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Abstract

In this paper, an intelligent swarm based-wavelet neural network for affective
mobile designed is presented. The contribution on this paper is to develop
a new intelligent particle swarm optimization (iPSO), where a fuzzy logic
system developed based on human knowledge is proposed to determine the
inertia weight for the swarm movement of PSO and the control parameter
of a newly introduced cross-mutated operation. This iPSO will be used to
optimize the parameters of wavelet neural network. Application on affective
design of mobile phones is used to test the performance of the proposed iPSO
and found that it is significantly better than that of the existing hybrid PSO
methods in a statistical sense.

Keywords:
Affect mobile design, Fuzzy reasoning model, Particle swarm optimization,
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1. Introduction

Recent research demonstrates that particle swarm optimization (PSO) is
a more effective optimization method to optimize the parameters (weights)
of neural network models [1, 2, 3, 4, 5, 6, 7, 8] and industrial applications
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[9, 10]. Although reasonable solutions can generally be obtained by the PSO
within a reasonable computational time, enhancement of the operations and
the mechanisms of the PSO is essentially required in order to obtain better
solutions. A commonly used enhancement approach is to integrate other
optimization operations such as gradient descent, crossover and mutation
operations into the PSO.

Juang [11] proposed a hybrid PSO algorithm namely HGAPSO which
use evolutionary operations including crossover, mutation and reproduction
to control swarm movement, and also a hybrid PSO namely HPSOM was pro-
posed [12] by integrating the PSO with mutation operation. Both HGAPSO
and HPSOM inject random components into particles using mutation, but
the mutating space used in both approaches is fixed throughout the search.
Although premature convergence is more likely to be avoided, the approach
can be further improved by varying the mutating space with respect to the
searching progress of the PSO. A hybrid PSO with wavelet mutation oper-
ation (HPSOWM) was proposed in [13], of which the mutating space var-
ied based on the wavelet theory. By introducing the wavelet mutation, the
performance in terms of solution quality and stability can be improved. Al-
though the approaches provide a balance between the global exploration and
local exploitation, they are not appropriate to assume the searching pro-
gresses of the PSO are linear or wavelet characteristics, and it is also imprac-
tical and almost impossible to mathematically model the searching progress
of the PSO, in order to determine the appropriate inertia weight for searching
the optimum.

In this paper, an intelligent PSO namely iPSO is proposed to optimize
the parameter of variable translation wavelet neural network (VTWNN) [1, 3]
and will be applied to affective product design. iPSO is proposed by intro-
ducing two new operations, namely fuzzy inertia weight and cross-mutated
(CM) operation. The fuzzy inertia weight is determined based on a fuzzy
inference system which consists of a set of linguistic rules in representing
the searching characteristics of the PSO. By dynamically changing the fuzzy
inertia weight, the dynamic of the swarm can be varied with respect to the
searching progress of the PSO. Hence, solutions with better qualities are
more likely to be searched. The CM injects momentum to the swarm when
the progress of the PSO is saturating, where the amount of momentum is
controlled based on the fuzzy inference system. It intends to further avoid
the PSO in searching the local optima.

VTWNN has been used to model the relationships between design vari-

2



ables and affective responses on mobile design application. Wavelets are used
as transfer functions in the hidden layer of the VTWNN. The network param-
eters, i.e., the translation parameters of the wavelets, are variable depending
on the network inputs. Thanks to the variable translation parameters, the
VTWNN becomes an adaptive network capable of handling different input
patterns and exhibits a better modeling performance.

In the development of a new mobile phone, basic functions such as op-
erations of transmission and receiver must work satisfactorily. After these
basic functions have been achieved, function operations in a higher level are
required to be satisfied. For example, the mobile phone should be felt com-
fortable when hand-held by the customer. The buttons of a mobile phone
should also be pressed easily, and the voices should be clearly heard by the
receiver. After satisfying all those functional operations, optimization of af-
fective responses is essentially required [14]. It is now evident in the mobile
phone market that successful can transform its products from being merely
functional items to lifestyle or fashion accessories [15]. Consequently, product
designers are increasingly focusing on optimizing affective responses rather
than solely optimizing their functional operations.

This paper is organized as follows. Section 2 presents the affective mo-
bile design and its morphological matrix. The modeling with VTWNN is
discussed in Section 3. The details of iPSO is presented in Section 4. Ex-
perimental study and analysis will be given in Section 5 to evaluate the
performance of the proposed method. Finally, a conclusion will be drawn in
Section 6.

2. Affective mobile design

In the highly competitive market of mobile phones, the product designers
provide the consumers with various styles for different brands and different
product series of mobile phones. To capture the trend, we have selected 32
recent mobile phones of various brands, including Nokia, Sony Ericsson and
Motorola. Morphological analysis shown in Fig. 1 is used to extract repre-
sentative elements of mobile phones as numerical data sets, in which both
the shape profiles and the product components of the mobile phones are
used. As shown in Fig. 1, nine representative design elements of the affec-
tive design for mobile phones are used, namely “top shape”, “bottom shape”,
“side shape”, “function button shape”, “number button style”, “length width
ratio”, “thickness”, “layout” and “Border and frame”, where those represen-
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tative design elements are denoted as x1, x2, x3, x4, x5, x6, x7, x8 and x9
respectively. Those representative design elements were identified from the
32 mobile phone samples. The number 1-6 of the design matrix represents
the type of design elements shown in Figure 1.

Figure 1: Morphological analysis on the 32 representative mobile phone samples.

Based on the experience of the affective designers, four most representa-
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tive affective responses for mobile phone design, “simple - complex (S-C)”
y1, “unique - general (U-G)” y2, “high-tech - classic (H-C)” y3, and “handy
- bulky (H-B)” y4 [16], are collected from 14 image-word pairs for micro-
electronic products, and they are used for evaluating the affective satisfaction
of the mobile phones. A survey was conducted using an online questionnaire
to study the appearance of mobile phones on y1, y2, y3 and y4, which is
detailed in [17]. Fig. 2 shows the morphological matrix of the 32 mobile
phones samples based on the 9 representative elements. Also, it shows the
means of the affective responses S-C, U-G, H-C, and H-B with respect to 34
interviewers. Prior to optimizing the affective responses, the development of
the affective models is essential in order to relate the representative design
elements x1, x2, x3, x4, x5, x6, x7, x8 and x9 to one of the affective responses
y1, y2, y3 and y4.

3. Modeling with variable translation wavelet neural network

A three-layer variable translation wavelet neural network [1, 3] shown
in Fig. 3 is used to develop the affective models of mobile phones, as the
approach is effective in modeling nonlinear relationships. In the neural net-
work, wavelet functions are used as the transfer functions in the hidden layer.
The translation parameters of wavelets are dependent on the network inputs.
This wavelet neural network is tuned using the proposed iPSO. Its structure
consists of an input layer in which the input vectors (consisting of nine de-
signed elements x1, x2, x3, ... x9 ) are fed. The output layer generates the
affective response (either y1, y2, y3 or y4), and a hidden layer is between the
input layer and the output layer of the wavelet neural network. As wavelet
functions are linking between the input and output layers, complex, inter-
active and nonlinear characteristics of affective response can be modelled
effectively.

The first affective response, namely simple-complex y1, governed by the
wavelet neural network [3] is given as:

y1 (t) =

nh∑
j=1

ψj,bj(Sj)·w1j (1)

where

Sj =

nin∑
i=1

zi (t)vji (2)
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Figure 2: Design matrix of 32 mobile phone samples.

and

ψj,bj (Sj) =
1√
j
e

−
(

Sj−bj
j

)2

2

(
1−

(
Sj − f j (Sj)

j

)2
)

(3)

where

f j(Sj) = 4× j
(

2

1 + e−κj×Sj
− 1

)
(4)
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vji, i=1, 2, ..., nin; j=1, 2, ..., nh denotes the weight of the link between the
i-th input node and the j-th hidden node, nin and nh represent the number
of inputs and the number of hidden nodes respectively. Here, nin = 9 and
nh = 5 are used. wj denotes the weight of the link between the j-th hidden
node and the output. The parameters of the wavelet neural network (vji,
wj and κ

j) are required to be optimized. Similarly, the other three affective
responses, y2, y3 and y4, can be governed by the formulation represented by
(1)-(4). Here 55 parameters are required to be determined in the wavelet
neural network.

Figure 3: Structure of variable translation wavelet neural network.
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4. Intelligent particle swarm optimization (iPSO)

Particle swarm optimization (PSO) models the social behavior of a swarm
like bird flocking and fish schooling. The swarm is composed of a number of
particles. Every particle traverses a search space for the best fitness value.
PSO with inertia weight [18] and PSO with constriction factor [19] were re-
ported to show improved searching ability over the standard PSO [20]. In
[18], the inertia weight ω(t) provides a balance between the global explo-
ration and local exploitation of the swarm. When ω(t) is linearly related to
iteration time t, if the value of t/T (where T is total number of iteration)
is smaller, more global exploration is done; if it is larger, more fine-tuning
(local exploitation) is realized. However, a linear relation between ω(t) and
t may not be so appropriate because the search progress of the swarm is
not a linear movement. Thus, we propose a nonlinear inertia weight ω̃(t)
to enhance the searching performance. The value of ω̃(t) is evaluated by a
2-input fuzzy inference system as one of its 2 outputs. (The other output is
the control parameter β(t) of the CM operation that will be discussed in the
later sub-section.)

The pseudo code for iPSO is given in Algorithm 4.1. A fuzzy inertia
weight ω̃(t) is first proposed to improve the searching quality. A cross-
mutated (CM) operation is also added to tackle the limitation of standard
PSO [18, 19, 20] being easy to trap in some local minima.

Under Algorithm 4.1, X (t) denotes a swarm at the t-th iteration. Each
particle xi (t) ∈ X (t) contains κ elements xij (t) ∈ xi (t), where i = 1, 2,...
, γ and j = 1, 2,... , κ; γ denotes the number of particles in the swarm
and κ is the dimension of a particle. At the beginning, the swarm particles
are initialized and then evaluated by a defined fitness function f (xi (t)). The
current generation number t is initialized to 0. The job of iPSO is to minimize
the fitness value through an iterative process.

The evolution realised by iPSO is governed by the velocity (flight speed)
of the particles in the search space. The velocity vij (t) and the position xij (t)
of the j-th element of the i-th particle at the t-th generation is given by the
following formulae:

vij(t) = k · {ω̃(t) · vij(t− 1) + φ1 · r1 · (pij − xij(t− 1)) + φ2 · r2 · (gj − xij(t− 1))} (5)

and

xij (t) = xij (t− 1) + vij (t) (6)
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where
pi =

[
pi1 pi2 , . . . piκ

]
is the best position of the particle i, and g =[

g1 g2 , . . . gκ
]
is the best particle among all the particles; r1 and r2 are

random numbers in the range of [0,1]. ω̃ (t) is the fuzzy inertia weight factor;
φ1 and φ2 are acceleration constants; k is the constriction factor derived
from the stability analysis of (5) for assuring the system to converge but not
prematurely [21]. In this paper, k is related to φ1 and φ2 as follows:

k =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣ (7)

where φ = φ1 + φ2 and φ > 4.
The particle velocity is limited by a maximum value vmax in (5). This

parameter vmax determines the resolution of the searched regions between
the present position and the target position. The value of this limit gov-
erns the local exploitation of the problem space. Practically, it emulates
the incremental changes of human learning. If the value of vmax is too
large, the particles might fly past good solutions. If the value of vmax is
too small, the particles may not sufficiently explore beyond the local so-
lutions. Based on our experiments, it is suggested vmax can be assigned
with a value of 10% to 20% of the dynamic range of each element. Af-
ter updating the velocity of all particles, we get a new swarm X(t) based
on (6). To ensure every particle element xij in X(t) falls within the range[
ρminj

, ρmaxj

]
, we add the following conditions. If xij(t) >ρmaxj , the up-

dated xij(t) should be equal to ρmaxj . Similarly, if xij(t) <ρminj , the updated

xij(t) should be equal to ρminj . Here, ρmin =
[
ρmin1 ρmin2 · · · ρminκ

]
and

ρmax =
[
ρmax1 ρmax2 · · · ρmaxκ

]
; ρminj and ρmaxj are the minimum and

maximum values of xij(t) respectively, and j = 1, 2, ..., κ.
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Algorithm 4.1: Pseudo code for iPSO(X(t))

t← 0
Initialize X(t)
Define the probability of CM operation pcm
output (f(X(t)))
while <not termination condition>

do



t← t+ 1
output (t/T )
output (||ς(t)|| based on (8) and (9))
Find the inertia weight ω̃k(t) by
using fuzzy inference system based on (10)− (12).
Update velocity v(t) based on (5).
Find the control parameter β(t) by
using fuzzy inference system based on (15)− (16).
Generate a random number Rcm

if Rcm > pcm
then Perform cross-mutated operation
based on (13)− (14).
if v(t) > vmax

then v(t) = vmax

if v(t) < −vmax

then v(t) = −vmax

Generate a new swarm X(t) based on (6).
if xij(t) > ρmaxj

then xij(t) = ρmaxj

if xij(t) < ρminj

then xij(t) = ρminj

output (f(X(t)))
return (g)
comment: g is the best particle among all particles (solution)

4.1. fuzzy inertia weight

In (5), a nonlinear inertia weight ω̃(t) is proposed to enhance the searching
performance. The value of ω̃(t) is evaluated by a 2-input fuzzy inference
system as one of its 2 outputs. (The other output is the control parameter
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β(t) of the CM operation that will be discussed in the later sub-section.)
The inputs of the fuzzy inference system are ||ς(t)|| and t/T . ||ς(t)|| is the
normalized standard deviation of fitness values among all the particles, of
which a larger value implies the particles being far apart from one another.
The term ||ς(t)|| is given by:

||ς(t)|| =

√√√√1

γ

γ∑
i=1

(
||f (xi (t)) || − ||f̄ (xi (t))||

)2
(8)

where

||f̄
(
xi (t)

)
|| = 1

γ

γ∑
i=1

||f
(
xi (t)

)
|| (9)

and ∥·∥ denotes the l2 vector norm.
The following fuzzy rules govern the fuzzy inertia weight ω̃ (t):

Rule j : IF ||ς(t)|| is Nj
1, AND t/T is Nj

2, THEN ω̃ (t) = σj,

j = 1, 2, . . . , ε (10)

where Nj
1 and Nj

2 are fuzzy terms of rule j, ε is the number of rules, σj ∈[
ωmin ωmax

]
is a singleton to be determined, with ωmin and ωmax being

set at 0.1 and 1.1 respectively [13, 22]. The final value of ω̃ (t) is given by:

ω̃ (t) =
ε∑

j=1

mj (t)σj (11)

where

mj (t)=
µNj

1
(||ς(t)||)× µNj

2
(t/T )

ε∑
j=1

(
µNj

1
(||ς(t)||)× µNj

2
(t/T )

) (12)

µNj
1
(||ς(t)||) and µNj

2
(t/T ) are the membership function values corre-

sponding to Nj
1 and Nj

2 respectively.
As shown in Fig. 4, the fuzzy inference system uses three member-

ship functions to model each input: L (Low), M (Medium), and H (High).
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The output singletons use five terms, namely VL (Very Low), L (Low), M
(Medium), H (High), and VH (Very High). The threshold values for these
five terms are set at 0.1, 0.35, 0.6, 0.85, 1.1 respectively. The values are
determined based on the values of ωmin and ωmax. For example, the output
term is Very High, the threshold value is equal to ωmax (=1.1). If the output
term is Medium, then the threshold value is equal to (ωmax+ωmin)/2 (=0.6).
With ||ς(t)|| and t/T as inputs, the 9 linguistic IF-THEN fuzzy rules for
determining ω̃(t) are given as follows:

Rule 1: IF ||ς(t)|| is “L” AND t/T is “L”, THEN ω̃ (t) is “VH” (= 1.1)
Rule 2: IF ||ς(t)|| is “M” AND t/T is “L”, THEN ω̃ (t) is “H” (= 0.85)
Rule 3: IF ||ς(t)|| is “H” AND t/T is “L”, THEN ω̃ (t) is “VH” (= 1.1)
Rule 4: IF ||ς(t)|| is “L” AND t/T is “M”, THEN ω̃ (t) is “M” (= 0.6)
Rule 5: IF ||ς(t)|| is “M” AND t/T is “M”, THEN ω̃ (t) is “M” (= 0.6)
Rule 6: IF ||ς(t)|| is “H” AND t/T is “M”, THEN ω̃ (t) is “H” (= 0.85)
Rule 7: IF ||ς(t)|| is “L” AND t/T is “H”, THEN ω̃ (t) is “VL” (= 0.1)
Rule 8: IF ||ς(t)|| is “M” AND t/T is “H”, THEN ω̃ (t) is “VL” (= 0.1)
Rule 9: IF ||ς(t)|| is “H” AND t/T is “H”, THEN ω̃ (t) is “L” (= 0.35)

The rationale of the fuzzy rules for determining ω̃ (t) is given as follows. The
value of t/T represents the evolution stage (a small t/T represents an early
stage.) The value of ω̃ (t) is set higher when the value of t/T is smaller
(in early stage) so that a larger value of the particle velocity is given for
global searching. Similarly, a larger value of t/T implies a smaller value of
the particle velocity for local searching and fine-tuning. Thus, ω̃ (t) of the
fuzzy rules 1, 2, and 3 (t/T is “L”) has a larger value than that of the rules
4, 5, and 6 (t/T is “M”). As ||ς(t)|| is the normalized standard deviation
of fitness values among all the particles, a large value of ||ς(t)|| implies that
the particle locations are far away from one another. In rules 1 to 3, the
searching process is in its early stage (t/T is “L”). When ||ς(t)|| is “H”, the
wide-spread particle locations implies a larger value of ω̃ (t) should be used
for global exploration. When ||ς(t)|| is “L” in the early stage, the value of
ω̃ (t) is also set large as the chance of the solution being trapped in a local
optimum is high. In rule 2, the value of ||ς(t)|| is “M”, and we set the value
of ω̃ (t) to be slightly smaller than that in rules 1 and 3 in the early stage
(t/T is “L”). In rule 4 to rule 6, the searching process is in its middle stage
(t/T is “M”). The rationale for suggesting the value of ω̃ (t) is similar to
that for rules 1-3. However, when ||ς(t)|| is “L”, the value of ω̃ (t) is smaller
than that when ||ς(t)|| is “H”. It is because the optimal solution may have
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been found in the middle stage when a smaller value of ω̃ (t) is given. In rule
7 to rule 9, the searching process is in its late stage (t/T is “H”). Hence, the
searching process is undergoing a fine-tuning process (local exploitation) to
reach the optimal solution. As a result, when the value of ||ς(t)|| is “L”, the
locations of particles are close to one another and near the optimal solution
and the smallest value of ω̃ (t) is used.
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(a) fuzzy input 1: ||ς(t)||
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Figure 4: Membership functions (a) x-axis: ||ς(t)|| ,y-axis: µN1(||ς(t)||) (b) x-axis:
t/T ,y-axis: µN2(t/T ).

4.2. Cross-mutated operation

The proposed cross-mutated (CM) operation merges the ideas of crossover
and mutation operations of the genetic algorithm [23] in order to help the
particles escaping from some local optima. By injecting random components
into particles, the CM operation improves the iPSO performance, particu-
larly when it is used to tackle multimodal optimization problems with many
local minima.

With the CM operation, the velocity of every particle element will have a
chance to undergo CM operation governed by a probability of CM operation,
pcm ∈

[
0 1

]
, which is defined by the user. A random number Rcm between

0 and 1 will be generated for each particle element such that if it is less than
or equal to pcm, the CM operation will take place on that element. The
value of the pcm affects the solution quality, and its sensitivity analysis with
experimental results will be discussed later.

After taking the CM operation, the resulting velocity of a particle element
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is given by:

v̄ij(t) =

{
(1− β(t)) vij (t) + β(t)ṽij (t) , r3 > 0.5

(1− β(t)) vij (t)− β(t)ṽij (t) , r3 ≤ 0.5
(13)

where

ṽij (t) = 0.25
{
r4 ·
(
ρmaxj − ρminj

)
+ ρminj

}
(14)

r3, r4∈
[
0 1

]
is a random number, vij (t) is determined by (5), ṽij (t) is a

random velocity of particle element and its value is bounded within 0.25 of
the range of the particle element value; a control parameter β(t) is intro-
duced into the CM operation, which is governed by some fuzzy rules based
on human knowledge. The maximum velocity and minimum velocity are
therefore 0.25 of the range of particle element value. The value of 0.25 is
chosen by trial and error through experiments. If this value is too large or
too small, the searching performance might be degraded. In (13), the result-
ing velocity of particle element v̄ij (t) combines the information of vij (t) and
ṽij (t), exhibiting the characteristic of the crossover operation. However, in
(13), v̄ij (t) is changed individually the mutation operation. Therefore, it is
called the cross-mutated (CM) operation.

In (13), the control parameter β(t) provides a balance to control the
resulting velocity v̄ij (t) converging toward vij (t) or ṽij (t). This control pa-
rameter is in the range of 0.1 to 0.5. If β(t) is approaching 0, v̄ij (t) will
approach vij (t). Conversely, when β(t) is approaching 1, v̄ij (t) will approach
ṽij (t). Hence, ṽij (t) in (14) provides a means for the particle element to es-
cape from a local optimum through a random movement governed by β(t),
of which the value is generated by the following fuzzy rules:

Rule j : IF ||ς(t)|| is Nj
1 AND t/T is Nj

2, THEN β (t) = χj,

j = 1, 2, . . . , ε (15)

where χj is a singleton to be determined. The final value of β (t) is given by:

β (t) =
ε∑

j=1

mj (t)χj (16)

where mj (t) is given by (12)
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The output singletons use five terms, namely VL (Very Low), L (Low), M
(Medium), H (High), and VH (Very High). As the control parameter of CM
is in the range of 0.1 to 0.5. Thus, the threshold values for these five terms
are set at 0.1, 0.2, 0.3, 0.4, 0.5 respectively. Here, 9 linguistic IF-THEN fuzzy
rules for determining β(t) are used and listed as follows:

Rule 1: IF ||ς(t)|| is “L” AND t/T is “L”, THEN β (t) is “VH” (= 0.5)
Rule 2: IF ||ς(t)|| is “M” AND t/T is “L”, THEN β (t) is “H” (= 0.4)
Rule 3: IF ||ς(t)|| is “H” AND t/T is “L”, THEN β (t) is “VH” (= 0.5)
Rule 4: IF ||ς(t)|| is “L” AND t/T is “M”, THEN β (t) is “H” (= 0.4)
Rule 5: IF ||ς(t)|| is “M” AND t/T is “M”, THEN β (t) is “M” (= 0.3)
Rule 6: IF ||ς(t)|| is “H” AND t/T is “M”, THEN β (t) is “H” (= 0.4)
Rule 7: IF ||ς(t)|| is “L” AND t/T is “H”, THEN β (t) is “VL” (= 0.1)
Rule 8: IF ||ς(t)|| is “M” AND t/T is “H”, THEN β (t) is “L” (= 0.2)
Rule 9: IF ||ς(t)|| is “H” AND t/T is “H”, THEN β (t) is “L” (= 0.2)

The rationale for formulating the fuzzy rules is similar to that for formulating
the rules governing the fuzzy inertia weight in section 4.1. As mentioned be-
fore, rules 1-3 with t/T being “L” correspond to the early searching process,
and rules 7-9 correspond to the late searching process. The values of β(t)
in rules 1-3 are larger than those in rules 7-9. A more significant random
velocity (higher value of β(t) in (13)) provides more global exploration in the
early stage. Conversely, the effect of the random velocity should be reduced
in the late stage for more fine-tuning (local exploitation).

In the early stage, when ||ς(t)|| is “L”, the locations of particles are close
to one another. Hence, we have to set the value of β(t) to be larger than that
when ||ς(t)|| is “M” as the chance of trapping in a local optimum is high.
Conversely, when the value of ||ς(t)|| is “L”, a small β(t) is used to fine-tune
the solutions in the late stage.

5. Results and discussions

To develop the wavelet neural network, 32 pieces of survey data, which
represent affective responses with different design elements are used. The
training patterns consist of the input vectors regarding the design elements
and their corresponding expected outputs regarding the affective responses.
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In order to test the learning ability of the wavelet neural network trained
by the proposed iPSO, a cross-validation was used. We split the 32 pieces
of survey data into 8 subsets randomly and each subsets contains 4 piece of
survey data. 6 subsets are used for training and 2 subsets are used for testing.
By using cross-validation, each subset is used six times as the training set and
twice as the testing set. The training and testing results are then averaged
over the splits.

Apart from the the proposed iPSO, other PSO methods (HPSOWM [13],
HPSOM [12], and HGAPSO [11]) are employed to tune the wavelet neural
network. We aim to minimize the mean absolute error (MAE) of the wavelet
neural network by optimizing the following objective function fobj:

fobji =
1

M

M∑
t=1

|ydi (t)− yi (t) | (17)

where i = 1, 2, ..., 4. For all PSO methods, the swarm size is set at 50,
the number of runs is 50. The acceleration constants φ1 and φ1 are set
at 2.02 and the maximum velocity vmax is equal to 0.2. The number of
iteration is 1000. The values of vji and wj are bounded between −5 and
5. The values of κj is bounded between 0.3 and 1.5. The probability of
mutation operation for HPSOWM, HPSOM and HGAPSO are set at 0.1.
The probability of CM operation for iPSO is set at 0.01 in this application.
The shape parameters of the wavelet mutation and the parameter g of the
wavelet mutation for HPSOWM are set at 2 and 10000 respectivity. For
HGAPSO, the probability of crossover operation is 0.8. The training results
for the four affective responses are tabulated in Table 1.

The result in the table shows that the average training performance of
iPSO is better than those obtained by the other PSO methods. In terms of
p-value, all values for four affective responses are less than 0.05 (p < 0.05)
which means that the iPSO method is significantly better than the other PSO
methods with a 95% confidence level. To validate the modeling performance,
the average testing results are shown in the same table. In this table, we
can see that the testing results obtained by iPSO for all affective responses
are better than those by other PSO methods. For example, for the S-C
(Simple-complex) response, the wavelet neural network obtained by iPSO
gives smaller MAE (5.82× 10−2± 1.07× 10−2) than the second best wavelet
neural network by HPSOM (6.57 × 10−2 ± 1.58 × 10−2). In terms of p-
value for testing, the p values with respect to iPSO for S-C and H-B are
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less than 0.05. Hence, the performance of iPSO is significantly better than
the other PSO methods with a 95% confidence level. For H-C, the p values
for testing are mostly less than 0.05, except that of HPSOM (p = 0.053).
Generally, p = 0.053 can be also considered to be statistically significant.
For the response U-G, the iPSO can be considered as slightly statistically
significant as the p values are between 0.0667 to 0.1687. The values in this
range are acceptable. iPSO is generally the best method among the tabled
PSO methods for this affective product design problem.

iPSO HPSOWM HPSOM HGAPSO

S-C Training Mean (×10−2) 3.61 4.28 4.23 4.25
Std Dev (×10−2) 0.81 0.84 0.77 0.80

Testing Mean (×10−2) 5.82 6.74 6.57 6.58
Std Dev (×10−2) 1.07 1.59 1.58 1.23
p-value for training – 0.0047 0.0059 0.0054
p-value for testing – 0.0156 0.0433 0.0186

U-G Training Mean (×10−2) 3.11 3.51 3.42 3.55
Std Dev (×10−2) 0.63 0.72 0.66 0.63

Testing Mean (×10−2) 4.77 5.42 5.44 5.19
Std Dev (×10−2) 1.01 1.73 1.61 1.22
p-value for training – 0.0334 0.0827 0.0141
p-value for testing – 0.0891 0.0667 0.1687

H-C Training Mean (×10−2) 2.59 3.18 3.07 3.05
Std Dev (×10−2) 0.67 0.71 0.71 0.61

Testing Mean (×10−2) 4.60 5.26 5.08 4.99
Std Dev (×10−2) 0.86 1.28 0.95 0.86
p-value for training – 0.0032 0.0128 0.0123
p-value for testing – 0.0303 0.0530 0.0979

H-B Training Mean (×10−2) 3.38 3.92 3.91 3.95
Std Dev (×10−2) 0.99 0.85 0.78 0.80

Testing Mean (×10−2) 5.31 5.96 6.02 6.04
Std Dev (×10−2) 1.14 1.14 1.22 1.30
p-value for training – 0.0355 0.0323 0.0242
p-value for testing – 0.0381 0.0289 0.0294

Table 1: Comparison between different PSO methods for affective product design of mobile
phones. All results are averaged ones over 30 runs (p-value illustrates the significant
difference between iPSO and the other methods).
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6. Conclusion

In this paper, we have proposed an intelligent particle swarm optimization
(iPSO) that incorporates an adaptive inertia weight and a new cross-mutated
operation to optimize the parameters of variable translation wavelet neural
network. In iPSO, the control parameters of cross-mutated operation are
determined by a set of fuzzy rules. By introducing the fuzzy system, the so-
lution quality obtained by the iPSO is improved. On applying to optimize the
neural network parameters for modeling affective product design of mobile
phones, iPSO is found to be successful and outperforms the other PSO meth-
ods, including HPSOWM, HPSOM and HGAPSO. In this study, we have two
limitations, the first limitation is that choosing the suitable parameter val-
ues for the PSO is quite difficult. Most parameter values are determined by
trial and error through experiments. The second limitation is that the total
iteration number needs to be determined for doing the optimization.

7. Acknowledgment

The work described in this paper was partially supported by a research
grant from University of Technology Sydney (Activity code: 2032108), and
the Research Grants Council of the Hong Kong Special Administrative Re-
gion, China (Project Account Code G-Y563)

References

[1] P. P. San, S. H. Ling and H. T. Nguyen, “Hybrid PSO-based variable
translation wavelet neural network and its application to hypoglycemia
detection system”, Neural Computing and Applications, vol. 23, nos. 7-8,
2013, pp. 2177-2184.

[2] P. P. San, S. H. Ling and H. T. Nguyen, “Industrial application of evolv-
able block-based neural network to hypoglycemia monitoring system”,
IEEE Trans. Industrial Electronics, vol. 60, no. 12, 2013, pp. 5892-5901.

[3] S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K. Y. Chan, “Improved
hybrid PSO-based wavelet neural network for modelling the development
of fluid dispensing for electronic packaging”, IEEE Trans. Ind. Electron.,
vol. 55, no. 9, 2008, pp. 3447-3460.

18



[4] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle-
swarm-optimized fuzzy-neural network for voice-controlled robot sys-
tems”, IEEE Trans. Ind. Electron., vol. 52, no. 6, 2005, pp. 1478-1489.

[5] M. Han, J. Fan, and J. Wang, “A dynamic feedforward neural network
based on gaussian particle swarm optimization and its application for
predictive control”, IEEE Trans. Neural Networks, vol. 22, no. 9, 2011,
pp. 1457-1468.

[6] D. Yi and X. Ge, “An improved PSO-based ANN with simulated an-
nealing technique”, Neurocomputing, vol. 63, 2005, pp. 527-533.

[7] J. Yu, S. Wang and L. Xi, “Evolving artificial neural networks using an
improved PSO and DPSO”, Neurocomputing, vol. 71, nos. 4-6, 2008, pp.
1054-1060.

[8] G. Y. Lian, K. L. Huang, J. H. Chen, and F. Q. Gao, “Training algorithm
for radial basis function neural network based on quantum-behaved par-
ticle swarm optimization”, International Journal of Computer Mathe-
matics, vol. 87, no. 3, 2010, pp. 629-641.

[9] S.H. Ling, F. Jiang, K.Y. Chan, and H.T. Nguyen, “Hybrid fuzzy logic-
based particle swarm optimization for flow shop scheduling problem”,
nt. J. Computational Intelligence and Applicat., vol. 10, no. 3, 2011, pp.
335-356.

[10] L.C Jain, V. Palade, D. Srinivasan, “Advances in Evolutionary Com-
puting for System Design”, Springer, 2007.

[11] C. F. Juang, “A hybrid genetic algorithm and particle swarm optimiza-
tion for recurrent network design”, IEEE Trans. Syst. Man and Cybern.
B, vol. 34, no. 2, 2004, pp. 997-1006.

[12] A. A. E. Ahmed, L. T. Germano, and Z. C.Antonio, “A hybrid particle
swarm optimization applied to loss power minimization”, IEEE Trans.
Power Syst., vol. 20, no. 2, 2005, pp. 859-966.

[13] S.H. Ling, C.W. Yeung, K.Y. Chan, H.H.C. Iu, and F.H.F. Leung, “A
new hybrid particle swarm optimization with wavelet mutation for neu-
ral network training”, in Proc. Congress on Evolutionary Computation
(CEC2007), Singapore, Sep 2007, pp. 1977-1984.

19



[14] J. Kuang and P. Jiang, “Analysis of the impact of slight changes in
product formal attributes on user’s emotions and configuration of an
emotional space for successful design”, Journal of Engineering Design,
vol. 21, no. 6, 2010, pp. 693-705.

[15] M. A. Artacho, A. Ballester and E. Alcantara, “Product platform design
for a product family based on Kansei engineering”, Journal of Engineer-
ing Design, vol. 20, no. 6, 2009, pp. 589-607.

[16] H. H. Lai, Y. C. Lin and C. H. Yeh, “Form design of product image
using grey relational analysis and neural network models”, Computers
& Operations Research, vol. 32, no. 10, 2004, pp. 2689-2711.

[17] K. Y. Chan, C. K. Kwong, T. S. Dillon and K. Y. Fung, “An intelli-
gent fuzzy regression approach for affective product design that captures
nonlinearity and fuzziness”, Journal of Engineering Design, vol. 22, no.
3, 2010, pp. 523-542.

[18] Y. Shi, “Empirical study of particle swarm optimization”, Proc. of the
1999 Congress on Evolutionary Computation, Washington, US, 1999,
pp. 1945-1950.

[19] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space”, IEEE Trans. Evol
Comput., vol. 6, no. 1, 2002, pp. 58-73.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proc. 30th
IEEE Conf. Decision and Control, vol. 4, 1995, pp. 1942-1948.

[21] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constric-
tion factors in particle swarm optimization”, Proc. IEEE Congress on
Evolutionary Computing, vol. 1, 2000, pp. 84-88.

[22] N. Mo, Z. Y. Zou, K. W. Chan, and T. Y. G. Pong, “Transient stability
constrained optimal power flow using particle swarm optimization”, IET
Proceedings - Generation, Transmission and Distribution, vol. 1, no. 3,
2007, pp. 476-483.

[23] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolution Pro-
grams, USA, 1996.

20


