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ABSTRACT 

This paper presents a machine-learning-based approach for the structural health monitoring 

(SHM) of in-situ timber utility poles based on guided wave (GW) propagation. The proposed 

non-destructive testing method combines a new multi-sensor testing system with advanced 

statistical signal processing techniques and state-of-the-art machine learning algorithms for 

the condition assessment of timber utility poles. Currently used pole inspection techniques 

have critical limitations including the inability to assess the underground section. GW 

methods, on the other hand, are techniques potentially capable of evaluating non-

accessible areas and of detecting internal damage. However, due to the lack of solid 

understanding on the GW propagation in timber poles, most methods fail to fully interpret 

wave patterns from field measurements. The proposed method utilises an innovative multi-

sensor testing system that captures wave signals along a sensor array and it applies machine 

learning algorithms to evaluate the soundness of a pole. To validate the new method, it was 

tested on eight in-situ timber poles. After the testing, the poles were dismembered to 

determine their actual health states. Various state-of-the-art machine learning algorithms 

with advanced data pre-processing were applied to classify the poles based on the wave 

measurements. It was found that using a support vector machine classifier, with the GW 

signals transformed into autoregressive coefficients, achieved a very promising maximum 

classification accuracy of 95.7±3.1% using 10-fold cross validation on multiple training and 

testing instances. Using leave-one-out cross validation, a classification accuracy of 

93.3±6.0% for bending wave and 85.7±10.8% for longitudinal wave excitation was achieved. 
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INTRODUCTION 

For power distribution and communication networks, utility poles form an essential part of a 

network‟s infrastructure. Ever since the telegraph was invented, utility poles have been made 

of timber, and until today, in many countries around the world, the majority of utility poles 

are still made of wood. As such, in the United States more than 98% and in Australia more 

than 80% of all utility poles are made of timber, with estimates placing the total number of 

timber utility poles to around 130 million in the United States and to more than 5 million in 

Australia (1, 2). Over their design life, timber poles often experience deterioration and decay 

due to fungus or termite attack, which in most cases are not visible and often below the 

ground. To avoid failure of utility poles and to ensure the reliability and safety of power 

distribution and communication networks, utility poles are regularly inspected for 

maintenance and asset management. Currently, the most commonly used techniques 

employed by asset management industries are visual inspection, sounding and core drilling 

(3). Visual inspection is undoubtedly one of the oldest assessment methods used in practice 

but is limited to accessible areas and surface damage, and like sounding, its reliability and 

accuracy is highly depended on the experience of the operator. Core drilling is a semi-

destructive method that gives only localised information on the tested drilling path. All three 

methods are based on not measurable parameters and depend on subjective interpretation of 

information. Neither of the methods is capable of assessing the underground section of a pole, 

which is indeed the most critical and vulnerable section. These limitations seriously 

jeopardize the maintenance and asset management and may lead to serious consequences due 

to undetected faults, as well as unnecessary pole replacements resulting from conservative 

maintenance approaches. For example, in the Eastern States of Australia, about 300,000 

electricity poles are replaced every year despite the fact that up to 80% of the replaced poles 

are still in a very good serviceable condition, causing a large waste of money as well as 

natural resources (4). Research has shown that while the current perceived life expectancy of 

timber poles is approximately 35 years, the average service life can be extended to 75 or 

more years where “appropriate” inspection and maintenance programs are performed (5).  

Limitations of current SHM techniques led to the development of NDT GW-based methods 

for the condition assessment of pile structures. These methods are potentially capable of 

detecting internal damage and of evaluating the soundness condition of non-accessible areas 

such as embedded sections of piles and poles based on the propagation of guided waves. 

Various types of GW-based methods have been developed such as the sonic echo (SE) 

method (6-8), the impulse response (IR) method (9), the bending wave (BW) method (10, 11) 

and the ultraseismic (US) method (12). In the testing, an impact force is generated and the 

response from the pile structure is recorded by a sensor placed on the pile head. By analysing 

the reflective wave signals, predictions on the soundness condition of the pile including any 

damage of the embedded section and length estimations can be made. While GW methods 

have been used for many years for different types of structures including poles and different 

materials, their results are still inconsistent due to many issues associated with the complexity 

of GW propagation including complex wave reflection, attenuation and transformation. The 

application of GW-based SHM to timber utility poles is in particular very challenging due to 

the lack of solid understanding of GW propagation in timber pole structures, especially with 



the effect of soil embedment coupled with unknown soil and pole conditions below ground 

line (such as deterioration, rot, termite attack and fungi decay). A major challenge is related 

to the complexity of the timber material with anisotropic and non-homogeneous 

characteristics and many uncertainties and variations on material properties (13). As such, the 

material characteristics of timber can be affected heavily by environmental factors such as 

temperature and moisture changes, and natural defects, deteriorations and fungi/termite 

damage cause further complications. As a result, current GW-based NDT methods often fail 

to fully interpret wave patterns and to produce accurate and reliable condition assessment for 

timber poles, which is vital for the utility pole management industry.  

Because of the stated issues encountered with current GW methods, this paper proposes a 

new approach using state-of-the-art machine learning classifiers in combination with 

statistical signal transformation for the non-destructive condition assessment of timber utility 

poles. The new method presents a solution to currently faced uncertainty issues and provides 

a reliable testing method that is able to identify faulty poles, which is of crucial importance to 

pole asset managers. In the proposed method, statistical signal analysis models and advanced 

machine learning and classification algorithms are applied for feature extraction, pattern 

recognition and classification of wave signals for the soundness evaluation of in-situ timber 

utility poles by distinguishing sound from severely unsound structures. A new innovative 

multi-sensor testing approach based on SE/IR and BW testing is adapted to multiple wave 

response signals from in-situ timber utility poles. The method is validated on eight in-situ 

timber poles, which were scheduled for decommissioning. Before decommissioning, the 

poles were tested in the field using the new GW-based testing method. After testing, the poles 

were dismembered to determine their actual health states. Based on that autopsy, the poles 

were classified as either healthy or faulty poles, depending on their individual deterioration 

state, forming a ground-truth for supervised classification. The results of the proposed 

machine learning approach for the GW-based condition assessment of timber utility poles 

show that this technique is capable of overcoming issues encountered by traditional 

inspection methods and of delivering accurate and robust soundness evaluation results. 

BACKGROUND AND METHODOLOGY 

The proposed NDT method is based on GW testing with longitudinal and bending wave 

excitation, and with an array of multiple sensors used to capture the GW response of a timber 

pole structure. Damage features in the GW signals are extracted using advanced statistical 

signal transformation based on AR models, and machine learning/classification algorithms 

are used to determine the health condition of the pole structure by mapping damage features 

to soundness states.  

NDT based on GW propagation 

In traditional GW testing for pile-like structures, a stress wave is induced to the structure by 

applying an impact or impulse to the surface of the structure whereby a sudden pressure or 

deformation is generated. The disturbance propagates through the structure and is reflected 

back from changes in stiffness, cross-sectional area and density. The propagation behaviour 

of the GW is a function of the modulus of elasticity, the density, the Poisson‟s ratio, and the 



geometry conditions of the structure (14). As damage and deterioration changes the 

structure‟s properties, the wave propagation behaviour is altered, resulting, for example, in 

early wave reflection, reduced wave velocity, increased wave attenuation and wave mode 

conversion. By analysing GW signals through identification of wave velocities, wave 

reflections and resonant frequency peaks, traditional GW methods, such as the SE/IR method 

and BW method, aim to detect damage and to determine the dimensions of the structure (e.g. 

the underground length of a pole structure). The schematic principle of the SE/IR method and 

the BW method is depicted in Figure 1. For the SE/IR method, the impact is induced from the 

top of the structure in the longitudinal direction (generating longitudinal compression waves) 

and wave reflection measurements are recorded by a sensor placed on the top of the structure 

adjacent to the impact location. Wave signals are analysed in the time domain and the 

frequency domain, respectively. Details of the SE/IR method can be found in (6-9). For BW 

testing, a transversal impact is applied to the pile/pole structure generating flexural/bending 

waves, and wave signals are measured by sensors located on the side of the structure. 

Thereby, the method is applicable for cases where the top of the structure is obscured such as 

bridge piles, foundation columns or utility poles. Since bending waves are highly dispersive 

in nature, dispersive analysis is required in which wave data is extracted from a selected 

group of frequencies. Details of the BW method can be found in (15-17).  

 

 
 
 
 
 
 
 
 
 
 
 
 

  

(a)  (b) 
Figure 1. Schematic principle of (a) SE/IR method and (b) BW method. 

For the GW testing of pole structures, the generation of GWs from the top of a pole is neither 

feasible not practical due to their height and the presence of live electricity and 

telecommunication lines. In the presented testing method, GWs is induced by impacting a 

pole from its side at a reachable height above ground level in either the transversal direction 

(analogous to the BW method) generating bending waves, or in the longitudinal direction 

with an angle (analogous to the SE/IR method) generating primarily longitudinal waves but 

also bending waves due to the eccentric impact. Because of the impact location, both, up-

travel and down-travel waves are generated for each wave type. Both generated types of GWs 

are low frequency broadband waves that result in multiple wave modes propagating in the 

pole. To measure the propagating GWs, seven evenly spaced sensors are used, which are 

placed in a vertical line between the impact location and the soil level. The recording of wave 

reflection signals from multiple sensors allows the measurement of the waves at different 
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wave paths leading to a more comprehensive capture of wave features and a more robust 

condition assessment. For both types of testing (based on the SE/IR method and the BW 

method), damage patterns inherent in the captured wave signals are extracted using advanced 

signal processing, and machine learning algorithms are used to identify recurring damage 

features and to evaluate the soundness of the tested timber utility poles.  

Field testing 

The proposed method was validated on eight in-situ timber utility poles that were scheduled 

for decommissioning, and which were tested using a new innovative testing procedure. After 

the testing, the poles were dismembered to determine their actual health states. Based on that 

autopsy, the poles were classified as either healthy or faulty poles, depending on their 

individual deterioration state.  

 

(a)  

 
(a) (b) (c) 

Figure 2. Field testing and autopsy of in-situ timber utility poles. (a) Execution of field 

testing, (b) testing set-up and (c) autopsy results of tested and sectioned pole. 

The testing execution and set-up is depicted in Figure 2 (a) and (b). An impact hammer was 

used to generate the GWs and seven accelerometers captured the wave response signals. The 

impact hammer used was a PCB model HP 086C05 of sensitivity 0.24 mV/N. The hammer 

impact was induced at a height of 1.6 m in either transverse direction to generate bending 

waves, or in longitudinal direction (using an impact angle) to generate primarily longitudinal 

waves. The pole‟s responses were measured by seven piezoresistive accelerometers that were 

mounted in a line 0.2 m off ground with spacing‟s of 0.2 m between the sensors as depicted 

in Figure 2 (b). The sensors were low cost dual-axis accelerometers of model ADXL320 

having a frequency bandwidth of 0.5 Hz to 2.5 kHz and a sensitivity range of 154 to 

194 mV/g. These piezoresistive accelerometers were purchased in the form of a circuit board 

and encased into a specially designed housing. The data acquisition system employed was a 

mid-range 8 channel system with 12-bit 4M sample/sec per channel model NI PCI-6133. The 
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signal acquisition and analysis was executed with the National Instrument software Labview. 

For each test, the sampling rate was set to 1 MHz with a testing duration of 0.5 s, thus 

capturing 500,000 data points per test. A pre-trigger delay was set to ensure the recoding of 

the entire impact excitation.  

Two types of testing were performed, longitudinal and transverse testing. For longitudinal 

testing, the impact was executed in the longitudinal direction with the aid of the impact angle 

and the accelerometers were set to capture acceleration in the vertical direction. For 

transverse testing, the impact was induced perpendicular to the pole as shown in Figure 2 (a) 

and the accelerometers measured in the horizontal direction. For each testing type, five tests 

were performed, i.e. for each pole five hammer strikes were executed in longitudinal 

direction and five in transverse direction. As seven accelerometer measurements were 

captured for each testing, a total of 70 measurement signals were recorded for each pole (7 

sensors × 5 hammer hits × 2 types of hammer hits).  

After the testing, the poles were disconnected from the electricity lines and removed from the 

soil. To determine the individual health states, each pole was cut into multiple small sections 

along the cross-section using a chain saw. The exposed cross-sectional areas were 

photographed and analysed, and according to the seriousness of the found damage and 

deterioration, the poles were classified as either healthy or faulty. A healthy pole was defined 

as having only minor to medium damage. A faulty pole was defined as having medium to 

severe damage with an estimated minimum service life of less than five years. An example of 

the autopsy of a faulty pole is shown in Figure 2 (c). 

Time domain signal segmentation 

The measurement data acquired from the five impacts (hammer hits) for both the bending 

wave (BW) and longitudinal wave (LW) experiments are treated as separate experimental 

instances that are independent from other instances or impacts. The BW signals illustrated in 

Figure 3 show the recorded raw data from the seven separate sensor channels for time 

duration of 0.5 s. After data acquisitioning, the raw data was segmented by removing the pre-

trigger data (the first 1300 samples (0.0013 s)) and the steady state data (the last 0.25 s). This 

effectively reduced the total time-domain stress wave data to a segment size of 248700 

samples (windowed: 0.0013 – 0.2500 s). To provide comparative results, the data was also 

segmented by only removing the pre-trigger data but not the steady state data. Thereby, a 

segment size of 498700 samples was achieved (windowed: 0.0013 – 0.500 s). 



 
Figure 3. Captured raw BW signals from the seven sensors for a single impact of pole P1. 

Parametric methods for stress-wave signal transformation 

To extract major features from the recorded stress wave signals (including damage patterns), 

parametric signal transformation was employed. Signal transformation techniques which 

estimate the power spectral density (PSD) from a signal directly, such as the periodogram and 

Welch's method, are commonly known as nonparametric methods. Alternatively, parametric 

methods estimate the PSD of a signal by assuming it to be the output of a linear system 

driven by white noise (18). Typical examples of parametric methods include the Yule-

Walker, Burg, Covariance and Modified Covariance autoregressive (AR) methods. These AR 

methods use regression to estimate the PSD by estimating the parameters (coefficients) of the 

linear system that theoretically "generates" the signal. Parametric methods tend to produce 

better results than classical nonparametric methods when the data length of the available 

signal is relatively short (18), which can be modelled as short (quasi)-stationary sequences.  

In this study, we employed a parametric representation using AR parameter estimation 

algorithms to transform the time-domain segmented GW data into a number of real-valued 

variables. Parametric methods assume that a description of the segmented stress wave signal 

can be devised from a time-series model of a random process. As such, parametric methods 

can model fixed segments of stress wave data as the output of a linear filter of order p driven 

by a Gaussian white noise sequence with zero-mean (18). The output for such a filter is a p
th

 

order AR process or maximum entropy method (MEM), given by: 

 ( )    ∑  ( ) (   )   ( )
 
   , (1) 

where x(n) is the stationary time-series output sequence that models the fixed segment of 

stress wave signal data, a(k) are the AR coefficients and u(n) is a Gaussian white noise input 

driving sequence.  

The AR model was used to extract damage-sensitive features, because the underlying linear 

stationary assumption makes it possible to detect the presence of nonlinearities in the time 

domain data. The Burg method was used exclusively as the AR parameter estimation 

algorithm in this study. The Burg method operates on a fixed segment of time samples to 



recursively yield a p
th

 order AR model of parameter estimates a(k). The chosen parametric 

method, which is based on autoregression, transforms the GW input signal from its original 

time domain representation into a different representation based exclusively on the computed 

autoregressive coefficients themselves. That is, we directly represent the segmented GW 

signal using the scalar AR coefficients a(k). As example, Figure 4 shows the resulting AR 

coefficients computed using the parametric algorithm with an order of p=10 for a segmented 

BW signal (0.0013 – 0.2500 s) from the seven sensors for a single impact of timber pole P1. 

Using this approach, we computed the AR coefficients for each timber utility pole (P1 – P8) 

for all sensors (S1 – S7) according to our desired segmentation of the GW time domain 

signal. 

 

Figure 4. Example of the parameter space representation using AR coefficients (p=10) for a 

segmented BW signal (0.0013 – 0.2500 s). The computed amplitude (y-axis) of each AR 

coefficient (x-axis) from the seven sensors for a single impact of pole P1 is shown. 

The computationally efficient Burg method estimates AR coefficients from the complex-

valued reflection coefficient sequence, based on a least squares criterion, while satisfying the 

Levinson-Durbin recursion (18). The order of the AR model is always an unknown integer 

that needs to be estimated from the data. Selection of the AR model order (p) for noisy 

signals represents a trade-off between increased resolution and decreased prediction error 

variance of AR coefficients. The Akaike Information Criterion (AIC) method (18) was used 

to determine the optimal AR model order. The AIC determines the model order by 

minimising the information theoretic function of the form: 

   [ ]      ( )    , (2) 

where p is the model order, N is the number of data samples given by the stress wave 

segment size multiplied by the sampling frequency, and  is the variance estimate of the 

white noise input to the AR model for order p.  



For the timber pole data, the model order is incrementally increased from p=10 to p=60 for 

the BW excitation method, as shown in Figure 5 (a). In the figure, the average AIC response 

curve tends to approach an optimum within a range of orders 32 ≤ p ≤ 36. For the LW 

excitation method, the average AIC response curve tends to approach an optimum within a 

range of orders 9 ≤ p ≤ 14, as shown in Figure 5 (b). The optimal range of AR model orders 

for building feature vectors lies just beyond the „turning-point or knee-point‟ of the AIC 

response curve according to the following principles. Firstly, higher model orders provide a 

diminishing advantage as their variance estimate values are typically with <1-2% of the knee-

values. So using higher AR orders to construct the feature vectors will provide no real benefit 

in the classification step. Secondly, using a model with larger order will result in significantly 

higher dimensional feature vectors that will confound machine learning algorithms. Thus, 

using AR orders located just beyond the knee point (towards the asymptotic minimum of the 

values shown) provides the simplest description while maintaining the salient features present 

in the data. In addition, it is likely that the variance estimate values (y-axis) will increase as 

the model order increases beyond the values shown in the figures. 

Parametric methods for signal transformation and the AIC method have been used in similar 

studies including the detection of structural damage in the presence of operational and 

environmental variations using vibration-based damage identification procedures (19). 

  

(a) (b) 

Figure 5. Average AIC model order response for (a) BW and (b) LW excitation methods. The 

range of model orders to the right of the ‘turning- or knee-point’, as the graphs tends 

asymptotically towards the x-axis for the values shown, are the critical orders used to 

construct feature vectors that summarise the data in the most compact fashion, while 

retaining the salient features of the data. 

AIC: Akaike information criterion; BW: bending wave; LW: longitudinal wave. 

Feature vector encoding for classification learning  

The production of a single feature vector was the final stage of transforming the GW signal 

data into a form that is amenable to the input environment of the machine learning algorithms 

for classification learning. In classification learning, the learning scheme is presented with a 

set of classified (labelled) examples from which it is expected to learn a way of classifying 

unseen examples. As such, a static feature vector was encoded and partitioned to produce 

training and testing vectors for single-step binary classification. A single instance of the 

32≤p≤36 9≤p≤14 



feature vector was encoded for each of the five impact experiments, which were performed 

on each of the in-situ timber utility poles. Each instance that provides the input to machine 

learning is characterised by the scalar AR values on a fixed, predefined set of features or 

attributes. Based on the parametric representation, each instance is a concatenation of the k-

autoregressive coefficients computed from the segmented time-domain stress wave signal for 

each of the seven sensors fitted to the test pole as shown in Figure 6. The AR coefficients 

were computed using the Burg AR method and a single feature vector was created from the 

resulting coefficients. 

 

Figure 6. A single feature vector instance (row) based on the AR parametric representation. 

A single instance typically comprises of k-autoregressive coefficients (attributes) per sensor 

channel encoded as scalar value and an associated class label. 

Training and testing strategy for classification learning 

Training and testing sets were derived for Leave-One-Out (LOO) cross-validation supervised 

classification. LOO cross-validation is simply n-fold cross-validation, where n is the total 

number of instances in the feature vector. We produced a training set (      ) consisting 

of (i) instances of length (j), which were presented to each of the ML algorithm in the training 

phase. Similarly, the testing set (      ) contained only (k) unseen instances, also of 

length (j). As such, the number of instances in the training and testing sets fully covered the 

instances contained in the feature vector (n=i+k). 

In this paper, we encoded each instance for a single impact experiment applied to a timber 

utility pole. Since there are five impact experiments for each pole, there are five instances 

corresponding to a single pole as illustrated in Figure 7. Hence, the LOO cross-validation 

method requires that all five instances associated with the same timber utility pole be left out 

of the training set ( ) and used only in the testing set ( ) as unseen data.  

All instances associated with the test poles were in turn left out, and the learning scheme was 

trained on all the remaining instances. It was judged by its correctness of prediction on the 
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remaining instance - one or zero for success or failure, respectively. The results of all n 

judgments, one for each member of the dataset, were averaged, and that average represents 

the final error estimate. Based on the averaged n-fold prediction (classification) accuracy 

results, this approach attempts to provide a measure of the generalisation capability of the 

machine learning algorithm and encoding technique combination. The classification accuracy 

is defined as: 

                                  

                            
        (3) 

 

Figure 7. A single feature vector is derived from the concatenated AR coefficients for each 

sensor/experiment/pole combination. Testing and training sets are derived separately from 

the final feature vector for LOO cross-validation classification experiments. 

However, there is one disadvantage to LOO cross-validation, apart from the computational 

expense. By its very nature, it cannot be stratified. It actually guarantees a non-stratified 

sample. Stratification involves getting the correct proportion of instances in each class into 

the testing set, which is impossible when the test set contains only a single example (20). 

Machine learning algorithms  

In this paper, we employ four widely used state-of-the-art machine learning algorithms to 

perform single-step supervised binary classification of the AR-encoded feature vector. Each 

of the machine learning (ML) algorithms have very different underlying mathematical 

formulations, but the learning procedure has a common sequence. The goal of ML algorithms 

is to produce a model (based on the training data) which predicts the target values of the test 

data given only the test data attributes.  

The first phase for each of the ML algorithms is the supervised training phase. This is 

performed in a single step, where the training set (      ) is presented to each of the ML 

algorithm separately. Each of the ML algorithms computes a model from the instances 

contained in the training set to a different feature space, where the learnt structure is 
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represented. Once an ML algorithm has been suitably trained on the (i) instances the 

remaining (k) unseen instances are used as the testing set (      ). The testing set is 

presented to each of the ML algorithms for the purpose of predicting the binary classification 

into one of two classes – damaged (1) or undamaged (0). For completeness, four different 

ML algorithms are briefly described. 

Support vector machine (LibSVM). The defining feature of support vector machines (SVM) 

(21, 22) is the use of linear models to implement nonlinear class boundaries. This is achieved 

through the transformation of the instance space (AR-encoded feature vector in our case) 

using a nonlinear mapping into a new space. A linear model computed in the new space can 

represent a nonlinear class decision boundary in the original space (20). SVM and indeed 

LibSVM are based on an algorithm that computes a special type of linear model called the 

maximum-margin hyperplane. For example, a two class dataset is imagined whose classes are 

linearly separable by a hyperplane in instance space that classifies all training instances 

correctly. The maximum-margin hyperplane gives the greatest separation (wopt) between the 

class clusters as shown in Figure 8 (a). Similarly, in Figure 8 (b), the hyperplane H3 

maximises the margin between the two class clusters, while H2 does not maximise the 

boundary distance between the class clusters and H1 does not completely separate the classes 

at all.  

   
(a)          (b) 

Figure 8. (a) A maximum-margin hyperplane forming a linearly separable decision boundary 

between two classes (23). (b) Three hyperplanes H1, H2, and H3. H1 does not separate the 

two classes; H2 separates but with a very small margin between the classes; H3 separates 

the two classes with a much larger margin than H2 and presents the maximum-margin 

hyperplane (24). 

The instances that are closest to the maximum-margin hyperplane (the ones with minimum 

distance) are called the support vectors. Each class in instance space must always contain at 

least one support vector, which lies on the convex hull of a set of points enclosed by a convex 

polygon. As such, the maximum-margin hyperplane is the perpendicular bisector of the 

shortest line connecting the class convex hulls. 



A hyperplane which can linearly separate two classes can be written as           

    , where a1 and a2 are the attributes and three weights wi which need to be computed 

during the training phase. However, this equation can be expressed in general terms of the 

support vectors themselves: 

    ∑      ( )   
 
    (4) 

where yi is the class label of the training instance a(i). The learning algorithm computes the 

parameters b and αi during the training phase (21, 22). Here, a(i) are the support vectors and a 

represents the vector of test instances. Finally, b and αi are parameters that determine the 

hyperplane. Finding the support vectors for the training instances and calculating the 

parameters (b and αi) is a constrained quadratic optimisation problem resulting in potentially 

very large and dense data structure called the Q matrix. 

Above, we have only presented the linear class boundaries for two classes. Now suppose the 

transformed space is high-dimensional so that the transformed support vectors and test 

instances have many attributes. According to Equation (4), each time an instance is to be 

classified the dot product a(i)·a with all support vectors must be recalculated, which is 

computationally expensive in the high-dimensional space produced by the nonlinear 

mapping. By using a kernel function to compute the dot product before the nonlinear 

mapping is performed greatly reduces the computational complexity. The high-dimensional 

version of Equation (4) is simply: 

    ∑     ( ( )   )
  

    (5) 

where n is the number of factors in the transformation (21, 22). Because of the equivalence of 

Equation (4) and Equation (5), the dot products can be computed in the original low-

dimensional space and the problem becomes computationally feasible.  

Training an SVM requires the solution of a potentially very large quadratic programming 

(QP) optimisation problem. This constrained QP problem arises when the SVM algorithm 

computes the support vectors for the training instances and calculates the parameters (b and 

αi). The LibSVM implementation uses a decomposition method to iteratively solve the dense 

matrix arising from the constrained QP problem. The decomposition method modifies only a 

subset of the dense matrix per iteration. This subset of variables, denoted as the working set, 

leads to a smaller optimisation sub-problem. LibSVM uses two tricks called shrinking and 

caching for the decomposition method. To save the training time, the shrinking technique 

tries to identify and remove some bounded elements during the decomposition iterations, so a 

smaller optimization problem is solved. In addition, caching is an effective technique for 

reducing the computational time of the decomposition method. LibSVM can use available 

memory (called kernel cache) to store some recently used elements for the large Q matrix. As 

a result, some of the kernel elements may not need to be recomputed. 

Any function K(xi,xj) is a kernel function if it can be expressed as K(xi,xj) = ( xi) · ( xj), 

where  is a predefined function that maps an instance into a higher (maybe infinite) 

dimensional space as illustrated in Figure 9.  



 

Figure 9. Illustration of kernel function  providing a nonlinear decision boundary through 

its mapping between spaces (adapted from (25)).  

Hence, the kernel function represents a dot product in the feature space created by the 

function defined by . Though new kernels are being proposed by researchers, LibSVM 

includes four popular kernels: 

 linear:  (     )    
   . 

 polynomial:  (     )  (   
     )

 
    . 

 radial basis function (RBF):  (     )     (  ‖     ‖
 
)     . 

 sigmoid:  (     )      (   
     ). 

In this study, we experimented with the linear, polynomial (3≤d≤ 6), and the radial basis 

function (RBF) kernels implemented with LibSVM. For a complete description of the 

LibSVM library for SVM refer to (26). 

Sequential minimal optimisation (SMO). The SMO algorithm (27) is a computationally 

efficient algorithm for training SVM classifiers. As with LibSVM, training a SVM requires 

the solution of a potentially very large QP optimisation problem. The SMO algorithm 

partitions the QP problem into much smaller QP problems and solves them analytically at 

every step, avoiding the time-consuming single-shot numerical QP optimisation, which 

involves a large matrix computation in the SVM inner loop. 

SMO is conceptually simple, easy to implement, is sometimes faster and has better scaling 

properties than the SVM algorithms which rely on the standard chunking algorithm to 

optimise the Lagrange multipliers at each step in training. The main advantage provided by 

SMO comes from its ability to analytically calculate the smallest possible optimisation 

problem, which consists of two or three Lagrange multipliers at each step. Hence, the entire 

inner iteration due to numerical QP optimisation is avoided, unlike the other implementations 

of the SVM algorithm. As a result, SMO is significantly faster for both linear and non-linear 

kernels. 



For a complete description of the SMO algorithm, including experimental results on real-

world problems and benchmarking against other SVM-based algorithms refer to (27). 

Bayesian Network (BayesNet). A BayesNet is a probabilistic graphical model over a set of 

variables (      ) that forms a network structure B, which is a probabilistic directed 

acyclic graph (DAG) consisting of nodes and edges. The Bayesian network B represents a 

probability distribution using the DAG. The Bayesnet performs the classification task which 

consists of classifying a variable y = xo called the class variable given a set of variables x = x1 

… xn, called attribute variables. The classifier maps an instance of x to a value of y (h:  x  

y). The classifier is learned from a dataset (      ) consisting of samples over (x, y). The 

learning task consists of finding an appropriate Bayesian network structure B given the 

dataset X over Z. 

The Bayesian network structure consists of nodes representing Bayesian random variables 

and edges representing conditional dependencies. Nodes which are not connected represent 

conditionally independent variables. Each node is associated with a probability function that 

takes a set of values for the parent node and provides a probability of the variable represented 

by the node. 

To use a BayesNet as a classifier both inference and learning algorithms are required. We use 

a simple probability distribution P(Z), which is represented by the Bayesian network 

structure. This is equivalent to finding the conditional probability distribution P(y|x).  

The learning algorithm requires two steps: first learn the structure of the network and then 

learn the associated probability tables. We use local score metrics to learn the network 

structure of the BayesNet. The quality measure of the given network structure is a 

maximisation problem, based on minimum descriptor length, information and other criterion 

such as AIC and BIC (20). This permits calculation of a score for the global network derived 

from the local score of individual network nodes. As such, local search methods can be used 

to help solve the optimisation problem. We use the K2 local hill climbing search algorithm. 

For a complete description of the Bayesian Network Classifiers and K2 search algorithms 

used for finding solution to the local score metrics optimisation problem refer to (28). 

Gaussian Processes (GP). In this study, GP (29) are used for the supervised learning and 

probabilistic classification, which is the problem of learning input-output mappings (training 

set ( ) -> testing set ( )) from an empirical data set. Although, the GP are used exclusively 

for the task of classification in this paper they are equally useful for regression tasks. 

To paraphrase Rasmussen, a Gaussian process is a generalisation of the Gaussian probability 

distribution. Whereas a probability distribution describes random variables which are scalars 

or vectors, a stochastic process governs the properties of functions. One way of thinking of a 

Gaussian process is as an infinite-dimensional generalisation of the multivariate normal 

distribution. As such, one can loosely think of a function as a very long vector, each entry in 

the vector specifying the function value f(x) at a particular input x. If one asks only for the 

properties of the function at a finite number of points, then inference in the Gaussian process 



will give the same answer if one ignores the infinitely many other points, as if one would 

have taken them all into account. And these answers are consistent with answers to any other 

finite queries one may have. One of the main attractions of the Gaussian process framework 

is precisely that it unites a sophisticated and consistent view with computational tractability 

and minimal parameter tuning. 

In this paper, we employ the polynomial kernel  (     )  (   
     )

 
     and radial 

basis function (RBF) kernels  (     )     (  ‖     ‖
 
)     . No optimisation of the 

GP hyper parameters is performed prior to classification and a fixed noise term (sn = 1.0) is 

used. For a complete description of Gaussian Processes refer to (29). 

 

EXPERIMENTAL RESULTS AND ANALYSIS 

This section presents the experimental results of the LOO training and testing regime (as 

described in section "Training and testing strategy for classification learning") using the state-

of-the-art machine learning algorithms BayesNet, support vector machine, sequential 

minimal optimisation and Gaussian processes as presented above. 

The experimental setting included feature vectors containing the parameter space 

representation of the stress wave signal data for eight timber poles for the LW excitation and 

six timber poles for the BW excitation. For the BW data, results are presented for the full data 

measurement time of 0.5 s and a reduced segment time of 0.25 s. Results for the supervised 

learning classification experiments based on the BW excitation method are presented in 

Figure 10 to Figure 13, while results for the experiments based on the LW excitation method 

are illustrated in Figure 14 and Figure 15. 

In multi-class classification experiments, the result of a single test set is typically analysed 

using the two-dimensional confusion matrix with a row and column allocated to each class or 

category. Each matrix element shows the number of test examples for which the observed 

class is the row and the predicted class is the column. Good results correspond to large 

numbers running down the main diagonal and small, ideally zero, off-diagonal elements. The 

results based on classification accuracies do not provide information about the distribution of 

predicted class, rather a convenient result of overall classification accuracy. Hence, we 

employ the Cohen Kappa Statistic to measure the agreement between predicted and observed 

classes of a dataset, while correcting for an agreement that occurs by chance. It is a method to 

describe the distribution of predicted classes in the confusion matrix. The Kappa value ranges 

from [0, 1] with a value of 1 indicating perfect prediction with all values lying on the central 

diagonal (20).  



 

Figure 10. Mean ± SD classification accuracy of the parametric-based feature vector (p=50) 

for BW data (segment time = 0.5 s). 

 

 

Figure 11. Mean ± SD Cohen Kappa Statistic of the parametric-based feature vector (p=50) 

for BW data (segment time = 0.5 s). 

According to a paired Student‟s t-test (α=0.05, n=8), for the mean classification accuracy, the 

BayesNet (BN) classifier does not provide a statistically significantly better classification 

accuracy than the support vector machine (SMO1), sequential minimal optimisation 

(LibSVM4) or Gaussian processes (GP2) classifier (p-values = 0.33, 0.13, 0.20 respectively) 



using the feature vector (p=50) with BW excitation data and a segment time of 0.5 s (see 

Figure 10 and Figure 11. 

 

Figure 12. Mean ± SD classification accuracy of the parametric-based feature vector (p=36) 

for BW data (segment time = 0.25 s). 

 

 

Figure 13. Mean ± SD Cohen Kappa Statistic of the parametric-based feature vector (p=36) 

for BW data (segment time = 0.25 s). 

For a segment time of 0.25 s (BW excitation), the BN classifier does also not provide a 

statistically significantly better classification accuracy than the SMO1, LibSVM4 or GP2 



classifiers (p-values = 0.17, 0.29, 0.14 respectively) using the feature vector (p=36), as 

depicted in Figure 12 and Figure 13. In addition, no statistically significantly higher 

classification accuracy and associated Kappa statistic are achieved for any machine learning 

algorithm employed in this study, for a window size of 0.5 s and AR order of (p=50) for BW 

excitation over a window size of 0.25 s and AR order of (p=36). 

 

Figure 14. Mean ± SD classification accuracy of the parametric-based feature vector (p=10) 

for LW data (segment time = 0.25 s). 

 



 

Figure 15. Mean ± SD Cohen Kappa Statistic of the parametric-based feature vector (p=10) 

for LW data (segment time = 0.25 s). 

For data from LW excitation (segment time = 0.25 s), the LibSVM4 classifier does provide a 

statistically significantly better result classification accuracy than the BN and GP2 classifiers 

(p-values = 0.02, 0.05 respectively) using the feature vector (p=10), according to a paired 

Student‟s t-test (α=0.05, n=8). Furthermore, there was no statistically significantly better 

classification accuracy and associated Kappa statistic for a window size of 0.5 s and AR order 

of (p=10) for LW excitation (results not shown here). 

 

SUMMARY AND CONCLUSION 

This paper presented a statistical signal processing approach based on parametric methods 

coupled with a supervised machine learning techniques to perform classification results for 

the structural health monitoring (SHM) of in-situ timber utility poles based on guided wave 

(GW) propagation. The proposed method utilises an innovative multi-sensor testing system 

that captures wave response signals along a sensor array and it applies machine learning 

algorithms for the pattern recognition and classification of statistically transformed 

measurement signals to evaluate the soundness of a pole including its embedded section. 

Using leave-one-out (LOO) cross validation, it was found that using an autoregressive (AR) 

model order within the range of 46 ≤ p ≤ 50 and segment time of 0.5 s did provide a 

classification accuracy of 93.3±6.0% with „excellent agreement‟ between the observed and 

predicted classes as indicated by the kappa statistic of 0.81±0.18, for the bending wave (BW) 

excitation method. For the longitudinal wave (LW) excitation method, it was found that an 

AR model order within the range of 9 ≤ p ≤ 14 and segment time of 0.25 s did provide a 

classification accuracy of 85.7±10.8% with „substantial agreement‟ between the observed and 

predicted classes as indicated by the kappa statistic of 0.61±0.25.  



It is not the aim of this paper to suggest the „best‟ machine learning algorithm to use in this 

domain. However, the results calculated from a two-sample Student‟s t-test with 95% 

confidence and sample size (n=8) for the mean classification accuracies indicate there is no 

statistically significant difference between the machine learning algorithms used in this study. 

The only exception was the result for the LW excitation, where the SVM-based algorithm did 

provide a slightly better result. 
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