 141 

probabilities can be learned from available data or elicited from domain experts (Yet et al. 2013). Based 142 

on the conditional independence resulting from the d-separation concept, and the chain rule, BN 143 

represents the joint probability distribution  ( ) of variables   *          +, included in the 144 

network as: 145 

 ( )  ∏ (     (  ))

 

   

                                                                      ( ) 
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where   (  ) is the parent set of Xi  for any i=1,…,n. If   (  ) is an empty set, then Xi is a root node and 146 

 (  |  (  ))   (  )  denotes its prior probability. BN takes advantage of Bayes theorem to update the 147 

prior occurrence probability of objects given new information, called evidence E, thus yielding the 148 

posteriors. This new information usually becomes available during the operational life of a system, 149 

including the occurrence or non-occurrence of objects (Khakzad et al. 2012): 150 

 (   )  
 (   )

 ( )
 

 (   )

∑  (   ) 

                                                                ( ) 

This equation can be used for either prediction or diagnostic analysis. In predictive analysis, 151 

conditional probabilities of the form P(situation|object) are calculated, indicating the occurrence 152 

probability of a particular situation given the occurrence or non-occurrence of a certain primary object. 153 

On the other hand, in diagnostic analysis, those of the form P(object|situation) are evaluated, showing the 154 

occurrence probability of a particular object given the occurrence of a certain situation (Naderpour et al. 155 

2013). 156 

The static BN can be extended to a dynamic BN (DBN) model by introducing relevant temporal 157 

dependencies that capture the dynamic behaviors of the domain variables between representations of the 158 

static network at different times. Two types of dependencies can be distinguished in a DBN: 159 

contemporaneous and non-contemporaneous. Contemporaneous dependencies refer to arcs among nodes 160 

that represent variables within the same time period. Non-contemporaneous dependencies refer to arcs 161 

between nodes which represent variables at different times. A DBN is defined as a pair (       ) 162 

where B1 is a BN which defines the prior distribution  (  ) and 2TBN is a two-slice temporal BN with 163 

 (       )  ∏ (  
    (  

 ))

 

   

                                                           ( ) 

where   
  is a node at time slice t and   (  

 ) is the set of parent nodes which can be in time slice t or in 164 

time slice t-1. The nodes in the first slice of a 2TBN do not have any parameters associated with them, but 165 

each node in the second slice has an associated conditional probability distribution (CPD) for continuous 166 

variables or conditional probability table (CPT) for discrete variables, which defines  (  
    (  

 )) for 167 

all    . The arcs between slices are from left to right, reflecting the causal flow of time. If there is an 168 

arc from     
  to   

 , this node is called persistent. The arcs within a slice are arbitrary. Directed arcs 169 
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within a slice represent “instantaneous” causation. The semantics of a DBN can be defined by “unrolling” 170 

the 2TBN until there are T time-slices. The resulting joint distribution is then given by (Murphy 2002): 171 

 (    )  ∏∏ (  
    (  

 ))

 

   

 

   

                                                           ( ) 

2.2. Situational network development 172 

Figure 1 shows our proposed method to develop a network of abnormal situations using BNs. To 173 

identify hazardous situations, an analysis is carried out using a combination of cognitive engineering 174 

procedures and hazard identification methods. Observation of operator performance, analysis of written 175 

materials and documentation, expert elicitation and formal questionnaires may be used to conduct the 176 

analysis (Endsley 2006). Previous hazard identification documents may help with this analysis. For 177 

example, HAZOP, one of the most powerful methods available, has been well-described in the literature 178 

and can help to determine the basic objects that contribute to the occurrence of situations. The situation 179 

model usually begins with root nodes, which are the basic objects, followed by intermediate nodes, a 180 

pivot node and leaf nodes. The pivot node is the focal object that delegates the situation, and relations 181 

among the root nodes and the pivot node define the relationships among the objects. The leaf nodes may 182 

be safety barriers which are physical objects of the environment and will connect to one another if there is 183 

relation between their performances. Also, one of the leaf nodes may be a consequence node that shows 184 

the possible accidents in the situation. If the situation is inferred by one or more observable variables, the 185 

focal object is connected to the observable variables. 186 

The states of basic and intermediate objects and safety barriers are defined as Boolean (i.e. success 187 

and failure), which refers to the objects working well (success) or not working (failure). The focal object 188 

Identify the 

situations of interest 

Identify the 

contributing objects 

Develop BN models 

Describe the model 

variables states 

Parameterize the 

quantitative model 

Evaluate the 

situational network 

Figure 1: A cycle to build a situational network using BNs. 

 

Develop a 

situational network 
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has two states, i.e. safe and hazardous. The states of consequence nodes are usually determined by 189 

consequence analysis, which concerns what may follow the occurrence of an abnormal situation. The 190 

states of observables are determined in terms of operation, six sigma quality and safety set-points. As the 191 

observable variables extracted from sensors are continuous, a discretization process is required to use 192 

them in BNs. In general, mapping a continuous variable to a discrete variable can be achieved with a crisp 193 

set or a fuzzy set. Because the concept of fuzzy set theory can provide a method that is more smoothly 194 

structured, the states of observable variables are determined using a fuzzy partitioning method and fuzzy 195 

states definition (Naderpour et al. 2014b). 196 

The prior probability of basic objects (nodes without parents) can be obtained through failure 197 

probability datasets such as the Center for Chemical Process Safety (CCPS 1989), and the Offshore 198 

Reliability Data Handbook (OREDA 2002), and if the failure probability is not available, expert judgment 199 

can be used. The CPTs of intermediate and pivot nodes are set based on “OR gate” or “AND gate” 200 

definitions. The CPTs of observable variables are determined by domain experts with recursive 201 

techniques (e.g. Delphi method) to guarantee the convergence of the results. The CPTs of consequence 202 

nodes are determined by 0 and 1 value corresponding to appropriate states. 203 

Based on the above description, a situation may depend on the existence of other situations, or the 204 

existence of one situation can exclude the existence of another situation. The complete modeling of the 205 

dependencies results in a network of situations. As a result of this modeling, the existence of a situation is 206 

inferred based on information in the World, i.e. the observable variables and objects of configuration 207 

space. This also includes temporal dependencies, i.e. that the existence probability of an inferred situation 208 

in future can be supported by the earlier existence of the situation itself (Naderpour et al. 2014a). 209 

Evaluation of the situational network requires the assessment of model behavior to ensure that the 210 

model demonstrates acceptable behavior. Sensitivity analysis is a technique for the systematic 211 

investigation of the influence of variation in the model inputs on this model‟s outcome, where inputs can 212 

be the parameters (i.e. values of conditional probabilities) or real inputs (i.e. values of observable nodes) 213 

(Bednarski et al. 2004). Sensitivity to findings based on a d-separation concept determines whether 214 

evidence about one variable may influence belief in a query variable. Using sensitivity to findings, it is 215 

possible to rank evidence nodes that allow the expert to identify whether a variable is sensitive or 216 

insensitive to other variables in particular contexts. This helps to identify errors in either the network 217 



Page | 9 

 

structure or the CPTs. In this regard, entropy is a common measure that assesses the average information 218 

required, in addition to the current knowledge, to specify a particular alternative. The entropy of a 219 

distribution over variable X is defined as follows: 220 

 ( )   ∑  ( )      ( )                                                        (5) 221 

and mutual information is used to measure the effect of one variable (X) on another (Y): 222 

 (   )   ( )   (   )                                                         (6) 223 

where  (   ) is the mutual information between variables. This measure reports the expected degree to 224 

which the joint probability of X and Y diverges from what it would be if X were independent of Y (Pollino 225 

et al. 2007). Sensitivity to parameters considers altering each of the parameters of query nodes and 226 

observing the related changes in the posterior probabilities of the query node. Most such sensitivity 227 

analyses are one-dimensional and, therefore, they only vary one parameter at a time. If models are 228 

unaffected by the precision of either the model or the input numbers, they may still be sensitive to 229 

changes in combinations of parameters. However, testing all possible combinations of parameters is 230 

exponentially complex (Korb and Nicholson 2003). The one-dimensional sensitivity analysis can be 231 

conducted by a sensitivity function for the output probability  ( ) when x is being varied. This sensitivity 232 

function is defined as follows (Laskey 1995): 233 

 ( )  
    

    
                                                                       (7) 234 

where  ,  ,  ,     and they are constants built from parameters that are fixed. The sensitivity value of 235 

the parameter x and the target probability can be obtained by taking the first derivative from the 236 

sensitivity as follows (Laskey 1995):  237 

  ( )  
     

(    ) 
                                                                      (8) 238 

2.3. Situational network analysis 239 

Usually, well-trained operators are able to form rules for every situation to assess their risks 240 

dynamically, and those rules are an important part of their mental models. For instance, if an operator has 241 

this rule: „when the probability of the situation of accumulated vapor in the production unit is likely and 242 

this situation has catastrophic severity, the risk level of this situation is not acceptable‟. The rule helps the 243 

operator to understand that „when the risk level of the situation of accumulated vapor is increasing, the 244 

occurrence of an explosion is possible‟. In this sense, it is assumed that the operator‟s mental model can 245 
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be modeled using the rules for hazardous situations in that environment. Based on these rules, an operator 246 

tries to keep the situational risk to as low a level as reasonably practicable. Therefore, to resemble and 247 

analyze situational behavior based on the thought processes of operators, the methodology needs to 248 

generate an assessment level of risk for every situation over time. Figure 2 shows our proposed cycle for 249 

analyzing the situational network. 250 

Suppose the configuration space   is defined by all possible physical and conceptual objects. The 251 

current risk level of a situation at time t is defined as  (  )   (  )   (  ) where  (  ) is the 252 

probability and  (  ) is the severity of the situation.  (  ) depends on the objects of the subset space  ̃: 253 

 (  )   (             ) with             ̃ and  (  ) is estimated through a loss analysis in 254 

which the adverse outcomes (human loss, asset loss, and environmental loss) associated with accidents, 255 

i.e. the states of consequence node, are converted and expressed in a common currency, such as monetary 256 

value, to provide a coherent view of the totality of loss associated with the situation (Naderpour and Lu 257 

2012a). It is also assumed that the severity of situations remains constant during the study. Twenty five 258 

rules in terms of linguistic variables elicited form operators are showed in Table 1. Fuzzy logic is used to 259 

mathematically emulate human reasoning and allow an operator to express his/her knowledge in the form 260 

of related imprecise inputs and outputs in terms of linguistic variables. The results are obtained by using a 261 

fuzzy logic system where the membership functions illustrated in Figure 3 and Mamdani‟s fuzzy logic 262 

operations are utilized to generate the output.  263 

 264 

 265 

 266 

 267 

 268 

 269 

Assign the values of observable variables 

into situational network over time 

Calculate the posterior 

probabilities 

Generate a level of risk 

for every situation 

Recover abnormal 

situations  

Figure 2: A cycle to analyze the situational network over time. 

 

Estimate the severity 

of situations 
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Table 1: Operators‟ rules for assessing the risk of situations. 270 

 Severity     

Probability Negligible Minor Medium Major Catastrophic 

Very likely 
Tolerable not 

acceptable 

Tolerable not 

acceptable 
Not acceptable Not acceptable Not acceptable 

Likely 
Tolerable 

acceptable 

Tolerable not 

acceptable 

Tolerable not 

acceptable 
Not acceptable Not acceptable 

Even Acceptable 
Tolerable 
acceptable 

Tolerable not 
acceptable 

Not acceptable Not acceptable 

Unlikely Acceptable Acceptable Acceptable 
Tolerable not 

acceptable 

Tolerable not 

acceptable 

Very Unlikely Acceptable Acceptable Acceptable 
Tolerable not 

acceptable 

Tolerable not 

acceptable 

 271 

By assigning the values of observable variables to the situational network, the posterior probabilities 272 

of objects and situations given this evidence, can be calculated. Consequently, the risk level of a situation 273 

will be updated. If the estimated risk of a situation is unacceptable, it is necessary to recover the situation. 274 

The situational network makes it possible to simulate the impact of recovery decisions on a situation.  275 

3. Residue treater and timeline of events 276 

A description of the residue treater process and the timeline of events are presented in the following 277 

sections.  278 

3.1. Residue treater 279 

Methomyl is a white, crystalline solid insecticide with a slight sulfurous odor. Methomyl dust is 280 

combustible and can form an explosive mixture when dispersed in air, and can also disrupt the functions 281 

of the central and peripheral nervous system. Methyl isocyanate, or MIC, is one of the key chemicals used 282 

to make methomyl. It is highly reactive with water and must be stored in stainless steel or glass containers 283 

Figure 3: Membership functions of probability, severity, and risk. 
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at temperatures below 40°C to prevent a highly exothermic reaction. The methomyl production process 284 

begins by reacting aldoxime with chlorine to make chloroacetaldoxime, which reacts with sodium methyl 285 

mercaptide to produce methylthioacetaldoxime (MSAO). MSAO reacts with methyl isocyanate to 286 

produce methomyl (Figure 4). Excess MIC is removed from the methomyl-solvent solution and the 287 

solution is then pumped to the crystallizers where an anti-solvent is added to cause the methomyl to 288 

crystallize. Finally, the crystallized methomyl is separated from the solvents in the centrifuges and the 289 

methomyl cake is removed, dried, cooled, packaged in drums, and moved to the warehouse. The residual 290 

liquid from the centrifuges contains very small quantities of methomyl and other impurities (CSB 2011). 291 

 Figure 4: Methomyl synthesis process flow (CSB 2011). 292 

 293 

Distillation separates the solvents in solvent recovery flashers and recycles the solvents to the start of 294 

the process (Figure 5). The unvaporized solvents and impurities, including up to 22 percent methomyl, 295 

accumulate in the bottom of the flasher. The flammable liquids can be used as fuel in the facility steam 296 

boilers, but before this flammable waste liquid (called “flasher bottoms”) can be pumped to an auxiliary 297 

fuel tank, the methomyl concentration has to be reduced to not more than 0.5 percent by weight for 298 

environmental and processing considerations (CSB 2011).  299 
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Figure 5: Methomyl centrifuge and solvent recovery process flow (CSB 2011). 300 

 301 

The residue treater, which is a 4500-gallon pressure vessel with a maximum allowable operating 302 

pressure of 50 psig, is used to dilute the incoming flasher bottoms, and is designed to operate at a high 303 

sufficiently high temperature, and with sufficient residence time, to decompose the methomyl in the 304 

flasher bottoms stream to below 0.5 percent by weight (Figure 6). The solvent and residual waste material 305 

is transferred to the auxiliary fuel tank for use as a fuel in the facility steam boiler. Vapor generated in the 306 

methomyl decomposition reaction exits through the vent condenser to the process vent system where 307 

toxic and flammable vapor is removed (CSB 2011).  308 

Figure 6: Residue treater piping system layout (CSB 2011). 309 

3.2. Events timeline 310 

At approximately 23:33 on 28 August 2008, a runaway chemical reaction caused a violent explosion 311 

at a manufacturing facility located in Institute, West Virginia. The accident occurred during the first 312 

methomyl restart after an extended outage to install a new process control system and a stainless steel 313 
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pressure vessel. During normal operations, dissolved methomyl and other waste chemicals are fed into the 314 

preheated residue treater, which is partially filled with solvent. The methomyl safely decomposes inside 315 

the residue treater to a concentration of less than 0.5 percent by weight. On the night of the incident, 316 

methomyl-containing solvent was pumped into the residue treater before the vessel was pre-filled with 317 

clean solvent and heated to the required minimum operating temperature specified in the operating 318 

procedure. The emergency vent system was overwhelmed by the evolving gas from the runaway 319 

decomposition reaction of the methomyl, and the residue treater exploded violently (CSB 2011). 320 

On the day of the accident at approximately 4:00, the outside operator manually opened the residue 321 

treater feed control valve and began feeding flasher bottoms into the almost empty vessel. With a low 322 

flow rate of about 1.5 gallons per minute, more than 24 hours would be required to fill the residue treater 323 

to 50 percent, the normal operating level. The outside operator started the recirculation pump at 18:15, as 324 

directed by the board operator. The residue treater liquid level was approximately 30 percent (1,300 325 

gallons), the temperature ranged between 60°C and 65°C, still significantly below the critical 326 

decomposition temperature of 135°C, and the pressure remained constant at 22 psig. At 18:38, the 327 

temperature began to steadily rise at a rate of about 0.6 degrees per minute (Figure 7). At 22:21, the level 328 

was 51 percent when the recirculation flow suddenly dropped to zero. In less than three minutes, the 329 

temperature reached 141°C, rapidly approaching the safe operating limit of 155°C, and was climbing at 330 

the rate of more than two degrees per minute. At approximately 22:25, the residue treater high pressure 331 

alarm sounded at the work station. The board operator immediately observed that the residue treater 332 

pressure was above the maximum operating pressure and climbing rapidly but did not understand what 333 

was wrong. He therefore asked two outside operators to investigate why the pressure in the residue treater 334 

was unexpectedly increasing. About 10 minutes later, as the two operators approached the newly installed 335 

residue treater, it suddenly and violently ruptured (CSB 2011). 336 

Approximately 2,200 gallons of flammable solvents and toxic insecticide residues sprayed onto the 337 

road and into the unit and immediately erupted in flames as severed electrical cables, or sparks from steel 338 

debris striking the concrete, ignited the solvent vapor. Debris was thrown in all directions, to a distance of 339 

some hundreds of feet. The blast over-pressure moderately damaged the unit control building and other 340 

nearby structures. Fortunately, a steel blanket protected a 6,700-gallon methyl isocyanate storage tank 341 

from flying debris and from the radiant heat generated by the nearby fires that burned for more than four 342 
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hours. One employee died at the scene from blunt force trauma and thermal burn injuries, and the second 343 

employee died 41 days later. Residences, businesses, and vehicles as far as seven miles from the 344 

explosion epicenter sustained over-pressure damage that included minor structural and exterior damage, 345 

and broken windows. Acrid, dense smoke billowed from the fire into the calm night air for many hours. 346 

Smoke drifted over nearby roads, forcing many road closures and disrupting highway traffic. Methomyl 347 

and solvents were released from the residue treater, and solvents and other toxic chemicals, including 348 

flammable and toxic MIC, were released from ruptured unit piping. The released chemicals rapidly 349 

ignited, producing undetermined combustion products (CSB 2011).  350 

 351 

Figure 7: Residue treater process variables before the explosion (CSB 2011). 352 

4. Application 353 

The explosion happened during startup; therefore the startup operation is considered for modeling. 354 

4.1. Situational network development 355 

By consulting a chemical expert who has eight years‟ experience in the oil industry and analyzing the 356 

accident investigation report, several possible abnormal situations in the residue treater environment are 357 

determined, as follows: 358 

 Situation of vent condenser failure (SVC) 359 

 Situation of abnormal liquid level (SAL) 360 

 Situation of abnormal recirculation (SAR) 361 

Explosion 
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 Situation of high pressure (SHP) 362 

 Situation of abnormal temperature (SAT) 363 

 Situation of high concentration of methomyl (SHC) 364 

 Situation of runaway reaction (SRR) 365 

In the following sections, the situations are modeled based on the proposed methodology. The CPTs 366 

of focal objects, which delegate the situations are presented, and the CPTs of other objects are omitted. 367 

The majority of failure probabilities are determined based on data recorded by OREDA (2002), and the 368 

use of expert judgment in a limited number of places. The focal objects are colored blue, other objects are 369 

shown in yellow and observable variables are colored green. It is worth noting that the states of 370 

observable variables are determined by using a fuzzy portioning method to improve traditional 371 

discretization methods (Naderpour et al. 2013).  372 

4.1.1. Situation of vent condenser failure (SVC) 373 

A vent condenser is a plume abatement device which cools and condenses the vented steam by cold 374 

plant water. At the residue treater, vapor generated in the methomyl decomposition reaction exits through 375 

the vent condenser to the process vent system where toxic and flammable vapor are removed. Any 376 

problem at the vent condenser will lead to an imbalance in the crystallizer solvent ratios and excess 377 

MSAO in the flasher bottoms. The objects, model, and CPT of SVC are presented in Table 2, Figure 8, 378 

and Table 3, respectively.  379 

Table 2: SVC objects and symbols. 

Objects Symbol Failure Probability 

Loss of chilled cooling water supply LCW 3.66E-05 

Cooling water isolation valve is inadvertently closed CWC 2.00E-02 

Cooling water isolation valve is plugged CWP 6.91E-03 

 380 

Table 3: CPT of P(SVC| LCW, CWC, CWP). 

Variables States and probabilities 

LCW Failure Success 

CWC Failure Success Failure Success 

CWP Failure Success Failure Success Failure Success Failure Success 

Hazardous 1 1 1 1 1 1 1 0 

Safe 0 0 0 0 0 0 0 1 

SVC 

CWC LCW CWP 

Figure 8: SVC model. 
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4.1.2. Situation of abnormal liquid level (SAL) 381 

The startup sequence requires the board operator, with the assistance of an outside operator, to 382 

manually pre-fill the residue treater with solvent to the minimum level of about 30 percent and to start the 383 

pump and achieve steady state recirculation. This is essential for safe, controlled methomyl 384 

decomposition, and starting routine operation, i.e. incoming flasher bottoms in the solvent at a lower level 385 

will increase the methomyl concentrate. The objects, model, and CPT of SAL are presented in Table 4, 386 

Figure 9, and Table 5, respectively. A level transmitter provides the residue treater liquid level (L), so 387 

SAL can be inferred by this variable. The value range of the liquid level variable is divided into three 388 

fuzzy states: Low, Normal and High. The membership function of L is determined and illustrated as 389 

follows: 390 
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 394 

Table 4: SAL objects and symbols. 

Objects Symbol Failure Probability 

Level transmitter LT 1.40E-04 

Manual level control MLC OR gate 
Manual feed valve MFV 1.40E-01 

Manual discharge valve MDV 1.40E-01 

Failure of outside operator in operating manual valves FOL 2.70E-01 

 395 

 396 

Table 5: CPT of P(SAL| MLC, LT). 

Variables States and probabilities 

MLC Failure Success 

LT Failure Success Failure Success 

Hazardous 1 1 1 0 

Safe 0 0 0 1 

4.1.3. Situation of abnormal recirculation (SAR) 397 

Figure 9: SAL model and membership function of liquid level. 
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The residue treater recirculation system is used to heat the solvent at the beginning of a new 398 

production run, mix the incoming flasher bottoms in the partially filled vessel, and remove excess heat 399 

generated by the exothermic decomposition of the methomyl inside the vessel. During startup, the control 400 

system modulates the recirculation and steam flows through the heater. When the liquid temperature 401 

increases to the set-point limit, the control system closes the steam flow valve, and changes the position 402 

of the circulation valves to redirect the recirculation flow from the heater to the cooler. The objects, 403 

model, and CPT of SHL are presented in Table 6, Figure 10, and Table 7, respectively. A pump provides 404 

a steady state recirculation, and a flow transmitter measures the flow of liquid through the recirculation 405 

pipeline. The measurement is converted from electrical signals and sent to the DCS by the flow 406 

transmitter. This allows operators to visualize the amount of liquid being transferred through the heating 407 

cycle during startup. The value range of the recirculation flow (F) is divided into three fuzzy states, Very 408 

Low, Low, and Normal, as shown in Figure 10, and the membership function of F is determined as 409 

follows: 410 
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Table 6: SAR objects and symbols. 

Objects Symbol Failure Probability 

Flow transmitter FT 7.13E-06 

Recirculation pump RP 4.00E-02 

Temperature sensor in recirculation TS 4.00E-02 
Automatic steam valve ASV 8.68E-06 

Automatic heater system AHS OR gate 

 414 

 415 

SAR 

RP 

AHS FT 

ASV TS 

F 

Figure 10: SAR model and membership function of recirculation flow. 
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Table 7: CPT of P(SAR| FT, AHS). 

Variables States and probabilities 

FT Failure Success 

AHS Failure Success Failure Success 

Hazardous 1 1 1 0 

Safe 0 0 0 1 

4.1.4. Situation of high pressure (SHP)  416 

The residue treater includes a pressure vessel with a maximum allowable operating pressure of 50 psig 417 

and an automatic pressure control. The vent condenser at the top of the residue treater, which is prone to 418 

blockages during unit operation, passes the gases produced by the methomyl decomposition reaction to 419 

the flare system. The gas flow carries trace amounts of solid material into the vent system, which are 420 

deposited on the surface of the pipe, and over time, accumulated deposits can choke the flow and cause 421 

the residue treater pressure to climb. The objects, model, and CPT of SHP are presented in Table 8, 422 

Figure 11, and Table 9 respectively. The situation is connected to node P because it can be inferred from 423 

the pressure variable (P). The residue treater is normally operated at 20 psig. The pressure value range is 424 

divided into three fuzzy states, Normal, High, and Very High, and the membership function of P is 425 

determined as follows, and as shown in Figure 11: 426 

  ( )( )  {
                                                             
(    )  ⁄                                 

                                         (15) 427 

  ( )( )  {
(    )  ⁄                                 

(    )  ⁄                                 
                                    (16) 428 

  (  )( )  {
(    )  ⁄                                 
                                                             

                                        (17) 429 

Table 8: SHP objects and symbols. 

Objects Symbol Failure Probability 

Pressure transmitter PT 1.64E-01 

Automatic relief valve (mechanical failure) ARV 3.40E-01 
Automatic pressure control APC OR gate 

Failure of outside operator in operating manual valve FOP 2.70E-01 

Manual relief valve MRV 1.39E-01 

Manual pressure control MPC OR gate 

High pressure protection system HPP AND gate 

Accumulating deposits at vent condenser piping AD 4.95E-06 
Situation of vent condenser failure SVC NA 

Inadequate ventilation IV OR gate 

 430 
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 431 

Table 9: CPT of P(SHP| HPP, IV). 

Variables States and probabilities 

HPP Failure Success 

IV Failure Success Failure Success 

Hazardous 1 0 0 0 

Safe 0 1 1 1 

4.1.5. Situation of abnormal temperature (SAT) 432 

A minimum temperature interlock prevents the feed control valve from opening until the minimum 433 

temperature of the residue treater contents are at, or above, the set-point. During startup, an automatic 434 

temperature control system monitors the bulk liquid temperature inside the vessel. Steam flows are used 435 

to heat the solvent. At normal operating conditions, the temperature of the flasher bottoms liquid is kept at 436 

about 80°C to prevent uncontrolled auto-decomposition of the more highly concentrated methomyl. The 437 

contents of the residue treater are maintained at approximately 135°C, a temperature that ensures that the 438 

incoming methomyl will quickly decompose to avoid accumulation to an unsafe concentration inside the 439 

residue treater. The objects, model, and CPT of SAT are presented in Table 10, Figure 12, and Table 11, 440 

respectively. A temperature transmitter provides the residue treater temperature (T) that is used for 441 

inferring SAT. The temperature value range is divided into three fuzzy states, Low, Normal, and High, as 442 

shown in Figure 12, and the membership function of T is determined as follows: 443 
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Figure 11: SHP model and membership function of pressure. 
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Table 10: SAT objects and symbols. 

Objects Symbol Failure Probability 

Temperature transmitter TT 6.84E-06 
Situation of abnormal recirculation SAR NA 

Automatic temperature control ATC OR gate 

Failure of outside operator to operate steam valve FOT 1.00E-01 
Manual steam valve MSV 1.39E-06 

Manual temperature control MTC OR gate 

 450 

 451 

Table 11: CPT of P(SAT| ATC, MTC). 

Variables States and probabilities 

ATC Failure Success 

MTC Failure Success Failure Success 

Hazardous 1 0 0 0 

Safe 0 1 1 1 

4.1.6. Situation of high concentration of methomyl (SHC) 452 

The methomyl safely decomposes inside the residue treater to a concentration of less than 0.5 percent 453 

by weight. If the tank is allowed to cool below 130°C for any reason, it must be sampled before being 454 

heated up again. In addition, if the tank has a liquid level lower than 30 percent, the concentration of 455 

methomyl will increase when the flasher bottoms are introduced into residue treater. The objects, model, 456 

and CPT of SHC are presented in Table 12, Figure 13, and Table 13, respectively. 457 

Table 12: SHC objects and symbols. 

Objects Symbol Failure Probability 

Situation of abnormal liquid level SAL NA 
Failure of outside operator to understand liquid level FON 1.00E-02 

High concentration of methomyl because of low liquid level HCL AND gate 

Situation of abnormal temperature SAT NA 
Manual concentration control MCC OR gate 

Failure of outside operator in sampling FOS 2.00E-01 

Failure of laboratory in testing the concentration of methomyl FLN 1.00E-02 
High concentration of methomyl because of low temperature HCT AND gate 

SAT 

SAR FOT 

MTC 

MSV TT 

ATC T 

Figure 12: SAT model and membership function of temperature. 
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 458 

Table 13: CPT of P(SHC| HCT, HCL). 

Variables States and probabilities 

HCT Failure Success 

HCL Failure Success Failure Success 

Hazardous 1 1 1 0 

Safe 0 0 0 1 

4.1.7. Situation of runaway reaction (SRR) 459 

A runaway reaction is a chemical reaction over which control has been lost. The reaction speed 460 

continues to accelerate until the reaction either runs out of reactants or the vessel containing it over-461 

pressurizes and containment is lost. The temporal arcs point to the SRR situation because it is assumed 462 

that the situation is formed after a time interval. The interpretation is that the runaway reaction occurs 463 

when a high concentration of methomyl exists for a few minutes inside the vessel and a high pressure 464 

situation exists in the environment. The objects, model, and CPT of SRR are presented in Table 14, 465 

Figure 14, and Table 15, respectively. 466 

Table 14: SRR objects and symbols. 

Objects Symbol  

Situation of high pressure SHP  

Situation of high concentration of methomyl   SHC  

 467 

 468 

Table 15: CPT of P(SRR| SHC, SHP, SRR). 

Variables States and probabilities 

SHC Hazardous Safe 

SHP Hazardous Safe Hazardous Safe 

SRR Hazardous Safe Hazardous Safe Hazardous Safe Hazardous Safe 

Hazardous 1 0.99 0.05 0.05 0.4 0.05 0.05 0 

Safe 0 0.01 0.95 0.95 0.6 0.95 0.95 1 

SRR 

SHC SHP 

Figure 14: SRR model. 
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Figure 13: SHC model. 
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4.1.8. Situational network 469 

The environment has a continuous air monitor system, which is located in and around the production 470 

unit, with 16 stationary sample points to detect fugitive leaks from process equipment. It detects 471 

concentrations of airborne chemical contaminants and alerts facility occupants if air concentration 472 

exceeds safe levels (1.0 ppm). In addition, a fire alarm and several fire cannons are located in the 473 

environment to reduce damage if a fire occurs. The air monitor system, alarm, and fire cannons are 474 

considered to be safety barriers, as shown in Table 16. The probability of the existence of spark is also 475 

estimated in this table.  476 

Table 16: Safety barriers and chance of spark. 

Objects Symbol Failure Probability 

Air monitor system AM 0.18E-06 

Fire alarm FA 1.30E-03 
Fire cannon FC 4.00E-01 

Spark SP 1.00E-01 

The SRR can have results that range from the boiling over of the reaction mass to large increases in 477 

temperature and pressure that lead to an explosion. Such violent reactions can cause blast and missile 478 

damage. If flammable materials are released, fire or secondary explosion may result. Hot liquids and toxic 479 

materials may contaminate the workplace or generate a toxic cloud that may spread off-site. There can be 480 

serious risk of injury, even death, to plant operators, as well as the general public, and the local 481 

environment may be harmed. Therefore, SRR has a consequence node whose states are determined using 482 

consequence analysis, as described in the modeling process and presented in Table 17. The table contains 483 

the degree of loss corresponding to every state, which is evaluated by the expert.  484 

Table 17: The states of SRR consequences node. 

Consequence Symbol Loss ($) 

Explosion with high death and high property damage C1 1E+07 

Fire with high death and moderate property damage C2 7E+06 

Fire with low death and high property damage C3 5E+06 
Fire with low death and moderate property damage C4 4E+06 

Ruptured vessel with vapor cloud with possibility of ignition C5 3E+06 

Safe evacuation C6 1E+06 
Safe state C7 0E+00 

Note: the safe state indicates the safe state of SRR. 

For other situations, the resultant situation is considered to be a consequence of the occurrence. The 485 

degree of loss in these situations is also calculated and summarized in Table 18. A situational network for 486 

the residue treater is developed and illustrated in Figure 15. 487 

 488 

 489 

 490 
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Table 18: Loss of situations. 

Situation Consequence of occurrence Loss ($) 

SAR SLT 1E+03 

SLT SHC 1E+04 
SLL SHC 1E+04 

SHC SRR 3E+06 

SVC SHP 1E+03 
SHP SRR 3E+06 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

Figure 15: The situational network. 507 

4.1.9. Situational network evaluation 508 

Application of the sensitivity to findings shows that the query variable, SRR, in the absence of other 509 

evidence, is most sensitive to SHP, followed by observable variable P. This is what the experts expected 510 

because SRR results if methomyl is allowed to accumulate in the residue treater and the pressure relief 511 

system is not working properly. When findings for observable variable P (i.e. P=High) are entered into 512 

the network, the sensitivity measures and the ranking of variables are changed. With this evidence, SRR 513 

is most sensitive to SHC and SAL, followed by observable variable L. Alternatively, when P=High and 514 

L=High are entered into the network, some of the remaining variables become more influential. These 515 

observations agreed with the experts understanding of the situational network. 516 
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Sensitivity to parameters was analyzed in the CTPs of observable variables which were determined by 517 

the experts. For instance, scenario S=(SRR, Hazardous, E={SHP=Hazardous, T=High}) was investigated 518 

in which the hypothesis under consideration is SRR=Hazardous, while the parameter in focus is 519 

P(T=High| SAT=Hazardous). Therefore, the sensitivity function  ( ) was defined as follows: 520 

 ( )   (                                     )  
    

    
                   (21) 521 

The coefficients of denominator and numerator functions were determined separately. Both functions 522 

are linear in the parameter t. Thus, the coefficients of each function were determined by propagating 523 

evidence for two different parameter values. The sensitivity function resulted as follows when t0=0.1 and 524 

t1=0.2 were used to propagate evidence: 525 

 ( )  
            

       
                                                            (22) 526 

The graph of the sensitivity function f (t) for all possible values of t, i.e. values between zero and one, 527 

is plotted in Figure 16. As can be seen, the minimum value of the probability of the hypothesis is 0.0001 528 

for t=0, while the maximum value of the probability of the hypothesis is 0.887 for t=1. Clearly, the 529 

posterior probability of the hypothesis is more sensitive to variations in the parameter value when the 530 

initial parameter value is in the range from 0 to, say, 0.5 than when the initial parameter is in the range 531 

from 0.5 to 1. 532 

Figure 16: The graph of the sensitivity function f(t)= P(SRR= Hazardous| E). 533 

4.2. The Human-System Interface 534 

A graphical user interface for the proposed situational network is developed that does not control the 535 

manner of actions and maintains the operator‟s involvement in the decision-making process. The 536 

development of human-computer interactions indicates that, with insufficient automation, operators will 537 

have an excessive workload, whereas too much automation may disconnect operators from the system 538 
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and alienate them from the production process (Brannon et al. 2009). Therefore, keeping operators in the 539 

loop of decision-making, taking action, and updating the related information are critical issues in 540 

designing support systems. This level corresponds to level 5 of automation, called decision support, 541 

proposed by Kaber and Endsley (2004). The human-system interface is shown in Figure 17. Because 542 

modeling of the situational network for the residue treater led to a complex model, object oriented BNs 543 

(OOBNs) were used in the development process. The system is set to trigger an alarm for every situation 544 

that has a risk level in excess of 2.5, i.e. tolerable not acceptable. In addition, mouse-clicking any 545 

situation in the interface opens a pop-up window that contains the related sub-network, including 546 

contributing objects, their failure probabilities, and the most probable explanation.  547 

Figure 17: The human-system interface based on OOBNs. 548 

 549 

4.3. Situational network analysis 550 

The performance of the proposed methodology is investigated through the accident timeline events in 551 

the residue treater environment explained in Section 3.2, and by using the developed system.  552 

 553 
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4.3.1. Scenario 554 

On the night of the accident, the critical startup safety prerequisites, pre-startup solvent fill and heat-555 

up were omitted from the restart activities. Furthermore, the board operators bypassed the minimum 556 

operating temperature interlock that prevented adding methomyl into the residue treater, as some 557 

operators were accustomed to doing. At about 23:45 the board operator started to pre-fill the vessel with 558 

solvent and heat the content to achieve the required minimum operating temperature. At 04:00 on 28 559 

August, the residue treater liquid level was approximately 15 percent, significantly below the critical 560 

required solvent level (30 percent), and the temperature was around 65°C, still significantly below 135°C, 561 

the critical decomposition temperature. The outside operator prematurely opened the residue treater feed 562 

control valve and began to feed flasher bottoms into the vessel to start a routine operation. To simplify the 563 

presentation of situational network performance, the last hour before the explosion is chosen, i.e. from 564 

21:30 to 22:30 on 28 August. The trend of observable variables for the period of study is illustrated in 565 

Figure 18. At 21:30, the residue treater liquid level was approximately 50 percent, the temperature was 566 

130°C raising steadily about 0.5 degree per minute, and the pressure was 22 psig. At 22:21, the level was 567 

51 percent when the recirculation flow suddenly dropped to zero. In less than three minutes, the 568 

temperature reached 141°C, rapidly approaching 155°C, the safe operating limit, and climbed at the rate 569 

of more than two degrees per minute. 570 

Figure 18: The trend of observable variables. 571 

4.3.2. Results 572 

The fuzzy partitioning values of observable variables based on the proposed membership functions are 573 

calculated and assigned to the situational network. The posterior probabilities of the situations are updated 574 

and the risk level of each situation is projected, as shown in Figure 19. As can be seen, the estimated risk 575 

level of SAT is 2.95 (tolerable not acceptable) at the beginning of the period because the temperature was 576 
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below the safety set-point. It then becomes tolerable not acceptable from 22:15 as the temperature 577 

deviates from the safety set-point. The risk level of SHP is acceptable, i.e. 1.65, during the period of study 578 

until 22:25 as the pressure increases and deviates the safety set-point. The risk level of SHC is 579 

unacceptable for the whole period under study because the liquid level of the solvent was below the safety 580 

set-point (30 percent), i.e. the risk level of SAL is unacceptable, and the operator opened the feed valve 581 

without considering this fact.  582 

As can be seen, the risk level of SRR is acceptable, i.e. 1.35, until 22:24, when it increases to 3.03, 583 

which is unacceptable, immediately after appearing to be an SHP.  584 

Figure 19: Projection of situation risk levels. 585 

At 22:21 when the risk level of SAR rises, the situational network shows that the most probable 586 

explanation is the failure of the recirculation pump (RP) with a probability of 0.5. At 22:25 when the risk 587 

level of SAR increases, the situational network shows that the most probable explanation is the failure of 588 

the high pressure protection system (HPP) and the failure of the automatic relief valve. The system helps 589 

the operator to prevent accidents in abnormal situations, but it can also present the factors that contribute 590 

to the creation of an accident or a specific consequence. For instance, if at 22:33 a fire with low death and 591 

high property damage (C3) is reported, the posterior probability updating from this evidence shows that 592 

the closed cooling water isolation valve (CWC) causes inadequate ventilation, and consequently SHP in 593 

the residue treater which, with SHC, creates SRR. 594 

5. Conclusion and future work 595 

Situation awareness is likely to be at the root of many accidents in safety-critical systems where 596 

multiple goals must be pursued simultaneously, multiple tasks require the operator‟s attention, operator 597 

performance is under high stress, and negative consequences associated with poor performance are 598 
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anticipated. This paper has shown a methodology for developing and analyzing a situational network to 599 

support the SA for control room operators in the decision-making process when they are confronted by 600 

abnormal situations in safety-critical systems. The proposed methodology exploits the specific 601 

capabilities of Bayesian networks and fuzzy logic systems to simulate human thinking. In addition, the 602 

methodology uses risk indicators to determine when a situation is abnormal and also to show the 603 

investigation priority whenever it is necessary. As operators do not perform mathematical calculations 604 

while performing a situation assessment, the proposed methodology provides only an approximation of 605 

operator behavior in the situation assessment process. Therefore, the proposed methodology is expected 606 

to provide the most logical results and can be considered to be optimistic. In the real world, the 607 

conclusions of a human operator will tend to be more conservative than the results of mathematical 608 

calculations based on Bayesian inference. The performance of the methodology was investigated in the 609 

residue treater environment, and an HSI considering the capabilities of OOBNs was also developed for 610 

the intended plant. As has been shown, it provides a useful graphical model that meets the requirements 611 

of a practical SA system. The Bayesian inference facilitates the inclusion of prior background knowledge 612 

and the updating of this knowledge when new information is available from the SCADA monitoring 613 

system.  614 

In comparison with previous research works (Miao et al. 1997, Kim and Seong 2006), this study has 615 

some advantages. First, situations in our method might be inclusive, unlike previous studies where 616 

situations are exclusive. Second, unlike previous networks that only include indicators and sensors and 617 

are unable to determine the cause of abnormal situations, our method enables the most probable cause of 618 

abnormal situations to be obtained from the situation models, thus assisting operators to understand 619 

situations. Third, the method is able to generate risk levels for every hazardous situation to show whether 620 

a situation is abnormal (i.e. its risk level is unacceptable), and to help operators to understand the 621 

hierarchy of investigations (i.e. a situation with a higher risk has priority over other situations to be 622 

investigated). 623 

The first direction for future study is to evaluate the performance of the proposed HSI based on a SA 624 

measurement. As in many safety-critical systems, the safety of the system is supervised by control room 625 

operators and outside operators who are members of a team, so the second future direction of the 626 
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research, therefore, is to extend the proposed system to a distributed system that applies a team situation 627 

awareness concept.   628 
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