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ABSTRACT 

 

One of the critical missions for bridge structural health monitoring (SHM) is to provide a reliable 

assessment technique to potential hazards caused by structural damage or other structural defects using 

continuously monitored vibration data. Recognising the needs and shortcomings of SHM, a project 

was established by NICTA, the University of Technology Sydney and The University of Sydney to 

develop reliable damage detection methods to provide robust and accurate assessment techniques for 

critical bridge infrastructure in Australia. This paper presents the progress of research and 

development of a vibration-based damage detection technique and its experimental validation in the 

laboratory. The proposed technique uses residual frequency response functions (FRFs) combined with 

principal component analysis (PCA) to form damage specific features (DSFs) that are incorporated in 

pattern recognition using artificial neural networks (ANNs). In the method, FRFs are obtained using 

modal analysis techniques and damage is identified using ANNs that innovatively map the DSF to 

damage characteristics, such as damage location and severity. The results of the experimental 

validation show that the proposed technique can successfully locate and quantify damage induced to a 

concrete arch beam simulating a real life structural component of the Sydney Harbour Bridge.    
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INTRODUCTION 

 
The National ICT of Australia (NICTA), in collaboration with the Road and Maritime Services (RMS) 

in NSW, have developed and installed a large number of custom-designed sensors on the Sydney 

Harbour Bridge to monitor the performance of critical structural components and to thereby ensure 

their safety and reliability. The system aims to provide a robust and reliable warning and evaluation 

system to detect structural deficiencies on a series of concrete arch beam components. A critical issue 

is how to reliably detect structural damage using continuous real-time monitored data of the bridge 

components under ambient vibration conditions as well as to provide an accurate evaluation on the 

bridge loading capacity based on the estimated bridge condition. This on-going project is in its first 

stage focusing on the exploration of the effectiveness of various damage detection algorithms through 

numerical and experimental investigations.  
 

For Structural Health Monitoring (SHM), the idea of using vibration response for detecting damage 

has always been an attractive approach. A great deal of vibration-based research has been devoted to 

the use of modal parameters (i.e. modal frequencies, modal damping and mode shapes) and their 

derivatives to form damage specific features (DSFs) for damage detection. Among the three modal 

parameters, modal frequencies are the simplest DSFs for detecting damage. Research undertaken in 

recent years, however, focused primarily on the use of directly measured data such as frequency 

response functions (FRFs) to assess the condition of a structure and identify damage. Contrary to 

processed data, such as modal parameters, direct measurements from numerical and experimental 

modal testing have the advantage of retaining abundance of information on a structure’s dynamic 

behaviour as well as of avoiding labour intensive experimental modal analysis. Thereby, operational 

human induced errors can be eliminated and crucial damage sensitive information is preserved. 

Further, using direct measurements from real-time can make these methods favourable for online 

monitoring. Artificial neural networks (ANNs), a form of artificial intelligence, have strong abilities to 

learn from experience, generalize from examples, and identify underlying information from noisy data. 

In the presented method, the joint use of directly measured FRF data and ANNs is employed. Similar 

approaches have already been applied by some researchers and promising results have been obtained 

(Das and Parhi 2009; Li, Dackermann, Xu and Samali 2009; Dackermann, Li and Samali 2013). A 

challenge in utilising FRFs as inputs for ANNs is the large size of the FRF data. Utilising full-size 

FRFs in neural networks will cause problems in training convergence and computational efficiency. 

Principal component analysis (PCA) is a statistical technique that is known for its capability of 

reducing the dimension of data as well as its ability of reducing the influence of uncertainties by 

filtering unrepeatable random features. Hence, a technique is proposed that jointly uses FRFs, PCA 

and ANNs for the damage detection of a concrete arch beam replica of the Sydney Harbour Bridge. 

 

PROPOSED DAMAGE IDENTIFICATION APPROACH 

 
The proposed damage identification approach uses PCA to compress residual frequency response 

function to obtain a unique DSF. Once the DSF is identified, the proposed approach utilises ANNs for 

damage identification by means of pattern recognition. A schematic diagram of the proposed method 

is shown in Figure 1. The approach features a 3-step process: i) detecting the existence of damage 

(undamaged or damaged), ii) determining the damage category (e.g. Light, Medium, Severe and Extra 

Severe), and iii) identifying the actual severity of the damage.  
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Figure 1. Schematic diagram for proposed damage identification approach. 

 

EXPERIMENTAL SETUP 

 

A concrete cantilever beam with an arch section, shown in Figure 2a, was manufactured and tested in 

the UTS Structural Laboratory. The test structure simulates a structural component of the Sydney 

Harbour Bridge located under the bus lane. It consisted of a 200UB18 steel I-Beam with a 50 mm 

concrete cover on both ends and was 2 m long. 15 accelerometers were installed on the specimen to 

measure the vibration response resulting from impact excitation. The cross-section of the beam and the 

location of the accelerometers are shown in Figure 2b. The structure was excited at three different 

locations, shown in Figure 2a, using an impact hammer with a steel tip. Thereby, different modes of 

the structure were excited. The impact points were located 50 mm away from the front face of the 

specimen with impact locations 1 and 3 being 50 mm distanced from the side edges and location 2 

being located on the central axis. For each impact location, 18 hammer strikes were executed and the 

structural response was recorded with a sampling rate of 8 kHz over a period of two seconds.  

 

a)   b)   

Figure 2. (a) Photograph of test specimen with indicated impact locations, and (b) cross-sectional 

geometry of the structure with accelerometer locations. 

 

After testing the structure in its undamaged state, damage was seeded on the specimen using a saw 

blade inducing a cut between accelerometer 2 and 3 as indicated in Figure 2b. The cut had a depth of 

55 mm and was induced in four incremental stages with four different lengths. The structure was 

tested again after each damage stage. In total, five different structural conditions were tested: 
 

 Condition case 1: No damage 

 Condition case 2: Light damage with a crack length of 75mm 

 Condition case 3: Medium damage with a crack length of 150mm 

 Condition case 4: Severe damage with a crack length of 225mm 

 Condition case 5: Extra severe damage with a crack length of 270mm 

 

DAMAGE IDENTIFICATION PROCEDURE 

 
Frequency Response Functions 

 
In the proposed damage identification procedure, first, residual FRF data was determined to obtain the 

unique DSF. Residual FRFs emphasise the difference between FRF measurements of a baseline 

structure (undamaged condition case) and a damaged structure (damaged condition case) and can be 

calculated using Eq. 1.  



ACMSM23 2014 4 

Residual FRF = FRFundamaged – FRFdamaged     (1) 

As an example, the FRFs and correlating residual FRFs of accelerometer 9 for impact location 3 are 

shown for all five condition cases in Figure 3 a and b, respectively. As it can be seen, the residual 

FRFs enlarge the changes in the FRFs of the different condition cases.  
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Figure 3. (a) FRFs and (b) residual FRFs of accelerometer 9 (impact location 3) for all condition cases. 

 

To select typical FRF data, the FRFs of the 18 hammer impacts (measurement samples) were 

correlated with each other for all three impact locations. It was found that the ten samples with the 

highest correlation to the average of the 18 measured samples possessed a correlation of at least 75%. 

Thus, the FRFs of these ten hammer hits were selected, giving a total of 50 FRFs for the five condition 

cases (10 hammer hits × 5 condition cases). When calculating the residual FRFs, the FRF of each 

undamaged case was subtracted from the FRF of each condition case using Eq. 1. Thereby, a total of 

500 residual FRFs were generated for each impact location and accelerometer (10 hammer hits of 

undamaged case × 10 hammer hits of each condition case × 5 condition cases). 

 

Principal Component Analysis 

 

PCA can overcome issues associated with using large-size data in ANNs and are capable of reducing 

measurement noise and other uncertainties. PCA is a statistical technique that projects data onto its 

most important principal components, and thereby, it greatly reduces its size without significantly 

affecting the data. Eigen value decomposition of the covariance matrix forms the basis of PCA. In the 

presented study, PCA is applied to linearly transform residual FRFs into a smaller set of uncorrelated 

values. In the resulting data, the first Principal Component (PC), which is the largest eigenvalue, 

represents the direction and amount of maximum variability of the residual FRF. The subsequent PCs 

have lower contribution to the data. The contributions of the derived PCs of the data from 

accelerometer 9 (impact location 3) is depicted in Figure 4 a. To ensure that at least 90% of data is 

represented, the first 15 PCs were considered as input to the ANN models. PCA was used for all 

residual FRF data of all accelerometers and impact locations. Figure 4 b illustrates the derived PCs of 

the residual FRFs of accelerometer 9 (impact location 3). It can be seen that the PCs of the five 

condition cases show unique and distinguishable features.  
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Figure 4 (a) PCA contribution, and (b) PC values of accelerometer 9 (impact location 3). 
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Artificial Neural Networks 

 

ANNs mimic biological networks and use weighted interconnected processing elements called neurons 

to learn and map set input variables to output variables by adjusting the inputs weights and biases of 

the neuron connections according to the adjusted transfer functions. The Alyuda NeuralIntelligence© 

software was used in this study to for the ANN modelling. The ANNs are used to detect damage and 

to identify the corresponding severity in a three-step process. In step one; different numbers of PCs 

were used as network inputs to identify a structure as being damaged or undamaged. When the 

structure is identified as damaged, then the step two of the ANN model applies, classifying the 

damaged structure into four different damage categories including light, medium, severe and extra 

severe damage. The severe and extra severe cases then proceeded to step three, which determines the 

numeric length of the damage crack. A schematic diagram of this hierarchical ANN system is depicted 

in Figure 5. 
 

 
Figure 5: Three-step ANN system for damage detection, classification and severity identification. 

 

For the ANN training, the 500 residual FRFs of each impact location and accelerometer were divided 

into 200 training samples, 150 validating samples and 150 testing samples. In this study, one network 

was trained for each impact location and each accelerometer. While the networks were trained with the 

training samples, its performance was supervised utilizing the validation set to avoid over-fitting. The 

testing data was used to test the trained networks with before unseen data. All networks consisted of 

an input layer made up of 15 nodes representing the first 15 PCs. This was followed by a hidden layer 

of 7 nodes, which was followed by the output layer. For the output layer, step one had a single 

categorical node, step two had four categorical nodes and step three had a single numeric node. The 

transfer functions used were logistic sigmoid functions. Steps one and two used the quick-propagation 

training algorithm and step three used the Levenberg-Marquardt training algorithm. 

 

RESULTS AND DISCUSSION 

 
Step one of the three-step ANN system aimed at damage detection. Here, all data of the five condition 

cases were used in the ANN model. The networks of step one classified the data either as undamaged 

or damaged. Depending on the number of PCs used as inputs to the networks, the accuracy of the 

damage detection results increased as shown in Figure 6 a. For the shown data, an accuracy of 100% 

was reached after three PCs were used. Up to 15 PCs were used in this study as ANN inputs. 

 

a)     b)  

Figure 6: Network accuracy vs. number of used PCs of data from accelerometer 9 (impact location 1) 

for (a) step one damage detection, and (b) step two damage classification. 

 

Data that was identified as damaged in step one, proceeded to step two, aimed at classifying the 

damaged samples into four different categories including light, medium, severe and extra severe 

damage. Similar to step one, the overall accuracy of the network results increased with an increase of 
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the used number of PCs as seen in Figure 6 b. For data of accelerometer 9 (impact location 1), a 100% 

accuracy was achieved after using seven PCs. The result accuracy varied among the different data 

cases. For all impact locations and accelerometers, a 100% accuracy in damage classification was 

achieved using all 15 PCs. Step three of the damage identification procedure deviates from the 

previous steps since it calculates a numerical value for the severity of the damage rather than 

classifying the data into categories. Figure 7 a, b and c shows the obtained percentage errors of the 

step three networks trained with all considered data of the severe case for impact locations 1, 2 and 3, 

respectively. It can be seen that the data from accelerometer 7 resulted in the largest percentage errors 

(up to 13.38%). This is possibly due to human error, as this accelerometer may not have been 

calibrated correctly or connected to the specimen as rigidly as the other accelerometers. This could be 

reflected on the actual bridge where an accelerometer may not have been installed properly or it may 

be damaged. 
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Figure 7.  Network errors of the severe condition case for each accelerometer from (a) impact 

location 1, (b) impact location 2, and c) impact location 3. 

 

Much of the success of the proposed method is attributed to its application in a controlled laboratory 

environment with five clear defined condition cases. In the field, however, there are many factors that 

can influence the measurements of the accelerometers including temperature, traffic, humidity, wind, 

solar-radiation and even improper placement or damage to accelerometers.  

 

CONCLUSION 

 
In this paper, a three-step hierarchical system was proposed as a potential technique for the damage 

detection of the Sydney Harbour Bridge. The steps of the proposed system include: i) detecting the 

existence of damage (undamaged or damaged), ii) determining the damage category (e.g. Light, 

Medium, Severe and Extra Severe), and iii) identifying the actual severity of the damage. The 

presented method used residual FRF, PCA and ANNs for the damage identification algorithm. PCA 

was used to compress residual FRFs to obtain DSFs, which were used in combination with ANNs for 

damage identification using pattern recognition. The network outcomes showed that steps one and two 

of the identification system, can give results of 100% accuracy using 15 PCs as ANN inputs. Step 

three presented good identification results with the exception of accelerometer 7, which showed errors 

of up to 13.38%. This on-going project of implementing a SHM system on the Sydney Harbour Bridge 

is currently in its initial stage and further research and development will be conducted in the future. 
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