Assessment of the endocrine disruption potential of an advanced tertiary treated sewage effluent using multiple lines of evidence

Lisa Anne Hamilton

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Science

University of Technology, Sydney

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note: Signature removed prior to publication.

Acknowledgements

First and foremost, I must acknowledge the Australian Research Council and the industry partner organisations Veolia Water Australia and Landcare Research, NZ for funding this project under ARC Linkage Grant LP0560600.

I would like to thank my supervisors and industry representatives Assoc. Prof. Richard Lim, Dr Grant Northcott, Dr Louis Tremblay and Mr Michael Boake for their support and guidance. A special thank you to Richard and Grant for providing mentorship and for both doing a stint assisting in intensive onsite sampling during the fish testing experiments.

I would like to thank Dr Fujio Shirarishi for training me in the two-hybrid yeast assay and for gifting the medER and hER two-hybrid yeasts to my laboratory group at UTS. Additionally I would like to acknowledge the contribution of Dr Fujio Shiraishi and Dr Daisuke Nakajima, in performing the two-hybrid yeast assay and *umu* test on some of the samples. Thanks go to Dr Toshihiro Horiguchi for facilitating the research exchange between NIES and UTS. I would also like to acknowledge and am very grateful to Dr Marianne Woods at CSIRO in Adelaide for analysing the rainbowfish for vitellogenin upregulation and to Dr Anu Kumar for facilitating this contribution.

A big thank you to Jeff Kidd and his team at Gerringong-Gerroa STP; Tiny, Rob, Steve, Pete and Tim for their support, assistance and patience during my onsite sampling and experiments. Thank you for installing the piping for the fish tests and letting me take over your lab.

Another big thanks goes to former fellow EDC students, Dr Chris Rawson, Dr Jenni Gadd and Heather Brown for advice, assistance, guidance and empathy and thanks to Chris Rawson, Alec Davie, Stephen Summer-Hayes and Alison Packham for field assistance collecting mosquitofish and Andrew 'batman' Smith for his week long stint as my lab assistant.

I am very grateful to those who provided me advice, guidance and training through the array of bioassays used in this project. In particular I would like to thank Dr Anne

Collville for her assistance in all things UTS and ecotox, Katherine Trought for training and assistance in the E-screen and ERBA, Dr Katherine James and Amanda Hudson for advice and guidance on qPCR.

Finally, I would like to thank my friends and family for their support, especially my parents who let me lock myself away in their mountain retreat during the thesis write-up process.

Table of Contents

List of Figuresxi
List of Tablesxv
Abstractxvii
Abbreviationsxix
Chapter 1 Endocrine Disruptors in Domestic Wastewater: A review of the
occurrence, methods of assessment and efficacy of current treatment
technologies1
1.1 General Introduction
1.1.1 Endocrine disrupting chemicals (EDCs)
1.1.2 Endocrine disruption from wastewater4
1.1.3 Causative agents in wastewater5
1.1.4 Complicating issues in assessing endocrine disruption6
1.2 Modes of action of endocrine disrupting compounds6
1.3 Chemical concentrations in wastewater
1.3.1 Estrogenic EDCs
1.3.1.1 Steroidal estrogens10
1.3.1.2 Alkylphenol polyexthoxylates and Bisphenol A10
1.3.1.3 Phytoestrogens, pthalates and other xenoestrogens
1.4 Treatment technology and EDC removal14
1.4.1 Partitioning behaviour of EDCs14
1.4.2 Activated sludge treatment of sewage
1.4.3 Advanced tertiary treatment17
1.5 Bioassay assessment of estrogenic endocrine disrupting chemicals

1	5.1	In vitro bioassays	20
1	.5.2	In vivo bioassays	23
1.6	Rese	earch aim and objectives	24
1.7	Thes	is structure	25
Cha	apter	2 Description of the Gerringong-Gerroa sewage treatment plant,	
and	d che	mical and bioassay analysis methodology	26
2.1	Site	description: Gerringong-Gerroa sewage treatment plant	27
2	.1.1	Location and history	27
2	.1.2	Treatment design and technology	28
2.2	Sam	pling regime	29
2	.2.1	Field collection of wastewater samples	29
2.3	Cher	nical analysis using GC-MS	30
2	.3.1	Materials	30
2	.3.2	Sample filtration and extraction	31
2	.3.3	GPC clean-up	33
2	.3.4	Derivatisation procedures	34
2	.3.5	GC-MS detection/analysis	35
2	.3.6	Quantification method, compound recovery and detection limits	38
2.4	In vi	tro bioassays	41
2	.4.1	Two-hybrid yeast assay	41
	2.4.1	1 Chemicals and reagents	41
	2.4.1	2 Assay protocol	42
	2.4.1	3 Calibration and EEq calculation	43
2	.4.2	Estrogen receptor binding assay (ERBA)	43
	2.4.2	ERBA calibration and EEq calculations	44
2	.4.3	E-screen	45
	2.4.3	.1 E-screen calibration and EEq calculations	46
2	.4.4	In vitro bioassay LOD/LOQ	46
2.5	In viv	vo Bioassay – vitellogenin analysis	46
2	.5.1	Sourcing fish and animal care and ethics	46

V

2	.5.2	Vitel	logenin analysis in moquitofish	48
	2.5.2	.1	Excising and preserving the livers	48
	2.5.2	.2	RNA extraction	48
	2.5.2	.3	RNA quantification	49
	2.5.2	.4	Quantitative reverse transcriptase PCR	49
2	.5.3	Vitel	logenin analysis in rainbowfish	51
	2.5.3	.1	Excising and preserving the livers	51
	2.5.3	.2	RNA extraction, quantification and qPCR	51

Chapter 3The impact of variations in influent load on the efficacy of EDCremoval at the Gerringong-Gerroa STP53

3.1	Abs	tract	54
3.2	Intr	oduction	55
3.3	Met	hodology	57
	3.3.1	Study site	57
	3.3.2	Sample collection periods	57
	3.3.3	Extraction	58
	3.3.4	Chemical analysis	58
	3.3.5	In vitro bioassay	59
	3.3.6	Data analysis	60
3.4	Res	ılts	60
3.4	Res 3.4.1	ults Operational differences between normal and peak inflow events	60 60
3.4	Res 3.4.1 3.4.2	ults Operational differences between normal and peak inflow events 1.1 Influent load	60 60 60
3.4	Res 3.4.1 3.4.2	ults Operational differences between normal and peak inflow events 1.1 Influent load Presence and removal of EDCs	60 60 60 62
3.4	Resi 3.4.1 3.4.2 3.4.2 3.4.2	Ults Operational differences between normal and peak inflow events 1.1 Influent load Presence and removal of EDCs 2.1 Influent	60 60 62 62
3.4	Rest 3.4.1 3.4.2 3.4.2 3.4.3	ults. Operational differences between normal and peak inflow events 1.1 Influent load Presence and removal of EDCs 2.1 Influent Removal of EDCs through the STP	60 60 62 62 64
3.4	Resi 3.4.1 3.4.2 3.4.2 3.4.3 In vi	Ults	 60 60 62 62 64 68
3.4 3.5 3.6	Resi 3.4.1 3.4.2 3.4.2 3.4.3 In vi Disc	ults	 60 60 62 62 64 68 73

Chapter 4 Optimization of the two-hybrid yeast assay for the assessm		sment		
of EDC potential and the ability of the assay to describe variations in EDC				
cor	concentrations in complex STP matrices			
4.1	Abst	stract	80	
4.2	Intro	roduction	81	
4.3	Meti	thodology		
4	.3.1	Assay protocol for model compounds		
4	4.3.1	.1.1 Standard curve, and determining the LOD and LOQ	85	
4	.3.2	Optimising sample processing for maximum response	86	
	4.3.2	2.2. Extraction method and fractionation of samples	86	
	4.3.2	2.2.2 Florisli clean-up test	87	
4	.3.3	Synthetic mixture testing	88	
4.4	Resu	sults	89	
4	.4.1	Estradiol standard dose-response relationship and LOD/LOQs	89	
4	.4.2	Model compounds	91	
4	.4.3	Optimising sample processing for maximum response	94	
	4.4.3	.3.1 Extraction method and fractionating of samples	94	
	4.4.3	.3.2 Florisil clean-up test	95	
4	.4.4	Synthetic mixture tests	97	
45	Disc	russion	100	
1.5	Disco			
4.6	Conc	nclusions	103	
Cha	anter	r 5 Bioassay directed assessment of ER. RAR. AhR disruption	ı	
not	tontic	ial and genetoxicity of sowage offluent at CCSTP	104	
por	entie	and genotoxicity of sewage endent at 00311	104	
5.1	Abst	tract	105	
5.2	Intro	oduction	106	
5.3	Meth	thodology	109	
5	.3.1	Sample collection and preparation		
5	.3.2	Sample fractionation process		
	-			

5.3	3 Yeast assay protocol	110	
5.3	4 Luminescent umu genotoxicity bioassay	111	
5.4	Results	112	
5.4	1 hER and medER bioassays		
5.4	2 AhR bioassay	114	
5.4	3 RAR bioassay		
5.4	4 Umu test		
5.4	5 Activity of particulate material	117	
5.5	Discussion	119	
5.6	Conclusions	125	
Chap	ter 6 Partitioning of estrogenic EDC chemicals throughout the		
treat	treatment process at the Gerringong-Gerroa STP 127		
61	6.1 Abstract		
6.1	Abstract	128	
6.1 6.2	Abstract	128 129	
6.1 6.2	Abstract	128 129	
6.1 6.2 6.3	Abstract ntroduction Methodology	128 129 132	
6.1 6.2 6.3	Abstract ntroduction Methodology	128 129 132 132	
6.1 6.2 6.3	Abstract	128 129 132 	
6.1 6.2 6.3 6.3	Abstract	128 129 132 132 133 134	
6.1 6.2 6.3 6.3 6.4 6.4	Abstract	128 129 132 132 133 134 135	
 6.1 6.2 6.3 6.3 6.3 6.4 6.4 	Abstract	128 129 132 132 133 134 135	
 6.1 6.2 6.3 6.3 6.4 6.4 6.4 	Abstract	128 129 132 133 133 134 135 135 137	
6.1 6.2 6.3 6.3 6.3 6.4 6.4 6.4 6.4	Abstract	128 129 132 133 133 134 135 135 137 138	
 6.1 6.2 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 	Abstract ntroduction Vethodology 1 Sample collection 5.3.1.1 Particulate material extraction 2 Data analysis 2 Data analysis Results 1 Recovery of ¹³ C labelled analogues 2 Limits of detection 3 Concentration of EDCs in effluent 4 Partitioning between fractions	128 129 132 132 133 134 135 135 137 138 138 143	
 6.1 6.2 6.3 6.3 6.3 6.4 	Abstract	128 129 132 132 133 134 135 135 137 138 143 144	
 6.1 6.2 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4 6.4 	Abstract	128 129 132 132 133 134 135 135 137 138 138 143	
 6.1 6.2 6.3 6.3 6.4 6.5 	Abstract	128 129 132 132 133 134 135 135 135 137 138 143 144 147	

Chapter 7 Characterisation of the efficacy of an advanced tertiary sewage			
treatment plant to remove estrogenic activity using on-site real-time fish			
exp	exposure studies		
7.1	Abst	ract	
7.2	Intro	duction	
7.3	Meth	nodology	
7	.3.1	Flow-through exposure system	
7	.3.2	Preparation of estradiol stock solution	
7	.3.3	Selection of test fish species	
7	.3.4	Fish stocking and maintenance	
7	.3.5	24 hour composite water sample collection	
7	.3.6	Chemical analysis	
7	.3.7	Two-hybrid yeast bioassay	
7	.3.8	Vitellogenin analysis by quantitative PCR161	
7	.3.9	Data analysis	
7.4	Deeu	162	
7.4	Resu	Its	
7	.4.1	Experimental conditions	
7	.4.2	Concentrations of EDCs in the Water of the fish exposure tanks	
/	.4.3	1 wo-nybrid yeast response in the 24 hour composite samples	
1	.4.4	Vitellogenin up-regulation in Gambusia holbrooki (Girnard 1859) and Melanotaenia fluviatilis	
(0	Lastein	au 1878)	
7.5	Discu	rssion	
7.6	Conc	lusions	
Cha	apter	8 General discussion and conclusions 179	
8.1	Gene	ral discussion	
8.2	Conc	lusions	
8.3	Reco	mmendations for future research	

References	189
Appendix 1	208

List of Figures

Figure 1.1: Representation of a cell showing the process of gene activation. Ligands (e.g. hormones such as estradiol) enter the cell and bind to the nuclear receptor (NR) coactivator forming a homodimer that then binds to the receptor responsive element triggering transcription and activation of the gene (from Janosek et al 2006)......7

Figure 3.3: ERBA (black bars) and E-screen (white bars) EEq for the EC_{50} (ng/L) response of samples taken on three out of the six sampling occasions during the study. Error bars represent ± 1 standard deviation (n=3). BDL= below detection limits. The detection limits were <2.9 ng/L for the ERBA assay and <0.2 ng/L for the E-screen assay.

Figure 4.1: Estradiol standard dose response curves for hER and medER two-hybrid yeast with 95% confidence interval. The solid line represents the average total/blank (T/B) chemiluminescent response for standard curve for 25 separate assays conducted over a 12 month period. The 95% confidence interval is represented by the dashed lines.

Figure 4.3: Model compound response for hER two-hybrid yeast with 95% confidence intervals (n=3). Solid lines are regression models using Equation 4-1.93

Figure 4.9: Relationship for a) hER and b) medER responses with either the chemical predicted EEqs of the effluent samples or to the bioassay response of synthetic simulated effluent samples. Diamonds are EEqs predicted by the chemical data vs the actual bioassay response, solid line is the actual chemical data regression, triangles are synthetic bioassay responses vs the bioassay response to the real effluent samples, dashed line is synthetic sample data regression, and the dotted line is the isometric line

Figure 5.2: medER activity measured by the medER two-hybrid yeast assay. Results are the EC_{x10} of the sample fractions expressed as the equivalent concentration of estradiol (ng/L). Black bars represent the response in the non-polar fraction, grey bars represent the response in the semi-polar fraction and white bars represent the response of the polar fraction. 113

Figure 5.3: AhR activity measured by the AhR two-hybrid yeast assay. Results are the EC_{x10} of the sample fractions expressed as the concentration equivalent to β -naphtoflavone. Black bars represent the response in the non-polar fraction, grey bars represent the response in the semi-polar fraction and white bars represent the response in the polar fraction. 115

Figure 5.4: RAR activity measured by the RAR two-hybrid yeast assay. Results are the EC_{x10} of the sample fractions expressed as the equivalent concentration of all-trans retinoic acid (ng/L). Black bars represent the response in the non-polar fraction, grey bars represent the response in the semi-polar fraction and white bars represent the response in the polar fraction. 116

Figure 5.5: Genotoxicity as measured by expression of the umu gene in S. typhimurium TL210. Sample responses are expressed as the equivalent concentration in either 4-nitroquinoline-1-oxide (4NQO) in ng/L for the samples not incubated with

Figure 6.2: Average concentrations of a) BPA, b) technical NP, c) 4tOP and 4) 4tAP in the aqueous and particulate phases of effluent samples from different stages of wastewater treatment at GGSTP. Black bars represent the aqueous concentration while the grey bars are the particulate concentrations. Error bars are the standard deviation. n=6 for each grouping, though the BAC, microfiltration and UV particulate fractions were analysed as two composite samples containing 3 individual samples each.142

Figure 6.4: Average percentage of EDCs remaining in the aqueous and particulate fractions after each treatment stage and the implied removal based on the concentration reduction for a) E_1 b) E_3 , c) triclosan d) BPA, e) TNP and f) 4tOP. Black bars represent the concentration remaining in the aqueous phase, grey bars the particulate phase, white bars the apparent removal and cross-hatched bars represent the maximum additional removal if concentrations below detection limits were actually complete removal to nil.

Figure 7.1: Average \pm standard deviation (n=6) concentrations of EDCs measured in 24 hour composite samples taken from a representative tank for each treatment of the fish flow-through exposure experiments a) May 2008, b) November 2008 and c) February 2009. Error bars represent the standard deviation. N.D. – not detectable167

List of Tables

Table 1.1: Emerging contaminants in wastewater that could cause ED (from Chang
et al. 2009)
Table 1.2: Hormone concentrations in raw sewage influent or primary treated
effluent. All concentrations reported in ng/L11
Table 1.3: Alkylphenol and Bisphenol concentrations in raw sewage influent or
primary treated effluent. All concentrations reported in ng/L12
Table 1.4: Examples of in vitro bioassays for the screening of estrogenic ED
potential22
Table 1.5: Summary of reported concentrations of xenoestrogens exposure resulting
in the induction of vitellogenin production in male fish (sourced from Brown et al.
2001)
Table 2.1: NSW DECCW effluent emission license requirements 28
Table 2.2: TFAA derivatised compounds retention times and acquisition ions
Table 2.3: MSTFA derivatised compounds retention time and acquisition ions37
Table 2.4: Limits of detection for TFAA derivatised samples (concentration within
wastewater sample based on 1.0 L for influent, post-DN, field and MSTFA blanks and
2.0 L of sample for ozone and a derivitisation volume of 250 μ L)
Table 2.5: Limits of detection for MSTFA derivatised samples (concentration within
wastewater sample based on 1.0 L for influent, post-DN, field and MSTFA blanks and
2.0 L of sample for ozone and a derivitisation volume of 200μ L)40
Table 2.6: Primer sequences and melting temperatures (T_m) of the vitellogenin target
and 18S housekeeping genes. Lower case lettering indicates base pairs involved in the
hairpin structure quenching the LUX fluorophore
Table 3.1: Average daily influent load parameters based on online monitors at the
GGSTP. Hydraulic retention time (HRT) estimates were calculated using a standard
Table 2.2: Constal influent/offluent quality personators. Desults are based on the
average of two samples collected and englysed during the sampling periods as part of
the STP's routine monitoring by Sydney Water Corporation. COD - chemical oxygen
demand TSS total suspended solids total N total nitrogen total P total
nhosphorus CROD – chemical biological oxygen demand
Table 3.3: Steroidal estrogen concentrations. Concentration (ng/L) range of steroid
estrogens under normal and neak flow conditions ($n=3$ samples for each sampling
neriod)
Table 3.4: Synthetic phenolic compounds. Concentration range (ng/L) of phenols
and triclosan during normal and peak flow conditions 67
Table 3.5: Limits of detection (LOD) and limits of quantification (LOO) ranges
encountered when conducting the different bioassays in ng/L . The LOD and LOO
varied each time the assay was run due to slight differences in background signal
(affecting the LOD), and standard EC_{50} response (affecting the LOO)
Table 3.6: Potencies of the some of the expected EDCs in wastewater in the ERBA.
E-screen and hER and medER two-hybrid yeast assays. Potencies are relative to 178-
у у

Table 6.4: Detection limits for the EDCs analysed for in different sample matrices.

Table 7.2: Average \pm standard deviation of recovery (%) for different sample matrices and different isotopic labelled EDC analogues. The ¹³C labelled compounds were used as the surrogate standard in the November 2008 and February 2009 samples, while the deuterated (d4 or d16) compounds were used for the May 2008 samples. ...166

Abstract

In Australia, due to increased uncertainties over security of water supply because of unpredictable drought and flood cycles, alternative water sources are being investigated for commercial, agricultural, industrial and domestic supply, including the option of reusing treated sewage effluents. However, sewage effluent is a known source of estrogenic endocrine disrupting chemicals (EDCs) in the environment. Exposure to sewage effluents containing steroid estrogens and xenoestrogens can cause developmental and behavioural reproductive abnormalities in fish and other aquatic animals. As such, risk of endocrine disruption is one of the water quality issues that needs to be evaluated when assessing the appropriate level of treatment required for reuse applications. The Gerringong-Gerroa sewage treatment plant (GGSTP), currently employs advanced tertiary treatment technology to treat domestic sewage from two small coastal towns (Gerringong and Gerroa), which receive large seasonal influxes of holiday makers. In this study, the efficacy of the treatment at the GGSTP in removing estrogenically active chemicals was assessed using a multi-tiered assessment approach, incorporating chemical analysis, *in vitro* bioassays and *in vivo* fish exposure studies.

The raw sewage influent was found to contain steroidal estrogens; 17β -estradiol (E₂), estrone (E₁) and estriol (E₃) as well as synthetic phenolic xenoestrogens; 4-tertoctylphenol, Bisphenol A and technical nonylphenol at concentrations commonly found in sewage influents. The influent also displayed high levels of activity in the two-hybrid yeast *in vitro* bioassay. However, the final effluent had no detectable concentrations of steroidal estrogens, no estrogenic activity in the two-hybrid yeast assay and only infrequent occurrence of low concentrations of synthetic phenols. Biodegradation by activated sludge treatment provided significant, but incomplete removal of measured EDCs and estrogenic activity, with the in-line combination of ozone oxidation and biologically activated carbon filtration reducing the remaining estrogenic activity to undetectable levels. EDCs in both the dissolved and particulate phases of the effluent were removed by the treatment process and the efficacy of treatment was not compromised by increases in influent flow during the peak holiday seasons. Treatment of the effluent at the GGSTP was also successful at reducing retinoic acid receptor

xvii

(RAR) activity and genotoxicity to below detection limits and greatly reducing arylhydrocarbon receptor (AhR) activity.

On-site real-time exposure tests using the mosquitofish (*Gambusia holbrooki*) and rainbowfish (*Melanotaenia fluviatilis*) demonstrated that the final effluent did not elicit up-regulation of vitellogenin, a well known biomarker of exposure to estrogenic EDCs. Despite the presence of residual concentrations of E_1 and the *in vitro* activity in effluent after being processed through activated sludge treatment, clarification and sandfiltration, vitellogenin up-regulation was not detected in fish exposed to this partially treated effluent. Overall, the results provide evidence that the application of advanced tertiary treatment technology to domestic sewage can produce a final effluent that is unlikely to pose an endocrine disruption risk to the aquatic biota.

Abbreviations

4nNP	4- <i>n</i> -nonylphenol
4nOP	4- <i>n</i> -octylphenol
4NQO	4-nitroquinoline-N-oxide
4tAP	4- <i>tert</i> -amylphenol
4tOP	4-tert-octylphenol
AhR	Arylhydrocarbon receptor
AP	Alkylphenol
APEO/APE	Alkylphenol polyethoxylates
AS	Activated sludge
atRA	all-trans retinoic acid
BAC	Biological activated carbon
BaP	Benzo[a]pyrene
BDL	Below detection limits
BPA	Bisphenol A
COA	Chemical advanced oxidants
DAFF	Dissolved air floatation filtration
DCM	Dichloromethane
DE	Diethylether
DECCW	Department of Environment Climate Change and Water
DMSO	Dimethylsulfoxide
DN	Denitrification
DNA	Dioxyribose nucleic acid
E_1	Estrone
E_2	17β-estradiol
E ₃	Estriol
ED	Endocrine disruption
EDC	endocrine disrupting chemical/compound
EE_2	17α-ethynylestradiol
EEq	Estradiol equivalent (concentration)
EPA	Environmental Protection Agency
ER	Estrogen receptor
ERBA	Estrogen receptor binding assay
ERE	Estrogen response element
EROD	Ethoxyresorufin-O-deethylase
ESI	Electrospray ionisation
GAC	Granular activated carbon
GC-MS	Gas chromatography mass spectrometry
GC-MS-MS	Gas chromatography tandem mass spectrometry
GGSTP	Gerringong-Gerroa Sewage Treatment Plant
GPC	Gel permeation chromatography

H_2SO_4	Sulphuric acid
НАН	Halogenated aromatic hydrocarbon
hER	Human estrogen receptor
HRT	Hydraulic retention time
ISTD	Internal standard
Kow	Octanol-water partitioning coefficient
LC-MS-MS	Liquid chromatography tandem mass spectrometry
LOD	Limits of detection
LOQ	Limits of quantification
MCF-7	Michigan Cancer Foundation -7
medER	Medaka (Oryzias latipes) estrogen receptor
MeOH	Methanol
MLSS	Mixed liquor suspended solids
mRNA	messanger ribonucleic acid
MSTFA	n-methyl-N-(trimethyl-silyl) trifluroacetamide
NP	Nonylphenol
NPE	Nonylphenol polyethoxylates
NSW	New South Wales
03	Ozone
OP	Octylphenol
OPE	Octylphenol polyethoxylates
PAC	Particulate activated carbon
РАН	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyl
PCR	Polymerase chain reaction
PNEC	Proposed no effect concentration
PPCPs	Pharmaceuticals and personal care products
QLD	Queensland
qPCR	Quantitative polymerase chain reaction
RAR	Retinoic acid receptor
RNA	Ribonucleic acid
RO	Reverse osmosis
RT-PCR	Reverse-transcriptase polymerase chain reaction
SPE	Solid phase extraction
SRT	Solids retention time
STP	Sewage treatment plant
TCDD	2,3,7,8-tetrachlorodibenzo-p-dioxin
TFAA	Trifluroacetic anhydride
TIE	Toxicity Identification Evaluation
Tm	Melting temperature
TNP	Technical nonylphenol
UV	Ultraviolet light
Vtg	Vitellogenin

YES	Yeast estrogen screen
αE_2	17α-estrdaiol
β-ΝΡ	β -naphtoflavone