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Introduction 

Sophus Lie first developed and applied the theory of symmetry 

groups to differential equations in the 1880s, see for example [57]. A 

symmetry group of a system of differential equations is a group of 

transformations that maps solutions of the system to other solutions, 

allowing complex solutions to be obtained from trivial solutions. 1 The 

books by Olver [62], Hydon[40] and Bluman and Kumei [12], pro-

vide a rigorous account of Lie group methods for differential equations. 

These methods provide a systematic, mechanical computational algo-

rithm which allows us to determine explicitly the symmetry group of 

any system of differential equations. In fact, software packages exist 

which partially automate such computations. See the book [15] by 

Cantwell for an example as well as [7] and [61] for a discussion of the 

computation of symmetries. 

The applications of Lie symmetry groups have been extensive. G. 

Birkhoff did famous work on hydrodynamics using techniques which 

are now considered a part of Lie symmetry analysis in [6]; there have 

also been applications in general relativity (e.g. [34] and[41]); quantum 

mechanics [51] and many other areas. See the references in [62] and 

the extensive list of applications in the CRC Handbooks [43], [44], [45] 

for some idea of the scope of the subject. For applications to ordinary 

differential equations see Ibragimov's book [46] as well as [12] and [62]. 
The major aim of this thesis is to use symmetry group methods to 

construct fundamental solutions for classes of parabolic equations in 

higher dimensions. 

1There also exist symmetries which do not have group properties, as well as so 
called non-local symmetries. However we do not consider these in this thesis. See 
the book [7] for more on this subject. 
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Symmetries have been successfully applied to the problem of finding 

fundamental solutions for parabolic equations on the real line. For one-

dimensional problems, a range of methods are available, each of which 

has its own strengths and limitations. Bluman used group-invariant 

solutions to obtain fundamental solutions, see the book [11] for the 

details. Ibragimov and Gazizov found the fundamental solution of the 

Black-Scholes equation using group invariant solutions in [31]. See also 

Ibragimov's paper [42] and the hook by Hill [37]. 

Lie proved that any parabolic PDEs on the line with a six-dimensional 

Lie symmetry algebra can be reduced to the heat equation and Bluman 

used symmetry analysis to explicitly compute the change of variables, 

[10]. See also [7] for more recent developments in this area. Goard 

has given an extensive treatment of the calculation of fundamental so-

lutions using reduction to canonical form in [33]. For parabolic PDEs 

in one space dimension, Craddock [26], Craddock and Platen [23], and 

Craddock and Lennox [22], developed techniques that allow for the 

construction of integral transforms of fundamental solutions by sym-

metry analysis. 

Finding closed-form expressions for fundamental solutions for higher-

dimensional PDEs is a significantly harder problem. The standard 

techniques that are applied in the one-dimensional case t_ypically do 

not work in higher dimensions for the classes of equations we consider 

in this thesis. 

The method of group-invariant solutions relies on reducing the num-

ber of variables in the equation. Typically we can reduce the number 

of variables by one for each one-parameter group of symmetries. For a 
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two-variable PDE it is easy to reduce the equation to an ODE. How-

ever, if we have a four-variable PDE and only a two-parameter group 

action, we can only reduce the problem to solving a PDE with two 

variables by classical group invariance techniques. 

In this thesis we are interested in PDEs of the form 

Ut= b..u+A(x)u, X Rn. (0.0.1) 

Here b.. is the Rn Laplacian and 

(0.0.2) 

where K is an arbitrary continuous function and c1 , ... ,en,, a1 , ... ,an 

and E are arbitrary constants. Note that we can take E = 0 without 

loss of generality, by letting v = eEtu in the equation. If A is of the form 

(0.0.2) then (0.0.1) has nontrivial symmetries. The Lie symmetries for 

(0.0.1) for n = 2 were calculated by Finkel, [30]. 

The change of variables u = ei/Jv converts (0.0.1) to 

Vt = b..v + 2'\lc/J · Vv + B(x)v, (0.0.3) 

where 

B(x) = b..c/J+ 1Vc/JI 2 +A(x). (0.0.4) 

Equations of this form are of importance in the theory of stochas-

tic processes, since the transition probability density for the processes 

governed by the stochastic differential equations 

(0.0.5) 
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is a fundamental solution of the Kolmogorov backward equation (0.0.3) 

for B = 0. We provide some applications in stochastic calculus later in 

the thesis. 

Other equations can be studied by different changes of variables. 

We also note that the methods introduced in this thesis can also be 

applied to other types of equations, but we will restrict our analysis to 

the study of (0.0.1). 

Finding fundamental solutions has proved problematic for equations 

of the form (0.0.1) for n 2:: 2, since typically we have only SL(2, JR.) x JR. 

as the symmetry group. For the case when ai = ci = 0, i = 1, ... , n the 

symmetry group of the PDE (0.0.1) is SL(2,1R.) x JR. for all n. For such 

equations, we do not have enough one-parameter subgroups to obtain 

fundamental solutions using group invariance techniques, or construct 

integral transforms of fundamental solutions. 

The major contribution of this thesis is to present a method for con-

structing explicit fundamental solutions for higher-dimensional PDEs 

for the cases where there are only S£(2, JR.) symmetries. In two space 

dimensions the problem can be regarded as completely solved and we 

can obtain useful expressions in n dimensions. 

In Chapter 1 we provide the background material used to obtain 

the results in the thesis. The material covered includes Lie groups and 

symmetry groups, PDEs, Fourier transforms, fundamental solutions, 

Sturm-Liouville theory, stochastic calculus and representation theory. 

For the reader unfamiliar with Lie symmetry analysis, we provide a 

detailed derivation of the symmetries in three dimensions for the type 

of equations we are considering. There is also a discussion of work 
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done by previous authors on obtaining fundamental solutions by Lie 

symmetry analysis. 

Chapter 2 covers some of the results established for the one- di-

mensional problem. This chapter contains results already published 

jointly with Craddock and provides essential background for the ex-

tension of the integral transform method which is discussed in Chapter 

3. We show how to obtain closed-form expressions for fundamental 

solutions for parabolic PDEs on the line using the integral transform 

method. We also obtain some expressions for fundamental solutions 

using group invariance methods. The functionals computed at the end 

of the chapter appear however to be new. 

In Chapter 3 the first substantive new results appear. We present 

some special cases where we can obtain Fourier transforms of funda-

mental solutions for higher-dimensional problems. We also introduce a 

new n-dimensional process which generalises Bessel processes to higher 

dimensions. 

Chapter 4 presents the major results of the thesis. In this chapter 

we develop new methods for obtaining fundamental solutions for a rich 

class of multidimensional equations in the case when we only have 

SL(2, R) symmetries. For the class of PDEs under study we obtain 

a series expansion of the desired solution. The most complete results 

are obtained for the n = 2 case. We also consider higher dimensional 

examples in detail. 

Chapter 5 contains some new applications. We extend results of 

Craddock and Craddock and Dooley connecting Lie symmetries with 

classical representation theory, to higher-dimensional problems. We 

also present some results on the pricing of derivatives. We conclude 
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with some applications to the calculation of functionals for It6 dif-

fusions. Examples are provided throughout to illustrate the results. 

Unless otherwise specified, the results presented in the body of this 

thesis are due to the author. 
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Mathematical Preliminaries 

1.1. Lie Symmetry Groups 

In this section we introduce the basic ideas and methods of Lie 

symmetry analysis. The presentation is not intended as a detailed 

discussion of either Lie groups or Lie symmetries. Rather we present 

only the material that is needed for analysis in the thesis. For a more 

thorough discussion of these topics, we refer the reader to texts such 

as Olver [62], Hydon [40] or Bluman and Kumei [12]. A Lie group 

is a group which possesses the structure of a smooth manifold. Lie 

groups often arise as groups of transformations. Elementary examples 

of the types of transformations which are associated with Lie groups are 

scalings, translations and rotations. In this context we are interested in 

local groups of transformations acting on objects, such as a system of 

differential equations, or symmetry groups, which are defined on open 

subsets of JRm. We now provide the definition of a Lie group taken from 

[62]. 

DEFINITION 1.1.1. An r-parameter Lie group is a group which is 

also an r-dimensional smooth manifold, such that the group operation 

m: Gx G---+G, m(g, h) = g · h, g,h E G, 

and the inversion 

i:G---+G, g E G, 
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are smooth maps between manifolds. 

We now give some examples of Lie groups. 

EXAMPLE 1.1.1. The group G = IR.n, where the group multiplica-

tion is given by addition is a Lie group. The inversion map is x---+ -x 

and the identity element is x = 0. 

ExAMPLE 1.1.2. Let G = GL(n, JR.), the set of all invertible n x n 

matrices with real entries. The group operation is given by matrix 

multiplication, the identity element is the identity matrix ll, and the 

inverse of a matrix A is the ordinary matrix inverse, which again has 

real entries. 

ExAMPLE 1.1.3. The 2n + !-dimensional Heisenberg group is de-

fined as 

If 

(a, b, c) EH, a, bE IR.n, c E JR., 

and 

(a', b', c') EH, 

then multiplication in this group is given by 

(a, b, c)· (a', b', c') =(a+ a', b + b', c + c' b'- a'· b)). 

Here, a·b is the usual dot product. This group is important in Quantum 

mechanics and many other areas. See [39]. 

ExAMPLE 1.1.4. The group S£(2, JR.) is the group of 2 x 2 matrices 

of determinant 1. This is also a Lie group. The S£(2, JR.) group plays 

an important role in this thesis. 
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1.1.0.1. Calculating Symmetry Groups of PDEs. A symmetry group 

of a system of differential equations is a group of transformations G act-

ing on the independent and dependent variables of the system such that 

it maps solutions of the equation to other solutions. 

DEFINITION 1.1.2 (Symmetry of a Differential Equation). If 7tp 

denotes the space of all solutions of the PDE 

then a symmetry S is an epimorphism of 7tp, i.e S : 7tp ----+ 7tp. Thus 

if u E 7tp, then we must have SuE 7tp. 

An elementary example of a symmetry of the heat equation is given 

below. 

EXAMPLE 1.1.5. If u(x, t) is a solution of the heat equation 

au 
at - ax2 ' 

then u(x+c, t) is also a solution. We will see that PDEs can have many 

more complex symmetries. 

We will consider a PDE of order n in m variables, defined on a 

simply connected subset 0 c ffi.m. The PDE takes the form 

where P is a differential operator on 0 x JR., 

and a= (a1 , ... , am) is a multi-index. 
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We would like to determine a symmetry group of this PDE. To this 

end we introduce the notion of a vector field. For our purposes, a vector 

field is a first order differential operator, which can be written as 

m a a 
v = L u)-a + <f;(x, u)-a . 

Xk U 
k=l 

(1.1.1) 

A more general form of a vector field is used in Olver's Theorem below, 

but it is only vector fields of the form (1.1.1) which we will need. 

Symmetries of the type generated by vector fields of this form are 

called point symmetries. There exist other types of symmetries, such 

as generalised symmetries and nonlocal symmetries, however we do not 

consider them in this thesis. See [62] and [7] for more on this topic. 

Associated with every Lie group is a Lie algebra. 

DEFINITION 1.1.3. A Lie algebra g is a vector space which is closed 

under the Lie bracket. That is, if g is a Lie algebra, and v, w E g, 

then [v, w] E g, where [v, w] = vw- wv. Thus for vectors of the form 

(1.1.1), 

[v, w]f = v(w(J))- w(v(J)). 

The product [v, w] is called the Lie bracket of v and w. Here f is a 

smooth function. 

See [49] for more on Lie algebras. Elements of the Lie algebra 

generate elements of the group by the process of exponentiation, which 

we will introduce below. 

EXAMPLE 1.1.6. Let M2 be the space of 2 x 2 matrices with real 

entries. Then the space 

sl2 = {A E M2 : tr( A) = 0} 
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is a Lie algebra. It can be shown that if k E s(2 then g = E 

SL(2, IR). A basis for the Lie algebra is 

x1 = ( 
0 0) , x2 = (

1 0 ) , x3 = (
0 1) 

-1 0 0 -1 0 0 

We are interested in Lie algebras of vector fields of the form (1.1.1). 

The reason for this will be made clear shortly. Every vector field v 

generates a one-parameter local Lie group, which is called the flow of 

v. The flow of v is often written as exp(Ev). Consider a function u 

which depends upon x. If we have a vector field of the form (1.1.1), 

then the group it generates can be thought of as acting on the graph 

of u, which we write (x, u). That is, the flow acts on the graph (x, u), 

transforming it in some manner. It is not hard to determine exactly 

how x and u are transformed. If we denote the transformed variables 

by (x, u), then we have 

dxk c (- _) 
dE = ..,k X,U' k = 1, ... ,m 

du _) 
dE ='I' X, U ' 

and Xk(O) = Xk, k = 1, ... , m and u(O) = u. It is standard practice 

to write exp( EV) ( x, u) = ( x, u). It is this sense in which a vector field 

generates a one-parameter group action. In this case, the parameter is 

E. The process of calculating the group action generated by an infini-

tesimal symmetry is known as exponentiating the symmetry. 

Let g denote the group generated by v. We introduce the nth pro-

longation of g, denoted prng. It is the natural extension of the action 

of Q, to (x, u), and all the derivatives of u, up to order n. In other words 

the nth prolongation acts on the collection (x, u, Ux 1 , ... , Uxm, ... ,xm), where 
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the order of the highest derivative is n. More formally, we define the 

nth prolongation as follows. 

DEFINITION 1.1.4. To determine prnQ, let 1Jn be the mapping 

Then the nth prolongation must satisfy 

The technical definition of the nth prolongation is essentially a 

statement that the action of the group and differentiation commute 

with one another in a certain sense. That is, if we act with g on x and 

u(x), then write down all the derivatives of the new function u(i) up to 

order n, the result should be the same as writing down the derivatives 

of u(x) up to order n, then acting on this set with the nth prolonga-

tion of g. This condition requires that the chain rule of multivariable 

calculus holds. The nth prolongation of g also has an infinitesimal gen-

erator, which we denote prnv. The following definition is taken from 

[62]. 

DEFINITION 1.1.5. Let v be a vector field with corresponding lo-

cal one-parameter group exp(Ev). The nth prolongation of v, denoted 

pr(n)v is defined to be the infinitesimal generator of the corresponding 

prolonged one-parameter group pr(n) [exp( EV) ]. That is, 

pr(n)vl(x,u<nl) = :E IE=
0
pr(n) [exp( Ev)](x, u(n)). 

The reason for introducing prolongations is that the concept is fun-

damental to the calculation of symmetry groups, as we shall now see. 
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The central result of the theory of symmetry groups is Lie's theorem. 

It provides the necessary and sufficient conditions for a Lie group g, 
with infinitesimal generator (1.1.1), to be a symmetry group. 

THEOREM 1.1.6 (Lie). Let 

q = 1, ... ,d (1.1.2) 

be a system of d, nth-order partial differential equations. Let v be a 

vector field of the form 

Then v generates a one-parameter group of symmetries of (1.1.2} if 

and only if 

(1.1.3) 

whenever P(x, Dau) = 0. 

See [62] for the proof. The symmetries of this type are known as 

point symmetries. Applying Lie's Theorem to a system of PDEs yields 

a system of determining equations for the functions and cp. These 

determining equations can sometimes be solved by inspection, however 

in most cases a solution of the system can require considerable analysis. 

Although this theorem is given for systems of differential equations, we 

are only concerned with a single differential equation. That is, the case 

d = 1. The vector fields satisfying (1.1.3) are referred to as infinitesimal 

symmetries. 

1.1.0.2. The Prolongation Formula. The determination of the sym-

metry groups for a system of differential equations relies upon the pro-

longation of a group action to the dependent and independent variables 
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of the system as well as the derivatives of the system. Lie derived an 

algorithm for computing the prolongation of a vector field. An ex-

plicit formula for prnv, due to Olver [62], allows for the systematic 

calculation of symmetry groups of a system of differential equations. 

THEOREM 1.1.7 (Olver: The General Prolongation Formula). Let 

(1.1.4) 

be a vector field defined on an open subset M C X x U. The nth pro-

longation of v is the vector field 

(1.1.5) 

defined on the corresponding jet space M(n) c X x U(n), the second 

summation being over all (unordered) multi-indices J = (j1 , ... ,jk), 

with 1 ::; jk ::; p, 1 ::; k ::; n. The coefficient functions of pr(n)v are 

given by the following formula: 

p p 

cjJ;(x, u(n)) = DJ(cPa L + L (1.1.6) 
i=l i=l 

aua 
where = -a . , 

aua 
and UJ i = a and DJ is the total differentiation , 

operator. 

Although the technical details involved in the construction of Lie's 

theory of symmetry groups are quite sophisticated, application of the 

main theorems is actually straightforward. Let us illustrate the pro-

longation formula by an example. Let 

a a a 
V= t, u) ax + T(X, t, u) at + c/J(x, t, u) au 
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be a general vector field on X x U JR.2 x JR.. We take p = 2 and q = 1 

in the prolongation formula (1.1.5), giving 

This is the first prolongation of v. 

The determining functions cpx and c/Jt are found using (1.1.6). This 

is simply an exercise in differentiation. We have 

and 

Further, the second prolongation of v is the vector field 

where for example 
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The coefficients cptt and cpxt can be computed by the same method. 

Before we present an example of a symmetry calculation, we point out 

that the set of all infinitesimal generators of symmetries for a PDE 

forms a Lie algebra. This result was proved by Lie. 

THEOREM 1.1.8 (Lie). Let 

Pq(x, Dau) = 0 q=l, ... d, (1.1.7) 

be a system of d, nth-order partial differential equations. Let the set of 

all infinitesimal generators of symmetries of ( 1.1. 7) be g. Then g is a 

Lie algebra. Note that g may be infinite-dimensional. 

1.1.1. Symmetries of the PDE Ut= In this thesis 

we will be concerned with equations of the form 

Ut = + A(x)u, (1.1.8) 

on JRn. For a linear parabolic PDE of the form (1.1.8) on IR, there 

are only a few possible linearly independent forms that A can take 

if the PDE is to have nontrivial Lie symmetries. When we move to 

higher dimensions, this is no longer true. There are now infinitely 

many possible linearly independent choices of A that will lead to a 

nontrivial symmetry group. Then= 2 case was studied by Finkel, see 

[30]. For completeness, we present here the calculations for the n = 3 

case. 

1.1.2. The Lie Symmetries of Ut = + f(x, y, z)u. In accor-

dance with Lie's method, we let 
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then compute the second prolongation and apply it to the PDE to 

obtain 

(1.1.9) 

This holds whenever Ut= + f(x, y, z)u. Here 

etc. From (1.1.9) we can read off the defining equations. We immedi-

ately find as expected that T is independent of x, y, z and u, ry, (do 

not depend on u, and cjY is linear in u. We then have 

= 2c/Yux - - -

-Tit = 2c/Yuy - T/xx - T/yy - T/zz 

-(t = 2c/Yuz - (xx - (yy - (zz · 

Finally -2ryx - = 0, -2(y- 2'f/z = 0, -2(x - = 0. These last 

equations imply that = = = 0 and the same holds for T/ and 

(. From = we get 

1 1 = 2XTt + p (y, z, t) (1.1.10) 
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where p1 is an as yet arbitrary function. And we also find 

1 2 1 3 
TJ = 2,YTt + p (x, z, t), ( = 2 zTt + p (x, y, t). (l.l.ll) 

Since = = = 0, it follows is linear in x, y, z. Similarly 

for TJ and (, so that 

1 
= 2 xTt + yA1(t) + zA2 (t) + A 3 (t) (1.1.12) 

1 
TJ = 2,YTt + xB1 (t) + zB2 (t) + B 3 (t) (1.1.13) 

1 
( = 2,ZTt + xC1(t) + yC2(t) + C3 (t), (1.1.14) 

where A1(t), ... , C 3 (t) are functions oft to be determined. We also know 

that = -TJx, T/y = -TJz and = -(x which implies that 

and so on, so that 

1 
= 2XTt + yA1 (t) + zA2 (t) + A 3 (t) (1.1.15) 

1 
TJ = 2,YTt- xA1 (t) + zB2 (t) + B 3 (t) (1.1.16) 

1 ( = 2ZTt- xA2(t) + yB2 (t) + C3 (t). (1.1.17) 

Next we have = 2</Jux, since = 0. Since <P = a(x, y, z, t)u + 
(3(x, y, z, t) we immediately get 

1 1 2 3 2a = --XTtt- yA - zA -A 
X 2 t t tl (1.1.18) 

and from this we obtain 

1 2 1 1 1 2 1 3 1( ) a= --x Ttt- -xyA - -zxA - -xA + D y z t . 8 2 t 2 t 2 t '' (1.1.19) 
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From -TJt = 2c/Jyu and -(t = 2c/Jzu we can compute alternative expres-

sions for a: 

12 1 1 1 2 1 3 2 a= --y Ttt + -xyA - -yzB - -yB + D (x z t) 8 2 t 2 t 2 t '' (1.1.20) 

12 1 2 1 2 1 3 3 a= --z Ttt + -xzA + -zyB - -zC + D (x y t). 8 2 t 2 t 2 t '' (1.1.21) 

Now we calculate axy using the first and second of these expressions 

and conclude that = which implies that A 1 is a constant. 

Similarly, A2 and B 2 must also be constants. This yields 

1 3 e = 2XTt + yAl + zA2 +A (t) (1.1.22) 

1 3 
TJ = 2YTt- xA1 + zB2 + B (t) (1.1.23) 

1 3 
( = 2ZTt- xA2- yB2 + C (t). (1.1.24) 

Comparison of the forms of a now shows that 

(1.1.25) 

where a is an arbitrary function oft. Now using 

(1.1.26) 

and so we are led to the final set of equations 

- !(x2 + y 2 + z2)Tttt- !xA3 - !yB3 - !zC3 +at 8 2 tt 2 tt 2 tt 

3 1 
= -4Ttt + 2(xfx + Y/y + zfz + 2/)Tt + AI(Yfx- xfy) 

+ A2(zfx- xfz) + B2(zjy- Yfz) + fxA3 (t) + /yB3 (t) + fzC3 (t). 

(1.1.27) 
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This final equation allows us to determine which forms of f lead to 

equations with nontrivial symmetries and they allow us to determine 

the Lie algebra. For example, it is immediate that if f is invariant 

under rotations in JR3 , then we have 

(1.1.28) 

so the symmetry group of the PDE Ut = + f(x, y, z)u contains at 

least S0(3), a fact which does not require Lie's method to discover. 

The n-dimensional case can be easily deduced from the structure of 

the three-dimensional case. We now list the symmetries which are of 

relevance in the thesis. 

1.1.2.1. The equation Ut = + ;}2 k u. For this PDE, the 

Lie algebra of symmetries has basis 

in which (3 is an arbitrary solution of the PDE. 

1.1.2.2. The equation Ut = + C\k +2 u. 

Here llxll 2 = x2 + y2 + z2. The Lie algebra of symmetries has basis 

1 1 1 1 
V = 8 V = -xe2vcta + -ye2vcta + -ze2vcta + --e2Vct8 1 t, 2 2 X 2 y 2 Z 2JC t 

1 
- 4Vce2Vct(c(x2 + y2 + z2) + 3JC- E)u8u, 

v = !xe-2vcta + !ye-2vcta + !ze-2vcta + _1_e-2vcta 
3 2 X 2 y 2 z 2JC t 

+ 1r,;e-2Vct(c(x2 + y2 + z2)- 3vfc- E)u8u, v/3 = (3(x, y, z, t)8u. 
4yc 
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Here llxll 2 = x2+y2+z2. We can easily show that in 1.1.2.1 and 1.1.2.2 

{vi, v 2 , v 3 } generate the Lie algebra sl2 • 

1.1.2.3. The equation Ut = + (ax +by+ ez + d)u. A basis for 

the Lie algebra is 

1 3 1 3 1 3 12 vi = 2(xt- at )Bx + "2(yt- bt )By+ 2(zt- et )Bz + 2t Bt-

1 3 3 
S(x2 + y2 + z2 + (a2 + b2 + e2)t4 + 4 t + 4 (ax +by+ ez)t2 + dt2 )u8u 

1 2 1 2 1 2 
V2 = 2(x- 3at )Bx + 2(y- 3bt )By+ 2(z- et )az + tBt+ 

1 3 
+ (dt- 2(a2 + b2 + e2)t3 + 4t(ax +by+ ez))u8u, V3 = 8t, 

Vf3 = {3(x, y, z, t)Bu. 

The vector fields {vi, v 2 , v 3 } span the Heisenberg lie algebra, and the 

remaining vector fields span sl2 . If a = b = e = d = 0, this gives the 

symmetries of the heat equation. Similarly we can show that the PDE 

Ut = (ax 2 + by2 + ez2 )u, a =1- b =1- e, has only Heisenberg group 

symmetries of the form 

V = efota - faefotua V = e-vata fae-fotua I X 2 Vu u, 2 X 2 Vu u, 

V = ev'bta - fbeVbtua V = e-v'bta - 'be-Vbtua 3 y 2 V 0 Ul 4 y 2 V 0 u, 

V = evcta - /(;evfctua V = e-vcta - r:.ee-yetu8 V = u8 5 z 2 V c u, 6 z 2 V c u, 7 u· 

If a= b = e, then there is also an S£(2, IR) symmetry group. See [18]. 

We will see in Chapter 3 that Heisenberg group symmetries lead to 

Fourier transforms of fundamental solutions. 
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The final class of equation with non-trivial symmetries is as follows. 

If 

Ut= + k(ax +by+ cz)u, 

where k =I 0 is a function of a single variable, then a basis for the Lie 

algebra of symmetries is 

We have not been able to obtain fundamental solutions for this final 

case. There is a special case Ut = + ( + )u, A =I 0, d E IR 

with the additional vector fields 

Our methods do work for this final equation. 

1.2. Other Mathematical Preliminaries 

1.2.1. Fundamental Solutions. In this thesis we are interested 

in obtaining fundamental solutions by Lie symmetry methods. Funda-

mental solutions play a major role in the study of PDEs and stochastic 

analysis. We provide a definition of a fundamental solution below. 

DEFINITION 1.2.1. Set ial = a1 +···+an, where a = (a1, ... ,an) 

is a multi-index and ai EN for each i = 1, ... n. Then denote 
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Let P(x, Da)u be a linear differential operator on 0 c !Rn. Then 

p(t, x, y) is a fundamental solution of 

(1.2.1) 

iffor every yE 0, p(t, x, y) is a solution of (1.2.1) and for all f E £ 1(0) 

u(x, t) = 1 f(y)p(t, x, y)dy, (1.2.2) 

is a solution of (1.2.1) such that limt.:....o u(x, t) = f(x). Integration 

against the kernel p(t, x, y) defines an operator from £ 1(0) into the 

space of solutions of (1.2.1). 

The condition that f E £ 1(0) may be varied in certain situations. 

For example, we may require that the integral (1.2.2) converges for 

all f E V(O), the space of compactly supported smooth functions. 

Fundamental solutions are closely related to Green's functions, but 

Green's functions usually incorporate boundary conditions. See [69] 

for a history and survey of fundamental solutions. 

EXAMPLE 1.2.1. The fundamental solution of the heat equation 

Ut = on !Rn is also called the heat kernel. It is 

1 llx-yll2 

K(t, x, y) = (47rt)n/2 e--4t- (1.2.3) 

where llxll = x7. Then the solution of the problem Ut = with 

( ) f( ) . . ( ) r ( ) 1 _llx-yll 2 
u x, 0 = X IS g1ven by u x, t = j y (41rt)n/2 e 4t dy. 

EXAMPLE 1.2.2. In Chapter 3 we show that then-dimensional PDE 

n 

Ut = + (L aixi + c)u, (1.2.4) 
i=l 
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has a fundamental solution 

Note that fundamental solutions are not unique. It is possible for a 

PDE to have more than one fundamental solution and our methods will 

lead to ways of obtaining multiple fundamental solutions for a given 

PDE. 

1.2.2. Group-Invariant Solutions and Fundamental Solu-

tions. Group-invariant solutions can be used in the construction of 

fundamental solutions. Lie established the theory of group-invariant 

solutions and the theory has been developed by Olver and others, [62]. 

A group-invariant solution is a solution which is invariant under the ac-

tion of a group transformation. We provide a key result below, which 

combines two theorems in Bluman and Kumei's text [12]. 

THEOREM 1.2.2. Consider the nth-order boundary value problem 

(BPV) 

P(x, Dau) = 0 subject to the conditions B1(x, u, u(n-1)) = 0 on the 

surface w1(x) = 0. A vector field v is admitted by the BVP if 

(2) v(w1(x)) = 0 when w1(x) = 0. 

(3) prn-1v[Bj(x, u, u(n-1))] = 0 when B1(x, u, u(n-1)) = 0 on the 

surface w1(x) = 0. 



1.2. OTHER MATHEMATICAL PRELIMINARIES 33 

Suppose that a BVP admits a vector field v. Then the solution of the 

BVP is a group-invariant solution with respect to the symmetries gen-

erated by v. 

Most studies of fundamental solutions using Lie groups published 

up to now have relied on group invariance methods. Bluman in [8] and 

[9], studied the Fokker-Planck equation Ut = Uxx + (J(x)u)x subject 

to different boundary conditions. See also [11] and [37]. He obtained 

explicit fundamental solutions in the case when f satisfies a Riccati 

equation of the form 2f'- P + {J2x 2 - "( + = 0, in which {3, v 

and "( are arbitrary constants. 

Bluman has also considered some n-dimensional examples. Using 

group-invariant solutions, in fundamental solutions for then-dimensional 

wave equation and the Poisson kernel for the Laplace equation are ob-

tained in [12]. In addition, the equation 

Ut= df:l.u + Uy- YUx, (x, y) E ffi. 2 , d > 0 

is studied. 

Ibragimov has made extensive use of group-invariant solution meth-

ods to obtain fundamental solutions. See the papers [42] and [4] as 

well as the CRC handbooks [43], [44] and [45]. In [42], Lie group 

actions are extended to spaces of distributions and new derivations of 

the fundamental solutions of the heat, wave and Laplace equations of 

mathematical physics are given. With Gazizov, Ibragimov also ob-

tained fundamental solutions of some important PDEs arising in fi-

nancial mathematics [31]. Specifically the fundamental solution of the 

Black-Scholes equation of option pricing is obtained, as well as group-

invariant solutions of the Jacob-Jones equation. 
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Laurence and Wang [55] obtained fundamental solutions for PDEs 

of the form 

?Lt = L\u + A(x )u, .1: E ffi.2 , (1.2.5) 

by usmg group-invariant solution methods developed by Ibragimov. 

They are able to obtain fundamental solutions only in some special 

cases. In most of these cases the resulting fundamental solutions could 

actually be obtained as products of the corresponding one-dimensional 

fundamental solution. To illustrate, Laurence and Wang give the ex-

ample of the PDE 

a 
1Lt = 1Lxx + 1Lyy + ( 2 + by)u. 

X 

Using group-invariant solution methods,they obtain a fundamental so-

lution, however this fundamental solution is simply the product of fun-

damental solutions of the one dimensional equations Ut = Uxx + a2 u 
X 

and ?Lt = ?Lyy + byu. For equations of the form 

(1.2.6) 

they are only able to obtain the value of the fundamental solution 

at = (0,0). 

In Chapter 4 we obtain fundamental solutions in the case when the 

symmetry group is only SL(2, ffi.) x JR. and the fundamental solutions are 

not products of one-dimensional fundamental solutions. In particular, 

we obtain the full fundamental solution for (1.2.6). 
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Methods of obtaining fundamental solutions by reducing an equa-

tion on the line to a so-called canonical form have also been used ex-

tensively. This idea goes back to Lie. Bluman found the explicit trans-

formation mapping a PDE with a six-dimensional symmetry group to 

the heat equation in [10]. Goard obtained large classes of fundamental 

solutions by this approach in [33]. 

Although group-invariant solutions are a powerful tool, there are 

certain limitations. An example due to Craddock [26] illustrates. Con-

sider the SDE 
2aXt 

dXt = X dt + v2dWt. 
2 +a t 

Suppose we wish to obtain a transition density for this process. We 

must solve 

2ax 
Ut= Uxx + Ux 2 +ax (1.2.7) 

If we use group-invariant solution methods, we obtain the fundamental 

solution of (1.2.7) given by 

( .... ) = 2 +ay tyx _ (x;y) I (2ylxY) q 1. y. t ( ) e 1 . t 2 + ax y t 
(1.2.8) 

But this is not a transition density, because it does not have total 

integral equal to one. The transition density is actually 

The delta function term cannot be obtained from a group-invariant 

solution, because the Dirac delta is not the solution of anv second-

order ODE. The same problem exists for reduction to canonical form, 

[26]. Fundamental solutions containing delta function terms are cmn-

mon and if we use group-invariant solution methods, they have to be 
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added in after the fact. The methods of Chapter 2 avoid this problem 

altogether, because they automatically produce fundamental solutions 

with these delta function terms. See also Example 2.0.5. 

1.2.3. Fourier Transforms. Fourier transforms provide one of 

the most important tools of analysis. In this thesis Fourier transforms 

of fundamental solutions arise in the case when the PDE has Heisenberg 

group symmetries. We collect here the relevant material. 

DEFINITION 1.2.3 (Fourier Transform). Let f E L1 (1Rn). Then the 

Fourier transform of f is defined by 

i(y) = r f(x)e-iy·xdx. (1.2.10) 

We can recover the original function by using the Fourier Inversion 

Theorem. 

THEOREM 1.2.4 (Fourier Inversion). Let f E L 1 (1Rn) and further 

suppose that 1 E £ 1 (IR.n). Then we may recover f from 1 by 

1 r . 
f(x) = (2n)n }JRn (1.2.11) 

It is important to know when a function can be represented as 

a Fourier integral. Under what conditions can we say that a given 

function is the the Fourier transform of another function? This problem 

was solved by Bochner. 

THEOREM 1.2.5 (Bochner). A necessary and sufficient condition 

for a continuous function cp to be represented as a Fourier transform 

of a finite Borel measure is that it be positive definite. That is for all 
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complex numbers p1 , ... , PN and a 1 , ... , aN ERn 

N L cp(aP- aq)pppq 0. (1.2.12) 
p,q=l 

PROOF. See Bochner [13]. D 

If we impose stronger conditions on f then we can guarantee that 

the Fourier transform is an L 1 function. 

THEOREM 1.2.6. Suppose that f E L 1 (1Rn) n C 2 (1Rn). Then f E 

Ll(JR.n). 

PROOF. See [70]. D 

In the study of Fourier analysis there are natural spaces which arise. 

We define below the spaces relevant to the results in this thesis. 

DEFINITION 1.2.7. Let 0 JR.n be open. 

( 1) The space of infinitely differentiable, compactly supported func-

tions on 0 is denoted V(O). 

(2) The Schwartz space of rapidly decreasing smooth functions is 

denoted by S(O). 

S(O) = {! E coo(n), sup sup X E n I (1 + lxi2)N (D0 f)(x) I < oo, V N E N} . 
lai:'SN 

That is IP(x)(D 0 f)(x)l is bounded for every polynomial P. 

DEFINITION 1.2.8. The space of distributions V'(O), the dual of 

V(O) is defined by 

V'(O) = {T: V(O) ----t JR., T linear} (1.2.13) 
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That is, V' ( 0) is the set of linear functionals on V( 0). Elements of 

V'(O) are continuous in the topology of V(O). For a description of the 

topology of V(O), see page 138 of [67]. 

For more details on distributions see Chapter 6 of Rudin's book 

[67]. 

1.2.4. Stochastic Calculus. We provide in this section material 

from the theory of stochastic calculus to be used in subsequent chapters. 

A general reference for stochastic calculus is [60]. See also [53]. We 

begin with the definition of Brownian motion. 

DEFINITION 1.2.9. A one-dimensional Brownian motion is a sto-

chastic process B = {B(t); t 2 0} with the following properties. 

(a) Independent increments: B(t)- B(s) fort> s, is independent 

of the past, that is, of B(u), 0::; u::; s, or of :F8 , the a-field 

generated by B(u), u::; s. 

(b) Normal increments: B(t)-B(s) has a normal distribution with 

mean 0 and variance t- s. So B(t)- B(O) has the distribution 

N(O, t). In addition this implies that B(t) -B(s) has the same 

distribution as B ( t - s). 

(c) Continuity of Paths: B(t), t 2 0 are continuous functions oft 

with probability 1. That is, almost surely. 

An n-dimensional Brownian motion is a vector B ( t) = ( B 1 ( t), ... , Bn ( t)) 

where each Bi is a one-dimensional Brownian motion. 

A common notation which we use throughout the thesis is B 1 = 

B ( t). Larger classes of stochastic processes can be constructed from 

Brownian motion. This construction is due to Ito. 
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More general definitions of Ito diffusions are possible, but for our 

purposes, the following is sufficient. 

DEFINITION 1.2.10. A time-homogenous Ito diffusion is a stochastic 

process X = {Xt : t 2:: 0} satisfying a stochastic differential equation 

of the form 

(1.2.14) 

where Bt is an m-dimensional Brownian motion and b : JRn ---+ ]Rn, O" : 

]Rn ---+ ]Rnxm are Lipschitz-continuous. 

In this thesis, all Ito diffusions we consider are homogeneous. The 

most important result is the Ito formula. Although we do not use it 

in this thesis, we include it because of its central role in the theory of 

stochastic processes. 

THEOREM 1.2.11. The Ita formula for then-dimensional diffusion 

X(t) = (X1(t), ... , Xn(t)) satisfying the SDE 

n 

dXi(t) = ai(t, X(t))dt + L bij(t, (X(t))dBj(t), i = 1, ... , n, (1.2.15) 
j=l 

is given by 

n a 
df(t, X(t)) = L ox· f(t, X(t))dXi(t) 

i=l 
of 1 n n f]2 + -;:;-(t, X(t))dt +-'""''""' 0 0 f(t, X(t))d[Xi, Xj](t). ut X· X· i=l j=l J 

REMARK 1.2.12. Here d[Xi, Xj](t) = O"ijdt with O"ij the ijth-component 

of the matrix O" = bbT, and the ijth-component of b is bij. 
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DEFINITION 1.2.13. Let X = {Xt : t 2:: 0 ,X0 = x} be an It6 

diffusion. The generator of X is the operator defined by 

Af(x) = lim E[f(Xt)]- Af(x)' 
t--->0 t 

(1.2.16) 

(1.2.17) 

The generator can be written as a partial differential operator. This 

provides the link between the theory of diffusions and the theory of 

PDEs. 

DEFINITION 1.2.14. Let X= {Xt : t 2:: 0} be the lt6 diffusion 

Then the generator of X is 

1L( T) a2f Ln ()af 2(n) Af = - aa ij a a + bi X -a ,J E c . 2 X· X· X· i,j t J i=l t 

(1.2.18) 

THEOREM 1.2.15. Let X = { Xt : t 2:: 0, X 0 = x} be an Ita diffusion 

with generator A. Then the functional u(x, t) = IE[f(Xt)] is a solution 

of the PDE 

Ut(x, t) = Au(x, t), u(x, 0) = f(x). (1.2.19) 

As a consequence of this result, to find the transition density for 

X = { Xt : t 2:: 0, X 0 = x} we need to find a fundamental solution of 

Kolmogorov's equation (1.2.19) which is positive and has total integral 

one. In later chapters we calculate functionals of It6 diffusions. The 

key tool is the Feynman-Kac formula. 

THEOREM 1.2.16 (The Feynman-Kac formula). Let f E 

and q E Assume that q is lower-bounded. 
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(i) Put 

Then 

Vt = Av - qv, t > 0, x E ]Rn, (1.2.20) 

v(O, x) = f(x). 

(ii) Moreover, if w(t, x) E C1,2 (1R x JRn) is bounded on K x ]Rn 

for each compact KC lR and w solves (1.2.20) with w(O, x) = 

f(x), then w(t, x) = v(t, x). 

PROOF. See Oksendal [60], p143. D 

1.2.5. Sturm-Liouville Theory. The expansion results for fun-

damental solutions require some basic results from Sturm-Liouville the-

ory. We present the relevant material below. 

DEFINITION 1.2.17. A Sturm-Liouville problem can be written as 

L(y) = -rA.y, 

in which the operator L is 

Ly = (py')' + qy, 

and the boundary conditions are 

U1(y) = auy(a) + a12Y'(a) = 0 

U2(y) = ct21y(a) + a22Y'(a) = 0, 

(1.2.21) 

(1.2.22) 

(1.2.23) 

(1.2.24) 

where the constants aij E JR. We assume that the boundary conditions 

described by U1 and U2 are linearly independent. That is, U1 is not a 
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constant multiple of U2 . We will assume that p, q and rare continuous 

on [a, b] and that p > 0, r(x) > 0 on [a, b]. 

The following results about Sturm-Liouville theory are all classical 

and can be found in [2] for example. The most pertinent facts about 

Sturm-Liouville problems and their eigenvalues and eigenfunctions are 

as follows. 

PROPOSITION 1.2.18. The eigenvalues of the Sturm-Liouville prob-

lem defined above are real. 

THEOREM 1.2.19. The eigenfunctions for the Sturm-Liouville prob-

lem defined in this section form an orthogonal basis for L 2 ( [a, b], r( x)). 

The eigenvalues of the Sturm-Liouville problem 1.2.17 can be shown 

under suitable assumptions to form an increasing sequence Ao < A1 < 

A2 < A3 < · · · and limn--->oo An = oo. See [2]. Estimates for the asymp-

totic behaviour of the eigenvalues have been obtained by a number of 

authors. 

PROPOSITION 1.2.20. For large n the nth-positive eigenvalue of 

1.2.17 is An = b + an2 + o(1), where a and b are constants depend-

zng onp,q,r. 

Note the term o(1) can be expanded in powers of 1/n under further 

assumptions on the smoothness of p, q, r. See [5]. 

Under further assumptions we can show that the eigenvalues are 

always positive. There exist many different conditions implying that 

the Sturm-Liouville problem has positive eigenvalues. A simple and 

well known result follows. 
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THEOREM 1.2.21. The eigenvalues of the Sturm-Liouville problem 

of definition 1. 2.17 will be positive if q < 0 on [a, b] and the first eigen-

function Lo satisfies 1: 2: 0. 

PROOF. Multiply the Sturm-Liouville equation by L 0 and integrate 

by parts to obtain the relation 

I'+ J: [p(x)(L; (x)) 2 - q(x)L5(x)] dx 
Ao = a J: (1.2.25) 

The given conditions clearly guarantee that .A0 is positive. D 

A more useful result can be easily established. 

THEOREM 1.2.22. Consider the Sturm-Liouville problem 

(pu')' + ( q + .Ar )u = 0, a x b. 

au(a)- f]u'(b) = 0, "fU(b) + bu'(b) = 0. 

If q(x) 0 on [a, b] a, f3 2: 0, "(, b 2: 0 then all eigenvalues of the given 

Sturm-Liouville problem are positive. 

A proof is in [54], p208. Convergence of the eigenfunction expansion 

Ln)Ln to f can be made uniform under suitable assumptions. 

THEOREM 1.2.23 (Mishoe-Ford). Suppose that f' exists and is of 

bounded variation and suppose that f(a) = f(b) = 0. Then the eigen-

function expansion off converges uniformly to f on (a, b). 

See [59] for a proof. More generally, 

THEOREM 1.2.24. If f is a smooth function on (a, b), satisfying the 

boundary conditions of 1.2.17 then the eigenfunction expansion off 

converges uniformly to f on (a, b). 
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Suppose that G(x, y) is the Green's function for the problem (py')' + 
qy = f, subject to the boundary conditions of 1.2.17. 

THEOREM 1.2.25. Let f be continuous on [a, b] and suppose that 

the eigenfunctions of 1. 2.17 are Ln and An are the eigenvalues. Then 

the series converges uniformly to G f, where G is the 

Green's function for the equation (py')' + qy = f subject to the given 

Sturm-Liouville boundary conditions. 

See [38]. 

We will need a generalisation of Sturm-Liouville theory to eigen-

functions of the Laplacian on the n-dimensional sphere. This will be 

used in the n-dimensional case in Chapter 4. We use the following 

result. 

THEOREM 1.2.26. Let /:). 5 denote the Laplace-Beltrami operator on 

the sphere sn-1 . That is, /:). 5 is the angular part of the Laplacian on 

JRn. Suppose that G is a continuous function. Let W >-n be the eigenfunc-

tions of the problem /:). 5 + G = 0, subject to the boundary conditions 

a(8)w(8) + (1- = 0, with a a continuous function 

the normal derivative on the surface of the unit sphere sn-l, and An the 

eigenvalues. Then {w forms an orthogonal basis for L 2 (sn-l ). 

PROOF. See [48]. D 

1.2.6. Representation Theory. One of the applications of the 

thesis will be to problems in representation theory. In the final chap-

ter we will show that for certain important classes of multidimensional 

parabolic equations, the Lie symmetries are actually equivalent to rep-

resentations of the underlying group. Therefore we need to present 
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some elementary background details on representation theory. Some 

general references for representation theory are [64], [58] and [36]. 

DEFINITION 1.2.27. Let V be a locally convex topological vector 

space (LCTVS). Let 1r be a homomorphism from a group G to the 

space of linear operators on V, denoted L(V), with topology T. If the 

mapping G x V --+ V given by (g, v) --+ 1r(g)v is continuous, then we 

say that 1r is a continuous representation of G. The representation is 

denoted ( 7r, V). 

We are really interested in a variant of this idea. The symmetries 

are projective representations. 

DEFINITION 1.2.28. Let V be a LCTVS. Let 1r be a mapping from 

a group G to the space of linear operators on V, denoted L(V), with 

the property that for all v E V and for all g, h E G 

1r(gh)v = c(g,h)7r(g)1r(h)v 

where the cocycle c satisfies I c(g, h) I = 1 and the cocycle equation 

c(h, k)c(g, hk) = c(g, h)c(gh, k). Then (1r, V) is called a projective rep-

resentation of G. 

In Chapter 5 we will be interested in irreducible representations. 

DEFINITION 1.2.29. Let (1r, V) be a representation of G. We say 

that the representation is irreducible if there are no closed, invariant 

subspaces of V under 1r(G) other than {0} and V itself. 

For the first case we consider, the representations are unitary. 
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DEFINITION 1.2.30. Suppose that V is a Hilbert space. We say 

that the representation is unitary if (n(g)v, n(g)v) = (v, v) for all v E 

V, g E G. Here (a, b) is the inner product of a, b E V. 

DEFINITION 1.2.31. Two representations (n, V) and (p, W) are said 

to be equivalent if there exists an operator A : V ---+ W such that for 

all g E G, v E V, An(g)v = p(g)Av. The operator A is known as an 

intertwining operator. 

In the final chapter we will apply our results on fundamental solu-

tions of multidimensional PDEs to the problem of constructing inter-

twining operators between lie symmetries and group representations. 

We present some examples of irreducible representations below. 

EXAMPLE 1.2.3. Consider G = IRn. Let V = <.C and for each ,\ E 

JR* = IR-{0}, where 7r.>.(x) = ei>-x. Then for each.\, 7r.>. is an irreducible 

representation of R These one-dimensional representations are known 

as characters. 

EXAMPLE 1.2.4. Anther example is the Heisenberg group, described 

in Example 1.1.3. Let G = H2n+l· If f E L2 (IR2n), then for all,\ E IR*, 

(n>.(a, b, c) = b) 

is an irreducible representation of H3 . All other irreducible representa-

tions act trivially on the centre of H2n+l· These representations are one-

dimensional (i.e. characters) and are of the form n 11,11 (a, b, c) = ei(Jl·a+v·b) 

and act on <.C. 
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In the final chapter we present another important irreducible, pro-

jective representation of SL(2,JR), the modified Segal-Shale-Weil rep-

resentation. This is an important representation for Lie symmetry 

analysis. 

1.2. 7. Applications in Stochastic Calculus. We focus on the 

PDE 

Ut= + A(x)u, X JRn. (1.2.26) 

In many applications the potential A < 0, Vx E 0. This is because a 

negative potential physically corresponds to the killing rate of a process. 

There are two immediate ways we can apply our results to stochastic 

calculus. By the Feynman-Kac formula, we can calculate the functional 

u(x, t) =lEx A(B.)ds J , (1.2.27) 

where Bt(-) E 0 is an n-dimensional Brownian motion, by solving 

(1.2.26) subject to u(x, 0) = f(x). We may also convert (1.2.26) to 

Vt = + 2\lqy · Vv + + 1Vc/YI 2 + A(x))v, (1.2.28) 

by the substitution u = ec/Jv. If we suppose that 

+ 1Vc/YI 2 + A(x) = K(x), (1.2.29) 

then we are led to the PDE 

Vt = + 2\lqy · Vv + K(x)v. (1.2.30) 

The quasilinear equation (1.2.29) becomes linear if we set w = ec/Jv. The 

result is + A(x)w = 0. The functions 2c/Yxu2cPx2 etcetera are called 
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the drift functions. Obviously finding drifts is equivalent to finding 

stationary solutions of (1.2.26). If 

dXf = 2\lcp(Xf, ... + J2dWf,i = 1, ... ,n (1.2.31) 

then we may compute 

u(x, t) =lEx K(X.)ds J , (1.2.32) 

by solving (1.2.30) subject to u(x, 0) = f(x). 

The potentials in (1.2.26) that we are concerned with have the 

structure 

(1.2.33) 

where k is an arbitrary continuous function and C, a 1 , ... ,an and E are 

arbitrary constants. If A is of this form then (1.2.26) has nontrivial 

symmetries. In fact we have the following simple result. 

PROPOSITION 1.2.32. Let u be a solution of (1.2.26) and let 

for some function k. Then for E > -1/ 4t, so is 

PROOF. Earlier we saw the calculation for n = 3. One may easily 

show for general n that the PDE has an infinitesimal symmetry v = 

4xitaxi + 4t28t- (llxll 2 + 2nt)u8u. Exponentiating this symmetry 

completes the proof. D 
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To obtain a symmetry of (1.2.30), let u = e<Pv, then apply the 

previous symmetry to u and then multiply by e-<P to obtain a symmetry 

of (1.2.30). 

COROLLARY 1.2.33. Suppose (x2 , ... , xn) = 0 x 1 X1 X1 

and u satisfies 

(1.2.34) 

Then forE> -1/4t, 

( 
X1 Xn t ) 

X U 1 + 4ct ' ... ' 1 + 4ct ' 1 + 4ct ' 

is also a solution. 

1.2.7.1. Finding Drifts. For the applications considered later in the 

thesis, we need to be able to compute drift functions cj>. For simplicity 

we focus on then= 2 case. We need to find solutions of 

(1.2.35) 

The change of variables 4> = ln w, leads to a second order linear PDE. 

An easier way is to use group-invariant solutions. Setting r = yjx gives 

cPx = cPy = cPxx = + and cPyy = }2cPrr· So that 

(1.2.36) 

which is the nonlinear ODE 

(1.2.37) 
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The substitution F(r) = c/Jr gives the Riccati equation 

(1.2.38) 

Every Riccati equation can be linearised, and taking F = G' /G will do 

this here. Then 

G" (G') 2 G' (G') 2 
(1 + r 2)( G- G ) + 2r G + (1 + r 2) G + k(r) = 0, 

(1.2.39) 

or 

(1 + r2)G" + 2rG' + k(r)G = 0. (1.2.40) 

We then have the drifts given by 

c/Jx = _.!!..._ G'(yjx) cjJ = .!_ G'(yjx) 
x3 G(yjx)' Y x G(yjx) · (1.2.41) 

For example, the choice k(r) = - r22 leads to 

G( ) c1 (r- tan-1(r)) 
r =-+c2 , 

r r 
(1.2.42) 

and so 

(1.2.43) 

(1.2.44) 

For drift equations of the form c/Jxx + c/Jyy + cjJ; + = C(x2 + y2) the 

change of variables r = x2 + y2 will also lead to a Riccati equation. 
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Suppose that we want 

2 2 A 
cPxx + </Yyy + cPx + cPy = 2 + 2 X y 

With r = x2 + y2 take <P(x, y) = <I>(x2 + y2 ) then 

4r<I>" + 4<I>' + 4r( <I>') 2 = A. 
r 

So if we put <I>'= X, we have 

4r2 h" + 4rh'- Ah = 0, 

51 

(1.2.45) 

which has solutions h(r) = from which drifts may be 

obtained. Simply by including a constant term, that is working with 

the PDE 
A 

Ut = - ( 2 2 + E)u, 
X +y 

we discover more drifts. We solve 

4r<I>" + 4<I>' + 4r( <I>') 2 = A + E. 
r 

This leads to the Bessel equation 

4r2h" + 4rh'- (A+ Er)h = 0, (1.2.46) 

with solutions h(r) = c1/v'A( VET) + c2I_JA( VET). These types of 

drifts will be explored in the body of the thesis. 





2 

Integral Transform Methods in One Dimension 

Symmetry analysis has proved a useful tool for the problem of find-

ing fundamental solutions for parabolic equations on the line. Bluman 

and Cole used group-invariant solutions to obtain fundamental solu-

tions, see for example [12]. Methods involving reduction to canonical 

form have also been employed, see [33]. See also Rosinger and Walus 

[65] on group invariant generalized solutions in the context of nonlinear 

PDEs. Here we present results using Lie symmetry methods to obtain 

integral transforms of fundamental solutions in one space dimension. 

In this chapter we discuss some methods for computing fundamental 

solutions for PDEs of the form 

Ut = ax'uxx + f(x)ux- g(x)u, a> 0,1 E lR (2.0.47) 

which possesses a sufficiently large symmetry group. Although there 

are many ways of obtaining fundamental solutions, the integral trans-

form method has a number of advantages over alternative methods. We 

can obtain closed-form expressions for the fundamental solutions that 

do not require any changes of variables or measure. As we will see in 

the following chapter, another important advantage is that the method 

can be extended in some cases to higher dimensions. Craddock and 

Platen [23] developed the technique for the 1 = 1, g(x) = 0 case, and 

these results were extended in [22] and [26]. Their method reduces the 

problem to the evaluation of a single inverse Laplace transform, which 

53 
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is given as an explicit function of the drift f. Craddock and Platen 

showed that for a large class of PDEs, one of the multipliers in the 

Lie point symmetry group is the Laplace transform of the fundamental 

solution. It was then shown in [22] that for at least one of the vector 

fields in the .s[2 part of the Lie symmetry algebra, the multiplier of the 

symmetry, or a slight modification of the multiplier, is always a clas-

sical integral transform of the fundamental solution of the PDE. Then 

in [18] it was proved that if the PDE 

Ut= A(x, t)uxx + B(x. t)ux + C(x, t)u 

has at least a four-dimensional symmetry group, we can always find a 

point symmetry which maps a nonzero solution to a Fourier or Laplace 

transform of a fundamental solution. 

2.0.7.2. Finding Integml Tmnsforms. \Ve provide an overview of 

the transform method. For simplicity we consider the single linear 

equation 

Ut= P(x, u(nl), X En c;;;; ffi.. (2.0.48) 

Using Lie's method we find vector fields of the form 

v = t, u)Bx + T(x, t, u)Bt + cjy(x, t, u)Bu, (2.0.49) 

which generate one-parameter groups preserving solutions of (2.0.48). 

We denote by 1"LE = p(expc:v)u(x, t) the action on solutions generated 

by v. Typically we have 

p ( exp EV) U (X, t) = a-( X, t; C:) U (a l ( .T, t; C:) , a2 (X, t; E)) , (2.0.50) 

for some functions IJ, a 1 and a 2 . We call IJ the multiplier and a1 and a2 

the change of variables of the symmetry. Now suppose that (2.0.48) 
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has a fundamental solution p(t,x,y). Then the function 

u(x, t) = 1 f(y)p(t, x, y)dy, (2.0.51) 

solves the initial value problem for (2.0.48) with appropriate initial data 

u(x, 0) = f(x). The idea behind the transform method is to connect the 

solutions (2.0.50) and (2.0.51). To do this, let us consider a stationary 

solution u = u0 (x). Applying the symmetry gives 

p(exp Ev)u0 (x) = a(x, t; c)u0 (a1(x, t; c)). (2.0.52) 

Then taking t = 0 and using (2.0.51), leads to 

1 a(y, 0; c)uo(ai (y, 0; E)p(t, x, y)dy = a(x, t; c)u0 (a1 (x, t; E)). 

(2.0.53) 

Since a and a1 are known, we have an equation for p(t, x, y). As an 

example we consider the one-dimensional heat equation Ut = Uxx· If 

u(x, t) solves the heat equation, then forE small enough, so does 

(2.0.54) 

Taking u0 = 1, equation (2.0.52) gives 

(2.0.55) 

where p( t, x) is the one-dimensional heat kernel. Then the multiplier in 

the symmetry (2.0.54) is the two-sided Laplace transform of p(t, x- y). 

We can recover p(t, x- y) by inverting (2.0.55). It turns out this result 

can be generalised to more complex problems. We present a result 

telling us when the relevant equations have nontrivial symmetries. A 
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proof of the following proposition is in [20]. The '"'I= 1 case was proved 

by Lennox [56]. 

PROPOSITION 2.0.34 (Craddock-Lennox). If '"'f =/= 2, the PDE 

Ut= ax"Yuxx + J(x)ux- g(x)u, X 2': 0 (2.0.56) 

has a nontrivial Lie symmetry group if and only if f is a solution of 

one of the following families of drift equations. 

Lf = Ax2-" + B (2.0.57) 

(2.0.58) 

where 

Lf = ax" ( xl-f' f(x) )" + f(x) ( xl-f' f(x) )' + g(x) + xg'(x). 
2a(2- '"'f) 2a(2- '"t) 2- '"'I 

(2.0.59) 

If '"'f = 2 then the PDE has a nontrivial Lie group of symmetries if and 

only if 

Uf=A 

UJ=Alnx+B. 

With v(x) = we have 

Uf X2 11 ( ) j (X) 1 ( ) f (X) X g' (X) ln X ( ) = -V X + --V X - -- + + g X . 
4 4a 4x 2 

(2.0.60) 

(2.0.61) 

(2.0.62) 

For equations with nontrivial symmetries we can find integral trans-

forms of fundamental solutions. The first result was proved in [56]. 



2. INTEGRAL TRANSFORM METHODS IN ONE DIMENSION 57 

THEOREM 2.0.35 (Lennox). Let f be a solution of the Riccati equa-

tion 

CYxj'- CY f + + 2f-1CYX2 = Ax +B. (2.0.63) 

Let U0 (x) be a stationary solution of 

Ut = CYXUxx + f(x)ux- f-lXU. (2.0.64) 

Then there is a fundamental solution p( t, x, y) of (2. 0. 64) such that 

U>.(x, t) = 100 U0 (y)p(t, x, y)e->.Ydy, 

where 

U>.(x, t) = exp { ( F ( (1 + :-\t)2) -F(x)) - x 

Uo ( (1 +: -\t) 2 ) . (2.0.65) 

Here F'(x) = f(x)jx. 

Note that if f-1 = 1 in (2.0.64) then the solution satisfying u(x, T) = 

1 gives the price of a zero-coupon bond in the case where the instan-

taneous short rate Xt satisfies the SDE 

See the book [27] for more details. 

An extension of this theorem was proved by Craddock and Lennox 

in [22]. 
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THEOREM 2.0.36 (Craddock-Lennox). Suppose that h(x) = x 1-" f(x) 

is a solution of the Riccati equation 

(2.0.66) 

Then the PDE 

Ut= ax"uxx + f(x)ux- g(x)u, x 2:: 0 (2.0.67) 

has a symmetry of the form 

- 1 { -4E(x2-" + Aa(2- 1') 2t 2)} UE(x, t) = 1 exp x 
( 1 + 4Et) a ( 2 - /') 2 ( 1 + 4Et) 

exp - F 2 - F(x) u 2 , , { 1 ( ( X ) )} ( X t ) 
2a (1 + 4Et) 2-, (1 + 4Et) 2--y 1 + 4Et 

where F'(x) = f(x)/x" and u is a solution of the PDE. That is, UE is 

a solution of (2.0. 67) whenever u is a solution. If u(x, t) = u 0 (x) with 

u0 an analytic, stationary solution then there is a fundamental solution 

p(t,x,y) of (2.0.67) such that 

(2.0.68) 

The proof we present below is taken from [22]. 

PROPOSITION 2.0.37. The solution U>..(x, t) zn Theorem 2.0.36 is 

the Laplace transform of a distribution. 

PROOF. This follows from the observation that U>..(x, t) can be writ-

ten as a product of >.v for some value v and an analytic function G(1/ >.). 

Any function which is analytic in 1/ >.is a Laplace transform. Further, 

>.v is the Laplace transform of a distribution. The product of two 
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Laplace transforms is a Laplace transform. Hence U>.(x, t) is a Laplace 

transform. See the table in [71], p348 for the inverse La place transform 

of Av for different values of v and Chapter 10 for general results on when 

a distribution can be represented as an inverse Laplace transform. D 

Now we proceed to the proof of the main result. 

PROOF. Lie's method shows that (2.0.67) has an infinitesimal sym-

metry of the form 

8xt 2 4x2- 1 4x1- 1 tj(x) 2 
V = --Bx + 4t at - ( (2 )2 + ( ) + {Jt + 4At )u8u, 2-1 a -1 a2-1 

(2.0.69) 

where f3 = Exponentiating this symmetry and applying it to 

a solution u(x, t) yields UE. By the remarks at the beginning of the 

chapter we write 

U>.(x, t) = loo U>.(Y, O)p(t, x, y)dy. 

Now U>.(x, 0) = e->.x2--r u0 (x). This implies that 

But this is the generalised Laplace transform of u0p. We then need to 

show that U>. is a generalised Laplace transform of some distribution 

UoP· Since 

100 100 -1 -ld 2--r 1 1 z 2 --r z e->.y u0 (y)p(t, x, y)dy = e->.zu0 (z2--r )p(t, x, z2--r) , 
0 0 2-1 

we must show that U>.. is the Laplace transform of some distribution 

u0p. This follows from Proposition 2.0.37. Now to show that p is a 

fundamental solution of the PDE, we integrate a test function rp(A) 
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with sufficiently rapid decay against U>.., then the function u(x, t) -

j 0
00 U>..(x, t)cp(>..)d>.. is a solution of (2.0.67). Note that we have 

u(x, 0) = 100 U>..(x, O)cp(>..)d>.. = 100 u0 (x)e->..x2--r cp(>..)d>.. = u0 (x)<I>(x), 

where <I> is the generalised Laplace transform of cp. Next observe that 

by Fubini's Theorem 

100 uo(y)<I>(y)p(t, x, y)dy = 100 100 u0 (y)cp(>..)p(t, x, y)e->..y2--r d>..dy 

= 100100 uo(y)cp(>..)p(t, x, y)e->..y2--r dyd>.. 

= 100 cp(>..)U>..(x, t)dx = u(x, t). 

We know that u(x, 0) = u0 (x)<I>(x). Thus integrating the initial data 

u0 <I> against p solves the Cauchy problem for (2.0.67), with this initial 

data. Hence p is a fundamental solution. D 

An important fact is that this theorem can always be used to pro-

duce a fundamental solution which is a probability density. This is in 

contrast to other methods, which do not always achieve this; see the 

remarks in Chapter 1, subsection 1.2.2. However we have the following 

corollary. 

COROLLARY 2.0.38. If g = 0 in (2.0.67), then there is a fundamen-

tal solution p( t, x, y) with the property 

100 ->..y2--r ( )d _ 1 { -4E(x2-"Y + Aa(2- 1)2 t2 )} 
e pt,x,y Y- 1 exp ( )2 ( ) 

o ( 1 + 4Et) a 2 - I 1 + 4Et 

x exp { __!__ (F ( x 2 ) - F(x)) } , 
2a (1 + 4Et) 2--r 

and fooo p(t, x, y)dy = 1. Here E = ia(2- r? >... 
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PROOF. Since g(x) = 0 we may take u0 (x) = 1 in 2.0.36. Observe 

that U0 (x, t) = 1. Thus J0
00 p(t, x, y)dy = 1. D 

For the "( = 2 case we have a similar result. 

THEOREM 2.0.39 (Craddock-Lennox). Suppose that 

x2 ( f (X) ln X) 11 + f (X) ( ( f (X) ln X) 1 
_ + X ln X 91 (X) + g (X) = A. 

4 X 4a X X 2 

(2.0.70) 

Let u0 (x) be a stationary solution of 

(2.0.71) 

which is analytic near zero. Then there is a fundamental solution of 

(2.0.71) such that 

(2.0.72) 

where 

and F'(x) =e-x f(x). 

PROOF. The proof is similar to the previous result. If the drift f 
satisfies (2.0.70), then the PDE has an infinitesimal symmetry of the 

form 
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with g(x) = - 1) . Exponentiating V and applying it to Uo pro-

duces UE(x. t). This has the initial value Uf(x, 0) = v.0 (x)e-;;(lnx)2 • The 

proof follows the same lines as previously. D 

Results for obtaining fundamental solutions for the other Riccati 

equations were established in Craddock [26] and Craddock and Lennox's 

papers [22] and [20]. In particular, Craddock constructed Laplace 

transforms of fundamental solutions for the other Riccati equations 

which give nontrivial symmetries. These results can be used to ob-

tain transition densities and functionals for many one-dimensional pro-

cesses. We present some examples below. 

2.0.7.3. Finding Drifts. To obtain drift functions, \ve set 

J(.r) = 2(J'xy'(x)jy(x). 

This transforms equation (2.0.63) to the linear ODE 

(2.0.73) 

A substitution of the form y = xmenxu reduces this to the confluent 

hypergeometric equation, so (2.0.73) has the general solution 

-ix .Jii ;3/2 ( 2 i X y1i . / 2 i X y1i ) y(:r) = e x a1F1 (a,f3, fo ) + bw(a:Ji, fo ) , 

(2.0.74) 
( 3 r;-:2li 3 ) - iA-2foa2'-2foyl+-;;Ta2 

where a and b are constants, a = 3 (7 , f3 = 1 + 
4foa2 J 1 + , 1 F1 is K ummer · s confluent function and W 

is Tricomi's confluent hypergeometric function, given by formula 13.1.6 

in [1]. These are solutions of the confluent hypergeometric equation. 

This implies that f is analytic. To obtain a stationary solution ·u0 we 
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solve 

aXUxx + f(x)ux- J.LXU = 0. (2.0.75) 

We set u = u(x)efcp(x)dx with <p(x) = - 2;xf(x). Making the substitu-

tion gives 

(2.0.76) 

Equation (2.0.76) is solved in terms of Bessel functions. Hence u0 is 

also analytic. 

EXAMPLE 2.0.5. If A = 0, then 

(2.0.77) 

Here TJ = ! J 1 + 2B / a 2 , JTJ, YTJ are Bessel functions of the first and 

second kinds and a and b are arbitrary constants. If B = a = 0 and b = 
1, we obtain the drift function f ( x) = 2 x VJiCi cot ( x .J!) . A stationary 

solution of (2.0.75) is u0(x) = csc (x.J!). Applying Theorem (2.0.35) 

we obtain 

UA(x, t) = exp { 1 csc · 
Computing the inverse Laplace transform gives the fundamental solu-

tion, 

{ -(x + y)} ( ..jX 2-.fiY ) sin(y..J!) 
pjj(t,x,y) = exp at +l)(y) sin(x..J!). 

EXAMPLE 2.0.6. Setting A= 0, B = 4a2 , a= 1 and b = 1 in the 

general solution (2.0.74) we obtain the drift function 

f(x) = (g(x) + 

where g(x) = (x .fii + JCT) cos(x.J!)+(x .fii- JCT) Omit-

ting the details, we obtain via Theorem 2.0.35 a fundamental solution 
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of Ut= axuxx + f(x)ux- J.LXU. It is 

1 { x+y} (2JXy) g(y) p11 (t, x, y) =- exp --- - 13 -( ) • 
at at y at g x 

These classes of equations arise in bond pricing. 

2.0.8. Applications to Stochastic Calculus. We present some 

applications to stochastic calculus. The results below show how to cal-

culate expectations of the form t ). We wish to compute 

these expectations when f satisfies the Riccati equation 

The approach taken in this section is to use group-invariant solution 

techniques. Recall from Chapter 1, that Bluman has used this method 

to find fundamental solutions of Fokker-Planck equations of the form 

Ut = Uxx + (f(x)u)x, ([11]). Some of the fundamental theorems ob-

tained could in principle be deduced from Bluman's results by deriving 

a suitable point transformation. The analysis here is presented with an 

aim to calculate functionals of certain square root processes directly, 

without requiring any change of variables. Applications and examples 

will be presented below. 

THEOREM 2.0.40 (Lennox). Suppose that 

axf'- a f + = + Bx + C, A> 0. 

Then the PDE 

J.L Ut= axuxx + f(x)ux- -u, J.L 2: 0 
X 
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has a fundamental solution of the form 

p( t, x, y) = - exp -- - -----'-----===-
{ Bt VA(x + y) } 

2a sinh( '1t) Y 2a 2a tanh( '1t) 
x (cl(y)Iv ( JAXyr-. ) + C2(y)Lv ( JAXyr-. )) , 

a sinh( v :t) a sinh( v :t) 

in which F'(x) = f(x)jx and v = and we interpret Lv(z) 

to be Kv(z) if v is an integer. 

PROOF. Lennox proved in [56] that the PDE has a Lie algebra of 

symmetries spanned by 

Using Theorem 1.2.24 from Chapter 1, we find invariants of v = 

2:!=1 ck vk which preserve the boundary conditions. The invariants are 

X 
'T]= ' 4 sinh 2 ( '1t ) 

( (Bt + F(x)- F(y)) VA(x + y) ) ( x ) 
u = exp - 2a - 2atanh('1t) v 4sinh2 ('1t) . 

Using these invariants the PDE becomes 

Solving this ODE proves the result. D 

The functions C1 (y) and C2 (y) depend on the boundary conditions. 

The dependence of C1 , C2 is often overlooked in the literature. Usually 
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it is sufficient to take C 1 (y) = 1, C2 (y) = 0. The proofs for the following 

corollaries can be found in [20]. As an application we calculate the 

Laplace transform of the joint density of (Xt, J: for an important 

process. 

CoROLLARY 2.0.41. The PDE 

J.L Ut= aXUxx +(a- bx)ux- -u, J.L 2': 0, a 2': 0 
X 

has a fundamental solution 

(2.0.78) 

b ( y) 2':,.- ( b ( X + y ) ) 
p(t,x,y) = exp 2a at+ (x- y)-

( by'XY ) 
x lv · (2.0.79) 

Here v = a) 2 + 4J.La. 

This next result gives the two-dimensional Laplace transform of the 

joint density of the two-dimensional process ( Xt, J; 
COROLLARY 2.0.42. Let 

k = !!.._ 
2a' 

b bt 
a= -(1 +coth(-)) + >., 

2a 2 
f3 = by'X . 

2a 

and Ms,r(z) be the Whittaker functions of the first kind. For the CIR 

process dXt =(a- bXt)dt + .j2aXtdWt we have 

Ex e- t-t-tJo x. = 2 2 f3x-k exp -(at+ x- ) ( >.X rtds) f(k+!:+!) (b X ) 

r(v + 1) 2a 

(2.0.80) 

PROOF. By the Feynman-Kac formula, Theorem 1.2.16 of Chapter 

1, the expectation u(x, t) =Ex ( t) is a solution of (2.0.78), 
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with u(x, 0) = e-Ax. This solution is obtained by integration against 

the fundamental solution and so is given by 

(2.0.81) 

The result follows from the fact that 

which is formula 6.643.2 of [35]. D 

Craddock and Lennox proved further results along these lines in 

[20]. We refer the reader to this paper for further details. 

2.0.9. Square root process functional. In Chapter 5, we present 

some applications in finance. We give two examples of the calculation 

of functionals. The first result will be used to price a volatility swap. 

PROPOSITION 2.0.43. Let X= {Xt : t 0} satisfy the SDE 

dXt = (a- bXt)dt + 

Let (3 = 1 +m- a+ m = ! ( - 1) and v = J (a - a) 2 + 411a. Then 

if m> a -1, 

lEx Jo x. = -x-me- u(J:_l) +bmt ..!!.._ be 2 X [ 
rt ds l ( ( bt ) -m+a-!!. 
Xf d11 (ebt- 1) a 

b2x r(1 +m- bx ( ) 
v/2 

4a2 sinh2 (¥) f(1 + v) ,F, (!i, 1 + v, "(e" - 1))) 

PROOF. The PDE Ut = axuxx +(a- bx)ux-; has fundamental 

solution 

1 b( at+x-y-(x+y) coth(!!.})) 
p(t, X, y) = . (bt) be 2u 2asmh 2 

( y)m ( by'XY ) 
;; lv a sinh · 
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Then lE 
X Xf = - J I . Now by the Feynman-

11=0 
Kac formula 

(2.0.82) 

The integral can be done in Mathematica or use 6.631 m [35]. The 

result follows. 

Another example of this type follows. 

PROPOSITION 2.0.44. Let X= {Xt: t 0} satisfy the SDE 

dXt = (a- bXt)dt + 

Let A = b2 + 4p,a, m = a) 2 + 4av, (3 = v'AX and k 
v asinh(Vft 

A+btanh(Vft) . 
----'--rv'A#-t-'-. Then if a > ( 2a - 3) a, 
2atanh(-2-) 

D 

r (a+(3+m-2a)a) 
2a _a+(3+m-2<>)u (a+ (3 +m- 2a)a (32 ) 

x -'-r__,(_1_+_m_) ---=-k 2u IFI 2a '1 +m, 4k ' 

and 

PROOF. We proceed as for the previous proof. The necessary fun-

damental solution can be found using a similar approach to Theorem 

2.0.40, see [20]. We find the fundamental solution 

y'}IXY b(x-y+2atu)-vA(x+y) coth( 4t) ( Y) a 

p(t, x, y) = . (VAt) e 2.,. -;;; 
2

(1 Im ((3y'Y), 
2asmh - 2-
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and the expectation is 

lEX [xt-ae-p, J; -v J; Xsds] loo -a (t )d = o y p ,x,y y. 

D 





3 

Integral Transform Methods in Higher Dimensions 

For one-dimension problems we can obtain one-dimensional Laplace 

and other classical transforms of fundamental solutions. We would like 

to extend this technique to higher-dimensional problems, however in 

higher dimensions we usually do not have enough one-parameter sub-

groups to construct these integral transforms. 1 Even so, we show in this 

chapter that for certain subclasses of equations, specifically when there 

are Heisenberg group symmetries, we can in fact find such transforms. 

We also show how to compute transition densities for these classes of 

two-dimensional processes using Lie symmetry methods. We illustrate 

with the two-dimensional heat equation. 

3.0.10. Multidimensional Fourier transforms. The two-

dimensional heat equation has infinitesimal symmetries of the form 

(3.0.84) 

These symmetries, together with the vector fields v3 = ax, V4 =ay and 

Vs = uau span a copy of the five-dimensional Heisenberg Lie algebra. 

Exponentiating, we see that if u(x, y, t) is a solution of 

Ut= Uxx + Uyy, (3.0.85) 

1 It has long been known that invariance under an n-dimensional Abelian group, 
allows an n-dimensional PDE to be solved by integral transform. In this chapter, 
we construct integral transforms when the symmetry group is non-Abelian. 

71 
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then so are 

(3.0.86) 

and 

(3.0.87) 

If we apply these symmetries one after the other we obtain the solution 

(3.0.88) 

Now we use the right hand side of (3.0.88) and let u = u0 be a sta-

tionary solution. Let p(t, x, y, ry) be a fundamental solution of the 

two-dimensional heat equation. As in the one-dimensional case we ar-

gue that 

1: 1: TJ, O)p(t, x, y, = UE,8(x, y, t) (3.0.89) 

which is the same as 

1: 1: ry)p(t, x, y, 

= e-Ex-oy+(o2+E2)tuo(x- 2Et, y- 28t). 

(3.0.90) 

Now (3.0.90) is the two-dimensional, two-sided Laplace transform of p. 

Suppose we take u0 = 1 and replace E with iE and 8 with i8. Then we 

have 

(3.0.91) 
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We have thus obtained the two-dimensional Fourier transform of the 

fundamental solution. Inverting gives 

It is possible to compute these types of Fourier transforms whenever 

there is a Heisenberg group of symmetries. There are two cases where 

this occurs. The first result is the following. 

THEOREM 3.0.45. We consider the PDE 

Ut= + 2"\lc/J ·Vu+ B(x)u, x E IR.n, (3.0.92) 

where cjJ is a solution of the quasi-linear PDE 

+ 1Vc/JI 2 + A(x) = B(x), 

and A(x) = aixi+an+l· Suppose also that u 0 is a nonzero solution 

such that as a function of E, 

is in L 1 (IR.n) n C2 (IR.n). Here uo(x, E, t) = uo(xl- 2iElt, ... , Xn 

-2iEnt, t) and z(x, E)= cjJ(xl -2iElt, ... , Xn -2iEnt) -cjJ(x1, ... , Xn)· Then 

there is a fundamental solution p(t, x, y) of (3.0.92} such that 

r EkYkp(t, x, y)uo(Y, O)dy = K(t, x, E). 
IJKn 

(3.0.93) 
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PROOF. The PDE (3.0.92) has Lie symmetries coming from an ac-

tion of the Heisenberg group given by 

and so K(t, x, E) is a solution of the PDE. Observe that 

Since K(t, x, E) is integrable define 

1 1 P(t x y) = -- ezL...k=l EkYk K(t x E)dE 
' ' (2n)n ' ' . 

(3.0.94) 

Since K E L1 (JRn) n C2 (JRn), the Fourier transform of P exists, (see 

Theorem 1.2.6, Chapter 1). Now we let u(x, t) = cp(E)K(t, x, E)dE, 

where cp is a test function of suitably rapid decay. Notice that 

= u0 (x, O)«P(x), 

where «P is the Fourier transform of cp. 

An application of Fubini's Theorem then shows that 

= { cp(E)P(t, x, y)e-ii:k=l EkYkdydE 

= { cp(E)K(t, x, E)dE = u(x, t). 
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Thus integrating «P against P produces a solution with u(x, 0) = u0 «P. 

Hence P(t, x, y) = p(t, x, y)u0 (y, 0), where pis a fundamental solution. 

D 

EXAMPLE 3.0.7. We will compute a fundamental solution of the 

PDE 

Ut = Uxx + Uyy + ( ax + by + C) U, (X, y) E JR 2. 

We use the exponential solution u(x, y, t) = 

The PDE has a symmetry 

(3.0.95) 

So by Theorem 3.0.45, we have 

(a2+b2)t3 

P(t X y c n) = e 3 +et r eii;E+i1Jc5eb(y-itc5)t+a(x-itE)t-(c52 +E2 )t-iyc5-ixEdEd8 
' ' '"'''/ (27r)2 

et 2 2 
= (x-0 :t"t(y-1)) 

47rt 

Similarly, one can show that then-dimensional PDE 

n 

Ut = + (Z:: aixi + c)u (3.0.96) 
i=l 

has a fundamental solution 

There is a second case where we can extract fundamental solutions 

by Fourier inversion. These also arise from the Heisenberg group sym-

metries. 
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THEOREM 300.46. We consider the PDE 

Ut= + 2"\lc/J · "\lu + B(x)u, x E JR.n, (3.0.97) 

where cjJ is a solution of the quasi-linear PDE 

+ l"\lc/JI 2 + A(x) = B(x), 

d A( ) _ 1 "'"'n 2 0 L ( ) _ rh( 2iq sinh(y'Clt) an x - - 4 L..k=I ckxk, ck > 0 et z x, E - 'f' x 1 - v'C2 , 000, 
2iEn sinh( yc;;t)) rh( ) S l h 0 

Xn - ye;; - 'f' x 1 , 0 •• , Xn . uppose a so t at u0 zs a nonzero 
Cn 

solution such that as a function of E 

o ,..n ( ) ,..n 2 sinh(2vek"t) ( ) K(t X E) = e-t L..k=l EkXk cosh .,fCkt - L..k=l Ek 2vek" +z X,E 

' ' ' 
( 2iEl sinh( ylclt) 2iEn sinh( Fnt) ) 

X Uo X1- , ... , Xn- , t , 
yCl yCn 

is in L 1 (JR.n) n C 2 (JR.n)o Then there is a fundamental solution p(t, x, y) 

of {3.0.97) such that 

r e-il:k=l EkYkp(t, x, y)uo(Y, O)dy = K(t, x, E). 
}JRn (3.0.98) 

PROOF. Using Lie's algorithm, we can show that there is a sym-

metry of the PDE of the form 

. ,..n ( ) "'n sinh(2vek"t) 2 ( ) 
IIn ( ( o ) ( t) -t L..k=l EkXk cosh y'Clt - L..k=l 2 11'7 Ek +z x,E k=lp exp ZEkVk U X, = e vck 

( 2iE1 sinh( ylclt) 2iEn sinh( Fnt) ) 
X U X1- , ... , Xn- , t o 

yCl yCn 

The remainder of the proof proceeds along the same lines as the proof 

of Theorem 300.45. D 

We can handle the case A(x) =- +akxk) +b by making 

a change of variables in theorem 3.0.46. As in the one-dimensional 

case, we can always obtain a probability density. 
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COROLLARY 3.0.47. Let p(t, x, y) be a fundamental solution ob-

tained from Theorem 3.0.45 or Theorem 3.0.46. If B = 0 and u 0 = 1, 

then 

r p(t,x,y)dy=l. }&.n 

PROOF. From Theorem 3.0.45, f&.n e-il:;k=l EkYkp(t, x, y)dy = K(t, x, E), 

so that f&.n p(t, x, y)dy = K(t, x, 0) = 1 provided u 0 = 1. Similarly for 

Theorem 3.0.46. D 

EXAMPLE 3.0.8. We obtain a fundamental solution for 

1 ( 2 2) Ut = l::!.u - 4c x + y u, c > 0 

for x, yE IR2 . We use the solution 

Applying Theorem 3.0.46 we obtain the following Fourier transform 

-c( x 2 +y2 +4t) -4iy'Ce-Vct(y6+X<)-2( 1-e-2y'Ct) ( 62+<2) 

p(t, x, y, E, b) = e 4 v'C (3.0.99) 

Then there is a fundamental solution such that 

u 1(x, y, O)p(t, x, y, TJ) = 

The integrals are standard Gaussians and the inversion may be carried 

out easily. For a discussion of Fourier inversion see [68]. We arrive at 

the fundamental solution 

(3.0.100) 
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Next we compute a transition density for a two-dimensional It6 

process. 

EXAMPLE 3.0.9. Suppose we are interested in the process 

Xt(6-Xz-Y?) m 1 
dXt = (X2 '\72) - dt + V 2dWt ' 2 t + Lt 4 

Yt(6- x;- Y?) m 2 
dyt = (X2 '\72)- dt +V 2dWt. 2 t + Lt 4 

To obtain the transition density we must solve 

Take the stationary solution u0 (x, y) = 1. Let 

e2t 
K(t, x, y, TJ) = 2 (e2t- 1) 7r e 

x2 -2ety1J+e2t ( '72+{2) 

2(e2t_l) 

(3.0.101) 

(3.0.102) 

(3.0.103) 

(3.0.104) 

Then applying Theorem 3.0.46 gives the fundamental solution 

p(t, x, y, TJ) = LK(t, x, y, TJ), (3.0.105) 

where 

L 4 sinh t ( a a ) 4 sinh 2 t ( a2 a2 ) = 1 - x- + y- + - + -
x2 + y2 - 2 ary x2 + y2 - 2 ae ary2 . 

One strength of this methodology is that it allows for the calcu-

lation of many different fundamental solutions. To illustrate take the 

stationary solution 
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where Ei is the exponential integral, [1], p227. According to Theorem 

3.0.46 

- 1 r e-e-t(i(yHxE)+(82 +E2 )sinh(t)) 

(27!-)2 JJR2 uo(x,y)(x2 +y2- 2) 

x (x2 + y2 - 4sinh(t) (i(yo + xE) + (82 + E2) sinh(t))- 2) 

x y'eEi ((x- 2isinh(t)) 2 + (y- 2isinh(t)) 2 - 2)) 

- Ei ( ( (x - 2i sinh t) 2 + (y- 2i sinh t) 2)) d8dE, 

is also a fundamental solution, different from the one above. We have 

not attempted to invert the Fourier transform. Many other fundamen-

tal solutions can be found by our methods. 

3.0.11. A Generalization ofBessel Processes. There are some 

cases where we do not have Heisenberg group symmetries, but we can 

still obtain a fundamental solution by inverting a transform. Let us 

briefly present such an example. We consider the process 

(3.0.106) 

with ai > 0, i = 1, 2, ... , which may be regarded as a multivariable 

analogue of a Bessel process. There are other known generalisations of 

Bessel processes, such as Wishart processes, see [14]. 

PROPOSITION 3.0.48 (Craddock-Lennox). The transition density 

for then-dimensional process Xt = (Xl, ... ,Xf") satisfying (3.0.106), 
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may be found by inverting the n-dimensional generalised Laplace trans-

form 

PROOF. It is easy to see that UE, ... ,E(x1, ... , Xn, t) is a solution of the 

Kolmogorov backwards equation 

(3.0.107) 

It is also a generalised Laplace transform. To see this, the change of 

variables x; --+ Yi reduces it to a Laplace transform, and the result-

ing expression is a product of one-dimensional Laplace transforms and 

hence a La place transform. (See [71 J for conditions under which a 

function is a Laplace transform). Arguing as in the Fourier transform 

case, we suppose that 

for some p. Setting Ei = 0, i = 1, ... , n gives p = 1. The proof that 
+ 

p is a fundamental solution is now exactly as in the Fourier transform 

case. We integrate a test function of sufficiently rapid decay against 

Uq, ... ,En to obtain a solution 

(3.0.108) 
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with u(x1 , •.. = <I>(xi, ... Using the same Fubini's Theorem 

argument as in the Fourier transform case we find that 

Thus integrating ... , against p produces a solution of (3.0.107), 

with initial data u(x1 , ... , 0) =<I>( xi, ... , This shows that pis a 

fundamental solution of the Kolmogorov backwards equations and it 

has total integral one. D 

This generalised Laplace transform is actually constructed by tak-

ing the symmetry of Corollary 1.2.33, and writing it as a product of n 

one- dimensional symmetries, each with a different group parameter. 

It seems that this approach can be extended to other equations but 

we do not consider it here. Inversion of the n-dimensional generalised 

Laplace transform is easily accomplished. For example, for n = 2 we 

have 





4 

Expansions of Fundamental Solutions 

Standard techniques used to obtain fundamental solutions in the 

one-dimensional case often cannot be extended to higher-dimensional 

problems of the type we are concerned with in this thesis because there 

is not enough symmetry. Equations of the form 'Ut = /:iu, + A(x )u 

on IRn for n 2:: 2 typically have only SL(2, IR) x lR as the symmetry 

group. As the dimension of the PDE grows, the dimension of the Lie 

point symmetry group remains unchanged. As a result we do not have 

enough one-parameter subgroups to construct integral transforms. In 

this chapter we present the major contribution of the thesis. For a 

rich class of n-dimensional equations, we show that we can obtain fun-

damental solutions by Lie symmetry analysis if the symmetry group 

contains SL(2, IR). For the class of PDEs under study we obtain a 

series expansion of the desired solution. The method exploits the fact 

that the PDEs of interest have infinitely many linearly independent sta-

tionary solutions. The expansions we obtain for fundamental solutions 

are technically not eigenfunction expansions but they use eigenfunction 

expansions in their derivation. The two-dimensional problem can be 

regarded as completely solved and we can obtain some useful expres-

sions for the n-dimensional problem. There are many cases where the 

eigenvalue problem can be solved analytically, and we present some 

examples in this chapter. However in most cases we can only obtain 

a numerical solution of the eigenvalue problem. We illustrate the idea 

83 
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for the case n = 2 and consider higher dimensions later. In Chapter 1 

we saw that every PDE of the form 

Ut= Uxx + Uyy + : 2 k U, ( 4.0.109) 

has a Lie point symmetry 

ux t= ex- u . _ 1 ( E(x2 + y2)) ( X y t ) 
E ( ' y' ) ( 1 + 4Et) p 1 + 4Et 1 + 4Et ' 1 + 4Et ' 1 + 4Et 

( 4.0.110) 

Now we integrate a test function tpagainst uE. Then, as long as 'P has 

sufficient decay 

(4.0.111) 

is a solution of (4.0.109), which satisfies 

U(x, y, 0) = u(x, y, O)<I>(x2 + y2 ), ( 4.0.112) 

with <I> the Laplace transform of 'P· By linearity, if { uk} are stationary 

solutions and { 'Pk} are test functions, then 

00 {00 
U(x, y, t) = £; Jo y, t)dE (4.0.113) 

is a solution satisfying 

00 
U(x, y, 0) = L uk(x, y)<I>k(x2 + y 2 ). (4.0.114) 

k=l 

Here 

ux t= ex- u . -k 1 ( E(x2 + y2)) ( X y t ) 
E ( ' y' ) ( 1 + 4ft) p 1 + 4Et k 1 + 4ft ' 1 + 4ft ' 1 + 4ft 

(4.0.115) 
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If the stationary solutions are sufficiently rich, we may recover essen-

tially any reasonable initial condition. This is the basis for the next 

result. We treat the problem in polar coordinates. 

THEOREM 4.0.49. Suppose that K is continuous and that the Sturm-

Liouville problem 

L"(O) + (K(O) + >.)L(O) = 0 (4.0.116) 

(4.0.117) 

(4.0.118) 

has a complete set of eigenfunctions and eigenvalues, and that the 

eigenvalues are all positive. Consider the initial and boundary value 

problem 

1 1 K(O) 
Ut = Urr + -Ur + 2Uoo + - 2-u, r r r 

(4.0.119) 

r > 0, a::;()::; b, a, bE [0, 2n]. 

u(r, (), 0) = f(r, 0), f E V(O), 

Here n = [0, 00) X [a, b] in polar coordinates. Then there is a solution 

of the form 

u(r, (), t) = 100 1b f(p, c/>)p(t, r, (), p, c/>)pdc/>dp, (4.0.120) 

where 

p(t, r, (), p, c/>) = ;t e- r
2t/ L Ln(c/>)Ln(O)IYTr; , (4.0.121) 

n 
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in which Ln(O), An, n = 1, 2, 3 ... are the normalised eigenfunctions and 

corresponding eigenvalues for the given Sturm-Liouville problem. 

PROOF. The PDE has a Lie group symmetry, the action of which 

in polar coordinates is given by 

u r 0 t = e- I+4<t u 0 1 <r2 ( r t ) 
E ( ' ' ) 1 + 4Et 1 + 4Et ' ' 1 + 4Et ' 

(4.0.122) 

for E > -:ft. This is obtained by taking the symmetry of Corollary 

1.2.33 and converting it to polar coordinates. We first argue formally. 

The idea is to use superposition and symmetry integration to produce 

a solution of the form 

u(r,O,t)=L100 '1/Jn(E) 1 r4 ,o)dE, (4.0.123) 
0 1 + 4Et 1 + Et n 

in which each Un is a stationary solution of (4.0.119). The functions 

'1/Jn are chosen to guarantee that the integrals and sums are convergent. 

We select separable stationary solutions such that 

Substitution into ( 4.0.119) shows that we require 

r2 R" + r R' - AR = 0 n n n ( 4.0.124) 

+ (K(O) + A)8n(O) = 0. (4.0.125) 

We choose An and 8n(O) = Ln(O) to be the eigenvalues and normalised 

eigenfunctions of the given Sturm-Liouville problem. We also choose 

Rn(r) = ry;:;;. Then our stationary solution is 

Un(r, 0) = ry;:;; Ln(O). 
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Now from solution (4.0.123), we have with this choice of stationary 

solution 

( 4.0.126) 
n 

We require u(r, 0, 0) = f(r, 0). Then we must have 

(4.0.127) 
n 

Now since the eigenfunctions Ln are complete, we may write 

f(r, 0) = L Cn(r)Ln(O), (4.0.128) 
n 

where 

( 4.0.129) 

This implies that we must choose 

2 1 rb -
Wn(r ) = r..;>:;; la f(r, c/>)Ln(c/>)dc/>. (4.0.130) 

The solution we are working with has the form 

l oo r ..;>:;; 2 

u(r, 0, t) = 1/Jn(E) Ln(O)dt. 
0 (1 + 4Et)1+ An 

(4.0.131) 

We rewrite (4.0.131) in terms of the Laplace transform. We observe 

that 
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Assume that we may reverse the order of summation and integration. 

Using this expression, we find that 

(4.0.133) 

where we have reversed the order of integration and evaluated the E 

integral. Then we set z = p2 to obtain 

(4.0.134) 

Here we have replaced Wn(p2 ) with the value given by (4.0.130). By 

construction this function satisfies both the initial and boundary con-

ditions and by symmetry it is a solution of the PDE (4.0.119). To 

complete the proof we establish convergence of the series 

p(t, r, 0, p, </>) = _!:_e- r
2,t/ ""Ln(</>)Ln(O)I..;>;;; (rp) . 2t L.,; n 2t ( 4.0.135) 

n 

We have the representation Iv(z) = J01l' cosh(z cos a) sin2v( a)da 

(see 8.431 of [35]). Since I sin2v(a)l ::; 1 it is obvious that 

(4.0.136) 
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Thus 

h - !.£!. w ere z - 2t. Now for each fixed z, an application of the ratio test 

shows that the series is absolutely convergent. Since 

""' is convergent it follows that ""' Any7izv'An is 
L.m An L.m An 2vr(A+!) 

convergent and hence the series (4.0.135) converges for each fixed z. 

Since L"(O) = -(K(O) + >.)L(O) and 

= (Iv-2(z) + 2Iv(z) + Iv+2(z)), 

a similar argument shows that series of derivatives are also convergent. 

So we conclude that (4.0.135) converges and defines a solution of the 

PDE. We also have the representation due to Weber 

(4.0.137) 

(formula 6.633.2 of [35]); and the orthogonality relation 

(4.0.138) 

see (p144, [70]). Now assuming that f is such that the integrals con-

verge, it follows that 

N 1b1oo -- p r2+e2 rp 
uN(r, (}, t) = 2: f(p, cp)Ln(c/>)Ln(O)-e- 4t Ivx;;- (-) dcpdp, 

a 0 2t 2t n=l 
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defines a solution of the PDE (4.0.119)which satisfies the Sturm-Liouville 

boundary conditions of the theorem. By Weber's result 

uN(r, 0, 0) = t [ 1= f(p, </>)Ln(<I>)Ln(O/(p- r) pd<f>dp 
n=l a 0 p 

N b 

= L 1 f(r, </J)Ln(<P)Ln(B)d</J. (4.0.139) 
n=l a 

So we have uN(r, B, 0) = 2:::=1 cn(r)Ln(B) --+ f(r, B) as N --+ oo. If f 

has compact support then we may apply the dominated convergence 

theorem to interchange the order of integration and summation as N --+ 

oo and conclude that 

l oo lb p ""' - (rp) u(r, (), t) = f(p, </J)-e- 4t L Ln(B)Ln(</J)l,;>:;; - d</Jdp. 
0 a 2t 2t n 

(4.0.140) 

This completes the proof. D 

REMARK 4.0.50. We have specified that fin the theorem has corn-

pact support. However we may easily extend the result to larger classes 

of functions. For a given function, we simply integrate against the fun-

damental solution and verify that we do have a solution of the initial 

value problem. 

Let us recover the two-dimensional heat kernel. We are lead to 

the Sturm-Liouville problem L"(B) = >..L(B) with L(O) = L(2n). The 

eigenvalues are )... = n 2 , n = 0, ±1, ±2, ... and the eigenfunctions are 
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Ln(B) = vkeinO_ This gives us the following representation of the so-

lution: 

The Neumann-type series 

00 

eacosy = ! 0 (a) + 2 L In( a) cos(ny), (4.0.142) 
n=l 

can be found on page 376 of [1]. Since ein(0-4J) + e-in(0-4J) = 2 cos( n( ()-

cjJ)), we can write 

00 

L ein(0-4J) Ilnl = Io + 2 L cos(n(O- cp))In c;;:) 
nEZ n=l 

= e¥f cos(0-4J). 

We conclude that 

p !::.±.e.:. !£. 100 121!" 2 2 
u(r,O,t)= o o f(p,c/J)47rte- 4t e2tcos(0-4J)dcpdp. 

To convert (4.0.144) to Cartesian coordinates, let x 

r = p cos cjJ and T/ = p sin cp. Then we have 

U(x, y, t) = ry)-e 4t 1 - 1 (x-02-(y-1))2 

JR_2 47rt 

(4.0.143) 

( 4.0.144) 

T COS(), y = 

(4.0.145) 

Here U is the solution in Cartesian coordinates and the initial value of 

the solution 'Tl) = !( + ry2, tan-1 

We can also obtain fundamental solutions restricted to different do-

mains, with different boundary conditions. We consider some examples 

below. 
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EXAMPLE 4.0.10. We solve 

Ut= flu, 

u(r, (), 0) = f(r, ()), 

7r u(r, 0, t) = u(r, 2, t) = 0. 

We require () E [0, %]. Then we choose stationary solutions of the heat 

equation of the form un(r, ()) = r 21nl sin(2n()). This gives 

1oo 2p (rp) u(r,e,t) = f(p,cj;)-e- 4 t L......Jsin(2n())sin(2ncj;)J2 Jnl - dO, 
0 0 nt 2t 

n=l 

where dO = dcj;dp, which is valid on 0 r < oo, 0 () %· The 

solution satisfies u(r, (), 0) = f(r, ()) for all () E [0, %] and moreover 

u(r, 0, t) = 0. Similarly the problem 

Ut= flu, 

u(r, (), 0) = f(r, ()), 

7r u0 (r, 0, t) = uo(r, 2, t) = 0, 

has solution 

00 1.!!: [ 2 p r2+e2 rp 
u(r,e,t) = f f(p,cj;) -e- 4t 10 (-) + 

lo o nt 2t 

00 l 2p r 2 +e2 rp 
-e- 4t L cos(2n()) cos(2ncjJ)J2 JnJ (-) dcj;dp, nt 2t 

n=l 

EXAMPLE 4.0.11. We will solve the equation 

A 2 
Ut= Uxx + Uyy- 2 2 u, (x, y) E , A> 0, 

X +y ( 4.0.146) 
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subject to the initial condition u(x, y, 0) = f(x, y), u(r, 0, t) = u(r, 27r, t). 

In polar coordinates the equation is 

(4.0.147) 

We solve the eigenvalue problem 

L"- AL = ->-.L ' 

with periodic boundary conditions L(O) - L(27r) = 0. The eigenvalues 

are ).. = n 2 +A and once more Ln(()) = eino. From this we find that 

(4.0.147) has a fundamental solution 

( - 1 - r2+e2 L in(O-c/J) (rp) p r, (), t, p, 4>)- -e 4t e Iv'n2+A - . 
41ft 2t 

nEZ 

( 4.0.148) 

It does not seem possible to obtain a closed-form expression for this 

series, however approximations can be found. Suppose that n is large 

compared to A. Then vn2 n. As n increases, the approximation 

improves. Obviously 

oo N L ein(O-c/J) I,;nz+A (z) = Ivx (z) + 2 L cos(n(()- c/>))I,;nz+A (z) 
n=-oo n=l 

00 

+ 2 L cos(n(()- c/>))I,;nz+A (z). 
n=N+l 

For N sufficiently large 

00 00 L cos(n(()- c/>))Iv'n2+A (z) L cos(n(()- c/>))In (z). 
n=N+l 
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00 

L ein(O-rP) lvn2+A C?t) exp (;'; cos(O- 4>)) + l,;x 
n=-oo 

(4.0.149) 

Different fundamental solutions can be found using different bound-

ary conditions. Let us solve 

A 
Ut = Uxx + Uyy - 2 2 U, (X, Y) E JR 2 , A > 0, 

X +y 
( 0) _ -x2-y2 u x,y, - e . 

Since J0
2n ein(O-rP)d4> = 0, n = ±1, ±2, ... there is only one term in the 

series. So we have 

Expanding the series for the fundamental solution gives 

We plot the fundamental solution for A= 1, t = 0.25, 1. 
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2 

0 

2 

FIGURE 1. Fundamental Solution at t = 0.25, = rJ = 1. 

EXAMPLE 4.0.12. We now consider the PDE 

J-LX2 
Ut = Uxx + Uyy - 2 U, J-L > 0. 

tan-1 (x2 + y2) 
(4.0.150) 

In polar coordinates this becomes 

(4.0.151) 

and we suppose that () E (0, 27r] and impose the two boundary condi-

tions that u( r, 21r, t) = 0 and u( r, o+, t) is finite. The Sturm-Liouville 

problem in this case is 

L" - (.!!._ - >-.)L = 0 
()2 ' (4.0.152) 

where L(o+) is finite and L(27r) = 0. The general solution of (4.0.152) 

is 

To satisfy the finiteness condition, we set c2 = 0 and choose An so that 

27rA =an is the nth positive zero of So if O:n is the nth 
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This leads to the fundamental solution 

with k = + 41-L and en = J;n ()Jk dO. Converting this back 

to Cartesian coordinates is straightforward. 

From this example, we could calculate a new functional of planar 

Brownian motion B(t) = (B1(t), B2 (t)). Specifically we may determine 

the expectation lE [e J, where Tt = y'(B1 (t) 2 + (B2 (t)) 2 and 

()t is the angular part of B(t). See Chapter 5 for more on this. 

The fundamental solutions we have derived can be easily converted 

back to Cartesian coordinates, and we can find fundamental solutions of 

other types of problems, such as those which give transition probability 

densities for two-dimensional stochastic processes. Here is an example. 

EXAMPLE 4.0.13. Here we look at the Ita process 

where W/·2 are independent Wiener processes. In order to obtain the 

transition density for this process we must find a fundamental solution 

of the Kolmogorov equation 

(4.0.154) 
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The change of variables u = In(x2 +y2 )v converts this to 

1 
Ut = Llu - 2 2 u. 

X +y 

This is a PDE we solved in Example 4.0.11. A solution of equation 

(4.0.154), with initial condition v(x, y, 0) = j(x, y) is then 

v(x, y, t) = r e<P(f.,TJ)-<P(x,y) TJ)p(t, x, y, 
JJR.2 

Here p is the fundamental solution found above. This leads to the 

fundamental solution of equation (4.0.154) 

We must check that this is a probability density. This is easiest in 

polar coordinates. Because J;'lr ein°d(} = 0 for n =/=- 0, there is only one 

term in the series that contributes to the integral. From [35] we find 

l oo 121r p2 2.±.e.:. (rp) --e- 4t 11 - dpd(} = 1, 
0 0 47rtr 2t 

which confirms that ( 4.0.155) is indeed a probability density. 

EXAMPLE 4.0.14. We consider the two-dimensional process 

( 4.0.156) 

(4.0.157) 
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where c1 , c2 are arbitrary constants. Now we solve 

where c1 , c2 are constants. Similar to the previous example, we can 

reduce this to Ut = flu - x2 !Y2 u, which shows that ( 4.0.158) has a 

fundamental solution 

However this fundamental solution is not a transition density, since it 

does not have total integral 1: 

We may find a fundamental solution which is a probability density as 

follows. Subtracting 1 from the right side of (4.0.159) we set 

where 8(x, y) is the Dirac delta on IR2 . If f E L1 (IR2) and is continuous, 

then 

{ ry)p(t, x, y, = { ry)Kt(x, y, 
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Since 
x2+Y2 

lim f(O 0) c2e- 4t (x2 + y2 + 4t) = 0 
t--.o ' 4 (c1(x2 + y2)2 + c2) t 

holds for x, y ::/: 0 and 

lim { = j(x,y) 
t--+0 JJR2 

this shows that Kt is a fundamental solution. Also the integral 

is now obvious. 

r p(t, x, y, = 1 
JJR2 

We present another result for the two-dimensional case. 

THEOREM 4.0.51. Suppose that the Sturm-Liouville problem 

L"(O) + (K(O) + >..)L(O) = 0 (4.0.160) 

(4.0.161) 

(4.0.162) 

has a complete set of eigenfunctions and eigenvalues, and that the 

eigenvalues are all positive. Consider the initial and boundary value 

problem 

1 1 K(O) 1 2 
Ut= Urr + -Ur + 2Uoo + - 2-u- -4cr u, 

r r r 

r > 0, a:::; () :::; b, a, bE [0, 271'], c > 0. 

u(r,O,O) = f(r,O), f E V(IR2), 

{31 u(r, b, t) + {J2uo(r, b, t) = 0. 
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Then there is a solution of the form 

u(r, (), t) = 100 1b f(p, <p)Kt(r, (), p, <p)dcpdp. (4.0.163) 

Here 

2-JCp - vc(r2 +p2 ) sinh(2V(;t) Kt(r () p rn) = e 4(cosh(2vct)-l) X 
' ' 'r Js(cosh(2JCt)- 1) 

1 2-

( ) r n(r, p , t)Ln(())Ln('P), (4.0.164) 
I -Ji:p2 

n -4-
2 

where 

( 1 ( a<r
2 

) ( br2 ) ) r n(r, p, t) = £-1 2 c e .,2_n, I v'xn 2- ..£. ' - 16 2 E 16 

a = s(cosh(2cfo)-1)' b = and Ln(()) and An, n = 1, 2, 3 ... 

are the normalised eigenfunctions and corresponding eigenvalues for 

the Sturm-Liouville problem 

L"(()) + (K(()) + .X)L(()) = 0 

PROOF. In polar coordinates the PDE 

Ut = Uxx + Uyy + ( : 2 k ( - c( x2 + y2)) u (4.0.165) 

becomes 

(4.0.166) 
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We use stationary solutions of the PDE, namely solutions of 

1 1 ( 1 1 2) Urr + -Ur + 2,Uee + 2k(tan e) - -er U = 0. 
T r r 4 

( 4.0.167) 

In Chapter One symmetries for the three-dimensional case were calcu-

lated. From these we obtain symmetries for the case n = 2. A basis for 

the Lie symmetry algebra is 

V = 0 V = !xe2vCtiJ + !ye2vCtiJ + +-1-e2vCtiJ 1 t, 2 2 X 2 y 2JC t 

1 
- 4JCe2y'Ct(e(::c2 + y2) + 2J(:)u3u, 

v = !xe-2Jcta + !ye-2Jcta + +-1-e-2veta 
3 2 X 2 y 2JC t 

1 + 4JCe-2v'Ct(e(x2 + y2) - 2-.jC)uDu, 

From the infinitesimal symmetry v 2 - v 3 - }c v 1 we find the symmetry 

-ecr2 (2y'C sinh(2y'Ct)+cosh(2yct) 
e 1 +8ce2(cosh(2y'Ct) -1 )+4vc< sinh(2vct) 

U€(r, e, t) = X 
J1 + 8et2(cosh(2JCt)- 1) + 4JCsinh(2JCt) 

( r ) u ,e,T(E,t) 
J1 + 8et2 (cosh(2JCt)- 1) + 4JCsinh(2yct) 

where T(E, t) = coth-l(4y'7ccoth(y'Ct)). We let u(r, e) 

K(e) = sec2 ek(tane). We then find 

r 2 ( 11 1 , 1 2) 1 ( 11 ( ) ) - R + -R- -er R = -- 8 + K e 8 =A, R r 4 8 

with A a constant. Then 

(4.0.168) 

R(r)e(e) and 

( 4.0.169) 

( 4.0.170) 
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and 8 is a solution of the equation 8"(0) + (K(O) + -\)8(0) = 0. We 

choose 8 so that it satisfies the Sturm-Liouville boundary conditions 

and let the eigenvalues be An and the corresponding eigenfunctions be 

Ln ( 0). We then take the stationary solutions 

(4.0.171) 

We apply the symmetry ( 4.0.168) to these stationary solutions to obtain 

new solutions UE,n and form the solution 

(4.0.172) 

As in the previous expansion theorem, we have 

(4.0.173) 

Now make the substitution E---+ Ejc. This becomes 

2 (..jCr2 ) u(r, (}, 0) = L <I>n(r - 4- Ln(O), 
n 

(4.0.174) 

and we require u(r, (}, 0) = f(r, 0). We write as before 

f(r, 0) = L f(r, n)Ln(O), (4.0.175) 
n 

where 

r7r 
[(r, n) = Jo f(r, cjJ)Ln(cfJ)dcjJ. (4.0.176) 

If 

( 4.0.177) 
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then we must have 

2 1 (vc'2) 121!" . -<I>n(r ) = - 4 - 0 j(r, (p)Ln(c/Y)dcjJ. (4.0.178) 
2 

After some algebraic simplifications, we can as in the first theorem 

write the solution in terms of the Laplace transform, 

rn(T,p,t)=£-1 ce cL-& 2 c ' ( 1 ( ncc
2 

) ( br2 ) ) 
V E2 - 16 2 E - 16 

loo 100 . Jc.cLn(O)f n(T, z, t) _ vc(r 2 +z 2 Jsinh(2y'Ct) _ u(T,O,t) = 'Pn(f) e 1 cosb< 2 vct)- 1 e Ezdzdc . 
. o o js( cosh(2Jct) - 1) 

(4.0.179) 

The inverse Laplace transform is continuous and f has compact sup-

port. So the integral converges and we may apply Fubini's Theorem 

and reverse the order of integration. Then letting z --+ p2 , we have 

u(r,O,t) =lex: 121!" f(p,cjy)Kt(r,O,p,c/J)dc/Jdp, ( 4.0.180) 

where 

( 4.0.181) 

The remainder of the proof proceeds as for the previous result. D 

The inverse Laplace transform rn(T, p, t) used in the preceding the-

orem, does not seem to be known analytically, however it can be com-

puted numerically. See [19] for the numerical inversion of Laplace 

transforms. Also, since the theorem uses the same Sturm-Liouville 
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problem as the first expansion theorem, given any example for the first 

expansion theorem, there is a corresponding example for the second. 

4.0.12. Numerical Solutions of Eigenvalue Problems. So-

phisticated methods for computing large numbers of eigenvalues for 

Sturm-Liouville problems have been developed, see [47] and the ref-

erences therein, or the project and [3]. We present an ele-

mentary method. We focus only on the absorbing boundary conditions 

L(a) = L(b) = 0. 

We replace the equation L" + (K + >..)L 0 with the central-

difference approximation 

where Li = L(()i) and ()i = a+ hi, i = 1, ... , n- 1, and h = The 

eigenvalues of the Sturm-Liouville problem are approximated by the 

eigenval ues of the ( n - 1) x ( n - 1) 

( 4.0.182) 

where Lo = Ln = 0, 'l 1, ... , n - 1. That is to say. we want the 

eigenvalues for the (n-1) x (n-1) matrix l'vf, with entries l'vfii = K(()i)-

A1ii+l = Mi+li = h\ and all other entries zero. The negative of the 

eigenvalues of the tridiagonal matrix M will provide approximations 

to the eigenvalues of the Sturm-Liouville problem. The eigenfunctions 

may then be obtained from the eigenvectors by interpolating the vector 

by a polynomial, or some other method. We present two examples to 

illustrate the method. All calculations were performed in Mathematica. 
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tan-1 .U 
4.0.12.1. The equation Ut = ( 2 2 )( "' 1 1l. ) u. The eigen-x +y l+tan- ., 

function problem is 

0 
L" + (- 02 + >..)L = 0, L(O) = £(211-). 

1+ 
(4.0.183) 

The first three eigenvalues h = 0.544, >..2 = 1.291, >..3 = 2.405. The first 

three eigenfunctions 

L1 (O) = 4.4317 x w-8010 - 1.4486 x w-6o9 + o.oooo2o8 - o.ooo207 

+ 0.000806 - 0.001671105 - 0.002304 + 0.013503 - 0.020802 + 0.18020 

L2 ( o) = -1.4 717 x w-8o10 - 1.4039 x w-6o9 + o.oooo508 - o.ooo707 

+ 0.003606 - 0.0059805 - 0.0021404 - 0.019403 - 0.053802 + 0.43980 

L3(0) = 6.2529 x w-6o10 - o.ooo2o9 + o.oo2808 - 0.01963207 

+ 0.072706 - 0.147805 + 0.225804 - 0.364803 + 0.011702 + 0.67010 

FIGURE 2. Plot of first three eigenfunctions 
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We normalise the eigenfunctions by computing 

We check the orthogonality of these eigenfunctions. For example 

f0
2n L1 (O)L3 (0)d0 = 0.00002. 

The fundamental solution is then 

. _ 
4.0.12.2. The equatwn Ut - tlu- V 2 u. The eigen-

(x2+y2) 

value problem is L" + (- + >..)L = 0, L(O) = L(2n) = 0. The 

eigenvalues are )..1 = 1.169, )..2 = 1.856, )..3 = 2.962, ... and the first 

three eigenfunctions are 

L1 ( 0) = 0.3080 - 0.022402 - 0.042703 + 0.027504 - 0.011105 + 0.0029706 

L2(e) = -0.536130 + o.o39902 + 0.14369403 - o.o6o21e4 + o.o191805 

- 0.0057(}6 + 0.0011(}7 - 0.00013(}8 + 7.93082 X 10-6 (}9 - 2.0883 X 10-7 (} 10 , 

L3 (0) = -0.76080 + 0.0449602 + 0.408203 - 0.1599704 + 0.044433905 

- 0.02423(}6 + 0.00848(}7 - 0.00146(}8 + 0.00012(}9 - 3.94676 X 10-6(}10 
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We have J027r L1(0)L2 (0)d() = -0.00004 etc, so these approximate eigen-

functions are approximately orthogonal. 

The normalisation constants are 

The fundamental solution is then 

0.4 

0.2 

FIGURE 3. Plot of first three eigenfunctions 

4.0.12.3. Some Explicitly Solvable Examples. We present below a 

list of some exactly solvable examples. 
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(ii) The Sturm-Liouville Problem: L" +(A- 1- 11 tan2 ())L = 

0, L(O) = 0, = 0. 

(iii) Theeigenvalues: An= n= 

0, 1, 2, 3, .... 

(iv) The eigenfunctions: Ln(()) = coso: ()2F1 ( -n- {3; ')'; cos2 e) , 
where a = V/1 + 1/4 + = n + 1 + V/1 + 1/4,')' = 

1 + J 11 + 1/4. 

(v) The fundamental solution: 

(2) (i) The PDE :ut= .6.u- + y 2 )u. 

(ii) The Sturm-Liouville problem: L" +(A- A)l = 0, L(O) = 
L(2n). 

(iii) The eigenvalues: An= n2 +A. 
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(iv) The eigenfunctions: Ln(B) = vheinO_ 

(v) The fundamental solution: 

y'C(r2 +p2 ) sinh(2y'Ct) . 
- -JCe- 4(cosh(2vct)-1) """' f n(r, p, t)em(O-<jJ) 

p(t,r,O,p,cp)- LJ ( ) , 
2ny2(cosh(2vct)- 1) nEZ I v'n2+A "'C:2 

2 

where r = Jx2 + y2 , p = Je + rp, etc. 

(3) (i) The PDE: Ut= .6.u- u, (x, y) E 

u(x, y, 0) = f(x, y), u(O, y, t) = u(x, 0, t) = 0. 

(ii) The Sturm-Liouville problem: L" + (- cos2 () + >..)L = 0, 

with L(O) = = 0. 

(iii) The eigenfunctions are S(>..n - i, 0), the odd Mathieu 

functions. 

(iv) The eigenvalues are S(>..n- i, = 0, or )..1 = 4.494793, 

)..2 = 16.50208, )..3 = 36.5009375, ... 

(v) The fundamental solution: 

x S(>.. - t -1(7_!_))1 ( Jx2 + y2Je + 772) . 
n 2 ' 4 ' an v:x,;: 2t 

where c1 = 0.797886,c2 = 0.930257,c3 = 1.12838, etc. 

More examples can be solved exactly but we will not attempt an ex-

haustive list. 
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4.0.13. Expansions in Higher Dimensions. Now we extend 

the results of the previous section to higher-dimensional problems. The 

results we obtain are not as strong as those for the two-dimensional 

problem, but are still very useful. We begin by studying the equation 

1 (Y z) Ut = /). U + - k -, - U. 
x 2 X X 

(4.0.184) 

Introducing spherical coordinates, 

x = rcos0sin4>, y = rsinOsin<P,z = rcos<t>, 

with T ;:::: 0, 0 E [0, 21r], 4> E [0, 1r] the equation becomes 

2 1 1 
Ut= Urr + -Ur + 2(-.-2-uee +cot + + G(O, <P)u), (4.0.185) r r sm 4> 

with G(O, 4>) = The PDE in spherical coordinates has a 
cos sm 

symmetry acting as 

valid forE> -1/4t. As in the two-dimensional case we form a solution 

U T (;l t = E e- 1+4<t U (;l dE 100 1 <r2 ( T t ) 
(,,4>,) 0 cp()(1+4tt)312 1+4ct''4>'1+4ct ' 

and we will let the solutions u(r, 0, 4>, t) be stationary solutions. We let 

u(r, 0, 4>) = R(r)'I!(O, 4>) and we require 

( , 2 ') R 1 ( 1 ( ) ) 'I! R + -R + 22 -.-2-'I!ee +cot + 'I!c/Jc/J + G 0, 4> 'I! = 0. 
T T T Sill 4> 
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So we have 

1 
cot cpwt/J + wt/Jt/J + (G(O, cp) + >.)w = 0, 

sm '+' 
(4.0.187) 

with r 2 R" + 2r R' - >.R = 0. This gives 

We take c2 = 0 and choose the eigenfunctions cp) of (4.0.187) to 

form an orthonormal basis for L2 (S2) where S2 is the two-dimensional 

unit sphere. Then we may expand arbitrary f E L2 (S2 ) as 

(4.0.188) 
n 

where 

1271" 171" 
en= o o J(e, ry)dedTJ. (4.0.189) 

Now let 

€T2 

u(r, (}, cp, t) = 100 2: 'Pn(E) (1 ::;3/ 2 Un ( 1 : 4ft,(}, cp, t) dE, 
n 

(4.0.190) 

so that we require 

n 

Comparing (4.0.191) to (4.0.188) implies 

(4.0.192) 
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If we let l = -1 + v1 + 4>.n), then our solution is 

Convergence of the series and the interchange of sum and integrals 

follows as for Theorem 4.0.49 so that 

100121!'11!' u(r,O,c/;,t) = 0 0 0 (4.0.193) 

where 

1 JP; . L (rp) p(t,r,O,c/;,(,ry) =- -e 4t smry L>. (O,c/;)L>. - , 2t r n n 2 2t 
n 

is a fundamental solution of (4.0.185). The sum is taken over all the 

eigenvalues. We can easily extend this calculation to the corresponding 

n-dimensional problem. 

THEOREM 4.0.52. Consider the equation 

u(r, e, 0) = f(r, 8), 

and a(8)w(8) + (1- = 0, with a a continuous function 

and the normal derivative on the surface of the unit sphere sn-l 

of dimension n- 1. Here w is the restriction of u to the sphere sn-1, 

is the Laplace-Beltrami operator on sn-1 and f E V(Rn). Let 
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E> = ( (), </h, ... , c/Jm-2). Then there is a solution of the form 

U(r, E>, t) = loo { f(p, r, E>, p, 
0 Jsn-1 

(4.0.194) 

where for n 2:: 2, 

1 (P) (rp) p(t, r, E>, p, = 2t ;: e- 4t L..t 2t . 
Am 

(4.0.195) 

Here f1m = !-J4>.m + (n- 2) 2 and Lm(E>) are normalised eigenfunc-

tions of the problem !:18 L + (>. + G)L = 0 and Am are the eigenvalues. 

This result requires the solution of a PDE for the eigenfunctions. 

This can also be solved numerically. However a discussion of the nu-

merical solution of an eigenvalue problem for elliptic PDEs is beyond 

the scope of the thesis. As before we may extend to larger classes of 

initial data by simply evaluating the given examples. We consider an 

application of the previous theorem. 

EXAMPLE 4.0.15. If _Pz(E>) denotes the lth spherical harmonic on 

the sphere sn-1 , then !:18n-1P1 = l(l + n - 2)P1, see [36]. Applying 

Theorem 4.0.52, the fundamental solution for Ut = tlu - u, A 2:: 0 is 

1 (P) r2+p2 - (rp) p(t, r, E>, p, = 2t ;: e--4-t L..t 2t , 
l=O 

where J1t = -j4l(l + n- 2) + (n- 2) 2 + 4A. Taking A= 0 will give the 

expansion for the heat kernel on JRn. On S 2 , 

lll/ ( (), cjJ) = 
(2l + 1)(l- m)! m( ) imB 

( l ) 1 El cos cjJ e , l = 0, 1, 2, 3, ... , 47r +m. 
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-l ::; m ::; l, are the normalised spherical harmonics. Here P1m(x) is 

the usual Legendre function, see [35]. Thus 

A 
Ut= !:1u- 2 2 2 u, 0, 

x +y +z 

has the fundamental solution 

1 fp _r2+e2 (2l + 1)(l- m)! m 
= 2ty-;.e 4t 41r(l+m)! P1 (cos<j;) 

l=O m=-l 

nm( ) (rp) 
X r 1 cos rJ e v't2+l+A+i 2t . ( 4.0.196) 

An interesting consequence of this result follows. We present the 

n = 3 case, and the reader will easily see how it extends to arbitrary 

n. 

COROLLARY 4.0.53. The following summation formula holds. 

(2l + 1)(l- m)! nm( ...h) nm( ) (rp) (l )I r 1 cos'+' r 1 COST} e l+l. 2 +m. 2 t 
l=O m=-l 

{ r p( cos TJ cos .P+cos 0 cos sin TJ sin et>+ sin TJ sin 0 sin 4>) } exp 2t 

PROOF. We equate (4.0.196) with A= 0 and the three-dimensional 

heat kernel. D 

Now we give an example of a fundamental solution for an Ito pro-

cess. 

EXAMPLE 4.0.16. Consider then-dimensional Ito process 

i = 1,2,3, ... ,n, 
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where 11Xtll 2 = (Xl) 2 + · · · + (Xr) 2 , an= (2- n + J(n- 2) 2 + 4A) 
and f3n = ( n- 2 + J(n- 2) 2 + 4A) . The transition probability den-

sity is 

x = (x1 , ... , Xn), y = (y1 , ... , Yn) and Pt is the lth harmonic polynomial 

restricted to the unit sphere. 

We finish this chapter with a final expansion result. The proof for 

this result proceeds along the lines Theorem 4.0.51. 

THEOREM 4.0.54. Consider the equation 

(n- 1) 1 1 2 
Ut= Urr + r Ur + r 2 + G(8))u- 4cr u, c > 0 

u(r, 8, 0) = f(r, 8), 

and a(8)w(8) + (1- = 0, where a is a continuous function 

and is the normal derivative on the surface of the unit sphere sn-l 

of dimension n- 1. Here w is the restriction of u to the sphere sn-l, 

is the Laplace-Beltrami operator on sn-l and f E V(IRn). Let 

8 = (0, <PI, ... , <Pm- 2). Then there is a solution of the form 

U(r, 8, t) = (X! f f(p, r, 8, p, Jo Jsn-1 (4.0.197) 
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where for n 2, 

and a = B(cosh(2cvct)-l), b = and Lm(S) are normalised 

eigenfunctions of the problem l:J. 8 n-1L + (>. + G)L = 0 and Am are the 

eigenvalues. 



5 

Applications of the Theory 

5.0.14. Applications to Representation Theory. Lie symme-

tries arc typically only locally defined transformations. However if we 

can find an equivalence with a global representation then we can make 

the symmetry a global symmetry. Craddock has shown that the Lie 

symmetries of many important PDEs are in fact equivalent to global 

representations of the underlying symmetry groups; see [24] and [25]. 

Recently Craddock and Dooley extended this work to some important 

classes of multidimensional PDEs, [18]. In this section we use the re-

sults proved earlier in the thesis to construct intertwining operators 

to make the symmetries in the n-dimensional case global. Connecting 

symmetries with representations allows for the application of represen-

tation theory to Lie symmetry analysis. Some consequences of this are 

in [18]. For simplicity, we consider the unitary case for equations in 

two space variables of the form 

. 1 (Y) ZUt = !::.u + 2 k - u. 
X X 

(5.0.198) 

The extenflion to the n-dimensional case is easy. In [18] the following 

irreducible projective representation of SL(2.1R) was introduced. See 

that paper for more details. esL(2,IR) and eiR are the identity elements 

of SL(2.IR) and lR respectively. 

117 
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DEFINITION 5.0.55. For > -2, A E JR* and j E L2 (JR+) we 

define the modified Segal-Shale-Weil representation of SL(2, JR:.) x JR:. by 

( c :) , eR) f ( z) e- iAb'' f ( z) 

n, ( c a:') f(z) vTalf(az) 

R' ( C 1) , eR) f ( z) M U\z) 

(5.0.199) 

(5.0.200) 

(5.0.201) 

Here }v(Y) = J0
00 f(x)...fXYlv(xy)dy, is the Hankel transform of f. 

The function lv is a Bessel function of the first kind. \¥e also set 

As shown in [18], the projective representation R;... is irreducible 

and can be extended to the whole of SL(2, JR) x lR by the Bruhat de-

composition of SL(2, JR). 

For f E L 2 (JR+), we introduce the operator 

1 00 1271" r;; 2 2 yP -- i(r +P l rp 
(Af)(r, p, e, t) = -. j(p)Ln(B)Ln(c/J)e--4t- lv (-) dc/Jdp 

0 0 4mt 2t 

where ln(e, 9) is a solution of (5.0.198) in polar coordinates, dJ-L = dcpdp. 

z; = A and An is the nth eigenvalue of the Sturm-Liouville problem 

in Theorem 4.0.49. The operator A is constructed by taking one term 

from the expansion for the fundamental solution. 

REMARK 5.0.56. Without loss of generality we assume that the do-

main of the angular variable here is [0, 211]. More generally the domain 
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will be [a, b] and in this case we simply replace the integral J0
2n with 

J: and the arguments are unchanged. 

The following result is an elementary consequence of Theorem 4.0.49. 

LEMMA 5.0.57. Let u(r, p, t) = Af, for f E L2 (JR.+). Then u is a 

solution of the equation iut = Urr + + /2 uoo + with K(B) = 

k(tanO) 
cos2 (J • 

In previous work on this problem the intertwining operator has 

usually been constructed from a fundamental solution. In this case the 

fundamental solution is not required. 

THEOREM 5.0.58. The PDEiut = has Lie symmetry 

group SL(2, JR.) xlR.. Moreover if a represents the Lie symmetry operator 

and R1 represents the modified Segal-Shale- Weil projective representa-

tion of SL(2, JR.) x JR., then for all g E SL(2, JR.) x JR. and f E L2 (JR.+) 

(a(g)Af)(x, y, t) = (ARr(g)f)(x, y, t). 

Moreover, the representations are irreducible. 

PROOF. It is sufficient to prove the result in polar coordinates. 

That is, we prove the equivalence for the PDE iut = Urr + + 
{u00 + u. The symmetries in polar coordinates are 
T T 

a(exp(Ev1))u(r, 0, t) = u(r, 0, t- E), 

a ex EV u r () t = ex - u () 1 ( iEr2 ) ( r t ) 
( p ( 3 )) ( ' ' ) 1 + 4ft p 1 + 4Et 1 + 4Et ' ' 1 + 4Et ' 

a(exp(cv4 )u(r, (), t) = eiEu(r, (), t). 
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Then we need to show that fork= 1, 2, 3, 

(5.0.202) 

where X 1 = ( 0 1) X 2 = ( 1 0 ) , X3 = ( 0 0) , is a basis for 
0 0 0 -1 -1 0 

the Lie algebra .sl2 . The result for v 4 is trivial. We can then use the fact 

that any element of SL(2, IR) can be written as a product of exponen-

tials of these basis vectors. We will suppress the IR component of Rr 

for convenience. We exponentiate X 2 to get exp( cX2) = (eE 0 ) . 
0 e-E 

Thus we have 

Now for the equivalence calculation: 

ARr ( exp( EX2)f) (r, (), t) = r !( eE p) v'P ln( ()' cp )e- ]1/ (rp) dJ1 
4Kt 2t 

= r ]1/ (Te-Ep) e-EdfJ, 
4Kt 2t 

= 1
2 

e-Ef(p) lv dfJ, 

= e-Eu(eEr, (), e2Et) = o-(exp(Ev2)u)(r, (), t). 

For the v 3 calculation, apply the symmetry 

1 ( iEr2 ) ( r t ) 
0" ( exp ( EV 3 )) U (X' y' t) = 1 + 4Et exp - 1 + 4d U 1 + 4Et ' ()' 1 + 4Et 

to 
y/p -- _ i(r2 +p2 ) (rp) p(r,e,p,cp,t) = -. Ln(())Ln(cfJ)e 4t lv - . 4m,t 2t 
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Now the terms involving lv and 1/(4nit) are unchanged by the sym-

( 
2 ) 

. (-r-+p2) . 2 -i r2 2 metry. Clearly exp = e-up exp ( ( 4iP ) ) . Thus 
1+4<t 

1 . 2 JP (rp) (a(exp(t:v3))Af)(r, 0, t) = e-tEp f(p)-. e-t 4t ln(O, cj;)Jv - dj.L 
JR.2 4mt 2t 

This establishes the third equivalence. Finally, .S)v ( 'f!t e -i(r:t+P
2l lv (z) = 

e- ylzeitz2 lv ( r z), (see [28]). An elementary calculation, detailed in 

[18], shows that 

Now using Jt ]v(p)g(p)dp = J0
00 f(p)gv(p)dp, we have 

(ARr ( exp( t:X1) )f) (r, (), t) = l 2 SJv ( e-iEp2 fv) (p )p(r, (), cf;, t)dJ.L 

= r e-iEZ2 !v( Z )ln ( () l cj;) ..!_e- vzeitz2 Jl/ ( T Z )dzdcj; 
JJR.2 27r 

= { vzei(t-E)z2 lv(rz)dzdcj; 
JJR.2 27r 

= { f(p)ln(O,cj;) _.JP lv ( rp ) dJ.L 
}JR.2 t:) 2(t- t:) 

= u(x, t- t:). 

( () ) (() ) y'P - i(r2+p2) (rp) . h f Here p r, , cj;, t = ln , cj; 41rite 4t lv 2t . Th1s completes t e proo . 

D 

This theorem may be extended to the PDE 

We work in the n-dimensional form of polar coordinates. From Theo-

rem 4.0.52 in Chapter 4, it is straightforward to obtain an intertwining 
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operator. We take a single term from the series for the fundamental 

solution and let t ---+it. This leads to the intertwining operator 

p2 r 2 +e2 rp 1001 1 (Af)(r, e, t) = f(p)'I/J>.k (8, .!!.=2 e- 4 t J1 ( 2t) 
0 sn-1 2tr 2 

(5.0.203) 

where l = + (n- 2)2 and '1/J>.k = and Lk(e) is the 

kth eigenfunction of u + ( G + >.)u = 0, with Ak the corresponding 

eigenvalue. The calculations are essentially identical to the previous 

result. This leads to the following theorem. 

THEOREM 5.0.59. The PDE 

iut = + 2\l</J ·'Vu+ B(x)u, x E JR.n, (5.0.204) 

where + I'V</JI 2 + ... , = B(x) has SL(2,JR.) x JR. as a 

global group of Lie point symmetries and if a represents the Lie sym-

metry operator and R'{ represents the modified Segal-Shale- Weil pro-

jective representation of SL(2, JR.) x JR., then for all g E SL(2, JR.) x JR. 

and f E L2 (JR.+) 

(a(g)Af)(x, y, t) = (AR'{(g)f)(x, y, t), 

with u = AJ obtained from (5.0.203} by the change of variables u = 

ecf>v. The representations are irreducible. 

PROOF. Equation (5.0.204) is equivalent to ivt = ... , :!:ll.) v, x 1 X1 X1 

by letting u = ecf> and so they have isomorphic symmetry groups. D 

Analogous results can be established for PDEs of the form 



5. APPLICATIONS OF THE THEORY 123 

but we do not consider this here. 

5.0.15. The Nonunitary Case. Next we consider the nonuni-

tary case for equations of the form 

(5.0.205) 

In order to analyse the nonunitary symmetries we need to introduce 

a new type of representation and a new representation space. This was 

done in [24]. We also note that Rosinger has made an extensive study 

of the action of Lie groups on distributions, see [66]. 

DEFINITION 5.0.60. Fix a nonnegative integer n. Then let 

(5.0.206) 

where Jik(x) = bjk,,ajk E IR,Im(f3jk) =/= 0, 

and L)vl(z) is a Laguerre polynomial. This splits as wv,n = E9 

E9 w;·n' with 

= {f E wv,n, Re(f3jk) < 0}, 

w;·n = {f E wv,n, Re(f3jk) = 0}. 

This is the space on which R>.. acts. To define R>.., let 
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where limRe(,B)---.oF = f and fv is the Hankel transform of f. The 

following proposition was given in [18]. 

PROPOSITION 5.0.61. For g E S£(2, lR?.) the action of defined 

by 

( ( :) ) J(x) = e-Aibx' f(x), (5.0.207) 

(5.0.208) 

and 

(5.0.209) 

preserves wv,n, for A E C- {0}. 

We consider the case where A = i. Let f = 1i E wv,n' 

fj E WJ'n. We introduce the intertwining operator 

where lm(O, c/>) = Lm(O)Lm(c/>), v = A, with Am the mth eigenvalue 

of the Sturm-Liouville problem in Theorem 4.0.49 and Iv is a modified 

Bessel function of the first kind. The contour of integration is chosen 

as either r(t) = t, t 2: 0 for f E W{'n or r(t) = it, t 2: 0 for f E 

The next result is elementary. 
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LEMMA 5.0.62. Let u(r, p, t) = Af, for f E wv,n. Then u is a 

solution of the equation Ut = Urr + .!.ur + 12 uee + u, with K(O) = 
T T T 

k(tan B) 
cos2 (} • 

We have the following result for the nonunitary case. 

THEOREM 5.0.63. The PDE Ut= b..u + ;2 kC;;)u has Lie symmetry 

group SL(2, IR) x!R. Moreover if a represents the Lie symmetry operator 

and Rr represents the modified Segal-Shale- Weil projective representa-

tion, then for all g E SL(2, IR) and s E IR 

(a(g, s)Af)(x, y, t) = y, t), f E wv,n 

where = e8 • 

PROOF. As in the unitary case we work in polar coordinates. The 

symmetries in polar coordinates are 

a(exp(cv1))u(r, (), t) = u(r, (), t +c), 

1 ( Er2 ) ( r t ) a(exp(cv3 ))u(r, (), t) = 1 + 4Et exp -1 + 4d u 1 + 4d' (), 1 + 4ct ' 

a(exp(cv4 )u(r, (), t) = eEu(r, (), t). 

The case a(exp(cv4 )) is trivial. We need to show that fork= 1, 2, 3, 

a( exp( Evk) )A!) (r, 0, t) = ARr( exp( EXk)f)(r, 0, t), 

where again 

x1 = ( 0 0) , x2 = ( 1 0 ) , x3 = ( 0 1) , 
-1 0 0 -1 0 0 
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is a basis for the Lie algebra .s[2 . For the v 3 case, apply the symmetry 

0' ex EV u x t = ex - u () 1 ( cr2 
) ( r t ) 

( p ( 3 )) ( ' y' ) 1 + 4Et p 1 + 4d 1 + 4Et ' ' 1 + 4Et 

to 
-JP - (r2+p2) (rp) p(r,O,p,cjJ,t) = 47rtlm(O,cjJ)e 4t lv 2t . 

Then we have 

X fv c:;:) dpdc/J 

3 127l' 1 f7i V p (r2+p2) r p 
= L Rr(exp(cXI))f(p)-e- 4t lm(O, cjJ)Iv (-) dpdc/J. 

j=l 0 'Y 47rt 2t 

For the v 2 calculation we have 

For the final equivalence calculation, we must determine the ac-

tion Ry ( ( :) ) f. First we need the following Hankel transform, 

valid for all R(,B) > 0, v > 1. The Hankel transform is given by 
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see formula 8.11.23 on page 51 of [28]. Next we use a result from [18]. 

For all f E wv,n, we have 

where fv = SJv(f). So we have 

3 {2n 1 .JP (r2 +p2 ) ( rp ) 
= f; Jo 'Y fj(p) 4n(t +c) e- 4(t+•l lm(B, cp)Iv 2(t +c) dpd</J 

=u(r,B,t+e) 

This completes the proof for the nonunitary case. D 

The previous theorem can be extended to larger representation 

spaces. 

THEOREM 5.0.64. The representation {Rr, Wv,n} and the inter-

twining operator A of Theorem 5. 0. 63 can be extended to V' (ffi.+) and 

for all g E SL(2,ffi.),s E ffi. and all f E V'(ffi.+) 

(a(g, s)Af)(r, 0, t) = 0, t). (5.0.210) 

Furthermore, the representations are irreducible. 
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The proof for this theorem is identical to that for Theorem 7.10 in 

[18]. We refer the reader there for the details. As for the unitary case, 

the extension to the general nonunitary case is straightforward. We let 

X hn dpdD., (5.0.211) 

where L>..n is the nth eigenfunction of = 0 as in Chapter 

4. Here dO is the surface measure on sn. 

THEOREM 5.0.65. The PDE 

Ut= + 2\lcp. "'Vu+ B(x)u, X E nr, (5.0.212) 

where I "'V c/JI 2 + ;i k ( ... , = B(x) has SL(2, JR) x lR as a global 

group of Lie point symmetries and if a represents the Lie symmetry 

operator and Ri represents the nonunitary modified Segal-Shale- Weil 

projective representation of S L ( 2, lR) given by Proposition 5. 0. 61, then 

for all g E SL(2, JR), s E lR and f E V'(JR+) 

(a(g, s)A!)(x, t) = t), 

with u = Af obtained from ( 5. 0. 211) by the change of variables u = 

ec/Jv. Moreover, the representations are irreducible. 

Equations of the form Ut= (x2 , ••• ,:En.) u- clxl 2u can be x 1 Xl Xl 

handled by the same methods, but we will not consider this here. 

5.0.16. Pricing Derivatives. The results of the thesis can be 

used to solve problems in financial mathematics. The key is that the 
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pricing of derivative securities can be reduced to the solution of cer-

tain parabolic partial differential equations. See [52] for example for a 

reference on pricing derivatives. 

5.0.16.1. Volatility Swaps in Platen's Benchmark Framework. Let 

us consider the price of a volatility swap. A volatility swap is a forward 

contract on the annualised volatility. In [17] the price of a volatility 

swap under Platen's benchmark approach is calculated. See [63] for an 

introduction to Platen's benchmark pricing methodology. The follow-

ing result was proved in Chapter 2. 

PROPOSITION 5.0.66. Let X= {Xt: t 2:: 0} satisfy the SDE 

Let(3= andv= Then 

if m> a -1 

We let L be the notional amount of the swap in dollars per annu-

alised volatility point and K the delivery price for annualised volatility. 

a5,r = J: where au is the volatility on an underlying S. 

PROPOSITION 5.0.67. The price of a volatility swap at t = 0 in the 

Platen benchmark framework is given by 

[aor] V(O, S0 ) =LIE - LK Pr(O, S0 ) 
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where 

Pr(O, So)= lE [;T l· 
Chan and Platen [17] take St = AtYt where At= ae"'t and 

Platen and Chan have assumed here that the interest rate r = 0. More 

generally, St = At ytert. 

From the transition density for Yt, lE [ J can be calculated easily. 

Chan and Platen show that 

(5.0.213) 

From this, Proposition 5.0.66 and the identity 

lE [JY] = _1_1oo 1 -E[e-Y1P] d•t• 
2yl7i 0 ?j;3/2 <p, 

(5.0.214) 

the price of a volatility swap can be computed. See [17] for a more 

detailed discussion of this problem. 

5.0.17. Pricing General Derivative Securities. Numerous ex-

amples in the pricing of derivatives can be obtained using the results of 

the thesis, but an extensive exploration of the applications to finance 

is beyond the scope of the thesis. For a discussion of the notion of risk-

neutral measures, numeraires and option pricing, see [32]. We present 

below a simple application to the pricing of futures contracts. 

Suppose that a derivative security with price V(x, t) depends on n 

underlying assets Xl, ... , Xf and that under the so-called risk-neutral 
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measure, 

n 

dXi = b(Xt)dt + L (jij (Xt)dW[' = Xi, (5.0.215) 
j=l 

where Xt = (Xf, ... ,X;") and Wl, ... , Wtn are Wiener processes. If the 

rate of interest is r(X, t) and there are continuous payments h(X, t) 

then 

1 vt + 2 L aij(X)Vx;x1 + b(X) · VV- r(x, t)V + h(x, t) = 0, 
i,j 

where aij is the i,jth component of a(X)aT(X). See [50] for the deriva-

tion of this equation. We impose the terminal condition V(x, T) = 

F(x, T) and whatever boundary conditions are needed. Letting t ---+ 

T - t converts this to the forward equation 

1 vt = 2 L aij(x)Vx;x1 + b(x) · VV- r(x, T- t)V + h(x, T- t) 
i,j 

V(x, 0) = F(x, 0). (5.0.216) 

The multidimensional equations we have studied can be transformed 

into this form for many different cases of a and b. We may then price 

many different derivative securities depending on multiple underlying 

assets using the results of this thesis. 

EXAMPLE 5.0.17. We present a simple example of this methodology 

applied to a specific problem. If h(x, t) = r(x, t)V, then the resulting 

equation essentially prices a futures contract. Suppose that we have a 

set of assets which under the risk-neutral measure satisfy the SDEs 

0 2ai m 0 xi i 0 1 dX:= X 1 0 =x,z= , ... ,n, 
al t + 0 0 0 +an t 
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with ai > 0, i = 1, 2, .... Suppose that V(x, 0) = F(x) where F can be 

represented as a generalised Laplace transform 

It then follows that the price is given by 

V(x, t) = { p(t, x, y)F(y)dy 
n 

(5.0.217) 

where p(t, x, y) is the transition density for Xt. See [16] and [29] for 

more on this idea. From Chapter Three we have the Laplace transform 

of this density. Specifically 

satisfies 

V(x, t) = { p(t, x, y)F(y)dy 
n 
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Thus, given any payoff in the relevant class, we can evaluate this inte-

gral to obtain the futures price. 

5.0.18. Calculating Functionals. In Chapter 2 we calculated 

functionals for some one-dimensional processes. We can extend these 

results to higher-dimensional problems. We present one result here. 

Consider the problem 

Vt = + 2V''ll.V'v + + IY''lll 2 - K(x, y))v, 

v(x, y, 0) = f(x, y), (x, y) E n JR2 , B(Brl) = 0, 

in which an is the boundary of nand B(Bfl) = 0 denotes the boundary 

conditions. According to the Feynman-Kac formula, the solution can 

be written 

v(x y t) = JE [!(X Y.)e- J; G(X.,Y.)ds] , ' x,y t, t , 

where G(x,y) = + IV'lll 2 - K(x,y)) and 

dXt = J2dWl + 2\llx(Xt, Yt) 

dYt = J2dWt2 + 2'lly(Xt, Yt). 

(5.0.218) 

(5.0.219) 

(5.0.220) 

We define lEx,y[h(Xt, Yt)] = IE[h(Xt, Yt) IXo = x, Y0 = y]. The process 

(Xt, Yt) satisfies the boundary conditions implied by B(n) = 0. 

Letting v = leads to 

Ut= K(x, y)u, 

u(x, y, 0) = f(x, y), B(rl) = 0, 

(5.0.221) 

(5.0.222) 
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where .B(n) = 0 are the transformed boundary conditions. We solve 

this problem by integrating against the fundamental solution to obtain 

u(x, y, t) = L ew(t,,ry) ry)p(t, x, y, (5.0.223) 

The solution of the original problem is thus 

v(x, y, t) = lEx,y [f(Xt, yt)e- G(X.,Y.)ds J 

= L ew(t,,ry)-w(x,y) ry)p(t, x, y, (5.0.224) 

Now suppose that K(x, y) = ; 2 k , where k is a positive function. 

Then we have a representation of the fundamental solution as 

where hJx, y) = L;.Jtan-1 L;.n is the nth eigenfunction and 

An is the nth eigenvalue of the associated Sturm-Liouville problem, as 

defined in Chapter 4. Because the eigenfunctions are orthogonal we 

have the following easy result. 

The key to calculating the functionals is a result proved in [21]. 

PROPOSITION 5.0.68 (Craddock-Lennox). Let 

(5.0.225) 

(5.0.226) 

subject to the boundary conditions B(n) = 0, where n = [0, 00) X [a, b] 

in polar coordinates. Suppose that hn (x, y)e-w(x,y) is bounded on n, 
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where the eigenfunctions [;,. and drift W are as defined above. Then 

if f(x, y) = F( Jx2 + y2 , where F(p, cjJ) = e-{i,(p,c/J) L>.Jc/J), 

then lEx,y [J(Xt, yt)e- G(X.,Y.)ds J = v(x, y, t) where 

(x2 + y2) 1'f r (J.ln + 1) v(x y t) = z, (x y)e-w(x,y) ____.:._.!:2'---_.:_ 

) ) An ) 4t r (J-tn + 1) 

x2+Y2 ( f-ln X2 + y2) 
X e- 4t 1F1 2 + 1,/-ln + 1, 4t ' 1-ln =A. 

PROOF. By orthogonality of the eigenfunctions we have 

in which J-ln =A. We then use the well known relation for Kummer's 

confluent hypergeometric function 1F1 (a, b, z) = ez1F1(b- a, b, -z) in 

(5.0.227), see [1]. That v satisfies the PDE Vt = + 2\7\ll · \7v-

G(x, y)v is clear. To show that this is the correct expectation, we 

observe that according to formula 13.1.4 of [1] 

(5.0.227) 

as z ---+ oo. From which it follows that v is bounded. Specifically 

rv 1 + O(lzl-1 ), 
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for x, y large. Since hn (x, y)e-w(x,y) is bounded, we conclude that v is 

bounded and consequently the Feynman-Kac formula implies that v is 

equal to the expectation. 0 

We consider functionals of two Bessel processes. 

EXAMPLE 5.0.18. Suppose that k is positive on the first quadrant. 

The change of variables u(x, y, t) = ew(x,y)v(x, y, t) with w(x, y) = 

ln(xayb) converts 

to 

Ut = - _!_k (E_) u, 
x2 x 

u(x, y, 0) = f(x, y) 

(5.0.228) 

-k - + +-- v, 2a 2b (1 (Y) a-a2 b-b2 ) 
x y Y x 2 x x 2 y 2 

(5.0.229) 

v(x, y, 0) = e-w(x,y) f(x, y). 

This allows us to compute functionals for the process (Xt, Yt) where 

2a m 1 2a m 2 
dXt = Xt dt + V 2dWt ' dyt = yt dt + V 2dWt ' (5.0.230) 

with X 0 = x > 0, Y0 = y > 0 These are essentially two independent 

Bessel processes. The change of variables t ---+ 2t in (5.0.229) will 

convert this to a problem for Bessel processes of dimension a -1/2, b-
1/2. For a,b:::; 1, G(x,y) = x\k (;) + + b;f > 0. If a,b > 1, 

then G may become negative. Now suppose that p(t, x, y, TJ) is the 

necessary fundamental solution for (5.0.228) subject to a given set of 

boundary conditions. Then we may represent a solution of (5.0.229) 
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on JR.! as 

1 v(x, y, t) = ry)-bp(t, x, y, 
2 xay (5.0.231) 

JR+ 

For example, suppose that we have absorbing boundary conditions and 

we take ;2 k = and a,b < 1,A > 0. Then we have 

y; _ A +a-a +b-b ds [ ( ( )) ( 2 2) l IEx,y sin 2n tan-1 lt 0 Xt+Yt X'[" YT 

1:!11. ( ) y X2 + y2 2 r l!:IJ:. + 1 x2+Y2 
= x-ay-bsin(2ntan-1 (-)) ( ) 2 e- 4t 

X 4t f(J.tn + 1) 

(5.0.232) 

with J.tn = v4n2 +A. For example, if n = 1, = 

and it is clear that if x = 0, or y = 0, then (5.0.232) is zero. If 

a > 1 or b > 1, then (5.0.232) is unbounded as x, y -+ 0. But this 

is expected, since we will then have a - a2 < 0, b - b2 < 0. So if 

for example we take x = 0 then the process will never leave zero and 

( ( )) _ A +a-a2 +b-b2 )ds 
the quantity sin 2n tan-1 -:¥; 0 xt+Yt X'[" YT will 

diverge, so the expectation (5.0.232) must be unbounded. If a Bessel 

process has dimension greater than 2, it will never reach zero almost 

surely, so if a, b > 2.5, and the process does not start on (x, 0) or (0, y), 

then (5.0.232) will remain finite. 

EXAMPLE 5.0.19. Setting u(x, y, t) 

ln(x2 + y2) converts 

e\lf(x,y)v(x, y, t), w(x, y) 

1 x2 + J.tY2 
Ut = 2 2 2 u, (x, y) E JR.! 

X X +y (5.0.233) 

into 
2x 2y (y)2 1 

Vt = + 2 2 Vx + 2 2 Vy - J.t - 2 2 V. 
X +y X +y X X +y 
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A fundamental solution of (5.0.233) was given in the previous chapter, 

with absorbing boundary conditions. Thus if we consider 

with absorbing boundary conditions on (x, 0) and (y, 0), then 

( x2 + y2) ( Mn x2 + y2) 
X exp - 1 F1 - + 1; tLn + L , 4t 2 . . 4t (5.0.235) 

More general initial conditions can be handled by expanding the 

initial condition in a series of eigenfunctions. We demonstrate this in 

the next example. 

EXAMPLE 5.0.20. Let E£ and El be two Brownian motions, with 

= .JI = :Y: > 0 and E5 = -J2 = y > 0. \Ve suppose that the process 

(E£, El) is absorbed on (x, 0) and (0, y). Define rt = J(El) 2 + (Ef)2 

and let ()t be the angle the random vector rt makes with the x axis at 

time t. \Ve compute 

v(r, y, t) = Ex,y [cxp ( -H' GJ ds)] . 
We have to solve 

2 tan- 1 2 
Ut = flu - ( 2 2 ) u, ( x, y) E JR.+ 4 X +y 

u(x, y, 0) = f(x, y), u(O, y, t) = v.(x, 0, t) = 0. 
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The eigenvalue problem is L" + (A - = 0 subject to L(O) 

L(%) = 0. The solution of the differential equation is 

139 

L(O A) = e 4 (A1F1 ---A - -0 + B01F1 ---A - -0 ). _102 ( 1 1 1 1 2 ) (3 1 3 1 2) 
' 4 2 '2'2 4 2 '2'4 

The condition L(O, A) = 0 requires A = 0. We then have the require-

ment that L(%, A) = 0. Using Mathematica, the eigenvalues are found 

to be approximately A1 = 4.17, A2 = 16.2, A3 = 36.2, A4 = 64.2, A5 = 

100.2, ... We define the eigenfunctions as 

_102 3 1 3 1 2 ) L·(O A·)= c·Oe 4 1F1(-- -A· - -0 
t ' t t 4 2 tl 2' 4 ' 

where 
7r 2 12 2 2 _1 02 (3 1 3 1 2) c-Oe 2 1F1 ---A·- -0 dO=l. 

0 t 4 2 tl 2' 4 

So we have c1 = 2.29442, c2 = 4.52946, c3 = 6.77991, c4 = 9.03401, c5 = 

11.2893 etc. Thus 

where li(x, y, 17) = Ai)Li(tan-1 (V, Ai). We 17) = 

1. From this we can compute the expectation 

u(x y t) = E e- fo 4(xhvlJ ds [ 

t tan -l ( f:f ] 
' ' x,y ' 
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where Xt = .J2B£, yt = .J2Bl. The integration can be carried out 

numerically in Mathematica and we arrive at 

lEx,y [e-i = 1.128fi(x, y, t)- 0.00811f2(x, y, t) + 0.376fa(x, y, t) 

- O.OOlj4(x, y, t) + 0.229f5(x, y, t) - 0.0003f6 (x, y, t) 

+ 0.161h(x, y, t) - · · · , 

where 
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5.1. Conclusion 

In this thesis we have sought closed-form expressions for fundamen-

tal solutions of higher-dimensional equations using symmetry group 

methods. Lie symmetry methods have been successfully applied to a 

range of problems and are especially effective for parabolic problems 

in one space dimension. However, they have been less successful for 

the higher-dimensional problems studied in this thesis, due to the fact 

that the dimension of the symmetry group generally does not grow as 

the dimension of the PDE increases. The standard techniques, such as 

group invariance or integral transform methods, have been extended to 

higher-dimensional problems only for some special cases of the classes 

of equations we consider in this thesis. 

The major contribution of this thesis has been to overcome this 

problem for PDEs of the form 

(5.1.1) 

Six new results have been proved which provide explicit fundamental 

solutions for equations of this type. 

In the case when there is a Heisenberg group of symmetries, dis-

cussed in Chapter 3, we have constructed Fourier transforms of fun-

damental solutions for some special cases of higher-dimensional PDEs. 

These have the the capacity to generate multiple fundamental solutions 

as well as transition densities for multidimensional diffusions. We pre-

sented several explicit examples and introduced two new multidimen-

sional processes and their corresponding transition densities. 

In general however this method cannot be applied to higher dimen-

sional problems. For the classes of equations under study in this thesis. 
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typically we have only SL(2, ffi.) as the symmetry group. Here the di-

mension of the symmetry group remains unchanged as the dimension 

of the PDE grows, so we do not have enough one-parameter subgroups 

to construct integral transforms. 

The major contribution of the thesis is presented in Chapter 4, 

where we show that it is possible to find fundamental solutions for 

higher-dimensional equations with only SL(2, ffi.) as the symmetry group. 

In combining the integration of an S£(2, ffi.) symmetry and the linear-

ity of the equation, we can build solutions of initial value problems for 

arbitrary initial values. The expansion theorems we have established 

provide explicit fundamental solutions, in terms of series of Gaussians, 

Bessel functions and solutions of a Sturm-Liouville problem. Using 

these results we have computed many examples of explicit fundamental 

solutions and new transition densities for multidimensional problems. 

The two-dimensional problem can be regarded as completely solved 

and we have also obtained some useful expressions for then-dimensional 

case. Although these require solutions of an eigenfunction problem for 

a PDE, we are still able to give a series expansion of the fundamen-

tal solution. An explicit example was obtained and a new summation 

result for series of spherical harmonics was found as a corollary. The 

transition density for a third n-dimensional process was found. 

A significant application of the results in Chapter 4 has been to 

show that these fundamental solutions provide the key to obtaining 

equivalences between Lie symmetries of higher-dimensional parabolic 

equations and group representations, extending the results obtained by 

Craddock and Dooley in connecting Lie symmetries of parabolic PDEs 

and representations of S£(2, ffi.). 



5.1. CONCLUSION 143 

We have also applied the results of Chapter 4 to the problem of com-

puting functionals for multidimensional processes. Explicit formulae 

for two-dimensional functionals were obtained using the Feynman-Kac 

formula and the expansion theorems of Chapter 4. This led to the com-

putation of new functionals of Bessel processes and planar Brownian 

motion. 

A third application was in the pricing of derivative securities. The 

price of a volatility swap in the Platen framework was found as well as 

the price of a futures contract in the risk-neutral framework, when the 

dynamics follow a multidimensional process introduced in Chapter 3. 

There are many possible future applications. A complete explo-

ration of the new processes the results of the thesis provide should be 

investigated. There are possible applications in financial modelling to 

be explored. Since the complex transformation t ----r it converts (5. 1.1) 

to the Schrodinger equation of quantum mechanics, there may be prob-

lems in physics which could be addressed by our methods. 

The effective numerical and exact solution of the eigeuvalue prob-

lems in higher dimensions needs be studied. The problem of efficiently 

summing the series giving the fundamental solution, and rates of con-

vergence, when it is not possible to explicitly sum the series, should be 

addressed. 

Finally, extending the results to different classes of parabolic equa-

tions of second order should be considered. A start would be to classify 

equations of the form Ut = flu+ f(x, y)ux + g(x, y)uy with nontrivial 

symmetries in the case where jy ::/- 9x· The case where flu is replaced 

by another elliptic operator of second order is a further possible exten-

sion. The application of other types of symmetries such as non-local 
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symmetries to obtaining fundamental solutions in higher-dimensional 

problems could also be considered. 
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