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Abstract— In this paper, we investigate the stability of poly-
nomial fuzzy-model-based (PFMB) control systems, aiming to
relax stability conditions by considering the information of
membership functions. To facilitate the stability analysis, we
propose a general form of approximated membership functions,
which is implemented by Taylor series expansion. Taylor series
membership functions (TSMF) can be brought into stability
conditions such that the relation between membership grades
and system states is expressed. To further reduce the con-
servativeness, different types of information are taken into
account: the boundary of membership functions, the property of
membership functions, and the boundary of operating domain.
Stability conditions are obtained from Lyapunov stability theory
by sum of squares (SOS) approach. Simulation examples
demonstrate the effect of each piece of information.

I. INTRODUCTION

STABILITY analysis is a systematic process proving the
feasibility of designed controllers for the stabilization

of control systems. It is very challenging even though
mathematical models of systems are known beforehand,
especially for nonlinear systems. Takagi-Sugeno (T-S) fuzzy
model [1], [2] represents nonlinear systems using local linear
systems weighted by membership functions, which is in
favor of stability analysis. Based on the T-S fuzzy model,
Lyapunov stability theory [3] was employed to guarantee the
stabilization by a set of conditions in terms of linear matrix
inequalities (LMIs) [4], [5], which convex programming
techniques can handle and numerically obtain solutions.

Following the basic framework of fuzzy-model-based sta-
bility analysis, two main research areas have been studied
for decades. One is combining it with other control problems
[6]–[9]. Another is relaxing stability conditions by consid-
ering the following three areas. First, the positivity of fuzzy
summations was investigated [10], [11] by the concept of
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parallel distributed compensation (PDC) [3] and slack ma-
trices through S-procedure [12], which were generalized by
the Pólya’s theory [13], [14] solving permutation problems
of membership functions in the higher order of summation
terms. Second, instead of the common quadratic Lyapunov
function, various types of Lyapunov function candidates were
utilized such as piecewise linear Lyapunov function [15],
[16], fuzzy Lyapunov function [17], [18], and switching
Lyapunov function [19], [20]. Third, the information of
membership functions was brought into stability analysis to
reduce the conservativeness [21], [22].

Since the polynomial fuzzy-model-based (PFMB) control
system was proposed [23], [24] to generalize the T-S fuzzy-
model-based control system, the above approaches were
imitated for PFMB control systems. In modeling, the sector
nonlinearity technique [5] was extended using Taylor series
expansion [25] to construct progressively more precise poly-
nomial fuzzy models. In stability analysis, stability condi-
tions derived from polynomial Lyapunov function candidates
are established by sum of squares (SOS) approach [26]
instead of LMI approach. Certainly, the conservativeness
of SOS-based conditions still exists and requires relaxation
by the above mentioned three areas. The PDC design was
applied [23], [24], as well as polynomial fuzzy Lyapunov
function [27], multiple polynomial Lyapunov function [28]
and switching polynomial Lyapunov function [29]. With
regard to the information of membership functions, symbolic
variables were employed to represent membership functions
[25], [30], [31] such that they can remain in SOS-based
conditions which is in favor of introducing more slack
matrices through some Positivstellensatz multipliers. More-
over, approximated membership functions were exploited to
directly bring the information into stability analysis [32], [33]
such that the relation between membership grades and system
states is expressed rather than the information independent
of system states.

In this paper, we aim to relax stability conditions for
PFMB control systems by considering the information of
membership functions. Inspired by [33], we extend the
piecewise linear membership functions to more systematic
approximated membership functions with the consideration
of approximation error. As an example, Taylor series ex-
pansion is chosen to implement the approximation. The
advantage of Taylor series is that it yields polynomials which
can be handled in SOS-based conditions and it provides
the truncation order and expansion points to be determined
by users. Based on Taylor series membership functions



(TSMFs), stability conditions can be progressively relaxed as
the truncation order increases and the interval of expansion
points decreases. Meanwhile, we consider the following in-
formation: the boundary of membership functions, the prop-
erty of membership functions, and the boundary of operating
domain, which can further relax the SOS conditions.

This paper is organized as follows. In Section II, notations
and the formulation of polynomial fuzzy model and con-
troller are presented. In Section III, TSMFs and relaxed SOS-
based conditions are proposed. In Section IV, simulation
examples are offered to show the improvement of designed
controllers. In Section V, a conclusion is drawn.

II. PRELIMINARY

A. Notation

The following notation is employed throughout this paper
[26]. A monomial in x(t) = [x1(t), x2(t), . . . , xn(t)]T

is a function of the form xd11 (t)xd22 (t) · · ·xdnn (t), where
di ≥ 0, i = 1, 2, . . . , n, are integers. The degree of a
monomial is d =

∑n
i=1 di. A polynomial p(x(t)) is a

finite linear combination of monomials with real coefficients.
A polynomial p(x(t)) is an SOS if it can be written as
p(x(t)) =

∑m
j=1 qj(x(t))2, where qj(x(t)) is a polynomial

and m is a nonnegative integer. It can be concluded that
if p(x(t)) is an SOS, p(x(t)) ≥ 0. The expressions of
M > 0,M ≥ 0,M < 0, and M ≤ 0 denote the positive,
semi-positive, negative, and semi-negative definite matrices
M, respectively.

B. Polynomial Fuzzy Model

The ith rule of the polynomial fuzzy model for the
nonlinear plant is presented as follows [23]:

Rule i :IF f1(x(t)) is M i
1 AND · · ·AND fΨ(x(t)) is M i

Ψ

THEN ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t),
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T is the state vector,
and n is the dimension of the nonlinear plant; fα(x(t)) is
the premise variable corresponding to its fuzzy term M i

α

in rule i, α = 1, 2, . . . ,Ψ, and Ψ is a positive integer;
Ai(x(t)) ∈ <n×N and Bi(x(t)) ∈ <n×m are the known
polynomial system and input matrices, respectively; x̂(t) =
[x̂1(t), x̂2(t), . . . , x̂N (t)]T is a vector of monomials in x(t),
and it is assumed that x̂(t) = 0, iff x(t) = 0; u(t) ∈ <m is
the control input vector. Thus, the dynamics of the nonlinear
plant is given by

ẋ(t) =

p∑
i=1

wi(x(t))
(
Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)

)
,

(2)

where p is the number of rules in the polynomial fuzzy
model; wi(x(t)) is the normalized grade of membership,

wi(x(t)) =

∏Ψ
l=1 µMi

l
(fl(x(t)))∑p

k=1

∏Ψ
l=1 µMk

l
(fl(x(t)))

, wi(x(t)) ≥ 0, i =

1, 2, . . . , p, and
∑p
i=1 wi(x(t)) = 1; µMi

α
(fα(x(t))), α =

1, 2, . . . ,Ψ, are grades of membership corresponding to the
fuzzy term M i

α.

C. Polynomial Fuzzy Controller

The jth rule of the polynomial fuzzy controller is pre-
sented as follows:

Rule j :IF g1(x(t)) is N j
1 AND · · ·AND gΩ(x(t)) is N j

Ω

THEN u(t) = Gj(x(t))x̂(x(t)), (3)

where gβ(x(t)) is the premise variable corresponding to its
fuzzy term N j

β in rule j, β = 1, 2, . . . ,Ω, and Ω is a positive
integer; Gj(x(t)) ∈ <m×N is the polynomial feedback gain
in rule j. Thus, the following polynomial fuzzy controller is
applied to the nonlinear plant represented by the polynomial
fuzzy model (2):

u(t) =

c∑
j=1

mj(x(t))Gj(x(t))x̂(x(t)), (4)

where c is the number of rules in the polynomial
fuzzy controller; mj(x(t)) is the normalized grade of

membership, mj(x(t)) =

∏Ω
l=1 µNjl

(gl(x(t)))∑c
k=1

∏Ω
l=1(µNkl (gl(x(t)))

,

mj(x(t)) ≥ 0, j = 1, 2, . . . , c, and
∑c
j=1mj(x(t)) = 1;

µNjβ
(gβ(x(t))), β = 1, 2, . . . ,Ω, are grades of membership

corresponding to the fuzzy term N j
β .

The polynomial fuzzy model and controller in this paper
do not share the same membership functions, meaning non-
PDC design is employed which improves the design flexibil-
ity and reduces the complexity of the controller [34].

III. STABILITY ANALYSIS

A. Taylor Series Membership Function

In this section, TSMFs are introduced to approximate the
original membership functions such that they can be brought
into stability conditions. In the following analysis, for brevity,
x(t) and x̂(x(t)) are denoted as x and x̂ respectively. With-
out losing generality, we assume that membership functions
depend on all system states x.

Since the approximation is carried out in each substate
space, the overall state space which is denoted as ψ is
divided into s connected substate spaces (hypercubes) which
are denoted as ψl, l = 1, 2, . . . , s. Specifically, in each
dimension of x = [x1, x2, . . . , xn]T , xr, r = 1, 2, . . . , n, are
divided into sr connected substate spaces. Hence, we have
the relation that ψ =

⋃s
l=1 ψl and s =

∏n
r=1 sr.

Sample points are exploited to implement the segmentation
of state space. Therefore, in each substate space ψl, we have
2 sample points denoted as xr1l (lower bound) and xr2l
(upper bound) in each dimension xr, and 2n sample points
in all. In what follows, these sample points are exploited
as expansion points for Taylor series. The approximation of
original membership functions is achieved by fuzzy blending
of the membership grades at samples points in each substate
space.



Let us define hij(x) = wi(x)mj(x), and denote the
approximation of hij(x) as hij(x). Therefore, the approx-
imated membership function is defined as

hij(x) =

s∑
l=1

σl(x)

2∑
i1=1

· · ·
2∑

in=1

n∏
r=1

vrirl(xr)δiji1i2···inl(x)

∀i, j, (5)

where σl(x) is a scalar index of substate spaces, satisfying
σl(x) = 1,x ∈ ψl, l = 1, 2, . . . , s; otherwise, σl(x) = 0;
δiji1i2···inl(x) is a predefined scalar polynomial of x as
grades of membership function hij(x) at sample points
xr = xrirl, r = 1, 2, . . . , n, ir = 1, 2, in substate space ψl;
vrirl(xr) is the membership function corresponding to fuzzy
term δiji1i2···inl(x), exhibiting the following properties: 0 ≤
vrirl(xr) ≤ 1, vr1l(xr) + vr2l(xr) = 1 for all r, ir, l,x ∈
ψl, and

∑s
l=1 σl(x)

∑2
i1=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr) = 1

(Readers may refer to [33] for further examples of obtaining
(5), which are some special cases of (5)).

Remark 1: There are different approaches to define mem-
bership grades of sample points δiji1i2···inl(x) in (5). In this
paper, particularly, the method of Taylor series expansion
is employed to define δiji1i2···inl(x). The general form of
multi-variable Taylor series expansion [35] is given by

f(x) =

∞∑
k=0

1

k!

( n∑
r=1

(xr − xr0)
∂

∂xr

)k
× f(x)|(xr=xr0,r=1,2,...,n), (6)

where f(x) is an arbitrary function of x; xr0, r = 1, 2, . . . , n,
are expansion points; ∂

∂xr
f(x)|(xr=xr0,r=1,2,...,n) is a con-

stant calculated by taking the partial derivative of f(x) and
then substituting x by xr = xr0. From the Taylor series
expansion (6), we substitute expansion points and f(x) by
sample points and hij(x) such that δiji1i2···inl(x) is obtained:

δiji1i2···inl(x) =

λ−1∑
k=0

1

k!

( n∑
r=1

(xr − xrirl)
∂

∂xr

)k
× hij(x)|(xr=xrirl,r=1,2,...,n)

∀i, j, i1, i2, . . . , in, l,x ∈ ψl, (7)

where λ is the predefined truncation order, which means the
polynomial with the order λ−1 is applied for approximation.
The TSMF is obtained by substituting (7) into (5). It is
noted that the membership function hij(x) is required to
be differentiable if TSMFs are employed.

B. Polynomial Fuzzy-Model-Based Control Systems

In this section, the stability of the PFMB control system
is analyzed. Without any ambiguity, wi(x(t)), mj(x(t))
hij(x), and hij(x) are denoted as wi , mj , hij , and hij ,
respectively. The PFMB control system formed by the poly-
nomial fuzzy model (2) and the polynomial fuzzy controller
(4) is

ẋ =

p∑
i=1

c∑
j=1

hij
(
Ai(x) + Bi(x)Gj(x)

)
x̂. (8)

The control objective is to make the PFMB control system
(8) asymptotically stable i.e., x(t) → 0 as time t → ∞, by
determining the polynomial feedback gains Gj(x(t)).

To proceed with the stability analysis, from (8), we have

˙̂x =
∂x̂

∂x

dx

dt
= T(x)ẋ

=

p∑
i=1

c∑
j=1

hij
(
Ãi(x) + B̃i(x)Gj(x)

)
x̂, (9)

where Ãi(x) = T(x)Ai(x), B̃i(x) = T(x)Bi(x), T(x) ∈
<N×n with its (i, j)th element defined as Tij(x) =
∂x̂i(x)/∂xj . Due to the assumption that x̂(t) = 0, iff
x(t) = 0, the stability of control system (9) implies that
of (8).

We investigate the stability of (9) by employing the
following polynomial Lyapunov function candidate:

V (x) = x̂TX(x̃)−1x̂, (10)

where 0 < X(x̃) = X(x̃)T ∈ <N×N ; x̃ is defined in Remark
1. From (9) and (10), we have

V̇ (x) = ˙̂xTX(x̃)−1x̂ + x̂TX(x̃)−1 ˙̂x + x̂T
dX(x̃)−1

dt
x̂

=

p∑
i=1

c∑
j=1

hijx̂
T
((

Ãi(x) + B̃i(x)Gj(x)
)T

X(x̃)−1

+ X(x̃)−1
(
Ãi(x) + B̃i(x)Gj(x)

))
x̂

+ x̂T
dX(x̃)−1

dt
x̂. (11)

Assumption 1 ( [23], [26]): To deal with the term
dX(x̃)−1

dt in (11), we define K = {ζ1, ζ2, . . . , ζs} as the set
of row numbers that entries of the entire row of Bi(x) are
all zeros for all i, and x̃ = [xζ1 , xζ2 , . . . , xζs ]

T . Hence, we
have dX(x̃)−1

dt =
∑
ζ∈K

∂X(x̃)−1

∂xζ

∑p
i=1 wiA

ζ
i (x)x̂, where

Aζ
i (x) ∈ <N is the ζth row of Ai(x). Although this

assumption is widely employed, it restricts the capability of
polynomial Lyapunov function and further development can
be achieved by removing this assumption [36].

Lemma 1 ( [23], [26]): For any invertible polynomial
matrix X(y) where y = [y1, y2, . . . , yn]T , the following
equation is true.

∂X(y)−1

∂yj
= −X(y)−1 ∂X(y)

∂yj
X(y)−1 ∀j

From Remark 1 and Lemma 1, we have

dX(x̃)−1

dt
= −X(x̃)−1

( p∑
i=1

∑
ζ∈K

wi
∂X(x̃)

∂xζ
Aζ
i (x)x̂

)
X(x̃)−1.

(12)

Let us denote z = X(x̃)−1x̂ and Gj(x) = Nj(x)X(x̃)−1,
where Nj(x) ∈ <m×N , j = 1, 2, . . . , c, are arbitrary poly-
nomial matrices. From (11) and (12), we have

V̇ (x) =

p∑
i=1

c∑
j=1

hijz
TQij(x)z, (13)



where Qij(x) = Ãi(x)X(x̃) + X(x̃)Ãi(x)T +

B̃i(x)Nj(x) + Nj(x)T B̃i(x)T −
∑
ζ∈K

∂X(x̃)
∂xζ

Aζ
i (x)x̂ for

i = 1, 2, . . . , p, j = 1, 2, . . . , c.
Remark 2: From the Lyapunov stability theory, the

asymptotic stability of (9) is guaranteed by V (x) > 0
and V̇ (x) < 0 (excluding x = 0), which can be implied
by Qij(x) < 0 for all i, j. However, the information of
membership functions wi and mj are not considered leading
to very conservative stability conditions.

C. Relaxed SOS-based Stability Conditions

In the following, we firstly present a general approach for
relaxing the non-PDC SOS-based stability conditions with
approximated membership functions. Then detailed informa-
tion to implement this approach is provided. For brevity,
σl(x) is denoted as σl.

In order to relax the stability conditions, we bring the
approximated membership functions (5) into stability con-
ditions by considering the boundary information of approx-
imation error ∆hijl = hij − hij for all i, j, l,x ∈ ψl. The
local lower and upper bounds of ∆hijl are denoted as γ

ijl
and γijl, respectively, which means γ

ijl
≤ ∆hijl ≤ γijl

for all i, j, l,x ∈ ψl. Meanwhile, slack polynomial matrices
0 < Yijl(x) = Yijl(x)T ∈ <N×N for x ∈ ψl are
introduced, which can be formulated by

∑s
l=1 σlYijl(x) >

0. Moreover, it is required that
∑s
l=1 σlYijl(x) ≥ Qij(x)

for all i, j. Recalling that σl(x) = 1 for x ∈ ψl (otherwise
σl(x) = 0), the above inequalities can be implied by
Yijl(x) > 0 and Yijl(x)−Qij(x) ≥ 0 for all i, j, l. Based
on the property that (

∑s
l=1 σlM1l(x))(

∑s
k=1 σkM2k(x)) =∑s

l=1 σlM1l(x)M2l(x), (13) can be written as follows:

V̇ (x) =

p∑
i=1

c∑
j=1

hijz
TQij(x)z

= zT
p∑
i=1

c∑
j=1

(
hijQij(x) + (hij − hij)Qij(x)

)
z

= zT
p∑
i=1

c∑
j=1

(
hijQij(x)

+

s∑
l=1

σl(∆hijl − γijl + γ
ijl

)Qij(x)
)
z

≤ zT
p∑
i=1

c∑
j=1

(
(hij +

s∑
l=1

σlγijl)Qij(x)

+

s∑
l=1

σl(∆hijl − γijl)
s∑

k=1

σkYijk(x)
)
z

≤ zT
s∑
l=1

σl

p∑
i=1

c∑
j=1

(
(hij + γ

ijl
)Qij(x)

+ (γijl − γijl)Yijl(x)
)
z. (14)

To further relax stability conditions, we exploit the fol-
lowing information [31]: the boundary information of mem-
bership grades (with corresponding slack matrix R1ρ1(x))

and the property of membership functions (R2ρ2(x))). Ad-
ditionally, aiming at the information of substate spaces, we
propose another type of information, namely the boundary
of operating domain (R3ρ3(x)). From (14), we have

V̇ (x) ≤ zT
s∑
l=1

σl

p∑
i=1

c∑
j=1

(
(hij + γ

ijl
)Qij(x)

+ (γijl − γijl)Yijl(x)
)
z

+ zT
( 3∑
k=1

Pk∑
ρk=1

φkρk(x)Rkρk(x)
)
z, (15)

where φ1ρ1(x) ≥ 0, φ2ρ2(x) = 0, and φ3ρ3(x) ≥ 0,
ρk = 1, 2, . . . , Pk, k = 1, 2, . . . , 3, are predefined scalar
polynomial functions; R2ρ2(x) = R2ρ2(x)T ∈ <N×N is an
arbitrary polynomial matrix; 0 < R1ρ1(x) = R1ρ1(x)T ∈
<N×N and 0 < R3ρ3(x) = R3ρ3(x)T ∈ <N×N are
polynomial matrices.

In what follows, the details concerning the three pieces
of information are discussed. Since the membership func-
tions vrirl(xr) in (5) can be either linear or nonlinear, and
nonlinear functions cannot be solved in SOS-based stability
conditions, we consider vrirl(xr) not exist in final stability
conditions for this paper.

Remark 3: If vrirl(xr) is predefined as linear functions
for x ∈ (−∞,∞), it can remain in SOS-based stability con-
ditions. For this linear case, bringing vrirl(xr) into stability
conditions has potential to further relax the conditions. Future
work can be done following this idea as a comparison with
this paper.

1) Boundary Information of Membership Grades: Since
the approximated membership functions hij have been
brought into stability conditions, we can directly exploit
their boundary information. We have η

ijl
≤ hij ≤ ηijl for

all i, j, x ∈ ψl, where η
ijl

and ηijl are lower and upper
bounds of approximated membership membership grades hij
in substate space ψl, respectively. Then we have

s∑
l=1

σl(hij − ηijl)Wijl(x) ≥ 0 ∀i, j, (16)

s∑
l=1

σl(ηijl − hij)Wijl(x) ≥ 0 ∀i, j, (17)

where 0 < Wijl(x) = Wijl(x)T ∈ <N×N and 0 <

Wijl(x) = Wijl(x)T ∈ <N×N for x ∈ ψl are polynomial
matrices.

2) Property of Membership Functions: The
membership function vrirl(xr) owns the property that∑s
l=1 σl

∑2
i1=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr) = 1. Since we

consider vrirl(xr) not exist in final stability conditions,
this information is lost. Therefore, we aim to bring
such information into stability conditions. However, it
is difficult to provide general equalities or inequalities
representing such information due to different selection of
function vrirl(xr). In this paper, we provide an example
by defining vr1l(xr) = (xr2l − xr)/(xr2l − xr1l) and



vr2l(xr) = 1 − vr1l(xr) for all r, l,x ∈ ψl, where xr1l and
xr2l are lower and upper bounds of xr in substate space ψl.

In this case, we have the following equality constraint [33]:
s∑
l=1

σl

2∑
i1=1

· · ·
2∑

in=1

n∏
r=1

vrirl(xr)(χ(x)

− χi1i2···inl)Kl(x) = 0, (18)

where we have the property that∑s
l=1 σl

∑2
i1=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr)(χ(x) −

χi1i2···inl) = 0; χ(x) is a monomials linear in
xr, r = 1, 2, . . . , n; χi1i2···inl = χ(x)|xr=xrirl

is the
value of χ(x) at sample points xr = xrirl in substate space
ψl; Kl(x) = Kl(x)T ∈ <N×N is an arbitrary polynomial
matrix. It is noted that χ(x) is not necessarily a monomial
in all system states xr.

3) Boundary Information of Operating Domain: Once
SOS-based stability conditions are satisfied, they hold for all
x ∈ (−∞,∞). In practice, however, we usually only need to
guarantee the satisfaction for a certain domain of x, that is
xk ∈ [xk1, xk2], k = 1, 2, . . . , n. In this paper, we only need
to satisfy the local operating domain xk ∈ [xk1l, xk2l] for
each substate space ψl. For this reason, we have the following
constraint:

s∑
l=1

σl

n∑
k=1

(xk − xk1l)(xk2l − xk)Lkl(x) ≥ 0, (19)

where 0 < Lkl(x) = Lkl(x)T ∈ <N×N for x ∈ ψl is a
polynomial matrix.

Now we substitute the approximated membership func-
tion hij in (15) by (5), and substitute general form of
constraints by (16), (17), and (19). For the reason that∑s
l=1 σl

∑2
i1=1 · · ·

∑2
in=1

∏n
r=1 vrirl(xr) = 1 and vrirl(xr)

is independent of rule i, j, we have

V̇ (x) ≤ zT
s∑
l=1

σl

2∑
i1=1

· · ·
2∑

in=1

n∏
r=1

vrirl(xr)

p∑
i=1

c∑
j=1

×
(
(δiji1i2···inl(x) + γ

ijl
)Qij(x)

+ (γijl − γijl)Yijl(x)

+ (δiji1i2···inl(x)− η
ijl

)Wijl(x)

+ (ηijl − δiji1i2···inl(x))Wijl(x)

+

n∑
k=1

(xk − xk1l)(xk2l − xk)Lkl(x)
)
z. (20)

The satisfaction of V̇ (x) < 0 can be guaran-
teed by

∑p
i=1

∑c
j=1

(
(δiji1i2···inl(x) + γ

ijl
)Qij(x) +

(γijl − γ
ijl

)Yijl(x) + (δiji1i2···inl(x) − η
ijl

)Wijl(x) +

(ηijl − δiji1i2···inl(x))Wijl(x) +
∑n
k=1(xk − xk1l)(xk2l −

xk)Lkl(x)
)
< 0 for all i1, i2, . . . , in, l. The above stability

analysis result is summarized in the following theorem.
Theorem 1: The PFMB system (9), which is formed by

the polynomial fuzzy model (2) and the polynomial fuzzy
controller (4) connected in a closed loop, is guaranteed to
be asymptotically stable if there exist polynomial matrices

Yijl(x) = Yijl(x)T ∈ <N×N , Wijl(x) = Wijl(x)T ∈
<N×N , Wijl(x) = Wijl(x)T ∈ <N×N , Lkl(x) =
Lkl(x)T ∈ <N×N , Nj(x) ∈ <m×N , i = 1, 2, . . . , p, j =
1, 2, . . . , c, k = 1, 2, . . . , n, l = 1, 2, . . . , s, and X(x̃) =
X(x̃)T ∈ <N×N such that the following SOS-based con-
ditions are satisfied:

νT (X(x̃)− ε1(x̃)I)ν is SOS;

νT (Yijl(x)− ε2(x)I)ν is SOS ∀i, j, l;
νT (Yijl(x)−Qij(x)− ε3(x)I)ν is SOS ∀i, j, l;
νT (Wijl(x)− ε4(x)I)ν is SOS ∀i, j, l;
νT (Wijl(x)− ε5(x)I)ν is SOS ∀i, j, l;
νT (Lkl(x)− ε6(x)I)ν is SOS ∀k, l;

− νT
( p∑
i=1

c∑
j=1

(
(δiji1i2···inl(x) + γ

ijl
)Qij(x)

+ (γijl − γijl)Yijl(x)

+ (δiji1i2···inl(x)− η
ijl

)Wijl(x)

+ (ηijl − δiji1i2···inl(x))Wijl(x)

+

n∑
k=1

(xk − xk1l)(xk2l − xk)Lkl(x)
)

+ ε7(x)I
)
ν is SOS ∀i1, i2, . . . , in, l; (21)

where ν ∈ <N is an arbitrary vector independent of x;
δiji1i2···inl(x) is a predefined scalar polynomial of x in (5);
γ
ijl
, γijl, ηijl, ηijl, xk1l, and xk2l are predefined constant

scalars satisfying ∆hij = hij − hij , γijl ≤ ∆hij ≤
γijl, ηijl ≤ hij ≤ ηijl, and xk1l ≤ xk ≤ xk2l for all
i, j, k, l,x ∈ ψl; ε1(x̃) > 0, ε2(x) > 0, . . . , ε7(x) > 0, are
predefined scalar polynomials; the feedback gains are defined
as Gj(x) = Nj(x)X(x̃)−1, j = 1, 2, . . . , c.

Remark 4: Referring to Theorem 1, the number of de-
cision matrix variables is 1 + c + 3pcs + ns, and the
number of SOS conditions is 1 + 4pcs + ns + 2ns. When
membership function vrirl(xr) is defined as vr1l(xr) =
(xr2l−xr)/(xr2l−xr1l) and vr2l(xr) = 1−vr1l(xr) for all
r, l,x ∈ ψl, where xr1l ≤ xr ≤ xr2l, the information of the
property of vrirl(xr) can be brought into stability conditions.
The SOS condition (21) in Theorem 1 is replaced by

− νT
( p∑
i=1

c∑
j=1

(
(δiji1i2···inl(x) + γ

ijl
)Qij(x)

+ (γijl − γijl)Yijl(x)

+ (δiji1i2···inl(x)− η
ijl

)Wijl(x)

+ (ηijl − δiji1i2···inl(x))Wijl(x)

+ (χ(x)− χi1i2···inl)Kl(x)

+

n∑
k=1

(xk − xk1l)(xk2l − xk)Lkl(x)
)

+ ε7(x)I
)
ν is SOS ∀i1, i2, . . . , in, l; (22)



where χ(x) is a monomials linear in xr, r = 1, 2, . . . , n;
χi1i2···inl = χ(x)|xr=xrirl

; Kl(x) = Kl(x)T ∈ <N×N is
an arbitrary polynomial matrix. In this case, the number of
variables are 1 + c+ 3pcs+ns+ s, and the number of SOS
conditions remains the same.

IV. SIMULATION EXAMPLES

In the following, a 3-rule polynomial fuzzy model with the
form of (2) is investigated to implement the designed con-
troller. The system states are x̂(t) = x(t) = [x1(t) x2(t)]T ,
and system matrices and input matrices are

A1(x1) =

[
1.59− 0.12x2

1 −7.29− 0.25x1

0.01 −0.1

]
,

A2(x1) =

[
0.02− 0.63x2

1 −4.64 + 0.92x1

0.35 −0.21

]
,

A3(x1) =

[
−a+ 0.31x1 − 1.12x2

1 −4.33
0 0.05

]
,

B1 =

[
1
0

]
,B2 =

[
8
0

]
,B3 =

[
−b+ 6
−1

]
,

where a and b are predefined constant parameters in the
range of 0 ≤ a ≤ 10 and 0 ≤ b ≤ 200 at the interval
of 1 and 20, respectively. The operating domain we consider
for this model is x1 ∈ [−10, 10]. The membership functions
of this polynomial fuzzy model are selected as w1(x1) =
1− 1/(1 + e−(x1+4)), w2(x1) = 1− w1(x1)− w3(x1), and
w3(x1) = 1/(1 + e−(x1−4)). To achieve the stabilization, a
2-rule polynomial fuzzy controller with the form of (4) is
employed, with membership functions defined as m1(x1) =
e−x

2
1/12 and m2(x1) = 1−m1(x1).

Theorem 1 is applied to design the feedback gains of poly-
nomial fuzzy controller. TSMFs (5) and (7) are exploited as
approximated membership functions. In order to demonstrate
the influence of different orders of TSMFs and intervals of
expansion points, we make the comparison as shown in Table
I. Without losing generality, we choose membership function

TABLE I
COMPARISON OF DIFFERENT ORDERS OF TSMFS AND INTERVALS OF

EXPANSION POINTS

Case Order λ Interval Expansion points
1 1 4 x1 = {−10,−6, . . . , 6, 10}
2 1 2 x1 = {−10,−8, . . . , 8, 10}
3 3 4 x1 = {−10,−6, . . . , 6, 10}
4 3 2 x1 = {−10,−8, . . . , 8, 10}

vrirl(xr) in (5) as v11l(x1) = (x12l− x1)/(x12l− x11l) and
v12l(x1) = 1 − v11l(x1), for all l, x1 ∈ ψl, where x11l ≤
x1 ≤ x12l. It is noted that we remove the terms in Taylor
series with the magnitude of coefficients less than 1× 10−6

such that the computational efficiency is improved. Based
on original membership functions and TSMFs, the predefined
constant scalars γ

ijl
, γijl, ηijl, and ηijl are obtained for Case

1-4.
Due the selection of membership function vrirl(xr),

the SOS condition (21) in Theorem 1 is replaced by

(22) in Remark 4. To further reduce the computational
burden, the number of slack matrices is decreased by
Yijl(x1) = Yij(x1),Wijl(x1) = Wij(x1),Wijl(x1) =

Wij(x1),Kl(x1) = K(x1),Lkl(x1) = L(x1). Other param-
eters are chosen as follows: ε1 = ε2 = · · · = ε7 = 1×10−3,
X of degree 0, Yij(x1) of degree 8, Wij(x1) and Wij(x1)
of degree 6, K(x1) of degree 7, and L(x1) of degree 6. The
SOS-based stability conditions are solved numerically by the
third-party MATLAB toolbox SOSTOOLS [37].

To demonstrate the effect of each type of slack matrices,
the stabilization region obtained with only Yij(x1), with
only Yij(x1), Wij(x1), and Wij(x1), with only Yij(x1),
Wij(x1), Wij(x1), and L(x1), and with all slack matrices
(Yij(x1), Wij(x1), Wij(x1) , L(x1), and K(x1)) are
shown in Fig. 1-4, respectively. The stabilization region is
indicated by “×” for Case 1, “+” for Case 2, “�” for Case
3, and “◦” for Case 4.
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Fig. 1. Stabilization regions obtained from Theorem 1 with only Yij(x1),
indicated by “×” for Case 1, “+” for Case 2, “�” for Case 3, and “◦” for
Case 4.

From Fig. 1-4, it can be found that the stabilization
region grows for all cases with the number of slack matrices
increasing. It shows that these information of membership
functions and operating domain as well as their corre-
sponding slack matrices are effective for relaxing stability
conditions. Moreover, by comparing Case 1 to Case 4, it
is indicated that higher order and smaller interval lead to
larger stabilization region. Additionally, when the interval
is large, both the interval and the order play an important
role; when the interval is small, they become less influential.
It complies with what we expect because these SOS-based
stability conditions are close to sufficient and necessary
conditions as the interval is small. However, when higher
order TSMFs are employed, corresponding higher order
slack matrices are required simultaneously, which leads to
unaffordable computational cost and makes sufficient and
necessary conditions unattainable.

To verify the stabilization, we provide an example by
choosing a = 10 and b = 220 in Case 4. The polynomial
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Fig. 2. Stabilization regions obtained from Theorem 1 with only Yij(x1),
Wij(x1), and Wij(x1), indicated by “×” for Case 1, “+” for Case 2,
“�” for Case 3, and “◦” for Case 4.
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Fig. 3. Stabilization regions obtained from Theorem 1 with only Yij(x1),
Wij(x1), Wij(x1), and L(x1), indicated by “×” for Case 1, “+” for
Case 2, “�” for Case 3, and “◦” for Case 4.

feedback gains are obtained that G1(x1) = [0.0158x2
1 +

0.0138x1 − 0.1312 0.0720x2
1 + 0.1453x1 − 0.4839] and

G2(x1) = [0.0058x2
1 + 0.0000x1 − 0.0459 0.0154x2

1 −
0.0021x1−0.0158]. With initial conditions indicated by “◦”,
the phase plot of x1(t) and x2(t) is shown in Fig. 5. With
initial conditions x(0) = [10 10]T , the transient response
of x(t) and control input u(t) are shown in Fig. 6. It can
been seen that the PFMB control system is guaranteed to be
asymptotically stable in the domain x1 ∈ [−10, 10].

Compared with stability conditions in Remark 2 without
any information of membership functions, there is no stabi-
lization region within the same domain of parameters a and
b. Since the polynomial fuzzy model and controller in this
example do not share the same membership functions, PDC
SOS-based stability conditions [23]–[25] in general cannot
be applied. Accordingly, the relaxation and flexibility of the
proposed method are exhibited from the comparison.
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Fig. 4. Stabilization regions obtained from Theorem 1 with all slack
matrices (Yij(x1), Wij(x1), Wij(x1) , L(x1), and K(x1)), indicated
by “×” for Case 1, “+” for Case 2, “�” for Case 3, and “◦” for Case 4.
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Fig. 5. Phase plot of x1(t) and x2(t) for a = 10 and b = 220 in Case 4.
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Fig. 6. Transient response of x(t) and control input u(t) for a = 10 and
b = 220 in Case 4.



V. CONCLUSION

The stability analysis of polynomial fuzzy-model-based
control systems has been carried out. In favor of reducing the
conservativeness, TSMFs have been proposed to approximate
original membership functions. More information including
the boundary of membership functions, the property of mem-
bership functions, and the boundary of operating domain,
have been brought into stability conditions such that SOS-
based conditions can be further relaxed. Future work can be
done to bring specific membership function vrirl(xr) into
stability conditions, which has potential to further reduce the
conservativeness.
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