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ABSTRACT 

ABSTRACT 

Background: 

Hip resurfacing is a logical choice for the treatment of symptomatic osteoarthritis 

as the degenerative process affects primarily the articular surface. It has been tried 

previously but failed. Recent improvements in metallurgy, manufacture and 

engineering have resulted in the development of a new series of implants which 

appear to be much more successful. Over the last 10 years, they have been used 

with enthusiasm and increasing popularity. However, over the last two years or so, 

their popularity has diminished with an awareness of significant complications 

developing. The complications relate primarily to early fracture, and the possible 

development of adverse reactions to metal ions. Component position may be 

implicated in the development of these complications. 

Aims: 

1. To examine x-rays post-operatively of patients who have had hip resurfacing 

surgery and determine whether bone remodelling has occurred 

2. If it has occurred, whether it is consistent with the changes predicted by the 

loading redistribution by the finite element stress analysis. 

3. The use of finite element analysis to measure the effects of surgical technique 

and some ofthe factors related to femoral component positions on the bone stress 

distribution and morphological changes over time. 
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ABSTRACT 

4. Improvements and suggestions regarding surgical aspects, (alterations in the 

valgus and varus alignment, the effect of anti-version and retro-version of the 

femoral component, the effect of incomplete seating of the femoral component 

and the effect of the cement mantle thickness) and to address concerns in relation 

to hip resurfacing surgery. 

Materials and Methods: 

For the x-ray analysis 89 patients with 90 resurfacings were present in our 

database. The Birmingham (Smith and Nephew) hip resurfacing was used in all 

patients. There were 68 men and 22 women, with a mean age of 52 years. All 

patients had the underlying diagnosis of osteoarthritis. 33 patients agreed to be 

part of the study and were available for evaluation. These patients had x-rays, 

which were accurate enough to determine the measurements. Standardized AP x-

rays were obtained so that the femoral neck could be measured in a reproducible 

way. 

For the finite element analysis, a three-dimensional mesh was created using ten 

node tetrahedral elements. The bone contours on which the mesh was based on 

were extracted from CT scans. The material properties derived from the CT scans 

were applied locally. Muscle forces were applied as at heel strike, during normal 

gait. Two models were created, a reference or preoperative model and a treated, 

post-operative model. The integration points served as sensors. Both models were 

loaded identically over a period of 48 virtual months and the changes between the 

reference and the treated models assessed. Bone mass gain or loss was assessed as 
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well as the region of the femoral head and neck where the change occurred, 

determined. The effect of alterations in the valgus and varus alignment, the effect 

of anti-version and retro-version of the femoral component, the effect of 

incomplete seating of the femoral component and the effect of the cement mantle 

thickness were variables which were examined. 

Results: 

Alterations in bone mineral density developed quickly after implantation and 

appeared to be stabilised within 12 months. Under the femoral component 

superiorly, bone loss occurs. In other areas, generally, an increase in bone density 

is seen. Maximum bone loss under the femoral head was approximately 85%, and 

maximum bone in gain at the base of the femoral neck inferiorly was 60%. The 

optimal valgus alignment was close to neutral in the femoral neck and highly 

valgus and varus alignments led to the development of bone loss. In relation to the 

version of the femoral stem within the neck, slight anteversion, 5°, as opposed to 

retroversion was favourable. Incomplete femoral component seating lead to 

significant alterations in tensile strain and potential displacement. Both 

displacement and strain rose dramatically beyond 3 mm of incomplete seating. 

The cement mantle thickness modelling was inconclusive as to its effect but it was 

noted that the most dramatic bone mass loss was with the cementless implant. 

In the x-ray analysis we found that immediately under the femoral component, the 

femoral neck diameter diminished by 3.52% (p=O.OOl). Distally, the neck 
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increased in diameter by 3.13% (p =0.011). On the control side, no significant 

change in the neck width was observed. 

An increase in the body mass index produced increasing widening at the base of 

the femoral neck but the neck narrowing under the femoral component was not 

affected by BMI. 

We did not see an influence of age on the changes in femoral neck width in the 

resurfacing patients. 

Conelusion: 

There is change in the femoral neck morphology after hip resurfacing surgery. 

Finite element analysis has predicted that this would occur as a result of changed 

loading patterns. The location and tyPe of remodelling that has occurred, was also 

predicted by the finite element analysis. The change in neck width appears to be a 

manifestation of remodelling of bone in response to these altered loading patterns. 

It was clearly established that surgical techniques such as a slightly valgus 

component alignment, with a neutral or slightly anteverted stem, induced changes. 

Remodelling was seen on follow-up x-rays. A cemented and fully seated femoral 

component is the optimal alignment. In the proximal part, stress shielding occurs, 

while distally, where the stress shielding was less, the effect of body weight on the 

remodelling was more pronounced. 
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