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Abstract vi

Abstract

Default correlations have been an important research area in credit risk analysis. This thesis aims

to extend the one-firm structural model of default to the two-firm situation for valuing default cor-

relations. In the structural approach, default happens when the firm value falls below a default

threshold. In the fundamental model of Merton (1974), the default threshold is simply the face

value of the bond. Collin-Dufresne & Goldstein (2001) related the default threshold to the firm’s

debts and modelled it as mean-reverting to a constant long-term target. Hui et al. (2006) general-

ized the Collin-Dufresne & Goldstein (2001) model to consider the default threshold as stochastic

and the long-term target as time-dependent. In these models, the corporate bond price is a function

of the leverage ratio - a ratio of the firm’s debt to its asset value. For this combined measure of

the firm’s default risk, Hui et al. (2007) proposed a dynamic leverage ratio model, where default

happens when the leverage ratio falls below a certain level.

The aim of this thesis is to extend the one-firm dynamic leverage ratio model of Hui et al. (2007)

to incorporate the default risk of two firms and interest rate risk. The model will be based on

the consideration of a financial instrument (a credit linked note) that is exposed to the default

risk of the two firms. Initially, the dynamic leverage ratios will be assumed to follow geometric

Brownian motions and the stochastic interest rate assumed to follow a Vasicek (1977) process. The

pricing problem will then be reduced to that of solving the first-passage-time problem that plays

an important part in the valuation of default correlations.

In order to study the impact of the capital structures of firms on default correlations, the two-firm

model is extended by allowing the dynamic leverage ratios to follow mean-reverting processes, so

as to capture the behavior of firms when they adjust their capital structures to a long-term target.

Then in order to capture the effect of external shocks on default correlations, the model is further

extended to consider the situation in which the dynamic leverage ratios follow jump-diffusion

processes. Finally, the numerical results of default correlations based on the two-firm model are

studied and compared when the firm’s leverage ratios follow these three types of processes.

The thesis concludes by pointing to some future research directions. These includes further devel-

opment of the method of images approach for the solution of the first passage time problem to the

time varying coefficients case by use of the multi-stage approximation. Development of approx-

imate analytical methods to extend the range of applicability of the method of images approach.

Extension of Fortet’s integral equation approach for the solution of first passage time problem to
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the two-dimensional situation. The estimation and calibration of leverage ratio models, including

estimation of market prices of risk.

The main contributions of the thesis are:

• The setting up the two firm leverage ratio framework for evaluation of default correlations.

• The extension of the method of images approach to the two-dimensional situation for

solving the first passage time problem with constant coefficients and the time varying

barrier approach for time-dependent coefficients.

• Extension of the leverage ratio framework to incorporate jumps in both the one and two

firm cases.

• A comparative study of the impact on default correlations and joint survival probabilities

of the different types of processes for the leverage ratio dynamics.



CHAPTER 1

Introduction

The recent financial crisis that initiated in the United States and rapidly spread elsewhere was

related to the large amount of correlated defaults indicating clearly the topicality and importance

of this research topic. This thesis provides a generalized two-firm model of default correlation,

based on the structural approach incorporating the stochastic interest rate model of Vasicek (1977).

It sets up a two-firm framework with dynamic leverage ratios allowed to follow different types of

stochastic processes that represent the different features of firms’ capital structure. The thesis

investigates analytical and numerical tools to solve the underlying first passage time problem and

studies the impact on default correlations of various assumptions about the stochastic processes

followed by the leverage ratio.

This thesis is organized as follows:

Chapter 2 reviews the key features of some major structural models in credit risk modelling,

from the fundamental model of Merton (1974) to the stationary-leverage-ratio models of Collin-

Dufresne & Goldstein (2001) and Hui et al. (2006), and then to a dynamic leverage ratio model of

Hui et al. (2007).

Chapter 3 reviews the details of the one-firm dynamic leverage ratio model of Hui et al. (2007)

for corporate bond pricing. This chapter also discusses the method of images applied by Hui et al.

(2007) to obtain an analytical solution to the associated first passage time problem. An approach

used to deal with time-dependent parameters is also discussed. The second part of this chapter

extends the dynamic leverage ratio model to the two-firm situation for pricing financial derivatives

involving default risks among two firms. The model will be based on the consideration of a credit

linked note that is exposed to the default risk of the two firms. The dynamic leverage ratios will be

assumed to follow geometric Brownian motions and the stochastic interest rate assumed to follow

a Vasicek (1977) process. The pricing problem will be then reduced to that of solving the first-

passage-time problem that plays an important part in the evaluation of default correlations. The

first original contribution of the thesis is the setting up of the two-firm model dynamic leverage

ratio framework.

Chapter 4 seeks the analytical solution for the pricing function of the credit linked note by using the

method of images. The exact solution will be derived in terms of the bivariate cumulative normal
0
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function. When the coefficients are time-dependent, the time varying barrier approach is used to

obtain an approximate solution. However, the method of images only gives an exact analytical

solution for particular values of the correlation coefficient between the dynamics of the leverage

ratios of the two firms. Its use in subsequent chapters is to serve as a benchmark solution against

which various approximate methods will be tested. The second original contribution of the thesis

is the extension of the method of images to the two-dimensional case for solving the first passage

problem with constant coefficients and then extending the time varying barrier approach to deal

with time-dependent coefficients.

Chapter 5 considers numerical methods to efficiently solve the problem for all values of the corre-

lation coefficient. The first part of this chapter sets up an alternating direction implicit scheme that

was introduced in Douglas & Rachford (1956). The second part develops a Monte Carlo scheme

to serve as a benchmark. At the end of this Chapter, the accuracy of the numerical results based

on the method of images, the alternating direction implicit scheme and Monte Carlo methods are

compared.

Chapter 6 presents some numerical results for joint survival probabilities and default correlations

based on the two-firm model developed in the previous chapters. The chapter also discusses the

choice of parameters, and goes on to study the impact on joint survival probabilities and default

correlations of various parameters. The third original contribution of the thesis is the study of the

properties of default correlations and joint survival probabilities when the leverage ratios follow

geometric Brownian motions.

Chapter 7 extends the two-firm model in Chapter 3 by allowing the dynamic leverage ratios to

follow mean-reverting processes, so capturing the behavior of firms when they alter their capital

structures to long-term targets. An approximate analytical solution via the method of images that

was developed in Chapter 4 is extended (for certain values of the correlation coefficient) and the

Monte Carlo scheme of Chapter 5 is also extended to this situation to cater for general values

of the correlation coefficient. This Chapter concludes by comparing the two numerical methods

and studying the impact of mean-reverting capital structures on joint survival probabilities and

default correlations. The fourth original contribution of the thesis is the extension of the method of

images and time varying barrier approaches to the two-firm model when the leverage ratios follow

mean-reverting processes and their impact on default correlations and joint survival probabilities.

Chapter 8 considers the case in which dynamic leverage ratios follow jump-diffusion processes,

thereby capturing the surprise due to unexpected external shocks. This chapter focuses on the

one-firm case. The problem is reduced to that of finding the single firm default probability and the
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Monte Carlo simulation method is extended to cover this case. The impact of the jump compo-

nents: the average jump size, the jump size volatility and the jump intensity on single firm default

probabilities for different credit rated firms are studied. Then, we search for the optimal values of

average jump sizes by calibrating to Standard & Poor’s (2001) historical default data for different

credit ratings. The fifth original contribution of the thesis is the setting up of the one-firm lever-

age ratio model with jump risks, the calibration of the model to market data, and the study of the

impact of jump risks on default probabilities.

Chapter 9 extends the one-firm model developed in Chapter 8 to the two-firm situation, thereby

capturing the surprise risk of default in a group of firms. The Monte Carlo simulation method

is extended to study the impact of jump components on joint survival probabilities and default

correlations. The impact of the sign of the average jump sizes on joint survival probabilities and

default correlations are also studied. The sixth original contribution of the thesis is the setting up of

the two-firm leverage ratio model with jump risks and study of their impact on default correlations

and joint survival probabilities.

Chapter 10 brings together the results of earlier chapters and compares the individual default prob-

abilities, joint survival probabilities and default correlations when the firms’ leverage ratios follow

the three different processes discussed in the thesis. The final original contribution of the thesis

is the study of the relative differences for credit risk analysis of the various types of stochastic

processes for the leverage ratio dynamics.

Chapter 11 summarizes the main findings of the thesis, draws some conclusions and raises sugges-

tions for future research topics arising out of the issues considered here.



CHAPTER 2

Literature Review

One of the main challenges in credit risk analysis is the estimation of correlation among defaults

of firms. A number of approaches have been developed to tackle this problem. The Gaussian

copula method has become a kind of market standard to estimate default correlations. It is easy

to implement, but has the drawback that there is no easy way of knowing which copula to use.

Another approach is the reduced-form approach, in which default is driven by surprises captured

by some jump process. The probability of surprise depends on an intensity parameter which is

estimated by calibration. Another common approach, the structural approach, relates the advent

of default to the dynamics of the underlying structure of firm. This approach developed out of

the work of Merton (1974) who developed a corporate bond pricing model depending on the firm

asset value and the face value of debt. In order to study how default correlations are effected by

firms’ capital structure, this thesis will develop a two-firm model of default correlation based on

the structural approach.

This chapter reviews the key features of certain major structural models in credit risk modelling.

From the fundamental model of Merton (1974) to that of Black & Cox (1976) allowing early

default before the maturity date of risky debt. Then the later developments include Longstaff &

Schwartz (1995) who combine many distinctive features in a one-firm model, Briys & de Varenne

(1997) who propose a stochastic default threshold. Finally the stationary-leverage-ratio models of

Collin-Dufresne & Goldstein (2001) and Hui et al. (2006).

The structural models were initiated by Merton (1974), who was the pioneer in using the contingent

claim analysis approach to corporate bond pricing. In the structural approach, the default event is

driven by the firm value and occurs when it falls below some default threshold. In Merton (1974),

the default threshold is simply the face value of the bond, however, the main limitation of the

approach is that bondholders cannot force the firm to default before the maturity date. In order

to consider a safety covenant for the protection of bondholders, a default-triggering level for the

firm’s asset value is proposed in the model of Black & Cox (1976), who extend Merton (1974) by

allowing default to occur at any time when the firm’s asset value is less than the default threshold.

However, both models are limited by the setting of a deterministic short-term risk-free interest rate.

3
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The later development of Longstaff & Schwartz (1995) combines the early default mechanism

in Black & Cox (1976) and the stochastic interest rate model of Vasicek (1977). The Longstaff

& Schwartz (1995) approach captures the idea of the Merton model in a more flexible way, in

particular it accommodates complicated liability structures and payoffs by deriving the solution as

a function of a ratio of the firm value to the payoff. Instead of using a constant default threshold,

Briys & de Varenne (1997) consider a time-dependent default threshold and assume that it depends

on the risk-free interest rate.

Collin-Dufresne & Goldstein (2001) point out that most structural models preclude the possibility

that firms may alter their capital structure. They stress the fact that in practice, firms could adjust

their outstanding debt levels in response to the change in firm value, and hence generate mean-

reverting leverage ratios. To model this feature, Collin-Dufresne & Goldstein (2001) assume that

the default threshold changes dynamically over time, in particular, that the dynamics of the log-

default threshold is mean-reverting. This setting captures the fact that firms tend to issue debt

when their leverage ratio falls below some target, and replace maturing debt when their leverage

ratio is above this target. Collin-Dufresne & Goldstein (2001) mention that in general, the default

threshold is not necessarily the outstanding book value of debt, but it seems reasonable to assume

that they are related. For example, they are identical in the Merton (1974) model. Collin-Dufresne

& Goldstein (2001) interpret their model with a more general definition of leverage, which is the

ratio of a default threshold that reflects the market value of total liabilities of the firm to its firm

value.

The two main features introduced in the Collin-Dufresne & Goldstein (2001) model, are the use

of the leverage ratio and the fact that it is mean-reverting. These features capture the tendency of

firms to issue debt when their leverage ratio falls below some target, and replace maturing debt

when their leverage ratio is above this target. Hui et al. (2006) generalize the Collin-Dufresne

& Goldstein (2001) model to consider the situation in which the target leverage ratio is time-

dependent and the default threshold follows a mean-reverting process. Hui et al. (2006) argue

that the time-dependent target leverage ratio reflects the movements of a firm’s initial target ratio

towards a long-run target ratio over time. In the Hui et al. (2006) model, the dynamic equation of

the default threshold has its own source of randomness. The solutions of both models are derived as

a function of leverage ratios. For this combined measure of default risk of the firm, Hui et al. (2007)

proposed a dynamic leverage ratio model, where default is driven by the firm’s leverage ratio when

it is above a certain level. Empirical support for the use of the leverage ratio model can be found

in Hui et al. (2005), who present an empirical study of the estimation of default probabilities using

the leverage ratio model for benchmarking listed companies. The empirical results show that the
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benchmarking ratings can broadly track the S&P ratings of U.S. sample companies. A recent study

of Huang & Zhou (2008) conducts a specification analysis of five structural models by using the

term structure of credit default swap spreads and equity volatility from high-frequency return data.

Their empirical tests show that the stationary leverage ratio model of Collin-Dufresne & Goldstein

(2001) is the best performing structural model compared to the other four, which are those of

Merton (1974), Black & Cox (1976), Longstaff & Schwartz (1995) and Huang & Huang (2003).

The principal aim of this thesis is to extend the dynamic leverage ratio model of Hui et al. (2007) to

the two-firm case so as to study the implications for default correlations. The idea of the two-firm

model is proposed by Zhou (2001a), who extends the one-firm model of Black & Cox (1976) to

the two-firm situation. In Zhou’s model the default possibilities of the two firms are driven by their

asset values and the short-term risk-free interest rate is deterministic.

In order to study the impact on default correlations of firms altering their capital structure , the

framework of the two-firm model is here extended to consider the case in which the dynamic

leverage ratios are mean-reverting to constant target ratios (the case considered in Collin-Dufresne

& Goldstein (2001)) and time-dependent target ratios (the case considered in Hui et al. (2006)).

Another extension draws on the discussion of Zhou (1997), who argues that in reality, a firm

can default either by a gradual diffusion process, or by surprise due to unexpected external shocks.

Zhou (2001b) combines these measures of risk by assuming the firm value follows a jump-diffusion

process. In order to capture the effect of external shocks on default correlations, the two-firm model

is extended to consider the situation in which the dynamic leverage ratios follow jump-diffusion

processes.

The main features of the structural models discussed are summarized in Table 2.1. Structural

models based on the work of Merton (1974) are more refined as one moves down the table. In

particular, the modelling of the default threshold D from the initial assumption of being identical

to the debt face value in Merton (1974), to being a constant ratio of debt face value in Longstaff

& Schwartz (1995), to being time-dependent in Briys & de Varenne (1997), then to being mean-

reverting in Collin-Dufresne & Goldstein (2001) and finally to being allowed to follow a stochastic

process in Hui et al. (2006). The nature of the leverage ratio models, for example, Collin-Dufresne

& Goldstein (2001), Hui et al. (2006) and Hui et al. (2007) provides a combined measure of

default risk of the firm. Moreover, this class of models is able to avoid a direct parametrization in

terms of the firm value V and the default threshold D by directly examining the leverage ratio L.

Given these advantages, it seems natural to extend the one-firm leverage ratio models to the two-

firm situation. Our approach considers the evaluation of default correlations when the dynamic
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leverage ratios follow geometric Brownian motions, mean-reverting processes and jump-diffusion

processes. The shaded boxes in last row of Table 2.1 indicates the models to be studied in this

thesis.

Structural Models Firm Value V Default ThresholdD
Risk-Free

Interest Rate

Merton (1974) dV/V = μdt + σdZ Bond face value D=F Deterministic

Longstaff &
dV/V = μdt + σdZ A constant D=K Vasicek (1977)

Schwartz (1995)

Zhou (2001a) dVi/Vi = μidt + σidZi,(i =1,2) A time-dependent case D=eμ̄itKi Deterministic

Zhou (2001b)
dV/V = (μ − λqkq)dt + σdZ

D=eμ̄tK Vasicek (1977)+(Y − 1)dq

Briys & dV/V = rdt + σ(
p

1 − ρ2dZßV Depends on the dynamics of risk

Hull & White (1990)de Varenne (1997) +ρdZr) free interest rate D=ξFB(r, t)

Collin-Dufresne &
dV/V = (r − δ)dt + σdZ

k=ln D, k is mean-reverting
Vasicek (1977)

Goldstein (2001) dk = λ(ln V − ν − k) dt

Hui et al. (2006) dV/V = μV (t)dt + σV (t)dZV

k follows the mean-reverting process

Hull & White (1990)dk = [μ(t) + λ(t)(ln V − k)

−σ2/2]dt + σ(t)dZß

Hui et al. (2007) dL/L = μL(t)dt + σL(t)dZL, where L ≡ D/V Hull & White (1990)

Two-firm model dLi/Li = μidt + σidZi, (i=1,2)

Ex. I: mean-reverting dLi/Li = κi[ln θi(t) − ln Li]dt + σidZi Vasicek (1977)

Ex. II: with jumps dLi/Li = (μi − λqikqi)dt + σidZi + (Yi − 1)dq

TABLE 2.1. Taxonomy of earlier structural models and the two-firm model of this

thesis. The shaded boxes indicate the new models considered in this thesis.

The relationship among the various structural models is also illustrated in Table 2.2. The shaded

boxes indicate the new developments to be undertaken in this thesis. The main differences between

the two-firm model studied in this thesis and that to the Zhou (2001a) is that the model of Zhou

was based on deterministic interest rates, while interest rate risk is taken into account in this thesis.

The other key difference is that default probabilities are driven by the dynamic leverage ratios of

firms in our two-firm model, while it is driven by the firm values in Zhou (2001a) (see Table 2.1).

Moreover, Zhou (2001a) does not consider the situation where firms alter their capital structure,

whereas the two-firm model in this thesis is extended to consider the situation in which dynamic
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TABLE 2.2. The development of structural models and the relationship among
these models to the two-firm model in this thesis. The shaded boxes indicate the
new developments undertaken in this thesis.

leverage ratios are mean-reverting. More generally, the thesis extends the approaches of Collin-

Dufresne & Goldstein (2001) and Hui et al. (2006) to the two-firm situation. The one-firm dynamic

leverage ratio model is also extended to include the jump risk, and compared to Zhou (2001b), the

difference being that here default is driven by the firm’s leverage ratio with jumps, whereas in

Zhou (2001b) it is the firm value that contains a jump component, respectively. The one-firm
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leverage ratio with jumps is then generalized to the two-firm case, such that the two-firm model

in this thesis provides a more comprehensive insight into default correlations for firms having the

different features represented by these processes.



CHAPTER 3

Framework of the Two-Firm Model

The first part of this chapter presents the one-firm dynamic leverage ratio model of Hui et al. (2007)

for corporate bond pricing. In their model, the corporate bond price is interpreted as the product

of a risk-free bond price and a discounting factor by the separation of variables method. Since the

risk-free bond price solution is known, therefore the main focus is on solving for this discounting

factor. Hui et al. (2007) apply the method of images approach to obtain the closed-form solution

in terms of the cumulative normal distribution function. However, when the parameters are time-

dependent, the analytical solution is not so readily obtained. Lo et al. (2003) suggested an approach

to deal with this problem using a time varying barrier method to obtain an approximate analytical

solution.

The second part of the chapter extends the dynamic leverage ratio model to the two-firm situation

for pricing financial derivatives involving default risks among two firms, with the credit linked note

being the example here, and describes its application to evaluating default correlations.

Section 3.1 reviews the one-firm dynamic leverage ratio model framework. It illustrates the method

of images approach for solving the one-dimensional first-passage-time problem. Section 3.2 out-

lines the time varying barrier approach to obtain an approximate analytical solution for the case in

which parameters are time-dependent. The method of images and time varying barrier approaches

will then be extended to the two-dimensional situation in Chapter 4 to obtain a solution for the

two-firm model. Section 3.3 develops the two-firm dynamic leverage ratio model framework and

Section 3.4 describes its application to the evaluation of default correlations.

3.1. The One-Firm Model

Hui et al. (2007) proposed that the corporate bond price depends on the firm’s leverage ratio and

risk-free interest rate, the leverage ratio L being defined as the total debt to the market-value

capitalization of the firm (a similar definition can be found in Collin-Dufresne & Goldstein (2001)).

The leverage ratio is assumed to follow the stochastic differential equation

dL = μL(t)Ldt+ σL(t)LdZL, (3.1)
9
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where μL(t) and σL(t) are the time dependent drift rate and the volatility of the proportional

change in the leverage ratio (that is dL/L) respectively, and ZL is a Wiener process capturing

the uncertainty in the leverage ratio dynamics under the historical measure P.

The dynamics of the instantaneous spot rate of interest r is assumed to be given by the Hull &

White (1990) generalization of the Vasicek (1977) model, so that

dr = κr(t) [θr(t) − r] dt+ σr(t)dZr, (3.2)

where the instantaneous spot rate of interest r is mean-reverting to the long-run mean θr(t) at

speed κr(t), σr(t) is the instantaneous volatility of interest rate changes and Zr is a Wiener process

capturing the uncertainty in the interest rate market under the historical measure P.

The Wiener increments dZL and dZr are assumed to be correlated with

E[dZLdZr] = ρLr(t)dt. (3.3)

Let P (L, r, t) be the corporate bond price, dependent on the leverage ratio and interest rate dy-

namics in (3.1) and (3.2). Applying the standard bond pricing argument, we find that the pricing

function satisfies the partial differential equation

−∂P
∂t

=
1

2
σ2

L(t)L2∂
2P

∂L2
+ μ̃L(t)L

∂P

∂L
+ ρLr(t)σL(t)σr(t)L

∂2P

∂L∂r

+
1

2
σ2

r(t)
∂2P

∂r2
+ κr(t)[θ̃r(t) − r]

∂P

∂r
− rP, (3.4)

for t ∈ (0, T ), L ∈ (0, L̂) and subject to the boundary conditions

P (L, r, T ) = 1, (3.5)

P (L̂, r, t) = 0. (3.6)

Here

μ̃L(t) = μL(t) − λLσL(t), (3.7)

θ̃r(t) = θr(t) − λrσr(t)

κr(t)
, (3.8)

where λL and λr are the market prices of risk (assumed constant) associated with the uncer-

tainty impinging on the leverage ratio and interest rate processes, respectively. Moreover, since

the growth rates of the firm’s asset value and the firm’s debt value equal the risk-free interest rate
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under the risk-neutral measure, then the drift of the leverage ratio under risk-neutral measure μ̃L(t)

is independent of the risk-free interest rate1.

The boundary condition (3.6) describes the early default mechanism. In the Hui et al. (2007)

model, default occurs when the firm’s leverage ratio rises above a predefined level L̂ anytime

during the life of the bond, and the bondholders receive nothing upon default. Otherwise, no

default happens, and bondholders receive the par value of the bond at the maturity T which is the

boundary condition (3.5). It is the boundary condition (3.6) that gives defaultable bond pricing

problems their particular structure and difficulty. This is essentially a barrier type condition and

in one form or another requires the solution of the first passage time problem associated with the

partial differential equation (3.4).

In order to obtain an analytical solution to (3.4), Hui et al. (2007) employed the separation of

variables method, where the solution for the corporate bond price turns out to be the product of

two separate functions, one depending only on the leverage ratio and the other function depending

only on the interest rate, so that

P (L, r, t) = B(r, t)P̂ (L, t), (3.9)

where Hui et al. (2007) point out that B(r, t) is simply the risk-free bond price.

We note that the function P̂ (L, t) can be expressed as

P̂ (L, t) =
P (L, r, t)

B(r, t)
, (3.10)

which is a ratio of the corporate bond price to the risk-free bond price. We interpret P̂ as a risk

ratio function that is inversely related to the degree of risk of a bond. If the ratio in (3.10) is close to

1, this means that the corporate bond is less likely to default, which would be the case for example

with a AAA rated bond; while if it is very small, the corporate bond is very risky compared to the

risk-free bond price, which would be the case for example with a CCC rated bond. That is the

lower value of the ratio, the higher risk of the corporate bond defaulting.

By substituting (3.9) into (3.4) we find that the risk ratio function P̂ (L, t) satisfies the partial

differential equation2

−∂P̂
∂t

=
1

2
σ2

L(t)L2∂
2P̂

∂L2
+ [μ̃L(t) + ρLr(t)σL(t)σr(t)b(t)]L

∂P̂

∂L
, (3.11)

1For a derivation of the corporate bond price as a function of the leverage ratio based on the firm’s asset value and the
firm’s debt, see Hui et al. (2006) (Appendix A).
2A derivation of (3.11) by application of the separation of variables approach can be found in Appendix A.
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subject to the boundary conditions

P̂ (L, T ) = 1, (3.12)

P̂ (L̂, t) = 0. (3.13)

In (3.11) b(t) is a time-dependent parameter and depends on the speed of mean reversion of the

risk-free interest rate and is given by

b(t) = −
∫ T

t

eK(t)−K(v)dv, (3.14)

for K(t) =
∫ t

0
κr(u)du.

Denote by x = ln(L/L̂) the normalized log-leverage ratio, and τ = T − t the time-to-maturity.

Set P̂ (L̂ex, t) equal to P̄ (x, τ), then P̄ (x, τ) satisfies the partial differential equation

∂P̄

∂τ
=

1

2
σ2

L(τ)
∂2P̄

∂x2
+ γ(τ)

∂P̄

∂x
, (3.15)

for τ ∈ (0, T ), x ∈ (∞, 0) and subject to the boundary conditions

P̄ (x, 0) = 1, (3.16)

P̄ (0, τ) = 0, (3.17)

where the drift coefficient γ(τ) is given by

γ(τ) = μ̃L(T − τ) + ρLr(T − τ)σL(T − τ)σr(T − τ)b(T − τ) − 1

2
σ2

L(T − τ), (3.18)

we use σ2
L(τ) for σ2

L(T − τ) for expressions convenience.

The solution to the partial differential equation (3.15) for the risk ratio function P̄ (x, τ) can be

written as

P̄ (x, τ) =

∫ 0

−∞
f(x, y; τ)P̄ (y)dy, (3.19)

where f(x, y; τ) is the transition probability density function for x starting at the value x(0) = y

at time-to-maturity τ = 0 and ending at the value x at time-to-maturity τ . The initial condition

function P̄ (x, 0) ≡ P̄ (y) is given in (3.16).
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We notice that the transition probability density function f(x, y; τ) is subject to the zero boundary

condition in (3.17). A general approach to obtaining the solution is to apply the method of images,

see for example, Albanese & Campolieti (2006), Chapter 3.2 or Wilmott et al. (1995), Chapter

12.2.

3.1.1. The Method of Images for the One-Firm case.

To illustrate the method of images, we consider the heat equation

∂u

∂τ
=

1

2

∂2u

∂x2
, (3.20)

where x is unrestricted in the region x ∈ (−∞,∞). The solution to (3.20) is known3 to be of the

form

u(x, τ) =

∫ ∞

−∞
g(x, y; τ)u(y)dy, (3.21)

where u(y) is the initial condition function, g is the transition probability density function that has

the form

g(x, y; τ) =
e−(x−y)2/2τ

√
2πτ

. (3.22)

If a zero boundary condition is imposed along x-axis at x = 0, then

u(0, τ) = 0, (3.23)

and the region of interest for the solution becomes x ∈ (−∞, 0). Applying the method of images

approach, the exact solution to the heat equation (3.20) subject to the zero boundary condition

(3.23) is

u(x, τ) =

∫ 0

−∞
g̃(x, y; τ)u(y)dy, (3.24)

where g̃ is the transition probability density function for the restricted process. It is obtained by

subtracting from the original density for the (for the unrestricted process) g centered at y within

the (“physical”) region y ∈ (−∞, 0) the same density centered at −y within the (“nonphysical”)

region y ∈ (0,∞), that is

g̃(x, y; τ) = g(x, y; τ) − g(x,−y; τ), (3.25)
3The solution of the heat equation can be found in many reference. For example, Wilmott et al. (1995) (Chpaters 4
and 5) give a good discussion and derivation of the solution of the heat equation.
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FIGURE 3.1. A sample plot of the density function g̃ (blue curve) for absorption at
the barrier y = 0 with parameter choices x = −1, τ = 1.5 and τ0 = 0. The solid
line gives g̃ in the physical solution region, while the dashed line extends it into the
nonphysical region. The plot of g̃ is obtained by subtracting two density functions
g for unrestricted processes, one centered at y (black curve) and the other at −y (red
curve).

so that the the boundary condition (3.23) is satisfied, as is easily verified.

Figure 3.1 illustrates the density function g̃ (blue curve) for absorption at the barrier y = 0 with

the parameter choices x = −1, τ = 1.5 and τ0 = 0. The solid line gives g̃ in the physical solution

region, while the dashed line extends it into the nonphysical region. The plot of g̃ is obtained by

subtracting two density functions g for unrestricted processes, one centered at y (black curve) and

the other at −y (red curve) which is in fact −g(x,−y; τ), respectively.

3.1.2. Using the Reflection Principle to Obtain the Transition Probability Density Func-

tion.

Albanese & Campolieti (2006) give an alternative argument based on purely probabilistic argu-

ments and basic properties of Brownian paths to show that equation (3.25) is indeed the transition
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FIGURE 3.2. A Brownian motion and its reflection at the barrier xb = 0.

probability density for Brownian motion x on the interval x ∈ (−∞, 0] with an the absorbing

barrier at x = 0.

The idea briefly is as follows. Let xt denote a Brownian motion starting at x0 < xb at initial

time t0 with an upper absorbing barrier at x = xb. Let x̃t denote the same Brownian process but

without a barrier, that is the standard Wiener process that has the transition probability density

g(x0, x̃t; t − t0) as given in (3.22). Then the probability of a path xt having a value of x below

the barrier, that is x < xb for t ≥ t0, is equal to the probability of a barrier-free path x̃t having

the value of x, minus the probability of a barrier-free path x̃t at the barrier xb at the first time tb
attaining the value x at terminal time t, which is the same as that for a reflected path starting at xb

at time tb and attaining a value 2xb − x at time t (see Figure 3.2):

P(xt ≤ x) = P(x̃t ≤ x) − P(x̃t ≥ 2xb − x) (3.26)

for all x < xb.

By placing the expression for the density function and g, (3.22) into (3.26), then the cumulative

probability of any path starting below the barrier x0 < xb and attaining any value y = xt ≤ x

(where x < xb) within the time interval τ = t − t0, conditional on paths being absorbed if the
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barrier xb is crossed, is

P(y ≤ x) =

∫
x

−∞
g(x0, y; τ)dy −

∫ ∞

2xb−x

g(x0, y; τ)dy. (3.27)

If the barrier is xb = 0, and we are interested on the probability of a path starting at x < 0 and

ending in the region (−∞,x = 0) for the time interval τ = t− t0, then (3.27) can be expressed as

P(x, τ) =

∫ 0

−∞
g(x, y; τ)dy −

∫ ∞

0

g(x, y; τ)dy. (3.28)

Making a change of variable in the second integral, we have

P(x, τ) =

∫ 0

−∞
[g(x, y; τ) − g(x,−y; τ)]dy. (3.29)

If we differentiate the cumulative probability function with respect to y, then the transition proba-

bility density obtained is the same as (3.25), the density derived by the method of images.

3.1.3. Exact Solutions for the Case of Constant Parameters.

Next, we solve the partial differential equation (3.15). Consider the case in which the coefficients

in (3.15) are constant, that is σL(τ) = σL and γ(τ) = γ, and the partial differential equation (3.15)

becomes

∂P̄

∂τ
=

1

2
σ2

L

∂2P̄

∂x2
+ γ

∂P̄

∂x
. (3.30)

We note that the partial differential equation (3.30) can be reduced to the heat equation (3.20) by

the transformation4

P̄ (x, τ) = eηx+ξτu(x, ζ), (3.31)

where we set parameters η and ξ as

η = − γ

σ2
L

, ξ = − γ2

2σ2
L

, and ζ = σ2
Lτ.

At the initial conditions time-to-maturity τ0 = 0, the risk ratio function P̄ and the solution to the

heat equation u are related by
(
setting P̄ (y, 0) = P̄ (y) and u(y, 0) = u(y)

)
P̄ (y) = 1 = eηyu(y), (3.32)

4The details of the transformation can be found in Appendix B.
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so that

u(y) = e−ηy, (3.33)

where we set x at τ0 = 0 equal to y.

Substituting the relations (3.31) and (3.33) into (3.24), yields

e−ηx−ξτ P̄ (x, τ) =

∫ 0

−∞
g̃(x, y; ζ)e−ηyP̄ (y)dy. (3.34)

Rearranging equation (3.34), we have

P̄ (x, τ) =

∫ 0

−∞
eη(x−y)+ξτ g̃(x, y; ζ)P̄ (y)dy. (3.35)

Comparing equations (3.35) and (3.19), the transition probability density function f with constant

coefficients, is thus identified as

f(x, y; τ) = eη(x−y)+ξτ g̃(x, y; ζ). (3.36)

As discussed in Subsection 3.1.2, the cumulative probability for x follows a Brownian motion with

an upper absorbing barrier at x = 0, starting below the barrier x < 0 at initial time t0 (assume

t0 = 0) , then the probability of this path terminating within a period of time τ = t − t0 in the

interval x ∈ (−∞, 0] conditional on absorption at x = 0 is

F (x, τ) =

∫ 0

−∞
f(x, y; ζ)dy, (3.37)

for ζ = σLτ .

The probability F (x, τ) can be also interpreted as the survival probability for the absorption not

yet having occurred during the period of time τ = t− t0. On the other hand, 1−F (x, τ) gives the

probability of absorption having occurred, which can be interpreted as the default probability.

3.2. The One-Firm Model with Time-Dependent Parameters

If the coefficients in the partial differential equation (3.15) are time-dependent, the transformation

of (3.15) to the heat equation will not be as straight forward as in the constant coefficients case. Lo
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& Hui (2001) present a Lie-algebraic approach for the valuation of financial derivatives with time-

dependent parameters. The Lie-algebraic approach to deal with this problem provides a way to

obtain the propagator (the transition probability density function) of the partial differential equation

with time-dependent parameters5. The Lie-algebraic makes use of the evolution operator ec(τ) ∂
∂x

for c(τ) as defined below. This operator operates on an arbitrary, infinitely differentiable, function

f(x) according to

ec(τ) ∂
∂xf(x) =

∞∑
n=0

1

n!
(c(τ))n∂

nf(x)

∂xn
. (3.38)

A calculus for this operator has been developed in quantum mechanics for solving Fokker-Planck

equations and Schrödinger equations, and is expounded for example in Suzuki (1989). We shall

merely cite the results that we use as our arguments develop and give proofs in Appendix C. Many

of the results obtained using this operator calculus can be obtained by other approaches, however

this calculus provides a convenient unified approach, which is why we use it in this thesis.

Using the operator (3.38), we transform the partial differential equation (3.15) with time-dependent

coefficients to the heat equation (3.20) by setting (see Appendix C)

P̄ (x, τ)) = e
R τ
0 γ(v)dv ∂

∂x ũ(x, ζ), (3.39)

in which we transform time-to-maturity according to ζ =
∫ τ

0
σ2

L(v)dv. Substituting (3.39) into

(3.15), we find that the heat equation ũ(x, ζ) satisfies the partial differential equation

∂ũ

∂ζ
=

1

2

∂2ũ

∂x2
. (3.40)

We note that the transformation on the right hand side of equation (3.39) can be expressed as6

e
R τ
0 γ(v)dv ∂

∂x ũ(x, ζ) = ũ(x+

∫ τ

0

γ(v)dv, ζ), (3.41)

5The Lie-algebraic approach has been successfully applied in physics to solve time-dependent Schrödinger equations
associated with generalized quantum time-dependent oscillators and Fokker-Planck equation. For example, Lo (1997)
applied the Lie-algebraic approach to obtain the exact form of the propagator of the Fokker-Planck equations with
time-dependent parameters

∂P

∂t
=
{

B(t)
∂2

∂x2
− [C(t)x + D(t)]

∂

∂x
− C(t)

}
P (x, t).

On the other hand, an identical result is obtained by Demo et al. (2000) using the Green’s function technique on the
space of generalized functions.
6See Proposition C.6 in Appendix C.
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so that

P̄ (x, τ) = ũ(x+

∫ τ

0

γ(v)dv, ζ). (3.42)

The boundary condition of P̄ implies the boundary condition of ũ, which is (by substituting (3.42)

into (3.17))

P̄ (0, τ) = 0 = ũ(

∫ τ

0

γ(v)dv, ζ). (3.43)

We notice that the partial differential equation (3.40) for ũ is same as the heat equation (3.20). To

apply the solution (3.24) to ũ, we require that ũ satisfy the zero boundary condition equivalent to

(3.23), that is

ũ(0, ζ) = 0. (3.44)

However, from (3.43), the zero boundary condition (3.44) is not fulfilled. In order to satisfy the

condition (3.44), we impose an additional structure on the function P̄ . We assume that the zero

boundary condition for P̄ is no longer at x = 0, but at a time varying barrier, denoted by x∗(τ),

having the dynamic form7

x∗(τ) = −
∫ τ

0

γ(v)dv − β

∫ τ

0

σ2
L(v)dv, (3.45)

where β is a real parameter, which is free to be chosen in some optimal way (as we will show

later) so as to minimize the deviation between the time varying barrier x∗(τ) and the exact barrier

at x = 0.

Since the zero boundary condition is not at x = 0, but at x∗(τ), therefore, the solution based on

this new zero boundary condition at x∗(τ), is an approximate solution, and since it will depend on

the value of β chosen we denote it as P̄β , hence we can write

P̄β(x, τ) =

∫ 0

−∞
fβ(x, y; τ)P̄β(y)dy, (3.46)

where fβ(x, y; τ) is the transition probability density function for the process restricted to the

region x ∈ (−∞, x∗(τ)).

The quantity P̄β also satisfies the partial differential equation (3.15), that is

∂P̄β

∂τ
=

1

2
σ2

L(τ)
∂2P̄β

∂x2
+ γ(τ)

∂P̄β

∂x
, (3.47)

7The time varying barrier technique was proposed by Lo et al. (2003) to facilitate the solution of such problems with
time-dependent parameters.
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with the zero boundary condition at an artificial time varying barrier x∗(τ) so that

P̄β(x∗(τ), τ) = 0, (3.48)

for x ∈ (−∞, x∗(τ)) and τ ∈ (0, T ). The initial condition of the approximate solution P̄β is the

same as the exact function P̄ , namely

P̄β(x, 0) = 1. (3.49)

Next, we apply the transformation of the partial differential equation (3.47) by setting

P̄β(x, τ) = e−x∗(τ) ∂
∂x

[
eβx/2−β2ζ/4ũ(x, ζ)

]
, (3.50)

= eβ(x−x∗(τ))/2−β2ζ/4ũ(x− x∗(τ), ζ), (3.51)

where ũ satisfies the partial differential equation (3.40).

The motivation of the transformation (3.50) is to reduce the partial differential equation (3.47) to

(3.40), which has the same form as the heat equation (3.20), so that the solution of the heat equation

can be applied to solve the partial differential equation (3.50).

It is convenient to carry out the transformation (3.50) in two steps. First we consider

P̄β(x, τ) = e−x∗(τ) ∂
∂x P̃ (x, ζ). (3.52)

The partial differential equation for P̃ can be obtained by following the same technique as illus-

trated in Appendix C, so that

∂P̃

∂ζ
=

1

2

∂2P̃

∂x2
− β

∂P̃

∂x
, (3.53)

which has constant coefficients. In the second step, we apply the transformation described in

Appendix B, then this last partial differential equation can be reduced to the partial differential

equation (3.40) by setting

P̃ (x, ζ) = eβx−β2ζ/2u(x, ζ).

Next, we substitute (3.48) into (3.51) and so obtain the zero boundary condition for ũ as8

ũ(0, ζ) = 0. (3.54)
8We note that

P̄β(x∗(τ), τ) = 0 = eβ·0−β2ζ/2ũ(0, ζ).
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As mentioned previously, to apply the solution (3.24) for the heat equation u to ũ, we require

that the zero boundary condition of ũ satisfies (3.44). From (3.54), we note that this condition is

fulfilled, hence, we can apply the solution for the heat equation (3.24) to obtain the solution for P̄β

via the relation (3.51). We first obtain the initial condition for u by substituting (3.51) into (3.48)

with x(0) = y, namely

P̄β(y) = 1 = eβyũ(y). (3.55)

Then, we substitute (3.55) and (3.51) into the solution for the heat equation (3.24), to obtain

e−β(x−x∗(τ))+β2ζ/2P̄β(x, τ) =

∫ 0

−∞
g̃(x− x∗(τ), y; ζ)e−βyP̄β(y)dy. (3.56)

Then rearranging (3.56), we obtain the solution for the risk ratio function for the case in which the

parameters are time-dependent, namely

P̄β(x, τ) =

∫ 0

−∞
eβ[x−y−x∗(τ)]−β2ζ/2g̃(x− x∗(τ), y; ζ)P̄β(y)dy. (3.57)

Comparing equations (3.46) and (3.57), we see that

fβ(x, y, τ) = eβ[x−y−x∗(τ)]−β2ζ/2g̃(x− x∗(τ), y; ζ). (3.58)

Similar to the constant coefficient case in the previous Subsection 3.1.3, we denote by Fβ(x, t) the

survival probability (dependant on β) of a path initiating below the barrier at x at time t0 = 0 and

ending up in the region (−∞, 0) at the later time t, over the period of time τ = t− t0, is

Fβ(x, τ) =

∫ 0

−∞
fβ(x, y; τ)dy. (3.59)

Note that (3.57) and (3.59) are approximate solutions to the exact solution which has the zero

boundary condition at x = 0. These approximate solutions depend on the parameter β. By choos-

ing certain forms of β, we are able to form a lower bound or an upper bound to the exact solution9.

For example, if the time interval of interest is 0 ≤ τ ≤ T , a lower bound barrier (that is x∗(τ) < 0)

9A proof can be found in Lo et al. (2003) Appendix A.2. They showed that if x∗(τ) ≤ 0 on the time interval of interest
(for example, 0 ≤ τ ≤ T ), then by the maximum principle (John (1978)), it can be concluded that the approximate
solution P̄β is less than the solution P̄ for the exact barrier, therefore P̄β forms a lower bound to the exact solution. On
the other hand, if x∗(τ) ≥ 0 on the time interval of interest, then by the maximum principle the approximate solution
P̄β is larger than P̄ , therefore P̄β forms an upper bound to the exact solution.
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FIGURE 3.3. Lower and upper bounds for the time varying barrier. The exact
barrier is at x = 0 (solid line). The lower bound barrier (dashed red line) with β =
0.2675 is estimated based on equation (3.60). The upper bound barrier (dashed-
dotted blue line) with β = 0.25 is estimated based on equation (3.61). Parameters
used are μ̃L = 0, σL = 0.299, ρLr = 0.9, κr = 1.0, σr = 0.03162 and T = 1.

can be formed by choosing a value of β such that x∗(0) = x∗(T ) = 0, which from (3.45) deter-

mines β according to

β = −
∫ T

0
γ(v)dv∫ T

0
σ2

L(v)dv
. (3.60)

An upper bound barrier (that is x∗(τ) > 0) can be formed by choosing a value of β such that the

instantaneous rate of change of the time varying barrier x∗(τ) is zero at time-to-maturity τ = 0,

that is

d[x∗(τ)]
dτ

∣∣∣
τ=0

= −d[
∫ τ

0
γ(v)dv]

dτ

∣∣∣
τ=0

− β
d[
∫ τ

0
σ2

L(v)dv]

dτ

∣∣∣
τ=0

= 0.

from which

β = −γ(0)/σ2
L(0). (3.61)

To illustrate this idea, Figure 3.3 plots the lower and upper bounds curves for the time varying

barrier. We stress that the values on the vertical axis are multiples of 10−4, so very small values.

Since the time varying barrier is closer to the exact barrier, then the approximate solutions are
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FIGURE 3.4. Lower bound for the time varying barrier with maturity T = 1 and
T = 2. The lower bound barrier for T = 1 (dashed red line) with β = 0.2675,
and barrier for T = 2 (dashed-dotted blue line) with β = 0.2770. Other parameters
used are μ̃L = 0, σL = 0.299, ρLr = 0.9, κr = 1.0 and σr = 0.03162.

more accurate. The other factor that will effect the accuracy of the approximate solution is the

maturity date. The larger is T , the less accurate will be the approximation. Figure 3.4 shows that

when T increases, for example to T = 2, the deviation of a lower bound time varying barrier

(dashed-dotted line) from the exact barrier at x = 0 is larger than that of the T = 1 case (dashed

line). This is a result that indicates that the accuracy of the approximate solutions will decrease as

the maturity T increases.

Lo et al. (2003) propose a multi-stage approximation method to deal with the problem of decreas-

ing accuracy with increasing maturity. For example if the maturity is T = 2, in the first-stage,

estimate the value of β, say β01 for the period time-to-maturity from τ = 0 to τ = τ1 = 1 and

obtain the solution P̄β01(x, τ1) using equation (3.46) with the initial condition P̄β01(y) = 1. In

this case equation (3.46) can be expressed in terms of the normal distribution function N(.) which

has the computational advantage that is can be computed very efficiently. Next, in the second-

stage consider the period of time-to-maturity from τ1 to τ = τ2 = 2, estimate another value of β,

denoted β12 and then compute the solution P̄β12(x, τ2) using equation (3.46) again, however, the
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FIGURE 3.5. Lower bound for the time varying barrier for a single-stage and a two-
stage approximations. The lower bound for the single-stage approximation (dashed
red line) with β = 0.2770. The lower bound for the two-stage approximation
(dashed-dotted blue line): first-stage β01 = 0.2675 and second-stage β12 = 0.2865.
Other parameters used are μ̃L = 0, σL = 0.299, ρLr = 0.9, κr = 1.0, σr = 0.03162
and T = 2.

initial condition now is P̄β01(x, τ1), and the equation (3.46) becomes

P̄β(x, τ2) =

∫ 0

−∞
fβ12(x, x

′; τ2)P̄β01(x
′, τ1)dx

′, (3.62)

=

∫ 0

−∞
fβ12(x, x

′; τ2)

[∫ 0

−∞
fβ01(x

′, y; τ1)P̄ (y)dy

]
dx′, (3.63)

which can expressed in terms of the bivariate normal distribution.

Figure 3.5 illustrates the plot for a single-stage and a two-stage time varying barrier of the maturity

T = 2. We note that the vertical axis for the two-stage time varying barrier attains its minimum at

6×10−4 which is closer to the exact barrier compared to the single-stage approximation (minimum

at about 17 × 10−4). However, if there is a third-stage or fourth-stage... etc up to the nth-stage

solution, (3.46) would involve multiple integration since the n-fold normal distribution would be

involved, and numerical methods, such as the Gaussian quadrature method would need to be used.
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3.3. Framework of the Two-Firm Model

In this section, we extend the dynamic leverage ratio model of Hui et al. (2007) to incorporate two

firms. The credit derivative, in particular, a credit linked note is modelled since it refers to a single

obligation and gives exposure to the default risk of the two firms. Many other derivatives share

similar features to those of credit linked notes.

A credit linked note (CLN) is a form of funded credit derivative that allows the issuer to transfer

a specific credit risk to credit investors. For example, as illustrated in Figure 3.6, a bank, B lends

money to a company, C, (for example buys its bond), and at the time issues credit linked notes

bought by investors. If company C (the“reference obligor”) is solvent, the bank (the “issuer”) is

obligated to pay the notes to the investors in full at maturity. If company B goes bankrupt, the

note-holders (investors) receive a recovery rate.

Investors Bank B

(issuers CLN)

Company C
(Reference
Obligor)

�

�

�

�

�

�

Purchase CLN

Interest

Default: recovery rate

Solvent: par

Purchases Bond

Return

FIGURE 3.6. Mechanics of a credit linked note (CLN).

Under this structure, the price of the note is linked to the performance of a reference asset and

the default risk of the note issuer. To model this credit derivative, we extend the Hui et al. (2007)

dynamic leverage ratio model to incorporate two firms and a stochastic risk-free interest rate.

The main assumptions of the two-firm model with dynamic leverage ratios that we develop are:

Assumption 1. Let L1 and L2 denote respectively the leverage ratios of the note issuer and the

reference obligor. The leverage ratio is defined as the ratio of a firm’s liability to its market-value

capitalization. The dynamics of L1 and L2 are described by

dLi = μiLidt+ σiLidZi, (i = 1, 2), (3.64)

where μi and σi denote the constant drift rate and volatility of the proportional change in leverage

ratios respectively, and Z1 and Z2 are Wiener processes capturing the uncertainty in the leverage

ratio dynamics under the historical measure P. The Wiener increments dZ1 and dZ2 are correlated
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with

E[dZ1dZ2] = ρ12dt, (3.65)

where ρ12 denotes the correlation coefficient of the proportional leverage ratio level of the two

firms.

Assumption 2. Let the dynamics of the instantaneous spot rate of interest follow the Vasicek (1977)

process

dr = κr (θr − r) dt+ σrdZr, (3.66)

where the instantaneous spot rate of interest r is mean-reverting to the constant long-term mean

θr at constant speed κ, and Zr is a Wiener process capturing the uncertainty in the interest rate

market under the historical measure P. The Wiener processes Zi and Zr are correlated with

E[dZidZr] = ρirdt, (i = 1, 2), (3.67)

where ρir denotes the correlation coefficient of the proportional changes of the leverage ratio level

of firm i and the instantaneous spot rate of interest.

Assumption 3. We assume default(s) occur anytime during the life of the credit linked note when

either firm’s leverage ratio rises above a predefined default threshold L̂i, that is Li ≥ L̂i. If the

firms’ leverage ratios never reach L̂i, the note holder receives the face value, which is equal to

unity. If default occurs the firm defaults on all of its obligations immediately, and the note holder

receives nothing (that is there is no recovery) upon default of either firm.

There could be a recovery payment if the default event happens. However, the assumption of zero

recovery captures the worst situation in which investors lose all their investment on credit linked

notes. The framework is easily adjusted to handle the case of some residual recovery rate.

Assumption 4. We assume perfect and frictionless markets where the securities trade in continuous

time.

To obtain the partial differential equation for the credit linked note priceP (L1, L2, r, t) the standard

arbitrage pricing argument is applied. Of course the leverage ratios L1, L2 are not themselves

traded quantities so we employ the “trick” of setting up a portfolio containing four credit linked

notes with different maturities in order to hedge away the risks of non-traded assets L1, L2 and r,

see Wilmott et al. (1995) (Chapter 17.5) for the basic idea of this approach and Chiarella (2009)



3.3. FRAMEWORK OF THE TWO-FIRM MODEL 27

(Chapter 10.4) for a more general discussion. The details in the present situation are set out in

Appendix D and the price of credit linked note is found to satisfy the partial differential equation

−∂P (L1, L2, r, t)

∂t
=

1

2
σ2

1L
2
1

∂2P

∂L2
1

+
1

2
σ2

2L
2
2

∂2P

∂L2
2

+
1

2
σ2

r

∂2P

∂r2
+ ρ12σ1σ2L1L2

∂2P

∂L1∂L2

+ρ1rσ1σrL1
∂2P

∂L1∂r
+ ρ2rσ2σrL2

∂2P

∂L2∂r

+[μ1 − λ1σ1]L1
∂P

∂L1

+ [μ2 − λ2σ2]L2
∂P

∂L2

+[κr(θr − r) − λrσr]
∂P

∂r
− rP, (3.68)

in the interval of t ∈ (0, T ), L1 ∈ (0, L̂1), L2 ∈ (0, L̂2) and subject to the boundary conditions

P (L1, L2, r, T ) = 1, (3.69)

P (L̂1, L2, r, t) = 0, (3.70)

P (L1, L̂2, r, t) = 0. (3.71)

The parameters μ̃i and θ̃r incorporate the market prices of risk, λ1, λ2 and λr (all assumed to be

constant in this thesis), associated with leverage ratios and interest rate processes respectively and

are defined as

μ̃i = μi − λiσi, (i = 1, 2), (3.72)

θ̃r = θr − λrσr

κr

. (3.73)

in terms of which (3.74), becomes

−∂P (L1, L2, r, t)

∂t
=

1

2
σ2

1L
2
1

∂2P

∂L2
1

+
1

2
σ2

2L
2
2

∂2P

∂L2
2

+
1

2
σ2

r

∂2P

∂r2
+ ρ12σ1σ2L1L2

∂2P

∂L1∂L2

+ρ1rσ1σrL1
∂2P

∂L1∂r
+ ρ2rσ2σrL2

∂2P

∂L2∂r

+μ̃1L1
∂P

∂L1

+ μ̃2L2
∂P

∂L2

+κr[θ̃r − r]
∂P

∂r
− rP. (3.74)

Extending the separation of variables method used in Hui et al. (2007) to the two-firm case, we

seek to express the credit linked note price in the separable form

P (L1, L2, r, t) = B(r, t)P̂ (L1, L2, t), (3.75)
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where B(r, t) is the risk-free bond price. Equation (3.75) can be also expressed as

P̂ (L1, L2, t) =
P (L1, L2, r, t)

B(r, t)
, (3.76)

where P̂ (L1, L2, t) is the ratio of the risky credit linked note price to the risk-free bond price. In a

similar way to the one-firm case (3.10), P̂ (L1, L2, t) can be also interpreted as a risk ratio function

and it satisfies10

−∂P̂
∂t

=
1

2
σ2

1L
2
1

∂2P̂

∂L2
1

+ ρ12σ1σ2L1L2
∂2P̂

∂L1∂L2

+
1

2
σ2

2L
2
2

∂2P̂

∂L2
2

+ [μ̃1 + ρ1rσ1σrb(t)]L1
∂P̂

∂L1

+ [μ̃2 + ρ2rσ2σrb(t)]L2
∂P̂

∂L2

, (3.77)

subject to the boundary conditions

P̂ (L1, L2, T ) = 1, (3.78)

P̂ (L̂1, L2, t) = 0, (3.79)

P̂ (L1, L̂2, t) = 0. (3.80)

In (3.77) b(t) is a time-dependent parameter depending on the speed of mean reversion of the spot

rate of interest given by

b(t) =
e−κr(T−t) − 1

κr

. (3.81)

Define the normalized log-leverage ratios

xi = ln(Li/L̂i), (3.82)

and the volatility adjusted log-leverage ratios

Xi = xi/σi. (3.83)

Then denote P̂ (L̂1e
σ1X1 , L̂2e

σ2X2 , t) by P̄ (X1, X2, τ), so that in terms of time-to-maturity variable

τ = T − t, the partial differential equation (3.77) becomes

∂P̄

∂τ
=

1

2

∂2P̄

∂X2
1

+ ρ12
∂2P̄

∂X1∂X2

+
1

2

∂2P̄

∂X2
2

+γ1(τ)
∂P̄

∂X1

+ γ2(τ)
∂P̄

∂X2

, (3.84)

10A derivation of (3.77) by application of the separation of variables approach can be found in Appendix E.
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in the region bounded by the intervals Xi ∈ (−∞, 0), τ ∈ (0, T ) and subject to the boundary

conditions

P̄ (X1, X2, 0) = 1, (3.85)

P̄ (0, X2, τ) = 0, (3.86)

P̄ (X1, 0, τ) = 0. (3.87)

The drift coefficients γi(τ) in (3.84) are defined as

γi(τ) = [μ̃i + ρirσiσrb(T − τ) − σ2
i /2]/σi, (i = 1, 2). (3.88)

The solution to the partial differential equation (3.84) for an initial distribution condition P̄ (Y1, Y2, τ0)

and subject to zero boundary conditions (3.86)-(3.87) is given by the integral

P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f(X1, X2, Y1, Y2; τ)P̄ (Y1, Y2)dY1dY2, (3.89)

where f(X1, X2, Y1, Y2; τ) is the transition probability density function for X1 and X2 for transi-

tion from the values X1(0) = Y1 and X1(0) = Y2 at time-to-maturity τ = 0 below the barriers to

the value X1 and X2 at time-to-maturity τ within the region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0).

The initial condition function P̄ (X1, X2, 0) ≡ P̄ (Y1, Y2) is given in (3.85).

Note that the transition probability density function f is subject to the zero boundary conditions in

(3.86) and (3.87). Using a similar argument to Subsection 3.1.2, the probability of any paths with

barriers at zero, initiating below the barriers X1 < 0 and X2 < 0 at time t0 = 0 and ending up in

the region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0) at later time t in the period of time τ = t− t0, is

F (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f(X1, X2, Y1, Y2; τ)dY1dY2, (3.90)

The cumulative probability F (X1, X2, τ) can be interpreted as the joint survival probability that

the absorption at X1 = 0 and X2 = 0 has not yet occurred during the period of time τ .

3.4. Default Correlations

Estimation of probabilities of multiple defaults is important in credit risk analysis and risk manage-

ment. Given a firm default, default correlation measures the likelihood of the default of the second

firm. The joint survival probability can be used to evaluate the default correlations of two firms.

For example, Zhou (2001a) uses the basic laws of probability to show that the default correlation
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ρD of two firms is related to their joint survival probability by

ρD =
PD(1 ∩ 2) − PD1PD2√

PD1(1 − PD1)
√

PD1(1 − PD2)
, (3.91)

where PDi is the probability of default of firm i and PD(1 ∩ 2) is the joint default probability of

the two-firms. We note the identities

PD(1 ∩ 2) = PD1 + PD2 − PD(1 ∪ 2), (3.92)

and

PD(1 ∪ 2) = 1 − PS(1 ∩ 2), (3.93)

where PD(1 ∪ 2) is the probability of at least one firm defaulting and PS(1 ∩ 2) is the probability

of both firms surviving during the time interval, that is the joint survival probability. Using the

relations (3.91)-(3.93), the default correlation over a period of time t can be replaced in terms of

the joint survival probability as

ρD =
F (X1, X2, τ) − 1 + PD1 + PD2 − PD1PD2√

PD1(1 − PD1)
√

PD2(1 − PD2)
, (3.94)

where the individual default probabilities can be calculated using the identity PDi=1-PSi, where

PSi is the survival probability of firm i based on equations (3.37) for constant parameters or (3.59)

for time-dependent parameters.

The other type of default correlation model is the reduced-form approach, where defaults of differ-

ent firms are driven by default intensities that follow stochastic processes. The default correlation

between two firms is based on a mechanism by which the default intensity process of one firm

affects the intensity process of another. For example, if one firm’s default intensity is high this is a

signal for the default intensity of the second firm to be high.

In comparing the structural approach and the reduced-form approach, we note that reduced-form

models rely on input information from markets and calibrate the model to market data, while the

structural approach is based on the underlying capital structure of firms. In this thesis, default

is assumed to occur when either firm’s leverage ratio is above a predefined default barrier. The

default correlation between two firms is based on the assumption that the stochastic processes for

the leverage ratios of the two firms are correlated.

On the other hand, the popular practical approach, the Gaussian copula model assumes that all

firms will default eventually and the correlation between the probability distributions of default



3.5. OVERVIEW 31

dates are associated with a Gaussian copula, see Li (2000). The Gaussian copula model can be

characterized as a simplified structural model. In a comparative study, Hull et al. (2006) show that

when a simplifying assumption11 is made to the structural model approach, the Gaussian copula

and structural approaches give the same joint default probabilities. Compared to the Gaussian

copula model, the two-firm model of this thesis allows for the feature that firms can adjust their

capital structures over time to long-term targets, or experience external shocks, which are modelled

by mean-reverting processes (Chapter 7) and jump-diffusion processes (Chapters 9).

3.5. Overview

This chapter has presented the one-firm dynamic leverage ratio model framework, reviewed the

method of images approach to obtaining the survival probability, and demonstrated the time vary-

ing barrier approach to obtain an approximate analytical solution when the parameters are time-

dependent in the one-firm situation. The second part of this chapter has presented the two-firm

dynamic leverage ratio model framework and its application to the evaluation of default correla-

tions. In the next chapter, we will solve the partial differential equation of the risk ratio function P̄

in the two-firm case and obtain the solution by applying the method of images and the time varying

barrier approaches that have been discussed in Section 3.1 and Section 3.2 .

11Namely that once a firm’s asset value falls below the barrier it remains below the barrier thereafter.



CHAPTER 4

The Method of Images: Methodology and Implementation

This chapter extends the method of images approach as discussed in Section 3.1 to obtain the so-

lution for the two-dimensional heat equation subject to the zero boundary conditions. The result

is then used to solve the partial differential equation (3.84) for the risk ratio P̄ with constant coef-

ficients. If the coefficients are time-dependent, it is not so straight forward to obtain the solution

as in the constant coefficients case. To deal with this problem, in Section 4.3 we thus apply the

time varying barrier approach discussed in Section 3.2 to the two-dimensional case to obtain an

approximate solution. In Section 4.4, the solutions are simplified and expressed in terms of the

cumulative bivariate normal distribution functions in order to facilitate the implementation. How-

ever, as we will see even though the method of images approach applied to the two-dimensional

case works very well, it can only give exact analytical solutions at certain values of the correlation

coefficient ρ12. Hence there is a need to develop robust numerical procedures as well, and this will

be the topic of Chapter 5.

4.1. The Method of Images in the 2-D Situation

To extend the method of images illustrated in Section 3.1 to the two-dimensional case, we consider

the two-dimensional heat equation

∂u

∂τ
=

1

2

∂2u

∂x2
1

+ ρ12
∂2u

∂x1∂x2

+
1

2

∂2u

∂x2
2

, (4.1)

where x1 and x2 are unrestricted in the region x1, x2 ∈ (−∞,∞). Its solution is known to be of

the form

u(x1, x2, τ) =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2, y1, y2; τ)u(y1, y2)dy1dy2. (4.2)

where u(y1, y2) is the initial condition function and g is the bivariate transition probability density

function for transition from y1, y2 to x1, x2 in time period τ , and has the form1

1A discussion of multivariate continuous distributions can be found in Albanese & Campolieti (2006) Chapter 1.3.

32
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g(x1, x2, y1, y2; τ)

=
1

2πτ
√

1 − ρ2
12

exp

{
−(x1 − y1)

2 − 2ρ12(x1 − y1)(x2 − y2) + (x2 − y2)
2

2τ(1 − ρ2
12)

}
. (4.3)

The zero boundary conditions are imposed at x1 = 0 and x2 = 0, and require that

u(0, x2, τ) = 0, (4.4)

u(x1, 0, τ) = 0, (4.5)

and the region of interest for the solution is given by x1, x2 ∈ (∞, 0). The solution of the partial

differential equation (4.1) subject to the boundary conditions (4.4) and (4.5) may be expressed as

u(x1, x2, τ) =

∫ 0

−∞

∫ 0

−∞
g̃(x1, x2, y1, y2; τ)u(y1, y2)dy1dy2, (4.6)

where g̃ is the bivariate transition probability density function for the restricted process.

Applying the method of images approach, the solution for the density function g̃ is a linear com-

binations of density functions g (for the unrestricted process) in such a way that their net effect

cancels out at the barriers x1 = 0 and x2 = 0, then as a result the boundary conditions (4.4)-

(4.5) are satisfied. To illustrate this concept, imagine there is a “source” density function (say

g0) located in the physical region2 at the position (y0
1, y

0
2) in the lower left hand quadrant (that is

g0 = g0(x1, x2, y
0
1, y

0
2; τ)), then we introduce an “image” density function (say g1) in the nonphysi-

cal region at the position (y1
1, y

1
2) in the lower right hand quadrant (that is g1 = g1(x1, x2, y

1
1, y

1
2; τ)),

such that the net effect of the two g functions cancel at the barrier x1 = 0 as shown in Figure 4.1.

x1

x2

��
��
��
��
��
��
��

(y0
1, y

0
2) (y1

1, y
1
2)

FIGURE 4.1. The 1st image reflected in x1 = 0.

2By the physical region we mean the region −∞ < x1 < 0, −∞ < x2 < 0.
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To determine (y1
1, y

1
2), we consider the linear combination which in this case is given by

g0(x1, x2y
0
1, y

0
2; τ) − g1(x1, x2y

1
1, y

1
2; τ). (4.7)

We require the combination in (4.7) to be zero at x1 = 0, that is

g0(0, x2, y
0
1, y

0
2; τ) − g1(0, x2, y

1
1, y

1
2; τ) = 0. (4.8)

Substituting equation (4.3) into (4.8), we see that the zero boundary condition at x1 = 0 is satisfied

provided that

(0 − y0
1)

2 − 2ρ12(0 − y0
1)(x2 − y0

2) + (x2 − y0
2)

2

= (0 − y1
1)

2 − 2ρ12(0 − y1
1)(x2 − y1

2) + (x2 − y1
2)

2. (4.9)

Rearranging this expression, we obtain

x2φ+ α = 0, (4.10)

where

φ = 2(ρ12y
0
1 − ρ12y

1
1 − y0

2 + y1
2), (4.11)

α = (y0
1)

2 − (y1
1)

2 − 2ρ12y
0
1y

0
2 + 2ρ12y

1
1y

1
2 + (y0

2)
2 − (y1

2)
2. (4.12)

In order that (4.10) hold for all x2, it must be the case that φ = 0 and α = 0 hold simultaneously,

in other words if

2(ρ12y
0
1 − ρ12y

1
1 − y0

2 + y1
2) = 0, (4.13)

(y0
1)

2 − (y1
1)

2 − 2ρ12y
0
1y

0
2 + 2ρ12y

1
1y

1
2 + (y0

2)
2 − (y1

2)
2 = 0. (4.14)

Solving (4.13) and (4.14) for y1
1 and y1

2 , we obtain

y1
1 = −y0

1, (4.15)

y1
2 = y0

2 − 2ρ12y
0
1. (4.16)

In the two-dimensional situation, there is also a barrier at x2 = 0 and it is easy to verify that

g0(x1, 0, y
0
1, y

0
2; τ) − g1(x1, 0, y

1
1, y

1
2; τ) 
= 0. (4.17)
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Thus, we need to introduce another density function in the nonphysical region (say g2) at the

position (y2
1, y

2
2) in the upper right hand quadrant (that is g2 = g2(x1, x2, y

2
1, y

2
2; τ), see Figure 4.2),

such that it cancels out the effect of the image g1 at x2 = 0, that is, we require

g1(x1, 0, y
1
1, y

1
2; τ) − g2(x1, 0, y

2
1, y

2
2; τ) = 0. (4.18)

To determine the vales of (y2
1, y

2
2), we solve (4.18) similar to the way (4.9) was solved to obtain

y2
2 = −y1

2, (4.19)

y2
1 = y1

1 − 2ρ12y
1
2. (4.20)

x1

x2

��
��
��
��
��
��
��

�� �� �� �� �� �� ��

(y0
1, y

0
2) (y1

1, y
1
2)

(y2
1, y

2
2)

FIGURE 4.2. The 2nd image reflected in x2 = 0.

However the introduction of the image density function g2 will perturb the boundary condition at

x1 = 03. So in order to cancel out this impact we need to introduce a third density function g3 at

(y3
1, y

3
2) in the upper left hand quadrant as shown in Figure 4.3. In order to satisfy the boundary

condition at x1 = 0 we require

g2(0, x2, y
2
1, y

2
2; τ) − g3(0, x2, y

3
1, y

3
2; τ) = 0. (4.21)

Solving equation (4.21) similarly to the way equation (4.9) was solved to obtain

y3
1 = −y2

1, (4.22)

y3
2 = y2

2 − 2ρ12y
2
1. (4.23)

3It is readily confirmed that
g1(0, x2, y

1
1 , y1

2 ; τ) − g2(0, x2, y
2
1 , y2

2 ; τ) 
= 0
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x1

x2

��
��
��
��
��
��
��
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(y0
1, y

0
2) (y1

1, y
1
2)

(y2
1, y

2
2)(y3

1, y
3
2)

FIGURE 4.3. The 3rd image reflected in x1 = 0.

Of course the introduction of density function g3 could potentially perturb the boundary condition

at x2 = 0. However in the case ρ12 = 0 it turns out that the primary source at (y0
1, y

0
2) and the image

density functions g1, g2 and g3 all balance each other such that the desired boundary conditions at

x1 = 0 and x2 = 0 are preserved. One can view this as the fact that if one were to obtain a fourth

image g4, the reflection of g3 in x2 = 0, it would be precisely the primary source (that is it turns

out that y4
1 = y0

1 , y4
2 = y0

2). Of course, in the method of images approach, an image cannot in fact

be located in the region of interest (or the physical region), where the source is located. Thus for

the case in which ρ12 = 0, the solution for g̃ is the linear combination of the density functions g0,

g1, g2 and g3, namely

g̃(x1, x2, y
0
1, y

0
2; τ) = g0(x1, x2, y

0
1, y

0
2; τ) − g1(x1, x2, y

1
1, y

1
2; τ)

+g2(x1, x2, y
2
1, y

2
2; τ) − g3(x1, x2, y

3
1, y

3
2; τ), (4.24)

which satisfies g̃(0, x2, y
0
1, y

0
2; τ) = g̃(x1, 0, y

0
1, y

0
2; τ) = 0.

For general values of ρ12 ∈ (−1, 1), we need to reflect successively more than three times in a

set of mirrors located at lines from the origin in the image region in such a way that the “loop

closes” and so we would obtain after m reflections a set of m images such that the (m+1)st image

would be the original source term. These m image terms just balance each other in such a way

that the desired boundary conditions at x1 = 0 and x2 = 0 are preserved. In fact it turns out that

only for specific values of ρ12 will the “loop close” after a finite number of reflections as shown

in Appendix F, which also shows how to locate the set of reflecting mirrors. The values of ρ12

(rounded to 3 decimal places) that result in a “closed-loop” are shown in Table 4.1.

Dropping the superscripts in g0 and (y0
1, y

0
2), the solution for the density function g̃ appearing in

equation (4.6) may be written

g̃(x1, x2, y1, y2; τ) = g(x1, x2, y1, y2; τ) +
m∑

k=1

(−1)kgk(x1, x2, y
k
1 , y

k
2 ; τ), (4.25)
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total no. of images m ρ12 values of ρ12

3 − cos π
2

0
5 − cos π

3
-0.5

7 − cos π
4

-0.707
9 − cos π

5
-0.809

: : :
13 − cos π

7
-0.901

: : :
m cos 2π

(m+1)
:

TABLE 4.1. The relation between the number of images m required to form the
“closed-loop” and the corresponding value of ρ12.

where m is the total number of images used to form the closed-loop. Here yk
1 and yk

2 are obtained

recursively from the relations between successive images4

yk
1 =

⎧⎨⎩ −yk−1
1 for odd k,

yk−1
1 − 2ρ12y

k−1
2 for even k,

(4.26)

yk
2 =

⎧⎨⎩ yk−1
2 − 2ρ12y

k−1
1 for odd k ,

−yk−1
2 for even k ,

(4.27)

where

y1
1 = −y1, (4.28)

y1
2 = y2 − 2ρ12y1. (4.29)

4.2. Method of Images for Constant Coefficients at Certain Non-Zero Values of ρ12

Next, we consider the partial differential equation for the risk ratio function P̄ (X1, X2, τ), given

by (3.84) in Section 3.3. If we set to zero the correlation between the interest rate and leverage

ratio dynamics, so that ρir = 0, then drift terms are no longer time-dependent and equation (3.84)

becomes

∂P̄

∂τ
=

1

2

∂2P̄

∂X2
1

+ ρ12
∂2P̄

∂X1∂X2

+
1

2

∂2P̄

∂X2
2

+γ1
∂P̄

∂X1

+ γ2
∂P̄

∂X2

, (4.30)

4Equations (4.26), (4.28) and (4.29) are derived in the same way as equations (4.15-4.16), (4.19-4.20) and (4.22-4.23)
were derived.
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where the drift coefficients γ1 and γ2 are given in (3.88) with ρ1r = ρ2r = 0, that is

γi =
μ̃i − σ2

i /2

σi

, (i = 1, 2). (4.31)

We note that the partial differential equation (4.30) can be transformed to the two-dimensional heat

equation (4.1) by setting5

P̄ (X1, X2, τ) = eη1X1+η2X2+ξτu(X1, X2, τ), (4.32)

where η1, η2 and ξ are constants derived in Appendix G and given by

η1 =
γ2ρ12 − γ1

1 − ρ2
12

, (4.33)

η2 =
γ1ρ12 − γ2

1 − ρ2
12

, (4.34)

ξ = −
(

1
2
γ2

1 − ρ12γ1γ2 + 1
2
γ2

2

)
1 − ρ2

12

. (4.35)

The initial and boundary conditions (3.86)-(3.87) determine the initial and boundary conditions of

u with X1(0) = Y1 and X2(0) = Y2, thus

P̄ (Y1, Y2) = 1 = eη1Y1+η2Y2u(Y1, Y2), (4.36)

P̄ (0, X2, τ) = 0 = u(0, X2, τ), (4.37)

P̄ (X1, 0, τ) = 0 = u(X1, 0, τ). (4.38)

Now substituting relations (4.32) and (4.36) into the solution for heat equation (4.6), we obtain

e−η1X1−η2X2−ξτ P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
g̃(X1, X2, Y1, Y2; τ)e

−η1Y1−η2Y2P̄ (Y1, Y2)dY1dY2,

(4.39)

which simplifies to

P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
e+η1(X1−Y1)+η2(X2−Y2)+ξτ g̃(X1, X2, Y1, Y2; τ)P̄ (Y1, Y2)dY1dY2,

(4.40)

5A derivation can be found in Appendix G.
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Substituting (4.25) for g̃ into (4.40), we obtain the solution for the risk ratio function with constant

coefficients, namely

P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
e+η1(X1−Y1)+η2(X2−Y2)+ξτ

[
g(X1, X2, Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1, X2, Y
k
1 , Y

k
2 ; τ)

]
P̄ (Y1, Y2)dY1dY2, (4.41)

If we compare equations (4.41) and (3.89), we get the result that the joint transition probability

density function f for the processes restricted to the region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0), is

given by

f(X1, X2, Y1, Y2; τ) = e+η1(X1−Y1)+η2(X2−Y2)+ξτ
[
g(X1, X2, Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1, X2, Y
k
1 , Y

k
2 ; τ)

]
. (4.42)

Then the solution for the joint survival probability (3.90) over the period τ = t− t0 is

F (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
e+η1(X1−Y1)+η2(X2−Y2)+ξτ

[
g(X1, X2, Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1, X2, Y
k
1 , Y

k
2 ; τ)

]
dY1dY2. (4.43)

We stress that the solution for the risk ratio function (4.41) and the joint survival probability (4.43)

are only valid for the values of ρ12 given in Table 4.1.

4.3. Method of Images for Time Varying Coefficients at Certain Non-Zero Values of ρ12

This section will extend to the two-firm case the time varying barrier approach in Section 3.2.

As discussed in Section 3.2 for the one-firm situation, the solution for the heat equation obtained

by the method of images approach for solving the zero boundary condition cannot be applied

directly to the case in which the drift terms are time-dependent. This is due to the fact that the zero

boundary condition of the function in which we are interested, after being transformed to the heat

equation, is no longer at zero, see for example (3.43). The time varying barrier approach solves

this problem by setting the zero boundary condition at a time varying barrier, which depends on

a parameter β. The parameter β is free to be chosen in an optimal way so as to minimize the

deviation between the time varying barrier and the exact barrier. Therefore, the solution depends

on β and is an approximation to the exact solution. In this section, we extend the approach outlined
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in Section 3.2 to the two-firm situation to obtain an approximate solution for the partial differential

equation for (3.84) when the drift terms are time-dependent.

Denote by P̄β the approximate solution to the exact solution P̄ of the partial differential equation

(3.84). It is assumed that P̄β satisfies the same partial differential equation, that is

∂P̄β

∂τ
=

1

2

∂2P̄β

∂X2
1

+ ρ12

∂2P̄β

∂X1∂X2

+
1

2

∂2P̄β

∂X2
2

+ γ1(τ)
∂P̄β

∂X1

+ γ2(τ)
∂P̄β

∂X2

. (4.44)

We assume that the zero boundary conditions for the approximate solution P̄β are not the same as

those the exact solution P̄ at X1 = 0 and X2 = 0 (shown in (3.86) and (3.87)), but become

P̄β(X∗
1 (τ), X2, τ) = 0, (4.45)

P̄β(X1, X
∗
2 (τ), τ) = 0, (4.46)

where X∗
1 (τ) and X∗

2 (τ) are time varying barriers along the X1-axis and X2-axis respectively.

Now, X1 and X2 are restricted to the region X1 ∈ (−∞, X∗
1 (τ)) and X2 ∈ (−∞, X∗

2 (τ)). Using

an argument similar to the one in Section 3.2, the time varying barriers are given by

X∗
i (τ) = −

∫ τ

0

γi(v)dv − βiτ, (i = 1, 2). (4.47)

The drift coefficients γi(τ) are given in (3.88), β1 and β2 are two real adjustable constants that

control the shape of the time varying barriers X∗
1 (τ) and X∗

2 (τ) and would be chosen so that they

remains as close as possible to the exact barrier X1 = 0 and X2 = 0 respectively, just as in the

one firm case. Note that the initial condition of the approximate solution P̄β is the same as for the

exact solution P̄ in (3.85), that is

P̄β(X1, X2, 0) = 1. (4.48)

The approximate solution P̄β can thus be written as

P̄β(X1, X1, τ) =

∫ 0

−∞

∫ 0

−∞
fβ(X1, X2, Y1, Y2; τ)P̄β(Y1, Y2)dY1dY2. (4.49)

To obtain the form of the joint transition probability density function fβ for the processes restricted

to the region X1 ∈ (−∞, X∗(τ)) and X2 ∈ (−∞, X∗(τ)) in terms to the bivariate density func-

tions g in (4.25), we extend the approach as discussed in Section 3.2 and transform the partial
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differential equation (4.44) for P̄β to the heat equation by setting6

P̄β(X1, X2, τ) = e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

[
eη1X1+η2X2+ξτ ũ(X1, X2, τ)

]
, (4.50)

= eη1[X1−X∗

1 (τ)]+η2[X2−X∗

2 (τ)]+ξτ ũ(X1 −X∗
1 (τ), X2 −X∗

2 (τ), τ), (4.51)

where ũ satisfies the heat equation (4.1) (with τ replaced by ζ and x1, x2 by X1, X2), and η1, η2

and ξ are constants derived in Appendix H and given by

η1 =
−β2ρ12 + β1

1 − ρ2
12

, (4.52)

η2 =
−β1ρ12 + β2

1 − ρ2
12

, (4.53)

ξ = −
(

1
2
β2

1 − ρ12β1β2 + 1
2
β2

2

)
1 − ρ2

12

. (4.54)

Substitution of the zero boundary conditions (4.45) and (4.46) into (4.51) yields the boundary

conditions for ũ as7

ũ(0, X2 −X∗
2 (τ), τ) = 0, (4.55)

ũ(X1 −X∗
1 (τ), 0, τ) = 0. (4.56)

The zero boundary conditions (4.55) - (4.56) for ũ occur when the value of the barriers are equal

to zero. These are similar to the zero boundary conditions in (4.4)-(4.5) for u, simply replacing the

space variables xi with Xi − X∗
i (τ). Hence, the solution g̃ in (4.25) can be applied to obtain the

solution for P̄β . Substitution of the initial condition (4.48) with X1(0) = Y1 and X2(0) = Y2 into

(4.51) determines the initial condition of ũ, which is

P̄β(Y1, Y2) = 1 = eη1Y1+η2Y2ũ(Y1, Y2). (4.57)

6A derivation of equations (4.50) and (4.51) can be found in Appendix H.
7We note that

P̄β(X∗
1 (τ), X2, τ) = 0 = eη1·0+η2[X2−X∗

2
(τ)]+ξτ ũ(0, X2 − X∗

2 (τ), τ),

P̄β(X1, X
∗
2 (τ), τ) = 0 = eη1[X1−X∗

1
(τ)]+η2·0)+ξτ ũ(X1 − X∗

1 (τ), 0, τ).
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Substitution of the initial condition (4.57) and the relation (4.51) into the relation (4.6), yields

e−η1[X1−X∗

1 (τ)]−η2[X2−X∗

2 (τ)]−ξτ P̄β(X1, X2, τ)

=

∫ 0

−∞

∫ 0

−∞
g̃(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)e

−η1Y1−η2Y2P̄β(Y1, Y2)dY1dY2,

(4.58)

which simplifies to

P̄β(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξτ

g̃(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y1, Y2; τ)P̄β(Y1, Y2)dY1dY2. (4.59)

Substituting (4.25) into (4.59), we obtain

P̄β(X1, X2, τ) =∫ 0

−∞

∫ 0

−∞
eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξτ
[
g(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y k
1 , Y

k
2 ; τ)

]
P̄β(Y1, Y2)dY1dY2. (4.60)

Comparing (4.60) and (4.49), yields the joint transition probability density function

fβ(X1, X2, Y1, Y2; τ) =

eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξτ
[
g(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y k
1 , Y

k
2 ; τ)

]
. (4.61)

Then the approximate solution to the joint survival probability (3.90) over the period τ = t− t0, is

Fβ(X1, X2, τ) =∫ 0

−∞

∫ 0

−∞
eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξτ
[
g(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; τ)

+
m∑

k=1

(−1)kgk(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y k
1 , Y

k
2 ; τ)

]
dY1dY2. (4.62)

We also note that the approximate solutions (4.60) and (4.62) are only valid for the values of ρ12

given in Table 4.1.
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4.4. Numerical Implementation

To implement the solutions for the risk ratio function in (4.41) and (4.60) or the joint survival

probability functions in (4.43) and (4.62), a convenient way is to simplify those expressions and

express them in terms of the cumulative bivariate normal distribution function N2(.), which has

the form

Prob(U ≤ a, V ≤ b; ρ) = N2(a, b, ρ) =

∫ a

−∞

∫ b

−∞
n2(u, v, ρ)dvdu, (4.63)

where the bivariate normal density function is given by

n2(a, b, ρ) =
1

2π
√

1 − ρ2
exp

(
−u

2 − 2ρuv + v2

2(1 − ρ2)

)
. (4.64)

A range of different analytical approximate methods have been proposed for the evaluation of

(4.63). In this thesis, we apply the widely cited Drezner (1978) method, which is based on direct

computation of the double integral by the Gauss quadrature method8.

4.4.1. Numerical Implementation in the Constant Coefficients Case.

In the following subsections, we use the solutions of the joint survival probability in (4.43) for

the constant coefficients case and (4.62) for the time varying coefficients case to illustrate the

numerical implementation of these expressions.

Consider the solution for the joint survival probability (4.43) for the constant coefficients case, and

rearrange it as

F (X1, X2, τ)

=

∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτg(X1, X2, Y1, Y2; τ)dY1dY2

+
m∑

k=1

(−1)k

∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτgk(X1, X2, Y

k
1 , Y

k
2 ; τ)dY1dY2.

(4.65)

Substituting the expression of the density function (4.3) into (4.65), the first integral in equation

(4.65) can be written as9

eη1X1+η2X2+ξτ

∫ 0

−∞

∫ 0

−∞

1

2πτ
√

1 − ρ2
12

exp

(
− φ(Y1, Y2)

2τ(1 − ρ2
12)

)
dY1dY2. (4.66)

8For a comparison of speed and accuracy between different approximate methods for computing the N2 function, see
Agca & Chance (2003).
9See Appendix I for the details.
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where

φ(Y1, Y2) = AY 2
1 +BY 2

2 + CY1 +DY2 + EY1Y2 +H, (4.67)

and

A = 1, B = 1,

C = 2[η1τ(1 − ρ2
12) −X1 + ρ12X2],

D = 2[η2τ(1 − ρ2
12) −X2 + ρ12X1],

E = −2ρ12,

H = X2
1 +X2

2 − 2ρ12X1X2. (4.68)

Then, equation (4.66) can be written in terms of the cumulative bivariate normal distribution func-

tion N2(.) by the change of variables illustrated in Appendix I, hence (4.66) becomes

eη1X1+η2X2+ξτ

√
(1 − ρ2

12)

AB(1 − ρ̃2)
exp

(
− h̃

2τ(1 − ρ2
12)

)
×N2(ã, b̃, ρ̃), (4.69)

where

ρ̃ = − E

2
√
AB

, (4.70)

ã =
√

2(1 − ρ̃2) ũ1 =

√
A

τ

(
C

2A
− Eh2

4Ah1

) √
1 − ρ̃2

1 − ρ2
12

, (4.71)

b̃ =
√

2(1 − ρ̃2) ṽ1 =
1√
τ

√
1 +

E2

4Ah1

h2

2
√
h1

√
1 − ρ̃2

1 − ρ2
12

, (4.72)

and

h1 = B − E2

4A
, h2 = D − CE

2A
, h̃ = H − C2

4A
− h2

2

4h1

. (4.73)

Next we consider the second integral in equation (4.65). We note that it is convenient to rewrite

Y k
1 and Y k

2 in terms of Y1 and Y2 by setting

Y k
1 = ak

1Y1 + bk1Y2, (4.74)

Y k
2 = ak

2Y1 + bk2Y2. (4.75)
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Substituting equations (4.74) and (4.75) into (4.26)-(4.29), we find that for k > 1

ak
1 =

⎧⎨⎩ −ak−1
1 for k is odd,

ak−1
1 − 2ρ12a

k−1
2 for k is even,

ak
2 =

⎧⎨⎩ ak−1
2 − 2ρ12a

k−1
1 for k is odd,

−ak−1
2 for k is even,

bk1 = ak−1
2 ,

bk2 = ak−1
1 , (4.76)

whilst for k = 1

a1
1 = −1 , b11 = 0,

a1
2 = −2ρ12 , b

1
2 = 1. (4.77)

Then, the second integral in equation (4.65) can be expressed as

m∑
k=1

(−1)k

∫ 0

−∞

∫ 0

−∞
eη1(X1−Y1)+η2(X2−Y2)+ξτ

×gk
(
X1, X2, (a

k
1Y1 + bk1Y2), (a

k
2Y1 + bk2Y2); τ

)
dY1dY2.

(4.78)

Following steps analogous to those shown in Appendix I, this can be written in terms of N2(.) as

eη1X1+η2X2+ξτ

m∑
k=1

(−1)k

√
(1 − ρ2

12)

AkBk(1 − ρ̃2
k)

exp

(
− h̃k

2τ(1 − ρ2
12)

)
×N2

(
ãk, b̃k, ρ̃k

)
. (4.79)

The expressions for ρ̃k, ãk, b̃k and h̃k are the same as in (4.70)-(4.73) but obtained by replacing A,

B, C, D and E by

Ak = (ak
1)

2 + (ak
2)

2 − 2ρ12a
k
1a

k
2,

Bk = (bk1)
2 + (bk2)

2 − 2ρ12b
k
1b

k
2,

Ck = X1(2ρ12a
k
2 − 2ak

1) +X2(2ρ12a
k
1 − 2ak

2) + 2η1τ(1 − ρ2
12),

Dk = X1(2ρ12b
k
2 − 2bk1) +X2(2ρ12b

k
1 − 2bk2) + 2η2τ(1 − ρ2

12),

Ek = 2(ak
1b

k
1 + ak

2b
k
2 − ρ12b

k
1a

k
2 − ρ12a

k
1b

k
2). (4.80)
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4.4.2. Numerical Implementation in the Time Varying Coefficients Case.

In the case that the coefficients are time-dependent, the approximate solution for the joint survival

probability in (4.62) after some algebraic manipulations, can be simplified to

Fβ(X1, X2, τ) =∫ 0

−∞

∫ 0

−∞
g(X1 + d1(τ), X2 + d2(τ), Y1, Y2; τ)dY1dY2

+
m∑

k=1

(−1)k

∫ 0

−∞

∫ 0

−∞
gk(X1 + d1(τ), X2 + d2(τ), Y

k
1 , Y

k
2 ; τ)eβk

aY1+βk
b Y2dY1dY2,

(4.81)

where

di(τ) =

∫ t

0

γi(v)dv, (i = 1, 2), (4.82)

and

βk
a = η1(a

k
1 − 1) + η2a

k
2, (4.83)

βk
b = η1b

k
1 + η2(b

k
2 − 1), (4.84)

and the ak’s and bk’s are given in (4.76)-(4.77).

Applying the same procedures as in Appendix I, the first integral in (4.81) can be rewritten in terms

of N2(.) as ∫ 0

−∞

∫ 0

−∞
g(X1 + d1(τ), X2 + d2(τ), Y1, Y2; τ)dY1dY2

=

√
(1 − ρ2

12)

AB(1 − ρ̃2)
exp

(
− h̃

2τ(1 − ρ2
12)

)
×N2(ã, b̃, ρ̃). (4.85)

The expressions for ρ̃, ã, b̃ , h1, h2 and h̃ are the same as in (4.70)-(4.73) after replacing C, D and

H with

C = 2(−X1 + ρ12X2),

D = 2(−X2 + ρ12X1),

H = X
2
1 + X

2
2 − 2ρ12X1X2, (4.86)

and Xi = Xi + di(τ) for i = 1, 2.
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In a similar way to the calculation in Subsection 4.4.1, we simplify the second integral in (4.81)

by rewriting Y k
1 and Y k

2 in terms of Y1 and Y2 using the expressions in (4.74)-(4.75), and applying

the same procedures used in Appendix I, we obtain

m∑
k=1

(−1)k

∫ 0

−∞

∫ 0

−∞
gk(X1 + d1(τ), X2 + d2(τ), (a

k
1Y1 + bk1Y2), (a

k
2Y1 + bk2Y2); τ)e

βk
aY1+βk

b Y2dY1dY2

=
m∑

k=1

(−1)k

√
(1 − ρ2

12)

AkBk(1 − ρ̃2
k)

exp

(
− h̃k

2τ(1 − ρ2
12)

)
N2

(
ãk, b̃k, ρ̃k

)
. (4.87)

The expressions for ρ̃k, ãk, b̃k and h̃k are the same as in (4.70)-(4.73) but obtained by replacing A,

B, C, D, E and H with

Ak = (ak
1)

2 + (ak
2)

2 − 2ρ12a
k
1a

k
2,

Bk = (bk1)
2 + (bk2)

2 − 2ρ12b
k
1b

k
2,

Ck = 2X1(ρ12a
k
2 − ak

1) + 2X2(ρ12a
k
1 − ak

2) − 2τ(1 − ρ2
12)β

k
a ,

Dk = 2X1(ρ12b
k
2 − bk1) + 2X2(ρ12b

k
1 − bk2) − 2τ(1 − ρ2

12)β
k
b ,

Ek = 2(ak
1b

k
1 + ak

2b
k
2 − ρ12b

k
1a

k
2 − ρ12a

k
1b

k
2),

H = X
2
1 + X

2
2 − 2ρ12X1X2, (4.88)

and Xi = Xi + di(τ) for i = 1, 2.

4.5. Overview

This chapter has extended the method of images approach to the two-dimensional case and ob-

tained the combination of density functions subject to the zero boundary conditions. The result is

then used to solve the partial differential equation for the risk ratio P̄ with constant coefficients.

When the coefficients are time-dependent, the time varying barrier approach is extended to the

two firm situation to obtain an approximate solution. In order to implement these solutions, we

also simplify and express them in terms of the cumulative bivariate normal distribution functions.

However, the solutions we obtained by the method of images approach can only give analytical

solutions at the particular values of the correlation ρ12 given it in Table 4.1. Therefore, in the next

chapter we will develop appropriate numerical methods to efficiently solve the problem for all

values of the correlation coefficient ρ12.



CHAPTER 5

Numerical Approaches

We remind the reader that the solutions obtained by the method of images in the previous chapter

are only valid for the particular values of the correlation coefficient ρ12 shown in Table 4.1. In this

chapter, we seek to develop appropriate numerical methods to solve the problem for all values of

ρ12. A very powerful method, in particular for solving multi-dimensional parabolic equations, is

the alternating direction implicit method which has been described quite well in Strikwerda (1989).

The partial differential equation of the risk ratio function (3.84) is a two-dimensional convection-

diffusion equation with a cross-derivative term and time-dependent drift terms1. In order to develop

an efficient numerical solution, we consider alternating direction implicit schemes that are uncon-

ditionally stable, that is the stability without any restriction on the time step. However, there is

very little literature concerning the stability relevant to general convection-diffusion problems with

mixed derivative terms. It has only been recently in the study conducted by in’t Hout & Welfert

(2007) for three alternating direction implicit schemes that stability has been established for the

situation with cross-derivative terms. The study of in’t Hout & Welfert (2007) show that the finite

difference schemes introduced by Douglas & Rachford (1956) (Douglas-Rachford scheme) is un-

conditionally stable in applications to two-dimensional convection-diffusion equations. Therefore,

we will apply the Douglas-Rachford scheme to solve the partial differential equation (3.84).

In Section 5.1, we outline the Douglas-Rachford scheme. We develop a Monte Carlo scheme to

serve as a benchmark in Section 5.2. Section 5.3 discusses the accuracy and convergence of both

methods and compare them to the exact solution developed by using the method of images in

Section 4.2 at specific values of the correlation coefficient ρ12, for the constant coefficients case.

When the coefficients are time-dependent, we use the Monte Carlo results as a benchmark, and

discuss the accuracy of the alternating direction implicit method and the approximate solution that

was developed in Section 4.3 by comparing them to the benchmark results.

1The term convection-diffusion refers to the fact that the partial differential equations has both the first derivative
(convection) and second derivative (diffusion) terms.

48
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5.1. Alternating Direction Implicit Method

In this section, we outline the Douglas-Rachford scheme for the two-dimensional convection-

diffusion equation with a cross-derivative term and time-dependent drift terms, in particular, we

consider the partial differential equation of the risk ratio function (3.84). For the sake of notation,

we define u(x, y, τ) ≡ P̄ (X1, X2, τ), so that

∂u

∂τ
=

1

2

∂2u

∂x2
1

+ ρ12
∂2u

∂x1∂x2

+
1

2

∂2u

∂x2
2

+ γ1(τ)
∂u

∂x1

+ γ2(τ)
∂u

∂x2

, (5.1)

for τ ∈ (0, T ), x ∈ (−∞, 0), y ∈ (−∞, 0) and the operators

Jx =
1

2

∂2

∂x2
+ γ1(τ)

∂

∂x
, (5.2)

Jy =
1

2

∂2

∂y2
+ γ2(τ)

∂

∂y
, (5.3)

Jxy = ρ12
∂2

∂x∂y
, (5.4)

where the drift terms are defined in (3.88).

Hence, we can write the partial differential equation (5.1) as

uτ = Jxu+ Jyu+ Jxyu. (5.5)

In order to define a numerical solution to solve equation (5.5), we need to truncate the spatial

domain to a bounded area given by {(x, y);xmin ≤ x ≤ 0, ymin ≤ y ≤ 0}. We also introduce a

grid consisting of points in the time interval and in the truncated spatial domain:

τj = j
T

Nτ

= 0, 1, . . . , Nτ , (5.6)

xi = i
xmin

Nx

= 0, 1, . . . , Nx, (5.7)

yk = k
ymin

Ny

= 0, 1, . . . , Ny. (5.8)

The time step size is Δτ = T/Nτ , and spatial step sizes are Δx = xmin/Nx and Δy = ymin/Ny.

The value of u at a point of the grid is denoted as uj
i,k = u(xi, yk, τj).

We use the Douglas-Rachford scheme to obtain uj+1
i,k from uj

i,k, where j = 0, 1, 2, ..., Nτ . The

Douglas-Rachford scheme is(
1 − Δτ J̄x

)
u

j+1/2
i,k =

(
1 + Δτ J̄y

)
uj

i,k + Δτ J̄xyu
j
i,k, (5.9)(

1 − Δτ J̄y

)
uj+1

i,k = u
j+1/2
i,k − Δτ J̄yu

j
i,k, (5.10)
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where uj+1/2
i,k is an intermediate value that links equations (5.9) and (5.10). A derivation of the

Douglas-Rachford method can be found in Strikwerda (1989) (Chapter 7.3).

Here, J̄x, J̄y and J̄xy denote the second-order approximations to the operators Jx, Jy and Jxy, that

is

J̄x =
1

2
δ2
x + γ1(τj+1/2)δx, (5.11)

J̄y =
1

2
δ2
y + γ2(τj+1/2)δy, (5.12)

J̄xy = ρ12δ
2
xy, (5.13)

where

δxu
j
i,k =

uj
i+1,k − uj

i−1,k

2Δx
, δ2

xu
j
i,k =

uj
i+1,k − 2uj

i,k + uj
i−1,k

Δx2
,

δyu
j
i,k =

uj
i,k+1 − uj

i,k−1

2Δy
, δ2

yu
j
i,k =

uj
i,k+1 − 2uj

i,k + uj
i,k−1

Δy2
,

δ2
xyu

j
i,k =

uj
i+1,k+1 + uj

i−1,k−1 − uj
i−1,k+1 − uj

i+1,k−1

4ΔxΔy
. (5.14)

According to Douglas (1961) (page 40), if time τ appears in the coefficients, the evaluation should

be at time τj+1/2 in order to preserve second order precision in time. Therefore, γ1(τ) and γ2(τ)

are evaluated at time τj+1/2 as γ1(τj+1/2) and γ2(τj+1/2) in (5.9) and (5.10).

Next, we describe the implementation of the alternating direction method.

First Stage

The difference equation (5.9) for the step from time j to time j + 1/2 can be written

p1u
j+1/2
i+1,k + p2u

j+1/2
i,k + p1du

j+1/2
i−1,k = p3u

j
i,k+1 + p4u

j
i,k + p3du

j
i,k−1 + ρ12U

j
ik, (5.15)

where

U j
i,k = Δτδ2

xyu
j
i,k, (5.16)

=
Δτ

4ΔxΔy
(uj

i+1,k+1 + uj
i−1,k−1 − uj

i−1,k+1 − uj
i+1,k−1), (5.17)

for i = 1, . . . , Nx − 1, k = 1, . . . , Ny − 1 and

p1 = − Δτ

2Δx2
[1 + γ1(τj+1/2)Δx], p2 = 1 +

Δτ

Δx2
, p1d = − Δτ

2Δx2
[1 − γ1(τj+1/2)Δx], (5.18)

p3 =
Δτ

2Δy2
[1 + γ2(τj+1/2)Δy], p4 = 1 − Δτ

Δy2
, p3d =

Δτ

2Δy2
[1 − γ2(τj+1/2)Δy]. (5.19)
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Denote by ψj
i,k the right-hand side of equation (5.15), then we can express (5.15) as the matrix

system ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

p1 p2 p1d . . . 0

0 p1 p2 p1d . . 0

. .

. .

0 . . 0 p1 p2 p1d

0 . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
j+1/2
Nx,k

u
j+1/2
Nx−1,k

.

.

.

u
j+1/2
1,k

u
j+1/2
0,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψj
Nx,k

ψj
Nx−1,k

.

.

.

ψj
1,k

ψj
0,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.20)

which because of the tridiagonal structure can be readily solved by Gaussian elimination. The

values of uj+1/2
i,k turn out to be given by

u
j+1/2
i,k =

ri − p1u
j+1/2
i+1,k

ci

(5.21)

for i = 1, . . . , Nx − 1, where ci and ri are defined by the recurrence relations

ci = p2 − p1p1d

ci−1

, ri = ψj
i,k − p1d

ri−1

ci−1

. (5.22)

for i ≥ 2 with initial values

c1 = p2, r1 = ψj
1,k − p1dψ

j
0,k. (5.23)

The initial values of ψ0
i,k are obtained from the solution for u0

i,k at time τ0, which is determined by

the initial condition (3.85), that is

u0
i,k = 1. (5.24)

Since, the first stage is implicit in the x direction, so we need to specify the boundary conditions

at x = 0 and x = xmin. Values at x = 0 can be obtained by the boundary condition (3.86) as

u
j+1/2
0,k = 0, (5.25)

for k = 0, . . . , Ny.

If x → −∞, which means the leverage ratio tends to zero, and y is small compared to x. We

assume in this case the risk ratio function P̄ (−∞, y, τ) = 1. Therefore, the choice of xmin should
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be sufficiently large so as the values of u(xmin, y(τ) is approximately equal to 1. Therefore,

u
j+1/2
Nx,k = 1, (5.26)

for k = 1, . . . , Ny.

Second Stage

In the second stage, we use uj+1/2
i,k to calculate uj+1

i,k . The difference equation (5.10) for the step

from time j + 1/2 to time j + 1 is

p5u
j+1
i,k+1 + p6u

j+1
i,k + p5du

j+1
i,k−1 = u

j+1/2
i,k + p7u

j
i,k+1 + p8u

j
i,k + p7du

j
i,k−1, (5.27)

for i = 1, . . . , Nx − 1, k = 1, . . . , Ny − 1 and

p5 = − Δτ

2Δy2
[1 + γ2(τj+1/2)Δy], p6 = 1 +

Δτ

Δy2
, p5d = − Δτ

2Δy2
[1 − γ2(τj+1/2)Δy], (5.28)

p7 = − Δτ

2Δy2
[1 + γ2(τj+1/2)Δy], p8 =

Δτ

Δy2
, p7d = − Δτ

2Δy2
[1 − γ2(τj+1/2)Δy]. (5.29)

Then the system (5.27) can be expressed in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

p5 p6 p5d . . . 0

0 p5 p6 p5d . . 0

. .

. .

0 . . 0 p5 p6 p5d

0 . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uj+1
i,Ny

uj+1
i,Ny−1

.

.

.

uj+1
i,1

uj+1
i,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ̃i,Ny

ψ̃i,Ny−1

.

.

.

ψ̃i,1

ψ̃i,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.30)

where we use ψ̃i,k to denote the right-hand side of equation (5.27). Therefore, the values of uj+1
i,k

can be obtained by solving the matrix using Gaussian elimination and the solution is

uj+1
i,k =

rk − p5u
j+1
i,k+1

ck

(5.31)

for k = 1, . . . , Ny − 1, where ck and rk are given by the recurrence relations

ck = p6 − p5d
p5

ck−1

,

rk = ψ̃i,k − p5d
rk−1

ck−1

. (5.32)
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with the initial value

c1 = p6,

r1 = ψ̃i,1 − p5dψ̃i,0. (5.33)

This step is implicit in the y direction. Thus, we need to approximate the boundary conditions for

y = 0 and y = ymin. Similar to the first stage, values at y = 0 can be obtained by the boundary

condition (3.87), so that

uj+1
i,0 = 0, (5.34)

for i = 0, . . . , Nx.

If y → −∞, then x is small compare to y. We assume in this case that the risk ratio function

P̄ (x,−∞, τ) = 1. Therefore, the choice of ymin must be sufficiently large so that the values of

u(x, ymin(τ) are approximately equal to 1, thus,

uj+1
i,Ny

= 1, (5.35)

for i = 1, . . . , Nx.

In this section, we have developed a numerical scheme for the evaluation of the risk ratio function

P̄ (X1, X2, τ) for all values of the correlation ρ12. Exactly the same numerical algorithm and pro-

cedures can be applied to evaluate the joint survival probability function by defining u(x, y(τ) ≡
F (X1, X2, τ) with boundary and initial conditions same as that shown in (5.25)-(5.26) and (5.34)-

(5.35).

The accuracy of the Douglas-Rachford scheme (5.9) and (5.10), is first-order in time and second-

order in space (see Strikwerda (1989) Chapter 7.3). The stability of this scheme was analyzed by

in’t Hout & Welfert (2007), who proved that it is unconditionally stable when the mixed derivative

and convective terms are included. The convergence and the accuracy of this method as it applies

to our problem, is based on numerical experiments that will be discussed in Section 5.3.

5.2. A Monte Carlo Simulation Scheme

In this section we will develop a Monte Carlo scheme to simulate the joint survival probability as

a benchmark for the results obtained from the alternating direction implicit method scheme. The

stochastic differential equations corresponding to the partial differential equation of the risk ratio
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FIGURE 5.1. A path of x1(t) across a typical subintervals.

function (3.77), are

dL1 = [μ̃1 + ρ1rσ1σrb(t)]L1dt+ σ1L1dZ̃1, (5.36)

dL2 = [μ̃2 + ρ2rσ2σrb(t)]L2dt+ σ2L2dZ̃2, (5.37)

where Z̃1 and Z̃2 are Wiener processes under the risk-neutral measure P̃, and the Wiener increments

dZ̃1 and dZ̃2 are correlated with E[dZ̃1dZ̃2] = ρ12dt
2.

We rewrite (5.36) and (5.37) in terms of uncorrelated Wiener processes W1, W2, and change vari-

ables to the normalized log-leverage ratios x1, x2 as defined in (3.82), then (5.36) and (5.37) be-

come

dx1 =

[
μ̃1 + ρ1rσ1σrb(t) − 1

2
σ2

1

]
dt+ σ1dW1, (5.38)

dx2 =

[
μ̃2 + ρ2rσ2σrb(t) − 1

2
σ2

2

]
dt+ σ2

(
ρ12dW1 +

√
1 − ρ2

12dW2

)
. (5.39)

If at any time in the time interval t ∈ (0, T ) either firm’s leverage ratio Li is on or above the default

threshold L̂i (that is x1 ≥ 0 or x2 ≥ 0), then default occurs. Therefore, to ensure that default events

are captured, the simulation time step Δt should be as small as possible. For example, Figure 5.1

2These stochastic differential equations may be obtained by an application of the Feynman-Kac formula, see for
example Albanese & Campolieti (2006) page 36.
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Set w = 1.0,

while w ≥ 1

w = U2
1 + U2

2

Give a sign in[-1,1]

e′1 = 2U1 − 1,

e′2 = 2U2 − 1,

w′ = e′1 ∗ e′1 + e′2 ∗ e′2.

c =
√

−2 ln(w′)
w′

,

e1 = ce′1,

e2 = ce′2.

� �

FIGURE 5.2. An algorithm of the polar rejection method.

shows that, if Δt = t2 − t1, and the barrier is breached at t∗(t1 < t∗ < t2) the default event will

not be captured, and, a smaller Δt = t∗ − t1 would be required.

The following is the Monte Carlo scheme we have used to value the the joint survival probability

(JSP).

Step 1. Divide the time interval [0,T] into n equal sub-periods per year. Set tj = jΔt for j =

1, 2, ..., nΔt.

Step 2. Do the Monte Carlo simulations M(m = 1, 2, ...,M) times.

2.1. For themth simulation, at the j th time step, generate independent normal random numbers

e1 and e2 from the distribution of N(0, 1).

2.2. Let xi = ln(Li/Li0), then (5.38) and (5.39) in discretized form become

x1(tj) = x1(tj−1) +

[
μ̃1 + ρ1rσ1σrb(tj−1) − 1

2
σ2

1

]
Δt+ σ1

√
Δte1, (5.40)

x2(tj) = x2(tj−1) +

[
μ̃2 + ρ2rσ2σrb(tj−1) − 1

2
σ2

2

]
Δt+ σ2

√
Δtê2, (5.41)

where ê2 = ρ12e1 +
√

1 − ρ2
12e2.

Step 3. Check the boundary conditions: if xi(tj) ≥ 0 for either firm i, then joint survival prob-

ability for mth path at time tj is JSPm(tj)=0, and go to the next simulation m+1. Otherwise

JSPm(tj)=1, and go to next time step j+1.

Set JSP(tj) =
∑M

m=1JSPm(tj)/M , which is an approximate value for the joint survival probability.

Here e1 and e2 are normal random numbers that are calculated by the polar rejection method

suggested in Clewlow & Strickland (1998), and which is illustrated in Figure 5.2. The random
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numbers U1 and U2 are generated by the Mersenne Twister3, it is a pseudo random number gener-

ating algorithm developed by Makoto Matsumoto and Takuji Nishimura in 1997, and is a very fast

random number generator of period 219937 − 1.

5.3. Accuracy

In this section, we discuss the accuracy and convergence of both methods and compare them to the

exact solution developed by using the method of images in Section 4.2 at specific values of the cor-

relation coefficient ρ12, for the constant coefficients case. When coefficients are time-dependent,

we use the Monte Carlo results as a benchmark, and discuss the accuracy of the alternating di-

rection implicit method and the approximate solution that developed in Section 4.3 by comparing

them to the benchmark results.

Douglas-Rachford ADI results compared to exact solutions

Nt Nx, Ny ρ12 = −0.9 Relative % error

100 1018 0.74884 0.15403%

100 3830 0.74867 0.13148%

1000 3830 0.74779 0.01321%

1000 7705 0.74774 0.00755%

MOI exact results 0.74769 -

TABLE 5.1. Convergence of the alternating direction implicit based on the

Douglas-Rachford method outlined in Section 5.1 for the joint survival probabil-

ities. The exact solution is based on the method of images developed in Sec-

tion 4.2. The time period is one year and other parameters used are L1 = 73.2%,

L2 = 31.5%, σ1 = 0.299, σ2 = 0.213, μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.9.

These data are for a CCC-BBB rated pair of firms.

To show the convergence of the alternating direction implicit method for the joint survival prob-

abilities, we use a CCC-BBB rated pair of firms as an example. The exact analytical solution by

the method of images (MOI) is based on Section 4.2 which is only valid for specific values of the

correlation coefficient ρ12 (see Table 4.1), and we use ρ12 = −0.9 (corresponding to ρ12 − cos π
7

3The Mersenne Twister Home Page: http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html
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in Table 4.1) as a demonstration here, we have found that other choices of ρ12 such as ρ12 = 0 and

ρ12 = −0.5 give similar convergence results.

Table 5.1 shows the convergence of the alternating direction implicit results for the joint survival

probabilities of a CCC-BBB rated pair of firms as compared to the exact analytical solution by

the method of images (MOI) developed in Section 4.2. The time period chosen is one year. The

relative percentage error is generally smaller than one percent. When the spatial grid increases

from 1018 to 3830 steps, the relative percentage errors are similar and close to 0.1% with the

number of time steps being 100 (per year). The relative percentage errors decrease to around

0.01% when the number of time steps increases to 1000 per year. With the same number of time

steps and increase in spatial points from 3830 to 7705, the relative percentage errors decrease

further to around 0.007%.

Monte Carlo results compared to exact solutions

n M ρ12 = −0.9 Relative % error

3,650 500,000 0.2835 1.1670%

3,650 1,000,000 0.2830 0.9590%

36,500 500,000 0.2812 0.3243%

36,500 1,000,000 0.2804 0.0549%

MOI exact results 0.2803 -

TABLE 5.2. Accuracy of the Monte Carlo method developed in Section 5.2 for

the joint survival probabilities. The approximate analytical solution is based on the

method of images developed in Section 4.3. The exact solution is based on the

method of images developed in Section 4.2. The time period is fifteen years and

other parameters used are L1 = 73.2%, L2 = 31.5%, σ1 = 0.299, σ2 = 0.213,

μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0, ρ12 = −0.9. These data are for a CCC-BBB rated

pair of firms.

Next, we discuss the accuracy of the Monte Carlo method. Table 5.2 shows the accuracy of the

Monte Carlo results for joint survival probability of a CCC-BBB rated pair of firms compared

to the approximate analytical solution developed in Section 4.3. We note the relative percentage

errors with 3, 650 time steps per year (that is 10 times a day) is slightly larger than 1% (exact

value is 1.1670%) for M = 500, 000 paths and very close to 1% (exact value is 0.9590%) for
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TABLE 5.3. Accuracy of the approximate solution based on method of images for
time-dependent coefficients developed in Section 4.3, and the accuracy of the alter-
nating direction implicit based on the Douglas-Rachford method outlined in Sec-
tion 5.1 for the joint survival probabilities compared to the Monte Carlo results. The
time period is fifteen years and other parameters used areL1 = 73.2%, L2 = 31.5%,
σ1 = 0.299, σ2 = 0.213, μ̃1 = μ̃2 = 0, ρ12 = −0.9 and ρ1r = ρ2r = −0.75.

M = 1, 000, 000 paths. However, the relative percentage errors are reduced further to less than

0.4% if the number of time steps used is increased to 36, 500 per year (that is 100 times a day).

We note that when coefficients are time-dependent, the solution obtained by the method of images

approach is not exact, since an approximate solution using the time varying barrier is involved

(see Section 4.3). Therefore, we use the Monte Carlo results as a benchmark for comparing the

accuracy of the approximate solution based on method of images for time-dependent coefficients

developed in Section 4.3, and the accuracy of the alternating direction implicit method based on

the Douglas-Rachford method outlined in Section 5.1 for the joint survival probabilities. Table 5.3

shows the relative percentage error of the approximate results by the method of images over the
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time period is less than 1%. The relative percentage error of the results based on the alternating

direction implicit scheme is less than 1% except at fifteen years where error is around 1.3%.

5.4. Overview

In this chapter, we have outlined the Douglas-Rachford scheme for solving the first passage time

problem of the two-firm model for general values of the correlation coefficient between firms’

leverage ratios. We also developed a Monte Carlo scheme to serve as a benchmark. We discussed

the accuracy and convergence of both methods and compared them to the exact solution developed

by using the method of images in Section 4.2 at specific values of the correlation coefficient ρ12,

for the constant coefficients case, and we found that the relative percentage error is generally less

than 1% for the alternating direction implicit results based on 100 time steps per year and 3830

spatial points, and for the Monte Carlo results based on 36, 500 time steps per year with the number

of paths between 500, 000 and 1, 000, 000.

When the coefficients are time-dependent, we used the Monte Carlo results as a benchmark, and

compared the accuracy of the alternating direction implicit method and the approximate solution

based on the method of images. The relative percentage error for the approximate method is

generally less than 1%. The relative percentage error for the alternating direction implicit method

is less than 1% except at fifteen years where error is around 1.3%.

We have thus established reliable computational tools to calculate default correlations. We devote

the rest of the thesis to the implications for the default correlations and joint survival probabilities

in the two firm model of using different kinds of underlying processes to model the leverage ratio

dynamics.



CHAPTER 6

The Two-Firm Model under Geometric Brownian Motions

In this chapter, we study the impact on joint survival probabilities and default correlations based

on the two-firm model under geometric Brownian motion for the firms’ leverage ratios, developed

in the previous chapters. Section 6.1 discusses the choice of parameters. Section 6.2 gives the nu-

merical results for joint survival probabilities and default correlations with different credit quality

firms, under a range of different scenarios for correlations, drift levels, volatilities, initial leverage

ratios and signs of companies’ drift levels.

6.1. Choice of Parameters

We choose the set of parameters to be consistent with Hui et al. (2007), so allowing us to compare

the effect of going from a one-firm model to a two-firm model. It is quite natural to set the default

threshold at L̂1 = L̂2 = 1, to reflect the fact that the firm’s debt level is equal to its asset level.

This is equivalent to what is done by Collin-Dufresne & Goldstein (2001) where default occurs

when the log-leverage ratio hits the barrier at zero. A firm can be also forced to default when its

debt level is close to its asset level, for example 90% (L̂i = 0.9), or higher than its asset level at

110% (L̂i = 1.1). However the framework of the two-firm model can handle these more general

situations, because the model is formulated in terms of the normalized log-leverage ratios (see

equation (3.82)).

The leverage ratios used for different individual ratings are the typical values of industry medians

in Standard & Poor’s (2001). Following the same setting in Hui et al. (2007), the values of the

volatility of leverage ratios are assumed to be similar to asset volatilities1, the values of which

are close to the estimates of Delianedis & Geske (1999), who observed that the volatility value

is 0.17 for AA and A-rated firms and 0.27 for B-rated firms. Taking these values as reference

points, volatilities for other rating categories can be tabulated for each successive rated category.

The values of leverage ratios and volatilities used for different individual ratings are shown in

Table 6.1.

1This follows from the assumption that volatilities of firms’ liabilities are not significant, as can be seen from the
mathematical relationship between volatilities of leverage ratio, firm’s asset value and liability in Hui et al. (2006)
Appendix A. Under this assumption the volatility of the leverage ratio is then close to the volatility of the firm asset
value.

60
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AAA AA A BBB BB B CCC

Leverage ratios Li (%) 3.1 9.5 17.2 31.5 49.5 53.8 73.2

Volatilities σi 0.127 0.156 0.184 0.213 0.241 0.270 0.299

TABLE 6.1. Parameters used for individual ratings

The time horizon is fifteen years which is the same as in Hui et al. (2007), who compared the

individual default probabilities to S&P historical cumulative default rates for which the available

data is up to fifteen years.

6.2. The Impact of Geometric Brownian Motions

We evaluate the joint survival probabilities based on the alternating direction implicit scheme out-

lined in Section 5.1. The total number of grid points used are Nx = Ny = 3830 and the number

of time steps per year is Nt = 100. The values of xmin and ymin are selected such that the corre-

sponding leverage ratios Li = 0.001 (i = 1, 2) are very close to zero. The accuracy of this setting

is discussed in Section 5.3 and it is seen to result in a reasonable level of accuracy. The default

correlations are evaluated based on the equation given in (3.94). The individual default probabili-

ties are computed by using equation (3.37) for the case of constant coefficients and equation (3.59)

for the case of time-varying coefficients. Note that in this thesis, the evaluation of the joint sur-

vival probabilities and default correlations (or default probabilities in later chapters) are based on

the credit linked note price (or corporate bond price for default probabilities) which are derivative

instruments and hence are calculated under the risk-neutral measure. Variances and correlations

remain the same under both the physical and risk-neutral measures, however the drift coefficients

differ in the two measures by amounts related to the market prices of risk λ1 and λ2. So in the

comparative studies of the impact of drift coefficients that we undertake later we should really

work in the physical measure. However, we are here only interested in qualitative questions, such

as how does default correlation change if a drift coefficients increases or decreases. The answer to

such qualitative questions will be the same in both measures (if one assume constant market prices
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FIGURE 6.1. The impact of correlation ρ12 between BBB-CCC paired firms on
joint survival probabilities. Initial leverage for the CCC-rated firm is L1=73.2%,
for the BBB-rated firm is L2=31.5% and the volatilities are σ1=0.299, σ2 =0.213.
Other parameters used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 =
−0.9,−0.5,−0.1, 0.5 and 0.9.

of risk2 as we have), of course the actual quantitative values of such changes will be different un-

der the two measures and to determine their values would require the development of econometric

methodologies for the framework developed here.

The following subsections show the impact on joint survival probabilities and default correlations

of a range of different scenarios, for example, paired firms having different credit quality, different

values for correlations, drift levels, volatilities and initial leverage ratios.

6.2.1. The Impact of Correlation Between Two Firms.

This subsection explores the impact on joint survival probabilities and default correlations of the

correlations between the two firms’ leverage ratios. We use the BBB and CCC paired firms to

2We have assumed constant market prices of risk in order to be able to derive the explicit solution in Chapter 4. Of
course the two-firm model could be extended to consider time dependent parameters, which would allow the incor-
poration the time varying market prices of risk. Such an extension would require the use of appropriate econometric
tools to estimate these models. We leave this work to future research.
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FIGURE 6.2. The impact of correlation ρ12 between BBB-CCC paired firms on
default correlations. Initial leverage for the CCC-rated firm is L1=73.2%, for the
BBB-rated firm is L2=31.5% and the volatilities are σ1=0.299, σ2 =0.213. Other
parameters used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.9,−0.5,−0.1, 0.5
and 0.9.

demonstrate the correlation effect. We consider the correlation levels of ρ12 = −0.9,−0.5,−0.1, 0.5

and 0.9.

In order to isolate the effects of the drift terms of the leverage ratio processes and correlation of the

interest rate process, we set μ̃i=0 and ρir=0 (i=1,2). However, we will study later in this Chapter,

the impact of these two factors on joint survival probabilities and default correlations.

The numerical results presented in this Chapter are computed based on the alternating direction

implicit method that was developed in Section 5.1. The total number of grid points used are

Nx = Ny = 3830 and the number of time steps per year is 100. The values of xNx
and yNy

are

selected such that the corresponding leverage ratios Li = 0.001 (i = 1, 2) are very close to zero.

The accuracy of the numerical results are discussed in Section 5.3 where the relative percentage

errors are less than 1% except at fifteen years where error rises to around 1.3%.

Figure 6.1 plots the joint survival probability of firm 1 and firm 2 from the beginning to the end

of the investment period of fifteen years. This figure shows the impact on joint survival proba-

bilities of the correlation coefficient ρ12 between BBB-CCC paired firms over the time horizon.
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FIGURE 6.3. The impact of different credit rated pairing of firms on joint survival
probabilities. Initial leverage for the CCC-rated firm is L1=73.2%, for the BBB-
rated firm is L2=31.5% and volatilities σ1=0.299, σ2 =0.213. Other parameters
used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

We observe that the joint survival probability declines over time as the correlation coefficient ρ12

decreases. It reflects the fact that when firms’ leverage ratios move in the same direction there is

a higher joint survival probability than when the move is in the opposite direction. When firms’

leverage ratios move in opposite directions, as one firm’s leverage ratio moves closer to the default

barrier (and so is more unlikely to survive), the second firm moves away from the default barrier

(and more likely to survive), so the chance of both firms surviving is small, because the two firms

are always in opposite situations.

We also observe that the variation of ρ12 makes little difference to the value of the joint survival

probabilities with there being no discernable difference up to six years and a difference of 6.71%

at fifteen years for ρ12 = 0.9 and −0.9.

Figure 6.2 plots the default correlation of firm 1 and firm 2 from the beginning to the end of

the investment period of fifteen years. Figure 6.2 displays the impact on default correlations of

the correlation coefficient ρ12 between BBB-CCC paired firms. We note that the sign of default

correlations are the same as the correlation between two firms’ leverage ratios ρ12, which agrees

with what was found by Zhou (2001a) and Cathcart & El-Jahel (2002). As one would expect that
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FIGURE 6.4. The impact of different credit rated pairing of firms on default cor-
relations. Initial leverage for the CCC-rated firm is L1=73.2%, for the BBB-rated
firm is L2=31.5% and volatilities σ1=0.299, σ2 =0.213. Other parameters used are
μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

firms in the same industry have higher default correlations than do the firms in different industries.

This is quite intuitive, since firms’ leverage ratios move in the same direction as they are positively

correlated, so if one firm defaults, the second firm will more likely experience an increase in its

leverage ratio and move closer to the default barrier. Firms’ leverage ratios move in the opposite

direction as they are negatively correlated, thus if one firm defaults, the second firm’s leverage

ratio will move away from the default barrier, and the firm will be less likely to default.

If the correlation coefficient ρ12 is close to zero, when a firm defaults, the likelihood of another

firm defaulting is also close to zero. This can be seen from equation (3.91), the default correlation

is zero when ρ12 = 0, because the joint default probability equals the product of the two firms’

individual default probabilities.

We also note that the default correlation values at the very beginning of the time horizon are rising,

this is due to division by the very small values of individual default probability for BBB-rated firm

(for example, PD(BBB)= 6.97838× 10−5). In order to avoid division by the extreme small values

of default rates, in the remaining figures, the plot of default correlations will start at time equal to

three years.
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FIGURE 6.5. The impact of volatility levels σi of BBB-CCC paired firms on joint
survival probabilities. Initial leverage for the CCC-rated firm is L1 = 73.2%, for
the BBB-rated firm is L2 = 31.5% and the volatilities are σ1 = σ2 = σ = 0.25 and
0.5. Other parameters used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

6.2.2. The Impact of Different Credit Quality Paired Firms.

In this subsection, we discuss the impact of the difference of the credit pairing of firms on joint

survival probabilities and default correlations. We demonstrate this effect by using BBB-BBB,

BBB-CCC and CCC-CCC pairing of firms. To illustrate the effect of positive and negative corre-

lation between two firms, we use the correlation values of ρ12 = −0.5, 0.5 here as well as in the

rest of the thesis. We use these values of ρ12 because they are not extremes values.

Since the analytical solutions developed by the method of images in Chapter 4 are only valid for

the values of ρ12 given in Table 4.1, we use one of the values of ρ12 (for example ρ12 = −0.5) that

has the analytical solutions as a benchmark for the numerical results. On the other hand, in order

to see effect of the positive correlation effect, we use a similar (in absolute value) positive value of

ρ12 = 0.5. As in the previous Subsection, we also isolate the effects of drift terms of the leverage

ratio processes and correlation of the interest rate process by setting μ̃i=0 and ρir=0 (i=1,2).

Figure 6.3 shows the impact on joint survival probabilities for BBB-BBB, BBB-CCC and CCC-

CCC pairing of firms. The joint survival probabilities of the CCC-CCC paired-firms is lower than

that of the BBB-CCC and BBB-BBB paired-firms. The joint survival probability curves decrease
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FIGURE 6.6. The impact of volatility levels σi of BBB-CCC paired firms on default
correlations. Initial leverage for the CCC-rated firm is L1 = 73.2%, for the BBB-
rated firm is L2 = 31.5% and the volatilities are σ1 = σ2 = σ = 0.25 and 0.5.
Other parameters used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

slowly over time horizon for the BBB-BBB paired-firms, while for the BBB-CCC and CCC-CCC

pairing of firms, joint survival probability curves decrease quickly at the beginning of the time

horizon but flatten out towards the end of the time horizon. It makes sense that higher credit

quality firms imply higher joint survival probabilities.

We also see from Figure 6.3 the effect of the correlation coefficient ρ12 between the two firms’

leverage ratios becomes more significant as the quality of the firms’ decreases. It is not significant

at short time horizons for the BBB-BBB paired-firms, but its effect appears from around the middle

of time horizon to the end. However, as we go from BBB-CCC to the CCC-CCC paired-firms, the

correlation effect becomes progressively more significant from the beginning of the time horizon.

Since for firms of good credit quality, the initial leverage ratios are lower and distant from the de-

fault barrier, therefore, the joint survival probability is higher than for lower credit quality firms. If

a firm has defaulted, the second firm will experience a rise (decline) in its leverage ratio because of

the positive (negative) correlation, however, because of the low initial leverage ratio of the second

firm, so this rise or decline in the leverage ratio for the second firm does not effect significantly

its default probability. However, if the second firm is of low credit quality, its initial leverage ratio
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FIGURE 6.7. The impact of the means μ̃i of BBB-CCC paired firms on joint sur-
vival probabilities. Initial leverage for the CCC-rated firm is L1=73.2%, for the
BBB-rated firm is L2=31.5% and the volatilities are σ1=0.299, σ2 =0.213. Other
parameters used are μ̃1 = μ̃2 = μ̃ = −0.1 and 0.1, ρ1r = ρ2r = 0 and ρ12 =
−0.5, 0.5.

is high and closer to the default barrier, so that this rise or decline in leverage ratios will be more

likely to bring the second firm into default, so that the correlation effect is more significant for

lower credit quality firms than good credit quality firms. In other words, for a given a value of the

correlation coefficient, the most important effect on the joint survival probability arises from the

difference in credit ratings.

Figure 6.4 illustrates the impact on default correlations for BBB-BBB, BBB-CCC and CCC-CCC

paired-firms. We also observe from Figure 6.4 that the lower credit quality paired firms (for exam-

ple CCC-CCC) generally have higher values (in absolute terms) of default correlation for the cases

of both positive and negative correlation. However, an interesting result is that for a good quality

pair of firms, if they are positively correlated, the default correlation is higher than that of a good

quality and low quality pairing of firms. But this situation is reversed (as far as the comparison of

the absolute values of default correlation is concerned) if they are negatively correlated. Since it

is difficult to relate this finding to any empirical evidence, though clearly it points to the need for

more empirical research in this area.



6.2. THE IMPACT OF GEOMETRIC BROWNIAN MOTIONS 69

2 4 6 8 10 12 14 16
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time

DC

μ̃ = 0.1, ρ12 = 0.5
μ̃ = −0.1, ρ12 = 0.5
μ̃ = −0.1, ρ12 = −0.5
μ̃ = 0.1, ρ12 = −0.5

FIGURE 6.8. The impact of the means μ̃i of BBB-CCC paired firms on default cor-
relations. Initial leverage for the CCC-rated firm is L1=73.2%, for the BBB-rated
firm is L2=31.5% and the volatilities are σ1=0.299, σ2 =0.213. Other parameters
used are μ̃1 = μ̃2 = μ̃ = −0.1 and 0.1, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

6.2.3. The impact of Volatilities.

This subsection illustrates the impact of volatility levels on joint survival probabilities and default

correlations. We use the typical leverage ratio levels for BBB and CCC firms from Table 6.1.

Consider the volatility levels ranging between σi = 0.25 and 0.5. The correlation between two

firms are taken as ρ12 = −0.5 and ρ12 = 0.5. The drift terms and interest rates effects are again

isolated by setting μ̃i = 0 and ρir = 0 (i = 1, 2).

Figure 6.5 exhibits the effect of changes in the volatility levels σi on the joint survival probability

for BBB-CCC paired firms. The joint survival probability drops as the volatility levels increases

when firms are both positively (ρ12 > 0) as well as negatively (ρ12 < 0) correlated. This result

seems natural, because when a market is volatile, the probability of default for a firm is higher, so

the joint survival probability decreases.

Figure 6.6 shows the impact of volatility levels σi on the default correlation. As expected, the

default correlation (in absolute value) rises as the volatilities increase. This indicates that when the

market is less volatile, the probability of single firm default is low, which leads to the decline of

the conditional default. We also observe that the difference in volatilities is more significant for
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FIGURE 6.9. The impact of leverage ratio levels Li on joint survival probabilities.
Initial leverages used are (i) L1 = L2 = L = 31.5% and (ii) L1 = L2 = L = 80%.
The volatilities for both cases (i) and (ii) are σ1 = σ2 = 0.213. Other parameters
used are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

short time horizons. This result seems to reflect the fact that the volatility effects on the default

correlation are more significant in the short term.

6.2.4. The impact of Drift Levels.

In the previous subsections we isolated the impact of the drifts of the leverage ratio processes

by setting μ̃i = 0 (i = 1, 2). Now, in this subsection, we illustrate the impact on joint survival

probabilities and default correlations of the drifts levels. We use the BBB and CCC paired firms in

order to illustrate this effect. We take the drift levels μ̃1 = μ̃2 = −0.1, 0, 0.1. Note that μ̃i is under

the risk-neutral measure. We take as the correlation coefficient between the two firms the values

ρ12 = −0.5, 0.5. We continue to isolate the effect of the interest rate process by setting ρir = 0

(i = 1, 2).

Figure 6.7 displays the impact on joint survival probabilities of different drift levels μ̃i of BBB-

CCC paired firms. The joint survival probability is sensitive to changes in the drift levels, for

example it decreases by 57.8% from μ̃i = −0.1 to μ̃i = 0.1 (for the case of ρ12 = 0.5). The joint

survival probability declines as the drift levels increase, which reflects the fact that for lower μ̃i,
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FIGURE 6.10. The impact of leverage ratio levels Li on default correlations. Initial
leverages used are (i) L1 = L2 = L = 31.5% and (ii) L1 = L2 = L = 80%. The
volatilities for both cases (i) and (ii) are σ1 = σ2 = 0.213. Other parameters used
are μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5, 0.5.

the leverage ratios drift to smaller values on average, in the sense that firms’ leverage ratio levels

decrease over time, hence firms remain on average at a better credit quality status, and their joint

survival probability is higher.

We observe that the effect of the correlation coefficient ρ12 is more pronounced for larger values

of drift levels. There is no effect on joint survival probabilities in the case of negative drift, but

a noticeable impact when the value of the drift is positive. The argument is similar to the effect

on the low credit quality paired firms as indicated in Figure 6.3. Since the firms’ leverage ratios

drift to smaller values on average when the drift is negative, in the sense that firms’ leverage ratios

decrease and move away from the default barrier over time. Therefore, if a firm has defaulted, the

second firm will experience a rise or decline in its leverage ratio because of the positive or negative

correlation. However, because of the low leverage ratio of the second firm, this rise or decline in

the leverage ratio for the second firm does not effect significantly its probability of default. While,

if the drift is positive, the firms’ leverage ratios increase and move closer to the default barrier over

time, then if a firm has defaulted, the second firm will experience a rise or decline in its leverage

ratio with positive or negative correlation. However, because of the high leverage ratio of the
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FIGURE 6.11. The impact of correlation ρir between firms & interest rate for BBB-
CCC paired firms on joint survival probabilities. Initial leverage for the CCC-rated
firm is L1 = 73.2%, for the BBB-rated firm is L2 = 31.5% and the volatilities are
σ1 = 0.299, σ2 = 0.213. Other parameters used are μ̃1 = μ̃2 = 0, ρ12 = −0.5, 0.5,
ρ1r = ρ2r = −0.75,−0.1 and 0.75, the maturity of risk-free bond price is T = 15,
κr = 1.0 and σr = 0.03162.

second firm, this rise or decline in the leverage ratio will be more or less likely to bring the second

firm into default, therefore, the effect of correlation is more significant for larger values of the drift.

Figure 6.8 graphs the default correlation of BBB-CCC paired firms for different drift levels μ̃i.

The default correlation is sensitive to the change in the drift levels, similar to what is indicated

in Figure 6.7. The default correlation (in absolute value) declines as the average mean levels

decrease. Consider the positively correlated case, when firms’ leverage ratios drift to larger values

on average, so that leverage ratios are close to the default barrier, when one firm defaults, the other

firm will experience a rise of its leverage ratio (because of the positive correlation), and because

the leverage ratio of the second firm is closer to the default barrier, it will be likely that this increase

will also bring the second firm into default. However, when firm’s leverage ratio drifts to smaller

values on average, in which firms’ leverage ratio are away from the default barrier, so if one firm

defaults, the leverage ratio of the other firm will rise (because of the positive correlation), but the

leverage ratio of the second firm is distant from the default barrier, so that it will be less likely that

this rise will bring it into default.
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FIGURE 6.12. The impact of correlation ρir between firms & interest rate for BBB-
CCC paired firms on default correlations. Initial leverage for the CCC-rated firm
is L1 = 73.2%, for the BBB-rated firm is L2 = 31.5% and the volatilities are
σ1 = 0.299, σ2 = 0.213. Other parameters used are μ̃1 = μ̃2 = 0, ρ12 = −0.5, 0.5,
ρ1r = ρ2r = −0.75,−0.1 and 0.75, the maturity of risk-free bond price is T = 15,
κr = 1.0 and σr = 0.03162.

6.2.5. The Impact of Leverage Ratio Levels.

In this subsection, we investigate the impact on joint survival probabilities and default correlations

of changes in the leverage ratio levels . We use the volatility levels corresponding to BBB-rated

firms. From Table 6.1 we take the leverage ratio levels L1 = L2 = 31.5% (values for BBB-rated

firms) and 80% (values for CCC-rated firms). This shows the impact of leverage ratios when they

are at very high levels. The correlation between the two firms ranges over ρ12 = −0.5 and 0.5.

The drift terms and interest rate effects are again isolated by setting μ̃i = 0 and ρir = 0 (i = 1, 2).

Figure 6.9 shows the impact of leverage ratio levels Li on joint survival probabilities. The joint

survival probability curves are generally decreasing over the time horizon for different values of

σi. The smaller the leverage ratio levels, the higher the joint survival probabilities. Figure 6.9 also

shows that the smaller are the leverage levels, the less significant is the correlation ρ12 on joint

survival probability curves, which is similar to the effects observed in Figure 6.3, Figure 6.7 and

Figure 6.5. This seems to show that when firms are healthy (which means less volatile, or lower
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leverage ratios or lower drift levels or a combination of all of these), the effect of correlations

between the two firms on joint survival probability is small.

Figure 6.10 illustrates the impact of leverage ratio levels Li of a BBB-CCC paired firm on default

correlations. We observe that the higher the leverage levels, the higher in absolute values are the

default correlations, which is similar to the effect observed in Figure 6.4.

6.2.6. Impact of Correlation Between Firms & Interest Rates.

This subsection presents the interest rate effects on joint survival probabilities and default correla-

tions. When the correlation to the interest ratio process ρir is nonzero, the joint survival probability

and the probability of individual defaults are related to the parameter κr that controls the speed of

the mean reversion of interest rate process via the time-dependent coefficient b(t), which is given

in (3.81). For this case, we use the parameters κr = 1.0, σr = 0.03162 which is consistent with

those used by Hui et al. (2007). We assume that they remain the same for all different ratings.

The values of correlation between firms and interest rates are ρ1r = ρ2r = −0.75,−0.1 and 0.75.

The maturity of the risk-free bond is T = 15, κ̃r = 1.0 and σr = 0.03162. We use the BBB and

CCC pairing of firms. The correlation between the two firms are ρ12 = −0.5, 0.5. The effect of

drift terms is isolated by setting μ̃i = 0 (i = 1, 2).

Figure 6.11 displays the impact of the interest rate process on the joint survival probability. The

joint survival probability increases as the correlation coefficients ρir rises, irrespective of the sign

of ρ12. Since the leverage ratio is the debt to asset ratio, when it is positively correlated to the inter-

est rate process, the asset value rises as the interest rate rises, this leads to a decline in the leverage

ratio (because of its definition), so the joint survival probability increases . We observe that changes

in correlation coefficient ρir do not have a significant effect on the joint survival probability with

the difference being 0.941% at four years and rising to 1.23% at 15 years. Figure 6.12 plots the

default correlation with different levels of correlation coefficient ρir, and as with the joint survival

probabilities we observe that changes in ρir makes little difference to the default correlations. We

also observe that the default correlation declines as the correlation coefficient ρir increases. This

reflects the situation that the increase of joint survival probability due to the decline of leverage

ratios, as already indicated in the discussion of the effect on the joint survival probability in Fig-

ure 6.11.
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FIGURE 6.13. The price of credit linked notes for BBB-CCC paired firms. Initial
leverage for the CCC-rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5%
and the volatilities are σ1=0.299, σ2 =0.213. Other parameters used are r = 5%,
κr = 1, θ̃r = 5% and σ2

r = 0.001, μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 =
−0.9,−0.5,−0.1, 0.5 and 0.9.

6.3. The Price of Credit Linked Notes

The focus of this thesis is on default correlations and joint survival probabilities, while the other

application of the two-firm model is to price the credit linked note. In this section, we illustrate

the impact on the prices of credit linked notes with respect to variation in the values of correlation

coefficients between two firms and with respect to different credit quality paired firms.

Recall from (3.75) that the price of a credit linked note is the product of the risk-free bond price

B(r, t) of Vasicek (1977) model and the risk ratio function P̂ (L1, L2, t). The calculation of the

risk-free bond price B(r, t) is based on equations (E.9)-(E.11) in Appendix E. For numerical

calculation we use parameters similar to Hui et al. (2007), where r = 5%, κr = 1, θ̃r = 5% and

σ2
r = 0.001. The valuation of the risk ratio function P̂ (L1, L2, t) is based on the analytical results

in Chapter 4 or numerical algorithms in Chapter 5.

Figure 6.13 shows the impact on credit linked note prices of different values of the correlation

coefficient ρ12 between BBB-CCC paired firms as a function of time-to-maturity. The parameters

used to calculate P̂ (L1, L2, t) are the same as in Figure 6.1. We observe that the credit lined note
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FIGURE 6.14. The price of credit linked notes for BBB-CCC paired firms. Initial
leverage for the CCC-rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5%
and volatilities σ1=0.299, σ2 =0.213. Other parameters used are r = 5%, κr = 1,
θ̃r = 5% and σ2

r = 0.001, μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = −0.5 and 0.5.

prices decrease with respect to time-to-maturity as the correlation coefficient ρ12 decreases. This

may be due to the fact that when firms’ leverage ratios move in the same direction the price of a

credit linked note is higher than that for moves in the opposite direction. If firms’ leverage ratios

move in opposite directions, as one firm’s leverage ratio moves closer to the default barrier (and is

less likely to survive), the second firm moves away from the default barrier (and is more likely to

survive), so the chance of both firms survival is small because they are always moving in opposite

directions, therefore, the price of credit linked note is lower.

Figure 6.14 shows the impact on credit linked note prices for BBB-BBB, BBB-CCC and CCC-

CCC paired firms over the time-to-maturity. The parameter used to evaluate P̂ (L1, L2, t) are the

same as in Figure 6.3. We observe that the price of a credit linked note of BBB-BBB paired firms

is the highest, while the price of CCC-CCC paired firms is the lowest among those paired firms.

This makes sense since the price of credit linked note issued by good credit quality firms is higher

than that issued by low credit quality firms.

We also observe that the impact of the correlation coefficient ρ12 or the credit quality of firms on the

price of credit linked note is the same as the impact on joint survival probabilities (see Figure 6.1



6.4. OVERVIEW 77

GBM parameters Impact on JSP Impact on DC
(in absolute value)

Credit quality ↑ ⇑ ⇓ (not symmetric for ±ρ12)

Correlation ρ12 ↑ ⇑ ⇑

Volatilities σi ↑ ⇓ ⇑

Average means μ̃i ↑ ⇓ ⇑

Initial leverage ratios Li ↑ ⇓ ⇑

Correlation w/ interest rate risk ρir ↑ ⇑ ⇓

TABLE 6.2. A summary of the impact on joint survival probabilities and default
correlations for geometric Brownian motions.

and Figure 6.3). This is because the risk ratio function (3.89) and the joint survival probability

function (3.90) both depend principally on the same transition probability density function. As the

payoff condition of the credit linked note is the par value (see (3.69)), the risk ratio function as a

function of time-to-maturity is equivalent the joint survival probability function. Thus, if we use

the same risk-free bond price function, the impact of other parameters on credit linked note prices

will be similar to the impact on joint survival probabilities as in Section 6.2.

6.4. Overview

In this chapter, we have discussed the choice of parameters, evaluated and compared the impact

on the joint survival probabilities and default correlations of various scenarios when the leverage

ratios dynamics are driven by geometric Brownian motions. The results are summarized in Ta-

ble 6.2. We find that when the volatilities of firms’ leverage ratios, the average mean levels, or

the initial leverage ratios decrease respectively, the values of joint survival probabilities rise. On

the other hand, the joint survival probabilities decline as the firms’ leverage ratio correlation, or

the correlation between firm’s leverage ratio and interest rate decrease. We also find that when the

firms’ leverage ratio correlation, the volatilities of firms’ leverage ratios, the average mean levels,

or the initial leverage ratios increase, the absolute values of default correlation rises, but it declines

as the values of correlation between firm’s leverage ratio and interest rate increases.
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We note that these findings are based on a study of the impact of the model parameters chosen.

Whilst there is a rationale for these values as we have explained, it remains a task for future

research to calibrate the types of model discussed here to market data. The effects summarized in

Table 6.2 also need to be investigated empirically in future research. Of course such studies need

to first examine which type of process for the leverage ratio dynamics is most suitable, since as we

shall see in subsequent chapters the effects observed in Table 6.2 can be sensitive to this issue.



CHAPTER 7

Two-Firm Model with Mean-Reverting Processes

As discussed in Chapter 2, Collin-Dufresne & Goldstein (2001) point out that most structural mod-

els preclude the possibility that firms may alter their capital structure. They argue that in practice,

firms could adjust their outstanding debts levels in response to the change in firm values, hence gen-

erating mean-reverting leverage ratios. To model this feature, Collin-Dufresne & Goldstein (2001)

extend the Longstaff & Schwartz (1995) model by considering a deterministic mean-reverting de-

fault threshold, which can be linearly related to the outstanding debts. This setting captures the

fact that firms tend to issue debt when their leverage ratio falls below some target, and replace

maturing debt when their leverage ratio rises above this target. Hui et al. (2006) generalize the

Collin-Dufresne & Goldstein (2001) model by incorporating a time-dependent target leverage ra-

tio. This is done by introducing a stochastic mean-reverting default threshold that relates to the

firm’s liability. Hui et al. (2006) point out that the time-dependent target leverage ratio reflects the

movements of a firm’s initial target ratio towards a long-run target ratio over time.

This chapter extends the framework of the two-firm model to consider the case in which the

dynamic leverage ratios are mean-reverting to constant target ratios (as was the case in Collin-

Dufresne & Goldstein (2001)) and also to time-dependent target ratios (as was the case in Hui

et al. (2006)), in order to study the impact of firms altering their capital structure on joint survival

probabilities and default correlations. Section 7.1 presents the framework of the two-firm model

with dynamic leverage ratios following mean-reverting processes, and extends the method of im-

ages approach in two-dimensions developed in Chapter 4 to handle this situation. However, as was

shown in Section 4.1 the method of images approach in the two-dimensional case works only for

certain values of the correlation coefficient ρ12. Therefore, in the second part of this chapter, we

extend the Monte Carlo scheme of Section 5.2 to develop a numerical scheme applicable for all

values of the correlation ρ12 as well as to serve as a benchmark. Then we discuss the accuracy

of the results obtained by these methods and compare them to the approximate analytical solution

based on Huang (2003), in which the relative percentage error is very large based on the method of

images using a single-stage approximation scheme, while the Monte Carlo results generally have

relative percentage errors of less than 1%. In the last part of this chapter, we study the impact of

mean-reverting processes on joint survival probabilities and default correlations.

79
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7.1. The Two-Firm Framework in the Case of Mean-Reverting Leverage Ratios

In order to capture the effect of mean-reverting processes for the leverage ratios we need to modify

assumption 1 in Chapter 3 to

Assumption 1′ . Let L1 and L2 denote respectively the leverage ratios of the note issuer and the

reference obligor. The leverage ratio is defined as the ratio of a firm’s liability to its market-value

capitalization. Assume L1 and L2 follow mean-reverting processes with a time varying long run

target ratio. The dynamics of L1 and L2 are described by

dLi = κi[ln θi(t) − lnLi]Lidt+ σiLidZi, (i = 1, 2), (7.1)

where the parameters κi control the speed of mean reversion, the θi(t) are the mean reversion

levels, the σi govern the volatility of the proportional change in leverage ratio for the two firms,

and the Zi are Wiener processes capturing the uncertainty in the leverage ratio dynamics under

the historical measure P. The Wiener increments dZ1 and dZ2 are correlated with

E[dZ1dZ2] = ρ12dt, (7.2)

where ρ12 denotes the correlation coefficient of the proportional leverage ratio level of the two

firms.

The interpretation is similar to that in Collin-Dufresne & Goldstein (2001): when the log-leverage

ratio of a firm lnLi falls below the long term log-target ratio ln θi, the firm increases lnLi by, for

example, issuing debt. On contrast, when lnLi is higher than ln θi, the firm may decrease lnLi

by replacing outstanding debt. As mentioned in Collin-Dufresne & Goldstein (2001), this setting

captures the features of firm behaviour that they tend to issue debt when their leverage ratios fall

below some target, and tend to replace maturing debt when their leverage ratio rises above that

target.

Assumptions 2-4 remain the same as in Chapter 2.

To obtain the the partial differential equation for the credit linked note price P (L1, L2, r, t), we

apply the standard arbitrage pricing argument outlined in Appendix D, and under the Assumptions
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1′ , 2, 3 and 4, we find that the price of the credit linked note satisfies
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for t ∈ (0, T ), L1 ∈ (0, L̂1), L2 ∈ (0, L̂2) and subject to the boundary conditions

P (L1, L2, r, T ) = 1, (7.4)

P (L̂1, L2, r, t) = 0, (7.5)

P (L1, L̂2, r, t) = 0. (7.6)

Here θ̃i(t) and θ̃r incorporate the market prices of risk (λ1, λ2) (assumed constant here) associated

with leverage ratios and interest rate processes respectively λr, according to

θ̃i(t) = θi(t)e
−λiσi/κi , (7.7)
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then (7.3) becomes
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Using the separation of variables technique discussed in Section 3.3, the price of the credit linked

note can be expressed as a product of the risk-free bond price B(r, t) and the risk ratio function

P̂ (L1, L2, t) so that

P (L1, L2, r, t) = B(r, t)P̂ (L1, L2, t). (7.10)
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Applying the same calculations as used in Appendix E, and simply replacing the terms μ̃i with

κi[ln θ̃i(t) − lnLi], it turns out that P̂ (L1, L2, t) satisfies the partial differential equation
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+
[
κ2

(
ln θ̃2(t) + lnL2

)
+ ρ2rσ2σrb(t)

]
L2

∂P̂

∂L2

, (7.11)

subject to the boundary conditions

P̂ (L1, L2, T ) = 1, (7.12)

P̂ (L̂1, L2, t) = 0, (7.13)

P̂ (L1, L̂2, t) = 0. (7.14)

Note that the function b(t) is still given by (3.81).

Next, we make the change of variables to the volatility adjusted log-leverage ratios as defined in

(3.83) and transform P̂ (L̂1e
σ1X1 , L̂2e

σ2X2 , t) to P̄ (X1, X2, τ) with time-to-maturity variable τ =

T − t. The partial differential equation (7.11) thus transforms to

∂P̄

∂τ
=

1

2

∂2P̄

∂X2
1

+ ρ12
∂2P̄

∂X1∂X2

+
1

2

∂2P̄

∂X2
2

+
(
γ̄1(τ) − κ1X1

) ∂P̄
∂X1

+
(
γ̄2(τ) − κ2X2

) ∂P̄
∂X2

, (7.15)

for τ ∈ (0, T ), X1 ∈ (−∞, 0), X2 ∈ (−∞, 0) and subject to the boundary conditions

P̄ (X1, X2, 0) = 1, (7.16)

P̄ (0, X2, τ) = 0, (7.17)

P̄ (X1, 0, τ) = 0. (7.18)

The drift coefficients γ̄i(τ) appearing in the partial differential equation (7.15) are defined as

γ̄i(τ) =
[
κi

(
ln θ̃i(T − τ) + ln L̂i − σ2

i /(2κi)
)

+ ρirσiσrb(T − τ)
]
/σi, (i = 1, 2). (7.19)
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7.2. Solution of the CLN Partial Differential Equation by the Method of Images

This section seeks to extend the method of images approach developed in Chapter 4 to the solution

of the partial different equation (7.15), subject to the zero boundary conditions (7.17)-(7.17). We

point out that through the definition of the γ̄i(τ) in (7.19) we are dealing with the case of time

varying coefficients. Just as with the method of images for the time varying coefficients case in

Section 4.3, we proceed to solve the problem for the case of mean reversion via the transformation

to the two-dimensional heat equation.

We write the integral form of the solution to (7.15) as

P̄ (X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f̄(X1, X2, Y1, Y2; τ)P̄ (Y1, Y2)dY1dY2, (7.20)

where f̄(X1, X2, Y1, Y2; τ) is the transition probability density function for transition from the

values X1(0) = Y1 and X1(0) = Y2 at time-to-maturity τ = 0 below the barriers and to the value

X1 and X2 at time-to-maturity τ within the region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0). The initial

condition function P̄ (X1, X2, 0) ≡ P̄ (Y1, Y2) is given in (7.16).

We note that the partial differential equation (7.15) has drift terms that depend on variables X1 and

X2, and this can be eliminated by carrying out the transformation1

P̄ (X1, X2, τ) = P ‡(X1e
−κ1τ , X2e

−κ2τ , τ), (7.21)

where P ‡(X1, X2, τ) satisfies the partial differential equation

∂P ‡

∂τ
=

1

2
e−2κ1τ ∂

2P ‡

∂X2
1

+ ρ12e
−(κ1+κ2)τ ∂2P ‡

∂X1∂X2

+
1

2
e−2κ2τ ∂

2P ‡

∂X2
2

+γ̄1(τ)e
−κ1τ ∂P

‡

∂X1

+ γ̄2(τ)e
−κ2τ ∂P

‡

∂X2

. (7.22)

1A proof can be found in Appendix J.
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Substituting the relation (7.21) into the initial condition and boundary conditions (7.16)-(7.18)

yields the initial condition and boundary conditions for P ‡ which are2

P ‡(Y1, Y2) = 1, (7.23)

P ‡(0, X2e
−κ2τ , τ) = 0, (7.24)

P ‡(X1e
−κ1τ , 0, τ) = 0. (7.25)

Note that the partial differential equation (7.22) has time-dependent coefficients. In Section 3.2,

we pointed out that the solution to the heat equation obtained by the method of images approach

for solving the zero boundary condition cannot be applied directly in the case where drift terms

are time-dependent. Therefore, we apply in the current situation the time varying barrier approach

in a similar way to Section 3.2 and Section 4.3. However, here we find that the method of images

approach is only applicable to solving the partial differential equation (7.22) when the speed of

mean reversion parameters are identical3. Therefore we assume that

κ1 = κ2 ≡ κ, (7.27)

so that the partial differential equation (7.22) becomes

∂P ‡

∂τ
=

1

2
e−2κτ ∂

2P ‡

∂X2
1

+ ρ12e
−2κτ ∂2P ‡

∂X1∂X2

+
1

2
e−2κτ ∂

2P ‡

∂X2
2

+γ̄1(τ)e
−κτ ∂P

‡

∂X1

+ γ̄2(τ)e
−κτ ∂P

‡

∂X2

. (7.28)

2We note that when τ = 0, the initial condition becomes
P̄ (Y1, Y2) = 1 = P ‡(Y1e

−κ1·0, Y2e
−κ2·0) = P ‡(Y1, Y2).

The boundary conditions
P̄ (0, X2, τ) = 0 = P ‡(0 · e−κ1τ , X2e

−κ2τ , τ) = P ‡(0, X2e
−κ2τ , τ),

P̄ (X1, 0, τ) = 0 = P ‡(X1e
−κ1τ , 0 · e−κ2τ , τ) = P ‡(X1e

−κ1τ , 0, τ).

3To show this, we apply the result of Lo & Hui (2002), who use the solution of a European call option depending on
multi-assets with time varying coefficients, to obtain the transition probability density function for equation (7.22),
which is

eτ(κ1+κ2)

2π
√

(1 − ρ2
12)

exp
{
− 1

2

[ e2κ1τ

1 − ρ12
(X1 + d1(τ) − Y1)

2 +
e2κ2τ

1 − ρ12
(X2 + d2(τ) − Y2)

2

−2ρ12
e(κ1+κ2)τ

1 − ρ12
(X1 + d1(τ) − Y1)(X2 + d2(τ) − Y2)

]}
, (7.26)

for di =
∫ τ

0
γ̄i(v).

In order to apply the solution g̃ obtained by the method of images in (4.25), it is necessary to reduce the above density
function to the form of the density g given in (4.3). Straight forward calculations reveal that this can only be done by
assuming κ1 = κ2 = κ.
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As discussed in Section 3.2 and Section 4.3 when coefficients are time-dependent, the solution

for the heat equation obtained by the method of images approach to handle the zero boundary

condition cannot be applied directly. This is due to the fact that the zero boundary condition of the

function in which we are interested, after being transformed to the heat equation, is no longer at

zero, see for example (3.43). A way to solve this problem is to set the zero boundary condition at

a time varying barrier, which depends on a free parameter β as in Section 3.2. The parameter β

is chosen so as to minimize the deviation between the time varying barrier and the exact barrier.

Therefore, the solution depends on β and will be an approximation to the exact solution. Here,

we extend the approach outlined in Section 4.3 to obtain an approximate solution for the partial

differential equation (7.28).

Denote by P ‡
β

the approximation to the exact solution P ‡ of the partial differential equation (7.28).

The quantity P ‡
β

also satisfies the same partial differential equation, that is

∂P ‡
β

∂τ
=

1

2
e−2κτ

∂2P ‡
β

∂X2
1

+ ρ12e
−2κτ

∂2P ‡
β

∂X1∂X2

+
1

2
e−2κτ

∂2P ‡
β

∂X2
2

+γ̄1(τ)e
−κτ

∂P ‡
β

∂X1

+ γ̄2(τ)e
−κτ

∂P ‡
β

∂X2

. (7.29)

However the zero boundary conditions of the approximate solution P ‡
β

are not the same as for the

exact solution P ‡ at X1 = 0 and X2 = 0 (as shown in (7.24) and (7.25)), but rather

P ‡
β

(X∗
1 (τ), X2, τ) = 0, (7.30)

P ‡
β

(X1, X
∗
2 (τ), τ) = 0, (7.31)

where X∗
1 (τ) and X∗

2 (τ) are time varying barriers close to the X1-axis and X2-axis respectively.

Now, X1 and X2 are restricted to the region X1 ∈ (−∞, X∗
1 (τ)) and X2 ∈ (−∞, X∗

2 (τ)). We

apply the same procedures used in Section 4.3 in this case, and we find that the dynamic forms of

the time varying barriers are

X∗
i (τ) = −

∫ τ

0

γ̄i(v)e
−κvdv − βi

∫ τ

0

e−2κvdv, (i = 1, 2). (7.32)

The coefficients γ̄i(τ) are given in (7.19), and β1 and β2 are the adjustable parameters to be chosen

in some “optimal” sense to control the shape of the time varying barriers X∗
1 (τ) and X∗

2 (τ) so that

they remain as close as possible to the exact barriers X1 = 0 and X2 = 0, respectively. Note that

the initial condition of the approximate solution P ‡
β

is the same as for the exact solution P ‡ in
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(7.23), that is

P ‡
β

(X1, X2, 0) = 1. (7.33)

The solution to the partial differential equation (7.29) can be written as

P ‡
β

(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f ‡
β

(X1, X2, Y1, Y2; τ)P
‡
β

(Y1, Y2)dY1dY2. (7.34)

To obtain the form of the joint transition probability density function f ‡
β , which in the density func-

tion of the stochastic process restricted to (−∞, X∗
1 (τ)) × (−∞, X∗

2 (τ)), in terms to the bivariate

density functions g̃ in (4.25), we transform the partial differential equation (7.29) for P̄ ‡
β

to the

heat equation by setting4

P ‡
β

(X1, X2, τ) = e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

[
eη1X1+η2X2+ξζ ũ(X1, X2, ζ)

]
, (7.35)

= eη1[X1−X∗

1 (τ)]+η2[X2−X∗

2 (τ)]+ξζ ũ(X1 −X∗
1 (τ), X2 −X∗

2 (τ), ζ), (7.36)

where

ζ =

∫ τ

0

e−2κvdv, (7.37)

and ũ(X1, X2, ζ) satisfies the heat equation (4.1) (with τ related by ζ and x1, x2 by X1, X2). The

constants η1, η2 and ξ are derived in Appendix L and given in (4.52)-(4.54).

Substitution of the zero boundary conditions (7.30) and (7.31) into the relation (7.36) yields the

boundary conditions for ũ as5

ũ(0, X2 −X∗
2 (τ), ζ) = 0, (7.38)

ũ(X1 −X∗
1 (τ), 0, ζ) = 0. (7.39)

We note that the zero boundary conditions (7.38)-(7.39) for ũ is same as the zero boundary con-

ditions (4.4)-(4.5) for u. Therefore the solution for the density function g̃ in (4.25) subject to the

zero boundary conditions obtained by the method of images, can now be applied to obtain the ap-

proximate solution P ‡
β

. Substituting the initial condition (7.33) with X1(0) = Y1 and X2(0) = Y2

4A derivation can be found in Appendix L.
5We note that

P
‡

β
(X∗

1 (τ), X2, τ) = 0 = eη1·0+η2[X2−X∗

2
(τ)]+ξζ ũ(0, X2 − X∗

2 (τ), ζ),

P
‡

β
(X1, X

∗
2 (τ), τ) = 0 = eη1[X1−X∗

1
(τ)]+η2·0+ξζ ũ(X1 − X∗

1 (τ), 0, ζ).



7.2. SOLUTION OF THE CLN PARTIAL DIFFERENTIAL EQUATION BY THE METHOD OF IMAGES 87

into the relation (7.36) determines the initial condition of u, which is given by

P ‡
β

(Y1, Y2) = 1 = eη1Y1+η2Y2ũ(Y1, Y2), (7.40)

so that

ũ(Y1, Y2) = e−η1Y1−η2Y2 . (7.41)

Substituting the initial condition (7.41) and the relation (7.36) into (4.6), yields

e−η1[X1−X∗

1 (τ)]−η2[X2−X∗

2 (τ)]−ξζP ‡
β

(X1, X2, τ)

=

∫ 0

−∞

∫ 0

−∞
g̃(X1 −X∗

1 (τ), X2 −X∗
2 (τ), Y1, Y2; ζ)e

−η1Y1−η2Y2P ‡
β

(Y1, Y2)dY1dY2, (7.42)

where the density function g̃ is obtained by the method of images illustrated in Section 4.1 and is

given by (4.25). Equation (7.42) can be simplified to

P ‡
β

(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξζ ×

g̃(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y1, Y2; ζ)P
‡
β

(Y1, Y2)dY1dY2. (7.43)

Therefore, the expression for the approximate solution for the P ‡
β

is obtained. A comparison of

the two equations (7.34) and (7.43), yields the result that

f ‡
β(X1, X2, Y1, Y2; τ) = eη1[X1−X∗

1 (τ)−Y1]+η2[X2−X∗

2 (τ)−Y2]+ξζ ×

g̃(X1 −X∗
1 (τ), X2 −X∗

2 (τ), Y1, Y2; ζ). (7.44)

Next, we work back through the transformation (7.21) (applied to the P̄β function) to obtain the

solution for the original problem, the risk ratio function P̄ . Since P ‡
β

is an approximate solution,

so also is the expression obtained for P̄ . Thus, let P̄β denote the approximate solution to P̄ , and

the approximate solution to (7.20) therefore can be written as

P̄β(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
f̄β(X1, X2, Y1, Y2; τ)P̄β(Y1, Y2)dY1dY2. (7.45)

Substituting the relation (7.21) into the solution (7.43) with the assumption (7.27), yields the ap-

proximate solution P̄β , namely

P̄β(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη1[X1e−κτ−X∗

1 (τ)−Y1]+η2[X2e−κτ−X∗

2 (τ)−Y2]+ξζ ×

g̃(X1e
−κτ −X∗

1 (τ), X2e
−κτ −X∗

2 (τ), Y1, Y2; ζ)P̄β(Y1, Y2)dY1dY2, (7.46)
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where the initial condition for the approximate solution P̄β(Y1, Y2) is the same as for the exact

solution P̄ and equal to 1. By setting τ = 0 in equation (7.21) the initial condition transforms as

P̄β(Y1, Y2) = 1 = P ‡
β

(Y1, Y2).

Substituting the solution for the density function g̃ from (4.25) into (7.46), we obtained the ap-

proximate solution for the risk ratio function as

P̄β(X1, X2, τ) =

∫ 0

−∞

∫ 0

−∞
eη1[X1e−κτ−X∗

1 (τ)−Y1]+η2[X2e−κτ−X∗

2 (τ)−Y2]+ξζ ×[
g(X1e

−κτ −X∗
1 (τ), X2e

−κτ −X∗
2 (τ), Y1, Y2; ζ)

+
m∑

k=1

(−1)kgk(X1e
−κτ −X∗

1 (τ), X2e
−κτ −X∗

2 (τ), Y k
1 , Y

k
2 ; ζ)

]
×

P̄β(Y1, Y2)dY1dY2. (7.47)

Comparing equations (7.45) and (7.47), we obtain for the transition density function appearing in

(7.45) the expression

f̄β(X1, X2, Y1, Y2; τ)

= eη1[X1e−κτ−X∗

1 (τ)−Y1]+η2[X2e−κτ−X∗

2 (τ)−Y2]+ξζ ×[
g(X1e

−κτ −X∗
1 (τ), X2e

−κτ −X∗
2 (τ), Y1, Y2; ζ)

+
m∑

k=1

(−1)kgk(X1e
−κτ −X∗

1 (τ), X2e
−κτ −X∗

2 (τ), Y k
1 , Y

k
2 ; ζ)

]
. (7.48)

Using a similar argument to that used in Subsection 3.1.2, the probability of any path with barriers

at zero, initiating below the barriers X1 < 0 and X2 < 0 at time t0 = 0 and ending up in the

region X1 ∈ (−∞, 0) and X2 ∈ (−∞, 0) at the later time t in the period of time τ = t − t0, is

approximated by

Fβ(X1, X2, t) =

∫ 0

−∞

∫ 0

−∞
f̄β(X1, X2, Y1, Y2; t)dY1dY2. (7.49)

The cumulative probability Fβ(X1, X2, τ) can be interpreted as the joint survival probability that

the absorption at X1 = 0 and X2 = 0 has not yet occurred during the period of time τ .

Note that the approximate solutions P̄β and Fβ obtained by the method of images approach are

only valid for the values of ρ12 given in Table 4.1 and for κ1 = κ2 = κ.
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7.3. Numerical Implementation for the Case of Mean-Reversion

In a similar way to Section 4.4, we can express the solution derived in Section 7.1 in terms of the

bivariate normal distribution function N2(.).

Consider the approximate solution for the joint survival probability (7.49), after some algebraic

manipulations, it can be simplified to

Fβ(X1, X2, τ)

=

∫ 0

−∞

∫ 0

−∞
g(X1e

−κτ + d1(τ), X2e
−κτ + d2(τ), Y1, Y2; ζ)dY1dY2

+
m∑

k=1

(−1)k

∫ 0

−∞

∫ 0

−∞
×

gk(X1e
−κτ + d1(τ), X2e

−κτ + d2(τ), (a
k
1Y1 + bk1Y2), (a

k
2Y1 + bk2Y2); ζ)

eβk
aY1+βk

b Y2dY1dY2, (7.50)

where

di(τ) =

∫ τ

0

γ̄i(v)e
−κvdv. (7.51)

The Y k
1 and Y k

2 are replaced by the relations given in (4.74) and (4.75), the ak’s and bk’s are given

in (4.76)-(4.77), and βk
a and βk

b are defined in (4.83)-(4.84).

Following similar procedures and carrying out the change of variables shown in Appendix I, the

first integral in (7.50) can be written in terms of the N2(.) as√
(1 − ρ2

12)

AB(1 − ρ̃2)
exp

(
− h̃

2ζ(1 − ρ2
12)

)
×N2(ã, b̃, ρ̃).

(7.52)

where

ρ̃ = − E

2
√
AB

, (7.53)

ã =
√

2(1 − ρ̃2) ũ1 =

√
A

ζ

(
C

2A
− Eh2

4Ah1

) √
1 − ρ̃2

1 − ρ2
12

, (7.54)

b̃ =
√

2(1 − ρ̃2) ṽ1 =
1√
ζ

√
1 +

E2

4Ah1

h2

2
√
h1

√
1 − ρ̃2

1 − ρ2
12

, (7.55)
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and

h1 = B − E2

4A
, h2 = D − CE

2A
, h̃ = H − C2

4A
− h2

2

4h1

, (7.56)

with
A = 1, B = 1,

C = 2(−X1 + ρ12X2), D = 2(−X2 + ρ12X1),

E = −2ρ12, H = X
2
1 + X

2
2 − 2ρ12X1X2. (7.57)

Here Xi = Xie
−κτ + di(τ) for i = 1, 2.

Similarly, the second integral (7.50) can be expressed in terms of N2(.) as

m∑
n=1

(−1)k

√
(1 − ρ2

12)

AkBk(1 − ρ̃2
k)

exp

(
− h̃k

2ζ(1 − ρ2
12)

)
×N2

(
ãk, b̃k, ρ̃k

)
. (7.58)

The expressions for ρ̃k, ãk, b̃k and h̃k are same as in (7.53)-(7.56) after replacing Ak, Bk, Ck, Dk

and Ek with

Ak = (ak
1)

2 + (ak
2)

2 − 2ρ12a
k
1a

k
2 ,

Bk = (bk1)
2 + (bk2)

2 − 2ρ12b
k
1b

k
2 ,

Ck = 2X1(ρ12a
k
2 − ak

1) + 2X2(ρ12a
k
1 − ak

2) − ζβk
a ,

Dk = 2X1(ρ12b
k
2 − bk1) + 2X2(ρ12b

k
1 − bk2) − ζβk

b ,

Ek = 2(ak
1b

k
1 + ak

2b
k
2 − ρ12b

k
1a

k
2 − ρ12a

k
1b

k
2) . (7.59)

The approximate solution is in an analytical form, however, it only works for identical values

of the mean-reverting speed parameters (see the assumption in (7.27)). We also stress that the

approximate solution obtained by the method of images approach in only valid for the values of

correlation coefficient ρ12 given in Table 4.1. Hence this solution can only be used as a benchmark

and numerical methods are needed for the case of general values of correlation ρ12 as well as the

case that κ1 
= κ2
6. The alternating direction implicit schemes developed in Section 5.1 can be

extended to cover this problem. However, the main drawback is lack of knowledge of the stability

conditions of the Douglas-Rachford scheme when the drift coefficients of the partial differential

equation (7.15) depend on the spatial variables X1, X2. So, in order to study the impact on default

6The use of identical values of the speed of mean-reversion and the selected values of the correlation coefficient in this
chapter is purely a technical requirement, so that the analytical solutions can be derived. It does not seem possible to
give any economic interpretation to these requirements.
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correlations with leverage ratios following mean-revering processes, the Monte Carlo scheme that

was developed in Section 5.2 can be extended to cover in this case, to which we turn next.

7.4. A Monte Carlo Simulation Scheme

In this section we will develop a Monte Carlo scheme to simulate the joint survival probability

function when the leverage ratios are mean-reverting as well as providing a numerical solution in

all situations of interest it will also serve as a benchmark for the approximate solution obtained

by the method of images. Recall the partial differential equation for the risk ratio function (7.11)

derived in the previous section, applying the Feynman-Kac theorem, the stochastic differential

equations corresponding to equation (7.11) are

dL1 =
[
κ1

(
ln θ̃1(t) − lnL1

)
+ ρ1rσ1σrb(t)

]
L1dt+ σ1L1dZ̃1, (7.60)

dL2 =
[
κ2

(
ln θ̃2(t) − lnL2

)
+ ρ2rσ2σrb(t)

]
L2dt+ σ2L2dZ̃2, (7.61)

where Z̃1 and Z̃2 are Wiener processes under the risk-neutral measure P̃. The Wiener increments

dZ̃1 and dZ̃2 are correlated with Ẽ[dZ̃1dZ̃2] = ρ12dt.

We can also rewrite (7.60) and (7.61) in terms of uncorrelated Wiener processes W1, W2, and

change the variables to the log-leverage ratios as defined in (3.82), then we have

dx1 =

[
κ1

(
ln θ̃1(t) − ln L̂1 − x1

)− 1

2
σ2

1 + ρ1rσ1σrb(t)

]
dt+ σ1dW1, (7.62)

dx2 =

[
κ2

(
ln θ̃2(t) − ln L̂2 − x2

)− 1

2
σ2

2 + ρ2rσ2σrb(t)

]
dt+ σ2

(
ρ12dW1 +

√
1 − ρ2

12dW2

)
.

(7.63)

To simulate the system (7.62) and (7.63), we employ the Monte Carlo approach developed in

Section 5.2, the only required change being to replace Step 2.2. with the following:-

Step 2.2∗. In discrete time equations (7.62)-(7.63) become

x1(tj) = x1(tj−1) +
[
κ1

(
ln θ̃1(tj−1) − ln L̂1 − x1(tj−1)

)
−1

2
σ2

1 + ρ1rσ1σrb(tj−1)

]
Δt+ σ1

√
Δte1, (7.64)

x2(tj) = x2(tj−1) +
[
κ2

(
ln θ̃2(tj−1) − ln L̂2 − x2(tj−1)

)
−1

2
σ2

2 + ρ2rσ2σrb(tj−1)

]
Δt+ σ2

√
Δtê2, (7.65)

where ê2 = ρ12e1 +
√

1 − ρ2
12e2.
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TABLE 7.1. Accuracy of the approximate solution (7.49) for the joint survival
probabilities based on the numerical implementation developed in Section 7.3,
which is a single-stage approximation (2-D MOI single-stage approx.) for the con-
stant target ratios case, compared to the Monte Carlo results based on the scheme
developed in Section 7.4. The constant target ratios take the values θ̃1 = θ̃2 =
31.5% and κ = 0.1. Other parameters used are L1 = 73.2%, L2 = 31.5%,
σ1 = 0.299, σ2 = 0.213, μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0 and ρ12 = 0.

Using a total of M simulation paths, the joint survival probability is approximated by JSP(tj) =∑M
m=1JSPm(tj)/M with tj = jΔt.

7.5. Accuracy

This section discusses the accuracy of the results obtained by the method of images in Section 7.1

and the Monte Carlo method in Section 7.4.

As discussed in Section 5.3, when the coefficients are time-dependent, the solution obtained by the

method of images approach is not exact, but an approximate one obtained by using the time varying
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TABLE 7.2. Accuracy of the approximate solution (7.49) for the joint survival
probabilities based on the numerical implementation developed in Section 7.3,
which is a single-stage approximation (2-D MOI single-stage approx.) for the time
varying target ratios case, compared to the Monte Carlo results based on the scheme
developed in Section 7.4. The time-dependent target ratios are based on equa-
tion (7.66) with θ̃i(0) = 73.2% and θ̃i(15) = 31.5%. Other parameters used are
L1 = 73.2%, L2 = 31.5%, σ1 = 0.299, σ2 = 0.213, μ̃1 = μ̃2 = 0, ρ1r = ρ2r = 0,
ρ12 = 0 and κ = 0.1.

barrier approach (see Section 4.3). The drawback of the time varying barrier method is that the

accuracy decreases as the time period is increased. Table 7.1 and Table 7.2 show that the relative

percentage error compared to the Monte Carlo results is less than 1% for the first few years, but the

relative percentage error increases rapidly with time from 1-2% at 4 and 5 years, to 23% at 15 years.

This is due to the fact that the solution for the joint survival probability developed in Section 7.3

is based on the single-stage approximation. A way to deal with this problem is to develop the

multi-stage approximation, which for the one-firm case has been discussed in Section 3.2. The

idea is to reduce the deviation of the time varying barrier from the exact barrier by the multi-stage
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approximation, so as to increases the accuracy of the method. Here, we are more interested in

studying the impact of mean-reverting processes on default correlations, and this will do by use

of the Monte Carlo simulation scheme. The analysis of Section 7.3 and the numerical results of

this section have nevertheless indicated that the time varying barriers approach is a feasible one

for developing benchmark solutions. However to bring it to the implementation stage it needs to

be extended by the multistage approximation technique. This development is beyond the scope of

this thesis but is a very fruitful avenue of future research.

7.6. The Impact of Mean-Reverting Processes for Leverage Ratios on JSP & DC

In this section, we discuss impact on joint survival probabilities and default correlations of firms

having mean-reverting leverage ratios. For the one-firm mean-reverting leverage ratio structural

models, Collin-Dufresne & Goldstein (2001) and Hui et al. (2006) are the most representative.

These two models investigate the effect on credit spreads and default probabilities of a firm’s

leverage ratio following a mean-reverting process. Collin-Dufresne & Goldstein (2001) (CDG)

consider the leverage ratio to be mean-reverting to a constant target ratio and they observe that

this target ratio is close to the average level of BBB-rated firms. CDG show that credit spreads

are larger for low credit quality firms, which is consistent with empirical findings. The major

difference between the CDG model and that of Hui et al. (2006) is that the latter authors consider

the leverage ratio to be mean-reverting to a time-dependent target ratio. They point out that the

time-dependent target ratio reflects the movement of a firm’s initial target ratio towards a long-term

target ratio over time. Hui et al. (2006) show that their model results in default probabilities that

are consistent with some empirical findings.

The major feature of both models is the mean-reversion of the leverage ratio to a constant target

ratio and to a time-dependent target ratio. Therefore, in this section, we are interested in studying

how these two features affect the joint survival probabilities and default correlations. We use

CCC-CCC and CCC-BBB paired firms as an illustration. The constant values of θ̃i are set to

31.5% (which represents the average leverage ratio of BBB-rated firms), which imply that the

target leverage ratios [ln θ̃i(t) + ln L̂i − σ2
i /(2κi)] are close to 36%, the long term leverage that

was obtained in the empirical investigations of Collin-Dufresne & Goldstein (2001). For time-

dependent θ̃i, we follow the setting in Hui et al. (2006), who use the simple linear time-dependent

function

θ̃i(t) = θ̃i0(1 − ηt), (7.66)
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FIGURE 7.1. The impact of constant target ratios and time-dependent target ratios
on joint survival probabilities for CCC-CCC paired firms. Initial leverage for the
CCC-rated firm is L1 = L2 = 73.2% and the volatilities are σ1 = σ2 = 0.299.
Other parameters used are ρ1r = ρ2r = 0 and ρ12 = −0.5 and ρ12 = 0.5. The
constant target ratio is θ̃i = 31.5% and the time-dependent target ratio is based on
equation (7.66) with θ̃i(0) = 73.2% and θ̃i(15) = 31.5%.

.

where θ̃i0, η are constants and their values are chosen such that the initial value of the long term

leverage is very high at a value for a CCC-rated firm, that is θ̃i(0) = 73.2% and is close to the

value of a BBB-rated firm towards the end of the time period, so that θ̃i(15) = 31.5%.

We continue to assume κ1 = κ2 ≡ κ, with the value κ = 0.1 that is used in Hui et al. (2006). Other

parameters are based on those used in Subsection 6.1. The default barriers of the two-firms are set

at L̂1 = L̂2 = 1 as previously. The leverage ratio levels and values of volatility used are given in

Table 6.1. The time period considered is fifteen years as previously.

7.6.1. Joint Survival Probabilities.

Figures 7.1 and 7.2 plot the joint survival probability with constant and time-dependent target

ratios for CCC-CCC and CCC-BBB paired firms, respectively. The use of constant target ratios

represents the Collin-Dufresne & Goldstein (2001) model in the two-firm case, which generates

joint survival probabilities higher than those obtained of using the time-dependent target ratio, a

result which holds for both positive and negative correlation ρ12. From Figure 7.2 the effect of the
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FIGURE 7.2. The impact of constant target ratios and time-dependent target ratios
on joint survival probabilities for CCC-BBB paired firms. Initial leverage for the
CCC-rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5% and the volatil-
ities are σ1=0.299, σ2 =0.213. Other parameters used are ρ1r = ρ2r = 0 and
ρ12 = −0.5 and ρ12 = 0.5. The constant target ratio is θ̃i = 31.5% and the time-
dependent target ratio is based on equation (7.66) with θ̃i(0) = 73.2% and θ̃i(15) =
31.5%.

correlation coefficient ρ12 is more pronounced for time varying target ratios and for lower credit

quality paired firms (as can be seen when comparing Figure 7.1 to Figure 7.2).

7.6.2. Default Correlations.

Figures 7.3-7.4 graphs the defaults correlation with constant and time-dependent target ratios for

CCC-CCC and CCC-BBB paired firms, respectively. Figure 7.3 shows that both models generate

similar values of the default correlation in the case of CCC-CCC paired firms. When considering

a pairing of a low rated firm with a higher rated firm, the use of constant target ratios generates

smaller values of default correlations than the use of time-dependent target ratios, as indicated

in Figure 7.4. We also observe that when firms are positively correlated (ρ12 > 0), both models

generate similar default correlations, and when firms are negatively correlated (ρ12 < 0), the use

of time-dependent target ratio generates larger values of default correlations (in absolute value).
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FIGURE 7.3. The impact of constant target ratios and time-dependent target ratios
on default correlations for CCC-CCC paired firms. Initial leverage for the CCC-
rated firm is L1 = L2 = 73.2% and the volatilities are σ1 = σ2 = 0.299. Other
parameters used are ρ1r = ρ2r = 0 and ρ12 = −0.5 and ρ12 = 0.5. The constant
target ratio is θ̃i = 31.5% and the time-dependent target ratio is based on equation
(7.66) with θ̃i(0) = 73.2% and θ̃i(15) = 31.5%.

7.7. Overview

In this chapter, we have extended the framework of the two-firm model to incorporate mean-

reverting leverage ratios, in order to capture the effect of firms altering their capital structures. We

also extended the analytical solution developed in Section 4.1 by the method of images to cover

this case. However, the solution obtained by the method of images is only valid for certain values

of correlation coefficient ρ12 only, and here is further limited by the condition that speeds of mean-

reversion must be equal. Therefore, the Monte Carlo scheme based on Section 5.2 is extended to

cover the general values of ρ12 as well as unequal speeds of mean-reversion. The numerical results

extend the models of Collin-Dufresne & Goldstein (2001) and Hui et al. (2006) to the two-firm

case, in which the use of constant target ratios generate higher joint survival probability values and

smaller default correlation values, and the use of time-dependent target ratio generates lower joint

survival probabilities and larger default correlations. These findings are summarized in Table 7.3.
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FIGURE 7.4. The impact of constant target ratios and time-dependent target ratios
on default correlations for CCC-BBB paired firms. Initial leverage for the CCC-
rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5% and the volatilities are
σ1=0.299, σ2 =0.213. Other parameters used are ρ1r = ρ2r = 0 and ρ12 = −0.5

and ρ12 = 0.5. The constant target ratio is θ̃i = 31.5% and the time-dependent
target ratio is based on equation (7.66) with θ̃i(0) = 73.2% and θ̃i(15) = 31.5%.

Mean-reverting processes Impact on JSP Impact on DC
(in absolute value)

Constant target ratio ⇑ ⇓

Time varying target level ⇓ ⇑

TABLE 7.3. A summary of the impact on joint survival probabilities and default
correlations of mean-reverting processes for the leverage ratios.



CHAPTER 8

One-Firm Dynamic Leverage Ratio Model with Jumps

The uncertainty in the previous chapters was modelled by Wiener processes, the essential idea of

which is that uncertain events evolve not too rapidly. However in many area of finance, especially

in the area of credit risk, it is sudden, abrupt changes that are of interest, for example the sudden

default of a firm or a sovereign borrower. A very useful way of capturing such sudden changes in

financial markets is to add to the Wiener process component of uncertainty a jump process. Such a

framework was first developed in finance by Merton (1976) who proposed a framework for valuing

option prices when the underlying stock price follows a jump-diffusion process. This allows one

to capture the ’abnormal’ change in price due to the sudden arrival of important news concerning

the stock.

In credit risk modelling, if one uses only continuous diffusion structural models, firms can never

default by surprise. Zhou (1997) argues that in reality, a firm can default either by a gradual diffu-

sion process, or by surprise due to unexpected external shocks. This idea combines the structural

and reduced-form approaches, as shown in Zhou (2001b) who extended the framework for the

pricing of corporate bonds by assuming the firm value variable follows a jump-diffusion process.

To capture the sudden external shocks, in this chapter, we extend the Hui et al. (2007) dynamic

leverage ratio model by assuming that the dynamics of the leverage ratio follow a jump-diffusion

process. We note that to the best of our knowledge there has been no work on the one-firm model

with leverage ratio following a jump-diffusion process in literature. So this chapter might pro-

vide some insight into credit risk analysis when the firm’s leverage ratio follows a jump-diffusion

process.

Section 8.1 presents the framework of the one-firm dynamic leverage ratio model with jump risks.

In Section 8.2, we discuss how to extend the Monte Carlo scheme to cover this case. Section 8.3

discuss the choice of parameters for evaluation of the individual default probabilities. Section 8.4

shows the impact on default probability of the parameters that characterise the jump component:

in particular the jump size mean, the jump size volatility and the jump intensity. In Section 8.5, we

will seek for the optimal values of average jump size by calibrating to S&P historical default data

for different credit ratings. Section 8.6 will give an overview of the results of the chapter.

99
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8.1. The Framework

We assume that the firm’s leverage ratio follows a jump-diffusion process. Assumption 1 developed

in chapter 3, in this case will become

Assumption 1 ′′ . Let L denote the leverage ratio of the firm. The dynamics of L are given by the

jump-diffusion process

dL

L
= (μL − λqkq)dt+ σLdZL + (Y − 1)dq , (8.1)

where μL is the instantaneous expected drift rate of the leverage ratio per unit time , σL is the

instantaneous volatility of the proportional change of the leverage ratio per unit time conditional

on no jumps, ZL is a standard Wiener process driving the continuous change of the leverage ratio

under the historical measure P , q is a Poisson counting process with intensity λq so that

dq =

⎧⎨⎩ 1 with probability λqdt ,

0 with probability (1 − λqdt) .
(8.2)

(Y − 1)1 is the random variable percentage change in the leverage ratio level if the Poisson event

occurs, where Y is log-normally distributed: lnY ∼ N(μq − σ2
q/2, σ

2
q ) with the expected mean

value kq ≡ E[Y − 1] for E is the expectation operator under the historical measure P.

Given that the Poisson event occurs, the impact of the jump on the leverage ratio level is determined

by drawing Y from the distribution G(Y ). If L(t−) is the leverage ratio level at time t− just prior

to the jump, then the leverage ratio level at time t+ immediately after the jump is L(t+) = L(t−)Y .

The successive draws from G(Y ) are independently and identically distributed.

Let P (L, r, t) be the price of a corporate bond written on the underlying asset, this will depend on

L, r and t. Under Assumptions 1′′ , 2, 3, 4 and adapting to the current situation Merton’s (1976)

argument for hedging jump risk, the bond price P (L, r, t) satisfies the integro-partial differential

equation (IPDE)

−∂P (L, r, t)

∂t
=

1

2
σ2

LL
2∂

2P

∂L2
+

1

2
σ2

r

∂2P

∂r2
+ ρLrσLσrL

∂2P

∂L∂r

+(μ̃L − λ̃qk̃q)L
∂P

∂L
+ κr[θ̃r − r]

∂P

∂r
− rP

+λ̃q

∫ ∞

0

[P (LY, r, t) − P (L, r, t)]G̃(Y )dY, (8.3)

1Note that Y no longer has the same meaning as in previous chapters.
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for L ∈ (0, L̂) and subject to boundary conditions

P (L, r, T ) = 1,

P (L̂, r, t) = 0. (8.4)

The parameters μ̃L, θ̃r incorporate the market prices of risk associated with the pure diffusion

uncertainly driving the leverage ratio λL (assumed constant here) and interest rate process λr (as-

sumed constant here) respectively as

μ̃L = μL − λLσL,

θ̃r = θr − λrσr

κr

. (8.5)

Following the discussion in Cheang & Chiarella (2007), the Poisson process under the risk-neutral

measure P̃ has a new intensity rate λ̃q and a new distribution G̃(Y ) for the jump-sizes. Using μ̃q to

denote the jump size mean under the risk-neutral measure, the distribution G̃(Y ) is given by2

G̃(Y ) =
1

Y σq

√
2π

exp
{
− [lnY − (μ̃q − σ2

q/2)]2

2σ2
q

}
, (8.6)

so that the expected jump-increment under the risk-neutral measure is

k̃q = Ẽ[Y − 1] =

∫ ∞

0

(Y − 1)G̃(Y )dY, (8.7)

and k̃q = eeμq − 1.

Using the same technique of separation of variables as was used in Chapter 3, the bond price can be

expressed as a product of the risk-free bond priceB(r, t) and a discounting factor function P̄ (L, t),

so that

P (L, r, t) = B(r, t)P̄ (L, t). (8.8)

2Cheang & Chiarella (2007) introduce a Radon-Nikodým derivative process that induces the change of measure from
the market measure to the risk-neutral measure for the jump-arrival process. They derive the relationships for the jump
intensity and the distribution of the jump-sizes (represented by the moment of generating function) between the risk-
neutral measure and the market measure. The relation shows that if the distribution of jump size in the market measure
comes from an exponential family, then the distribution of jump size under the risk-neutral measure also comes from
the same exponential family but with different parameters.
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The quantity P̄ (L, t) as discussed in Chapter 3 it can be viewed as a risk ratio function and by

substitution of (8.8) into (8.3) it is found to satisfy the integro-partial differential equation

−∂P̄ (L, t)

∂t
=

1

2
σ2

LL
2∂

2P̄

∂L2
+ (μ̃L + ρLrσLσrb(t) − λ̃qk̃q)L

∂P̄

∂L

+λ̃q

∫ ∞

0

[P̄ (LY, t) − P̄ (L, t)]G̃(Y )dY, (8.9)

subject to boundary conditions

P̄ (L, T ) = 1,

P̄ (L̂, t) = 0, (8.10)

with b(t) is given in (3.81).

8.2. Monte Carlo Simulations

It is difficult to solve the first-passage-time problem of the integro-partial differential equation (8.9)

in closed-form. However, a general approach to solving it numerically is the Monte Carlo method.

By the Feynman-Kac formula for the jump-diffusion processes ( Gikhman & Skorokhod (1972)),

the stochastic differential equation linked to the IPDE (8.9) is

dL

L
=
[
μ̃L + ρLrσLσrb(t) − λ̃qk̃q

]
dt+ σLdZ̃L + (Y − 1)dq, (8.11)

where Z̃L is a Wiener process under a risk-neutral measure P̃. Note that the jump size Y now is

drawn from the distribution of G̃(Y ) given in (8.6) and the Poisson process q now has intensity λ̃q.

To evaluate the probability of default PD (= 1 − F ), we follow the Monte Carlo approach in

Section 5.2, and replace Step 2 and Step 3 by

Step 2′ . Do the MC simulations M(m = 1, 2, ...,M) times.

2.1.′ For the mth simulation, at the jth time step, generate an independent normal random

number e from the N(0, 1) distribution;

2.2.′ Let x = ln(L/L̂), then (8.11) becomes

x(tj) = x(tj−1) +
[
μ̃L + ρLrσLσrb(tj−1) − 1

2
σ2

L − λ̃qk̃q

]
Δt+ σL

√
Δte+H, (8.12)

where H is the jump component.

We use the general method suggested in Glasserman (2004) to simulate H from tj−1 to tj consist-

ing of the following steps:
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2.3.′ Generate the arrival of the jump event ω in the time interval (tj − tj−1):

ω ∼ P
(
λ̃q(tj − tj−1)

)
;

* if ω = 0, set H = 0, that is no jump occurs in this time interval and go to Step 2.2′ ;

* if ω 
= 0, generate lnY from its distribution, namely lnY ∼ N(μ̃q − σ2
q/2, σ

2
q ), and

set H = lnY , then go to Step 2.2′ .

Here P
(
λ̃q(tj − tj−1)

)
is a Poisson process and is simulated by the inverse transform method and

will be discussed in more detail in the next section.

Step 3′ . Check the boundary condition: if x(tj) ≥ 0, then PDm(tj)=1, and go to the next simulation

m+1. Otherwise PDm(tj)=0, and go to the next time step j+1. Set PD(tj) =
∑M

m=1PDm(tj)/M ,

which is the approximate value of the probability of default.

8.2.1. Generating Poisson Samples.

If {ω(t), t ≥ 0} is a Poisson process, then the number of arrivals in any time interval of length Δt

is a Poisson random variable with parameter λ̃qΔt (where λ̃q is a positive real number). That is

P(ω(t+ Δt) − ω(t) = k) = e−φφ
k

k!
, φ = λ̃qΔt ; k = 0, 1, 2, ...

A simple method to generate Poisson samples is to generate exponential random variables Xi =

− log(Ui)/φ from independent uniform Ui’s, and take ω to be the largest integer for which X1 +

... +Xω ≤ 1. Alternatively take ω to be the largest integer for which U1 × · · · × Un ≥ e−φ. The

following steps and table illustrate this method (see Figure 8.1):

1. set a = e−φ, c = 1 and i = 0;

2. then loop while (c >= a){ generate Ui+1 ∼ U(0, 1), c = cUi+1 and i = i+ 1};

3. return ω = i.

Set a = e−φ,

b = 1,

i = 0,

Loop while (c >= a)

generate Ui∼U(0,1),

c = cUi,

i = i+ 1.

Return

ω = i.
� �

FIGURE 8.1. A simple method to generate Poisson samples.
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However, this method is rather slow. As φ increases, e−φ decreases, so the algorithm needs to

keep looping for an ever increasing time to achieve the condition (c < a) and so exit the while

loop. This can be improved by the inverse transform method, the idea of which is to search for the

smallest ω at which F (ω) ≤ U . Here F (ω) denotes the cumulative distribution function, that is

F (ω) = P(0)+P(1)+...+P(ω), and P(k+1) = P(k)φ/(k+1). The main steps of the algorithm

are as follows (see Figure 8.2):

1. set F = p = e−θ and i = 0;

2. generate U ∼ U(0, 1);

3. while loop (U > F ) { i = i+ 1, p = pθ/i and F = F + p};

4. return ω = i.

Set F = p = e−φ,

i = 0,

generate U ∼ U(0, 1)

While (U > F )

i = i+ 1,

p = pφ/i,

F = F + p

Return

ω = i.
� �

FIGURE 8.2. The inverse transform method algorithm to generate Poisson samples.

Note that the number of jump arrivals ω in the time interval Δt generated by the above methods

can be larger than one. However, the definition (8.2) assumes no more than one jump can occur in

the period of time Δt. To fulfill the assumption while using these methods, a relatively small Δt

should be used. The idea is that if the time interval Δt is sufficiently small, the probability of two

jumps occurring is negligible because (λ̃qΔt)
2 is much lower than (λ̃qΔt). To illustrate suppose,

for example that Δt = 1 year and λ̃q = 0.1 per year, then the probability of the occurrence

of two jumps in one year is given by P(ω = k) = e−eλqΔt(λ̃qΔt)
k/k! = 0.45% (for k = 2,

Δt = 1 and λ̃q = 1). However, if Δt = 1/365, then the probability of two jumps in one year is

P(ω = 2) = 3.75 × 10−6 %, which is negligible.

8.3. Choice of Parameters

The choice of parameters for the pure diffusion component, is based on those described in Sec-

tion 6.1. The default barrier of the firm is set at L̂ = 1. The leverage ratio levels L and values of

volatility σL of individual firms are given in Table 6.1. To isolate the effects of the drift term of the



8.3. CHOICE OF PARAMETERS 105

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

Time

PD(%)

CCC-rated firm with μ̃q = 0.3

CCC-rated firm with μ̃q = 0.5

A-rated firm with μ̃q = 0.5

A-rated firm with μ̃q = 0.3

FIGURE 8.3. The impact of the jump size mean on the default probability for CCC
and A-rated firms. Initial leverage for the CCC-rated firm is L = 73.2% and the
volatility is σL = 0.299 and for the A-rated firm it is L = 17.2% and the volatility
is σL = 0.184. Other parameters used for both firms are μ̃L = 0, ρLr = 0. The
values of jump size mean takes μ̃q = 0.3 and μ̃q = 0.5, λ̃q = 0.1 and σ2

q = 0.25.

diffusion component and correlation with the interest rate process, we set μ̃L=0 and ρLr=0. The

time horizon used is fifteen years which is the same as in previous chapters.

The choice of jump intensity and jump size volatility is based on Zhang & Melnik (2007), who

extend the Zhou (2001b) model to the multi-firm case, where firms’ asset values follow jump-

diffusion processes. Zhang & Melnik (2007) assume that the arrival of the jump event is the same

for each firm. This corresponds to assuming that the jump event is caused by some economy wide

macroeconomic factor that effects all firms at the same time, regardless of their rating. However

the impact of the jump event when it occurs, will be different for firms of different credit rating.

Following their setting, we assume that the jump intensity is the same for the different credit rated

firms and it is equal to 0.1, that is λ̃q = 0.1. Zhang & Melnik (2007) calibrate their model to market

data and obtained the optimal values of jump size volatility of 0.5 for an A-rated firm. Here, we

assume that the jump size volatility of the leverage ratio is the same as the jump size volatility of

the firm value, and so we take σq = 0.5 for each firm. Therefore, we have left one parameter,

the jump size mean that remains free and we choose it to calibrate to the S&P historical data in

Section 8.5.
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FIGURE 8.4. The impact of jump size volatility on the default probability for CCC
and A-rated firms. Initial leverage for the CCC-rated firm is L = 73.2% and the
volatility is σL = 0.299 and for the A-rated firm is L = 17.2% and the volatility is
σL = 0.184. Other parameters used for both firms are μ̃L = 0, ρLr = 0. The jump
size volatility takes the valueσ2

q = 0.25 and σ2
q = 0.5, and we set μ̃q = 0 and

λ̃q = 0.1.

The numerical results presented in the following subsection are based on the Monte Carlo scheme

developed in the previous section based on the dynamics (8.11), which is under a risk-neutral

measure. The number of time steps n per year is 36,500, and the number of paths M used is

M = 500, 000. We do not know the exact solution for the jump-diffusion model here, so to the

accuracy of the Monte Carlo results we use the confidence limits generated. Given the Monte

Carlo simulated results for the probability of default PD(t) with M paths, the standard deviation

(SD) measures the amount of error in PD(t) when it is used to estimate the exact value of PDexact,

and it is given by

SD =

√∑M
m=1 PD2

m(t) − (∑M
m=1 PDm(t)

)2
/M

M − 1
. (8.13)

From Snedecor & Cochran (1991) (see Chapter 4), with knowledge of the standard deviation (SD),

the 95% confidence interval for exact value of PDexact can be expressed as the pair of inequalities

PD(t) − 1.96ε ≤ PDexact ≤ PD(t) + 1.96ε, (8.14)
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FIGURE 8.5. The impact of jump intensity on the default probability for CCC and
A-rated firms. Initial leverage for the CCC-rated firm it is L = 73.2% and the
volatility is σL = 0.299 and for the A-rated firm it is L = 17.2% and the volatility
is σL = 0.184. Other parameters used for both firms are μ̃L = 0, ρLr = 0. The of
jump size intensity takes the values λ̃q = 0.1 and λ̃q = 0.2, and we set σ2

q = 0.25
and μ̃q = 0.3.

where standard error ε is given by

ε =
SD√
M
. (8.15)

The 95% confidence interval for PDexact means that there is a 95% chance for the Monte Carlo

result of PD(t) to lie between PDexact − 1.96ε and PDexact + 1.96ε.

Using M = 500, 000 paths for the simulation of the default probabilities, the maximum standard

deviation and standard error over time for the Monte Carlo simulated default probabilities of a

CCC-rated firm (for example) is SD=0.4998 and ε=0.0007, respectively. Therefore, with 95%

confidence PD(t) will lie between PDexact − 0.00137 and PDexact + 0.00137.

8.4. The Impact of Jump Risks on Default Probabilities

In this section, we study the impact of jump risks on individual default probabilities for CCC and

AA-rated firms. To illustrate the effect of average jump size on the default probability, we vary the

jump size mean value from μ̃q = 0.3 to μ̃q = 0.5.
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FIGURE 8.6. Comparing the best fit to the observed S&P default probabilities with
the jump-diffusion model and with the pure diffusion model for a CCC-rated firm.
The initial leverage for the CCC-rated firm is L = 73.2% and the volatility is σL =
0.299. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0, ρLr =

0, μ̃q = 0.3, σ2
q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the drift is

μ̃L = −0.007.

Figure 8.3 shows the default probability for A and CCC rated firms over a time horizon of fifteen

years. We note that when the average jump size increases, the default probability for the CCC-

rated firm declines, while the default probability for the A-rated firm rises. This may be due to

the high initial leverage level of low quality firms, so the possibility of jumping down to a lower

leverage level is higher than jumping up to a higher leverage level, therefore the default probability

declines over time. A contrasting effect is at work for the good quality firms, because of the low

initial leverage level, the probability of jumping up to a higher leverage level is more than that of

jumping down to a lower leverage level, so that the default probability rises over time.

In order to study the effect of jump size volatility and of jump intensity, we vary the value of jump

size variance from σ2
q = 0.25 to σ2

q = 0.5, and the jump intensity from λ̃q = 0.1 to λ̃q = 0.2,

which corresponds respectively to one jump per ten years and one jump per five years.

Figure 8.4 plots the default probabilities for the CCC-rated firm and A-rated firm as a function of

time for different values of the jump size volatility and Figure 8.5 plots the default probabilities for

these two firms for different values of the jump intensity. We observe that the default probability

for the CCC-rated firm declines, while the default probability for the A-rated firm rises, as in
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FIGURE 8.7. Comparing the best fit to the observed S&P default probabilities with
the jump-diffusion model and with the pure diffusion model for a B-rated firm. The
initial leverage for the B-rated firm is L = 53.8% and the volatility is σL = 0.270.
Other parameters used for the jump-diffusion model (JP) are μ̃L = 0, ρLr = 0,
μ̃q = −0.5, σ2

q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the drift is
μ̃L = 0.018.

Figure 8.3, with the increase in the average jump size. The same explanation as was given to

explain the results in Figure 8.3 applies here, because of the high initial leverage ratio low credit

quality firms have a higher probability of jumping down to a lower leverage level, while the low

initial leverage ratio of good credit quality firms means that they have higher probability of jumping

up to a higher leverage level.

8.5. Calibration of the Average Jump Size to the Historical Data

In this section, we calibrate the model to the S&P historical data. We set the jump intensity at

λ̃q = 0.1 and jump size variance at σ2
q = 0.25 (as discussed in Section 8.3) and assume that they

are the same for different credit rated firms. We leave the average jump size free to adjust and

seek its optimal value so as to best fit the model to the S&P historical default rates. We vary the

values of the average jump size μ̃q to fit the model calculated default probabilities (PD) to the S&P

historical default rates (SP) by finding the minimum root mean square derivation RMSD over a
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FIGURE 8.8. Comparing the best fit to the observed S&P default probabilities with
the jump-diffusion model and with the pure diffusion model for a BB-rated firm.
The initial leverage for the BB-rated firm is L = 49.5% and the volatility is σL =
0.241. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0, ρLr =

0, μ̃q = 4, σ2
q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the drift is

μ̃L = −0.008.

time horizon of tN = 15 years3, that is :

RMSD =

√∑tN
t=1

(
PD(t) − SP(t)

)2
tN

. (8.16)

We denote by μ̃∗
q the value of the best fit and of course this value will be different for each rating

class. Table 8.1 gives the values of μ̃∗
L for each rating class. In order to compare the performance

of dynamic leverage model with jump risks to the model without jump (that is the Hui et al. (2007)

model where leverage ratio follows the geometric Brownian motion), we also calibrate the Hui

et al. (2007) model to the historical data, by seeking the optimal values of the drift rate μ̃L of the

leverage ratio when it follows a geometric Brownian motion, to fit the model to the S&P historical

default rates for each rating class and their values (namely μ̃∗
L) are given in Table 8.1.

3We take the time horizon of fifteen years as S&P historical data is available for up to fifteen years.
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FIGURE 8.9. Comparing the best fit to the observed S&P default probabilities with
the jump-diffusion model and with the pure diffusion model for a BBB-rated firm.
The initial leverage for the BBB-rated firm is L = 31.5% and the volatility is σL =
0.213. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0, ρLr =

0, μ̃q = −0.3, σ2
q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the drift

is μ̃L = 0.002.

AAA AA A BBB BB B CCC

μ̃∗
q 1.1 0.6 0.3 -0.3 0.4 -0.5 0.3

μ̃∗
L 0.16 0.08 0.039 0.002 -0.008 0.018 -0.007

TABLE 8.1. Calibrating to S&P data. The first row gives the optimal values of the

jump component for different credit ratings. The second row gives the optimal drift

of a diffusion model for different credit ratings.

Figure 8.6 plots the default probability of a CCC-rated firm with the leverage ratio following the

geometric Brownian Motion (GBM) with optimal drift (μ̃∗
L) and under the jump-diffusion process

(JP) (μ̃∗
q) with optimal jump size, and compares these to the S&P historical data. We observe that
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FIGURE 8.10. Comparing the best fit to the observed S&P default probabilities
with the jump-diffusion model and with the pure diffusion model for an A-rated
firm. The initial leverage for the A-rated firm is L = 17.2% and the volatility is
σL = 0.184. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0,
ρLr = 0, μ̃q = 0.3, σ2

q = 0.25, λ̃q = 0.1 . For the pure diffusion model (GBM), the
drift is μ̃L = 0.039.

both models can generally track quite well the S&P historical data. The results are similar for

B-rated firms as displayed in Figure 8.7. For the BB-rated firms, the model under the geometric

Brownian motion generates default probabilities very close to the S&P data, the model under the

jump-diffusion process generates default probabilities slightly higher than the S&P data, but it

tacks the general trend quite well (see Figure 8.8). For the BBB-rated firm, we observe that neither

model is able to give a good approximation to the S& P historical data, as exhibited in Figure 8.9.

For investment grade firms, for example, A-rated and AA-rated firms, the model under the jump-

diffusion process gives a very close approximation to the historical data (see Figure 8.10 and Fig-

ure 8.11), where for these ratings the model under geometric Brownian motion is not able to track

the historical data at all. Similar results are found for AAA-rated firms, as shown in Figure 8.12,

where we see that the jump-diffusion model generally tracks the historical data, though not so well

at longer times, but this may due to the some problems with the data.

Figure 8.6 and Figure 8.7 show that if the leverage ratio follows geometric Brownian motion (as

in Hui et al. (2007)) or jump-diffusion process (as here), the model can generally approximate the

historical default rates quite well for low credit quality firms, for example, CCC, B and BB-rated



8.6. OVERVIEW 113

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

PD(%)

S&P data
GBM with optimal drift=0.08
JP with optimal jump size mean=0.6

FIGURE 8.11. Comparing the best fit to the observed S&P default probabilities
with the jump-diffusion model and with the pure diffusion model for a AA-rated
firm. The initial leverage for the AA-rated firm is L = 9.5% and the volatility is
σL = 0.156. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0,
ρLr = 0, μ̃q = 0.6, σ2

q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the
drift is μ̃L = 0.08.

firms. However, when the credit quality of firms increases, only the model with leverage ratio

following a jump-diffusion process is able to give a good fit to the historical data (see for example,

Figures 8.10-8.12). These results seem to reflect the fact that for non-investment grade firms, there

is no significant difference between default being driven by gradual diffusion or sudden external

shocks, however, for investment grade firms, defaults seem to be mainly due to the external shocks.

Compare the optimal values of jump size mean for A, AA and AAA-rated firms, which increases

from 0.3 for the A-rated firm to 1.1 for the AAA-rated firm, this is a reflection of the fact that

for the better credit quality firm, such as AAA-rated firm, defaults are driven by a higher value of

jump size mean. Hence our argument that for better credit quality firms, default is driven by strong

external shocks. For lower quality firms they are closer to the default barrier so diffusion may be

sufficient to cause default.

8.6. Overview

This chapter has extended the work of Hui et al. (2007) model (which the dynamic leverage ratio

follows geometric Brownian motion) to incorporate jump risks. The Monte Carlo scheme has
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FIGURE 8.12. Comparing the best fit to the observed S&P default probabilities
with the jump-diffusion model and with the pure diffusion model for a AAA-rated
firm. The initial leverage for the AAA-rated firm is L = 3.1% and the volatility is
σL = 0.127. Other parameters used for the jump-diffusion model (JP) are μ̃L = 0,
ρLr = 0, μ̃q = 1.1, σ2

q = 0.25, λ̃q = 0.1. For the pure diffusion model (GBM), the
drift is μ̃L = 0.16.

been extended to evaluate the default probability, the behaviour of which in the presence of jump

risks are studied. By searching for the optimal value of jump size mean, the model is calibrated

to the Standard & Poor’s (2001) reported historical data. We also have compared our fits using

jump-diffusion model to those obtained using the Hui et al. (2007) model as a comparison4. The

results seem to reflect the fact that for non-investment grade firms, default of firms is driven by

either gradual diffusion or jumps, while for investment grade firms, the default is mainly driven by

jumps. It will be of interest to see how this effect works out when we come to consider the effect of

jump-diffusion dynamics of the leverage ratios on joint survival probability or default correlation

among two firms, a topic to which we will turn in the next chapter.

4Alternative specifications such as using asymmetric volatilities for firms’ leverage ratios could probably achieve
similar empirical outcomes. However, in this thesis our aim has been to extend the framework of Zhou (2001b), and
for this reason we have chosen to work with jump-diffusion processes.



CHAPTER 9

The Two-Firm Model with Jumps

In this chapter, we extend the two-firm model developed in chapter 3 to incorporate the jump

structure introduced in to the one-firm model in the previous chapter. The Assumption 1 in chapter

3 and Assumption 1′′ in chapter 8, in this case become

Assumption 1′′′ . Let L1 and L2 denote the leverage ratios of the note issuer and the reference

obligor, respectively. The leverage ratio is defined as the ratio of a firm’s liability to its market-

value capitalization. The dynamics of L1 and L2 are described by

dLi

Li

= (μi − λqikqi)dt+ σidZi + (Yi − 1)dq , (i = 1, 2) (9.1)

where the μi are the instantaneous expected drift rates, the σi are the instantaneous variances

conditional on no jumps, Z1 and Z2 are Wiener processes capturing the uncertainty in the leverage

ratio dynamics under the historical measure P. The Wiener increments dZ1 and dZ2 are assumed

to be correlated with E[dZ1dZ2] = ρ12dt. The jump sizes Y1 and Y2 are assumed to be independent,

however they both occur at the same time, q is the Poisson counting process defined in (8.2) with

the intensity λq, here we assume that the jump event affects both firms so the same intensity of the

jump arrivals λq applies to both.

The quantity (Yi−1) is a random variable that is the percentage change in the leverage ratio level of

firm i if the Poisson event occurs, where Yi is log-normally distributed: lnYi ∼ N(μqi−σ2
qi/2, σ

2
qi)

with the expected mean value:

kqi = E
[
Yi − 1

]
=

∫ ∞

0

(Yi − 1)G(Yi)dYi. (9.2)

We assume that G(Y1) and G(Y2) are independent.

Given that the Poisson event occurs, the impact of the jump on the leverage ratio level of firm

i is determined by drawing Yi from the distribution G(Yi). If Li(t
−) is the leverage ratio level

at time t− just prior to the jump, then the leverage ratio level at time t+ immediately after the

115
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jump is Li(t
+) = Li(t

−)Y . The successive draws from G(Yi) are independently and identically

distributed.

Let P (L1, L2, r, t) be the price of a credit linked note written on the underlying asset L1, L2 and r.

Under Assumptions 1′′′ , 2, 3, 4 and applying a similar approach to that described in Chapter 8, the

integro-partial differential equation (IPDE) for P (L1, L2, r, t) becomes

−∂P
∂t

=
1

2
σ2

1L
2
1

∂2P

∂L2
1

+
1

2
σ2

2L
2
2

∂2P

∂L2
2

+ ρ12σ1σ2L1L2
∂2P

∂L1∂L2

+ ρ1rσ1σrL1
∂2P

∂L1∂r

+ρ2rσ2σrL2
∂2P

∂L2∂r
+

1

2
σ2

r

∂2P

∂r2
+ (μ̃1 − λ̃qk̃q1)L1

∂P

∂L1

+(μ̃2 − λ̃qk̃q2)L2
∂P

∂L2

+ κr[θ̃r − r]
∂P

∂r
− rP + λ̃q

∫ ∞

0

∫ ∞

0

[
P (L1Y1, L2Y2, r, t)

−P (L1, L2, r, t)
]
G̃(Y1)G̃(Y2)dY1dY2, (9.3)

for t ∈ (0, T ), Li ∈ (0, L̂i) and subject to the boundary conditions:

P (L1, L2, r, T ) = 1, (9.4)

P (L̂1, L2, r, t) = 0, (9.5)

P (L1, L̂2, r, t) = 0. (9.6)

In (9.3) μ̃i and θ̃r incorporate the market prices of risk associated with diffusion processes λ1, λ2

(assumed constant here) and interest rate processes λr (assumed constant here) and extends to the

two-firm situation the definitions in (8.5). The quantity λ̃q is the jump intensity under the risk-

neutral measure P̃. The market risk of jump risk is defined in a similar fashion to equation (8.7),

that is

k̃qi = Ẽ[Yi − 1] =

∫ ∞

0

(Yi − 1)G̃(Yi)dYi, (i = 1, 2), (9.7)

where Ẽ is the expectation operator under risk-neutral measure P̃ and G̃(Yi) is given in (8.6).

As in Chapter 8 we apply the separation of variables technique and again find that the price of

credit linked note can be expressed as the product of a risk-free bond price B(r, t) and a function

P̄ (L1, L2, t), so that

P (L1, L2, r, t) = B(r, t)P̄ (L1, L2, t). (9.8)
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Substituting (9.8) into (9.3) we find that the integro-partial differential equation for P̄ (L1, L2, t) is

given by

−∂P̄
∂t

=
1

2
σ2

1L
2
1

∂2P̄

∂L2
1

+
[
μ̃1 + ρ1rσ1σrb(t) − λ̃qk̃q1

]
L1

∂P̄

∂L1

1

2
σ2

2L
2
2

∂2P̄

∂L2
2

+
[
μ̃2 + ρ2rσ2σrb(t) − λ̃qk̃q2

]
L2

∂P̄

∂L2

+ρ12σ1σ2L1L2
∂2P̄

∂L1∂L2

+ λ̃q

∫ ∞

0

∫ ∞

0

[
P̄ (L1Y1, L2Y2, t)

−P̄ (L1Y1, L2Y2, t)
]
G̃(Y1)G̃(Y2)dY1dY2, (9.9)

for t ∈ (0, T ), Li ∈ (0, L̂i) subject to the boundary conditions:

P̄ (L1, L2, T ) = 1, (9.10)

P̄ (L̂1, L2, t) = 0, (9.11)

P̄ (L1, L̂2, t) = 0. (9.12)

Here b(t) is given in (3.81).

9.1. A Monte Carlo Simulation Scheme to Calculate JSP under Jump-Diffusion Dynamics

In this section, we follow the same steps as in Chapter 8 and develop a Monte Carlo scheme to

simulate the joint survival probability when incorporating jumps. By the Feynman-Kac formula for

jump-diffusion processes (see Gikhman & Skorokhod (1972)), the stochastic differential equations

associated with (9.9) are

dL1

L1

=
[
μ̃1 + ρ1rσ1σrb(t) − λ̃q1k̃q1

]
dt+ σ1dZ̃1 + (Y1 − 1)dq , (9.13)

dL2

L2

=
[
μ̃2 + ρ2rσ2σrb(t) − λ̃q2k̃q2

]
dt+ σ2dZ̃2 + (Y2 − 1)dq , (9.14)

where Z̃1 and Z̃2 are Wiener processes under risk-neutral measure P̃, and the Wiener increments

dZ̃1 and dZ̃2 are correlated with Ẽ[dZ̃1dZ̃2] = ρ12dt with Ẽ being the expectation operation under

the P̃ measure. Note that the jump sizes Yi now, as in Chapter 8, are drawn from the distribution

of G̃(Yi)

G̃(Yi) =
1

Y σqi

√
2π

exp
{
− [lnYi − (μ̃qi − σ2

qi/2)]2

2σ2
qi

}
, (i = 1, 2), (9.15)

and k̃qi = eeμqi − 1.

The Poisson counting process q now has the new intensity λ̃q.
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We can also rewrite (9.13) in terms of uncorrelated Wiener processes W1, W2 as

dL1

L1

=
[
μ̃1 + ρ1rσ1σrb(t) − λ̃q1k̃q1

]
dt+ σ1dW1 + (Y1 − 1)dq, (9.16)

dL2

L2

=
[
μ̃2 + ρ2rσ2σrb(t) − λ̃q2k̃q2

]
dt+ σ2

(
ρ12dW1 +

√
1 − ρ2

12dW2

)
+ (Y2 − 1)dq. (9.17)

Recall the Monte Carlo approach developed in Section 8.2, to evaluate the joint survival probabil-

ity, in order to extend this to the two firm case we replace Step 2′ and Step 3′ by:-

Step 2′′ . Do the MC simulations M(m = 1, 2, ...,M) times.

2.1′′ . For the mth simulation, at the jth time step, generate independent normal random num-

bers e1 and e2 from the N(0, 1) distribution ;

2.2′′ . Let xi = ln(Li/Li0), then (9.16) and (9.17) become

x1(tj) = x1(tj−1) +
[
γ̃1(tj−1) − 1

2
σ2

1 − λ̃qk̃q1

]
Δt+ σ1

√
Δte1 +H1, (9.18)

x2(tj) = x2(tj−1) +
[
γ̃2(tj−1) − 1

2
σ2

2 − λ̃qk̃q2

]
Δt+ σ2

√
Δtz2 +H2, (9.19)

where z2 = ρ12e1 +
√

1 − ρ2
12e2 and the H1 and H2 are the jump components.

We generate the arrival of the jump event ω in the similar way as in the previous chapter which

consists of the following steps:

2.3.′′ Generate the arrival of the jump event ω in the time interval (tj − tj−1):

ω ∼ P
(
λ̃q(tj − tj−1)

)
;

* if ω = 0, set H1 = H2 = 0, that is no jump occurs in this time interval and go to Step

2.2.′′;

* if ω 
= 0, generate lnY1 and lnY2 from their distributions, respectively, namely

lnYi ∼ N(μ̃qi − σ2
qi/2, σ

2
qi) for (i = 1, 2), and set H1 = lnY1, H2 = lnY2, then

go to Step 2.2.′′ .

Step 3′′ . Check the boundary conditions: if x1(tj) ≥ 0 or x2(tj) ≥ 0, then JSPm(tj)=0, and go to

the next simulation m+1. Otherwise JSPm(tj)=1, and go to the next time step j+1.

Compute JSP(tj) =
∑M

m=1JSPm(tj)/M , which is the approximate value of the joint survival prob-

ability.

The Poisson samples used in Step 2.3.′′ can be generated by the algorithm outlined in Subsec-

tion 8.2.1.
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FIGURE 9.1. The impact of average jump sizes on the joint survival probabilities
for CCC-A paired firms. The initial leverage for the CCC-rated firm is L1=73.2%,
and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299, σ2 =0.184.
Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5. The jump
size means take the values μ̃q1 = μ̃q2 = μ̃q = 0.3 and −0.3, and λ̃q = 0.1 and
σ2

qi = 0.25.

9.2. Choice of Parameters

The choice of parameters is similar to that used in Subsection 6.1. The default barriers of the two-

firms are set at L̂1 = L̂2 = 1. The leverage ratio levels Li and values of volatility σi of individual

firms are again taken from Table 6.1. To isolate the effects of the drift term of the diffusion

component and correlation with the interest rate process, we set μ̃i=0 and ρir=0. The correlation

coefficient between the increment of firms’ leverage ratios is set at ρ12 = 0.5 and ρ12 = −0.5 as

previously used in Chapters 6 and 7, because they represent intermediate values.

The parameters used for the jump component are based on Section 8.3, where again the choices of

jump intensity λ̃q = 0.1 and jump size volatility σ2
qi = 0.25 are based on Zhang & Melnik (2007).

The numerical results presented below are based on the Monte Carlo scheme developed in the

previous section based on the system (9.16)-(9.17). The number of paths M used is 1,000,000 and

the number of time steps per day is set at 100 which means the time step size is Δt = 1/36, 500.

As discussed in Section 8.3, there is no known exact solution to the integro-partial differential

equation (9.9), so we need to rely on the Monte Carlo scheme and to check its accuracy we use
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FIGURE 9.2. The impact of average jump sizes on the default correlations for
CCC-A paired firms. The initial leverage for the CCC-rated firm is L1=73.2%,
and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299, σ2 =0.184.
Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5. The jump
size means take the values μ̃q1 = μ̃q2 = μ̃q = 0.3 and −0.3, and λ̃q = 0.1 and
σ2

qi = 0.25.

the confidence limits as discussed in Chapter 8. For Monte Carlo simulation results for the joint

survival probabilities JSP(t) with M paths, the standard deviation (SD)

SD =

√∑M
m=1 JSP2

m(t) − (∑M
m=1 JSPm(t)

)2
/M

M − 1
. (9.20)

The maximum standard deviation (SD) and standard error ε (defined in equation (8.15)) over

time for the Monte Carlo simulated default probabilities of CCC-A paired firms (for example)

is SD=0.4999 and ε=0.0005, respectively. Therefore, with 95% confidence the Monte Carlo result

of JSP(t) will lie between JSPexact − 0.00098 and JSPexact + 0.00098.

9.3. The Impact of Jump Risk on the Two-Firm model

In this section, we show the impact of jump risk on joint survival probabilities and default correla-

tions for CCC-A paired firms.
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FIGURE 9.3. The impact of the jump size volatility on the joint survival prob-
abilities for CCC-A paired firms. The initial leverage for the CCC-rated firm is
L1=73.2%, and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299,
σ2 =0.184. Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5.
The values of the jump size volatilities are σ2

q1 = σ2
q2 = σ2

q = 0.25 and 0.5, and
μ̃qi = 0.3 and λ̃q = 0.1.

9.3.1. Impact of the Jump Size Mean.

This subsection studies the impact of jump size volatilities on joint survival probabilities and de-

fault correlations. We take the values of jump size means μ̃qi = 0.3 and μ̃q = 0.5.

Figure 9.1 shows the joint survival probabilities rises as the jump size mean increases. Recalling

the discussion on the impact of jump risks on individual default probabilities in Subsection 8.4,

default probabilities of the A-rated firm would be expected to increase as the jump effect increases,

which means that the individual survival probability of the A-rated firm decreases, however the

individual survival probabilities of the CCC-rated firm correspondingly increase. These results

seem to reflect the fact that the CCC-rated firm plays a more important role then the A-rated firm

when they are paired. The increasing effect in individual survival probability of the CCC-rated

firm outweighs the decreasing effect in survival probability of the A-rated firm.

Figure 9.2 graphs the default correlation for different values of the average jump size and the cor-

relation coefficient. The default correlation rises as the average jump size increases for positively

correlated firms. This is due to the fact that, when the jump event occurs, the leverage ratios jump
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FIGURE 9.4. The impact of the jump size volatility on the default correlations for
CCC-A paired firms. The initial leverage for the CCC-rated firm is L1=73.2%, and
for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299, σ2 =0.184.
Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5. The values
of the jump size volatilities are σ2

q1 = σ2
q2 = σ2

q = 0.25 and 0.5, and μ̃qi = 0.3 and
λ̃q = 0.1.

to higher values on average with a larger jump size mean, and so move closer to the default barrier.

Therefore, if one firm has defaulted, this is a signal that the leverage ratio of the other firm moves

in the same direction (because of ρ12 > 0) towards the default barrier, since the leverage ratio of

the other firm is already close to the default barrier with a larger jump size mean, thus the default

of one firm will be a signal that the other firm is likely to default.

In contrast, when firms are negatively correlated (ρ12 < 0), the default correlation (in absolute

value) increases as the average jump size decreases. The argument is similar to the case of ρ12 > 0.

When the jump event occurs, the leverage ratios jump to lower values on average with a small jump

size mean, and away from the default barrier. Therefore, if one firm has defaulted, then leverage

ratio of the other firm moves in the opposite direction (because of ρ12 < 0) away from the default

barrier, since the leverage ratio of this firm is already far from the default barrier due to the small

jump size mean. Thus combining these two effects, the default of one firm will make it less likely

on average that the other firm will default.



9.3. THE IMPACT OF JUMP RISK ON THE TWO-FIRM MODEL 123

0 2 4 6 8 10 12 14 16
30

35

40

45

50

55

60

65

70

75

80

Time

JSP(%)

λ̃q = 0.5, ρ12 = 0.5

λ̃q = 0.5, ρ12 = −0.5

λ̃q = 0.1, ρ12 = 0.5

λ̃q = 0.1, ρ12 = −0.5

FIGURE 9.5. The impact of the jump intensity on the joint survival probabilities
for CCC-A paired firms. The initial leverage for the CCC-rated firm is L1=73.2%,
and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299, σ2 =0.184.
Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5. The jump
intensity takes the values λ̃q = 0.1 and 0.5, and σ2

qi = 0.25 and μ̃qi = 0.3.

9.3.2. Impact of the Jump Size Volatility.

This subsection studies the impact of jump size volatilities on joint survival probabilities and de-

fault correlations. We double the size of the variances of the jump size process from σ2
qi = 0.25 to

σ2
qi = 0.5.

Figure 9.3 shows that the joint survival probabilities for CCC-A paired firms barely change as the

jump size volatilities increase. This is similar to the results of the impact of the jump size mean,

but the impact of jump size variance is not very significant, which may be due to the small change

in values of the jump size volatility σqi (
√

0.25 = 0.5 to
√

0.5 ≈ 0.7).

Figure 9.4 shows impact of the doubling of variances on default correlation. The default corre-

lation declines as the jump size variance increase for positively correlated firms (ρ12 > 0), and

default correlation (in absolute value) increases as the jump size variance increases for negatively

correlated firms (ρ12 < 0). The argument is similar to that relating to the impact of average jump

sizes in Subsection 9.3.1. When the jump event occurs, the leverage ratios may jump to higher

(lower) values on average with a larger (smaller) jump size volatility, and closer to (from) the de-

fault barrier. Therefore, if one firm defaults, the leverage ratio of the other firm moves in the same
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FIGURE 9.6. The impact of the jump intensity on the default correlations for CCC-
A paired firms. The initial leverage for the CCC-rated firm is L1=73.2%, and for
the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299, σ2 =0.184. Other
parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5. The jump intensity
takes the values λ̃q = 0.1 and 0.5, and σ2

qi = 0.25 and μ̃qi = 0.3.

(opposite) direction because of ρ12 > 0 (ρ12 < 0) towards (away from) the default barrier. Since

the leverage ratio of the other firm is already close to (distant from) the default barrier with a larger

(smaller) jump size volatility , thus the default of one firm will more likely (unlikely) so signal the

possible default of the other firm.

9.3.3. Impact of the Jump Intensity.

Next we study the impact of jump intensity on joint survival probabilities and default correlations.

We increase the jump intensity five-fold from λ̃q = 0.1 to λ̃q = 0.5, which correspond to going

from one jump per ten years to one jump per two years.

Figure 9.5 shows that the joint survival probability decreases for both positively and negatively

correlated firms as the jump intensity increases. The result is similar to that of the impact of jump

size means and a similar argument applies here that when jump intensity increases, the increasing

effect in individual survival probability of the CCC-rated firm outweighs the decreasing effect in

survival probability of the A-rated firm, therefore the joint survival probability increases with the

jump intensity.
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Case 3 μ̃q1 = −0.3 and μ̃q2 = 0.3, ρ12 = 0.5
Case 3 μ̃q1 = −0.3 and μ̃q2 = 0.3, ρ12 = −0.5
Case 1 μ̃q1 = μ̃q2 = 0.3, ρ12 = 0.5
Case 1 μ̃q1 = μ̃q2 = 0.3, ρ12 = −0.5
Case 4 μ̃q1 = μ̃q2 = −0.3, ρ12 = 0.5
Case 4 μ̃q1 = μ̃q2 = −0.3, ρ12 = −0.5
Case 2 μ̃q1 = 0.3 and μ̃q2 = −0.3, ρ12 = 0.5
Case 2 μ̃q1 = 0.3 and μ̃q2 = −0.3, ρ12 = −0.5

FIGURE 9.7. The impact of the sign of the average jump sizes on the joint survival
probabilities for CCC-A paired firms. The initial leverage for the CCC-rated firm is
L1=73.2%, and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299,
σ2 =0.184. Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5,
λ̃q = 0.1 and σ2

qi = 0.25. Case 1: μ̃q1 = μ̃q2 = 0.3; Case 2: μ̃q1 = 0.3 and
μ̃q2 = −0.3; Case 3: μ̃q1 = −0.3 and μ̃q2 = 0.3 and Case 4: μ̃q1 = μ̃q2 = −0.3.

Figure 9.6 plots the corresponding default correlation for the given change of jump intensity. The

default correlation rises as the jump intensity increases for positively correlated firm, while when

firms are negatively correlated, a higher jump intensity shifts the default correlation to positive

values. This may be due to the fact that, when the frequency of the arrival of the jump event

increases, the frequency of the leverage ratios jumping to higher values is increased, and this

drives the leverage ratios closer to the default barrier. Therefore, if one firm has defaulted, the

leverage ratio of the other firm moves in the opposite direction (because of ρ12 < 0) away from the

default barrier. The leverage ratio of this firm is already very close to the default barrier (because

the high frequency of jump arrivals), thus the default of one firm will be more likely to signal the

possibility of the default of the other firm.

9.3.4. Impact of the Sign of the Average Jump Size.

This subsection studies the impact of the sign of the average jump sizes on joint survival probabil-

ities and default probabilities for CCC-A paired firms. We consider four cases. First we assume

that both firms have positive average jump sizes (say Case 1), the case when that both firms jump
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FIGURE 9.8. The impact of the sign of the average jump sizes on the default cor-
relations for CCC-A paired firms. The initial leverage for the CCC-rated firm is
L1=73.2%, and for the A-rated firm is L2=17.2%, and the volatilities are σ1=0.299,
σ2 =0.184. Other parameters used are μ̃i = 0, ρir = 0, ρ12 = 0.5 and ρ12 = −0.5,
λ̃q = 0.1 and σ2

qi = 0.25. Case 1: μ̃q1 = μ̃q2 = 0.3; Case 2: μ̃q1 = 0.3 and
μ̃q2 = −0.3; Case 3: μ̃q1 = −0.3 and μ̃q2 = 0.3 and Case 4: μ̃q1 = μ̃q2 = −0.3.

up to positive values on average. In the second case both firms jump down to negative values on

average. In the other two cases one firm jumps up to a positive value on average while the the other

firm jump down to a negative value on average (Case 3), and one firm jump down to a negative

value on average, while the the other firm jump up to a positive value on average (Case 4). The

scenarios are illustrated as follows:

* Case 1: μ̃q1 > 0; μ̃q2 > 0 (both firms jump up to positive values on average);

* Case 2:μ̃∗
q1 < 0; μ̃∗

q2 > 0 (one firm jumps down to a negative value on average, while the

other firm jumps up to a positive value on average);

* Case 3: μ̃∗
q1 > 0; μ̃∗

q2 < 0 (one firm jump up to a positive value on average while the other

firm jump down to a negative value on average);

* Case 4: μ̃q1 < 0; μ̃q2 < 0 (both jump down to negative values on average);

Figure 9.7 shows that the joint survival probabilities for Case 3 is highest and Case 2 is lowest.

Since in Case 3, the CCC-rated firm (one firm) jumps with a positive average jump size and the

A-rated firm (the other firm ) jumps with a negative average jump size, as discussed previously
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the low quality firm will experience an increase in survival probability as the jump effect increases

while for good quality firm’s survival probability increases as the jump effect decreases. Therefore

Case 3 combines these two increasing effects and hence the joint survival probabilities are highest.

Case 2 is a reverse of the effect in Case 3. In contrast, the joint survival probabilities for Case 1 are

higher than for Case 4, indicating that the CCC-rated firm weighs more heavily than the A-rated

firm in their pairing relationship.

Figure 9.8 illustrates the corresponding default correlations for the different signs of the average

jump sizes. The default correlation for Case 1 is the highest and Case 2 is lowest, for positively

correlated firms, however, it is the other way around for negatively correlated firms, with default

correlation for Case 2 being the highest (in absolute values) and Case 1 being the smallest. The

argument is similar to the one for the impact of the jump size mean in Subsection 9.3.1. When

the jump event occurs, both firms’ leverage ratios jump to higher values on average with a larger

jump size mean, and their leverage ratios are thus closer to the default barrier. Therefore, if either

firm has defaulted, this is a signal about the other firm and on average its leverage ratio moves

in the same direction (because of ρ12 > 0) towards the default barrier, since the leverage ratio of

the second firm is already close to the default barrier, thus the default of this firm will become

more likely. Therefore, default correlation for Case 1 is the highest for positively correlated firms.

For Case2, the CCC-rated firm jumps down on average with a small value of the jump size mean,

this moves its leverage ratio away from the default barrier. The A-rated firm jumps up on average

with a positive average jump size, since the initial leverage ratio of A-rated firm is already far

from default barrier, the other firm is even less likely to be driven to default. The argument is just

reversed for the case when firms are negatively correlated.

9.4. Overview

This chapter has extended the two-firm model to incorporate jump risks. The Monte Carlo scheme

developed in Chapter 8 has been extended to evaluate the joint survival probability. The impact of

the jump components on joint survival probabilities and default correlations have been studied and

the results (as well as the default probabilities in Chapter 8) are summarized in Table 9.1.

The default probability of the CCC-rated firm decreases as the jump effect increases, while the

default probability of the A-rated firm increases as the jump effect increases. The joint survival

probability of CCC-A paired firms declines as the jump effect increases.

When firms’ leverage ratios are positively correlated (ρ12 > 0), the default correlation increases

with the jump size mean or jump intensity, however, default correlation decreases as the jump
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Jump-diffusion processes Impact on PD Impact on JSP Impact on DC
CCC A +ρ12 −ρ12

jump size volatilities ↑ ⇓ ⇑ ⇓ ⇓ ⇑
jump intensity ↑ ⇓ ⇑ ⇓ ⇑ ⇓

jump size means ↑ ⇓ ⇑ ⇓ ⇑ ⇓

TABLE 9.1. A summary of the impact on individual defaults, joint survival proba-
bilities and default correlations for jump-diffusion processes.

size volatility increases. These effects are just reversed when the leverage ratios are negatively

correlated (ρ12 < 0).



CHAPTER 10

Comparison of the Two-Firm Model for Different Processes

This thesis developed the two-firm model based on the three different processes of firms’ leverage

ratios. In the previous chapters, we have studied separately for these three types of processes,

how their model parameters affect joint survival probabilities, individual default probabilities and

default correlations. This chapter brings these three types of processes together and compares the

individual default probabilities, joint survival probabilities and default correlations, so as to provide

some insights for credit risk analysis and risk management. These processes represent the different

features of firms that are considered in this thesis: the leverage processes either following simple

continuous diffusion processes (captured by geometric Brownian motions), or having features that

alter their capital structures (by use of mean-reverting processes), or facing default risk both from

gradual processes as well as sudden unforeseen external shocks (modelled with jump-diffusion

processes).

10.1. The Impact of Different Dynamic Leverage Ratio Processes on Default Probabilities

In this section, we bring the recent development of the one-firm leverage ratio models of default

together and compare with the model with jump risk and see how these models perform when

comparing their default probabilities to the S&P historical data, since there is no similar study in

previous literature.

When firm’s leverage ratio follows a geometric Brownian motion process (GBM), we have the

extension of the Hui et al. (2007) model; when the leverage ratio follows a mean-reverting process

to a constant target ratio (MR constant), we have the extension of the Collin-Dufresne & Goldstein

(2001) model; if the leverage ratio follows a mean-reverting process to a time-dependent target

ratio (MR time-dep.), we have the extension of the Hui et al. (2006) model); when the leverage

ratio follows the jump-diffusion process (JP), we have the model proposed in Chapter 8 that extends

the Hui et al. (2007) model.

Figure 10.1 shows that for a CCC-rated firm the geometric Brownian motion and jump-diffusion

models can both generate default probabilities close to the historical data, while the model mean-

reverting to a constant target ratio underestimates the S&P data, and the results for mean-reverting
129
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FIGURE 10.1. Comparison with S&P data for a CCC-rated firm of the default
probabilities when the firm’s leverage ratio follows the three processes the jump-
diffusion process (JP), the geometric Brownian motion (GBM) process, the mean-
reverting process to a constant target level (MR constant) and to a time-dependent
target level (MR time-dep.). Initial leverage for the CCC-rated firm is L = 73.2%
and the volatility is σL = 0.299. Other parameters used for the jump-diffusion
model are μ̃L = 0, ρLr = 0, μ̃q = 0.3, σ2

q = 0.25, λ̃q = 0.1. For the pure diffusion
model, the drift is μ̃L = −0.007. For mean-reverting models, the constant target
level used is θ̃ = 31.5% and the time-dependent target ratio is based on equation
(7.66) with θ̃(0) = 73.2% and θ̃(15) = 31.5%.

Fit to S&P data GBM optimal MR constant MR time-dep. JP optimal
CCC-rated firms Fits well Underestimate Overestimate Fits well
BBB-rated firms No model fits well
AA-rated firms Underestimate Underestimate Underestimate Fits well

TABLE 10.1. A summary of the comparison of different processes on individual
default probabilities fit to S&P historical data for the one firm model.

to a time-dependent target ratio are an overestimate. However, Figure 10.2 shows that for a BBB-

rated firm, no single model provides a good approximation to the historical data. For a AA-

rated firm, Figure 10.3 shows that only the jump-diffusion model generates default probabilities

close to the historical data, while all other models provide underestimates. Table 10.1 gives an

overall summary and comparison of the results for the one firm model. The results indicate that if

the leverage ratio of low credit quality firms follows a mean-reverting process, the firm’s default
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FIGURE 10.2. Comparison with S&P data for a BBB-rated firm of the default
probabilities when the firm’s leverage ratio follows the three processes the jump-
diffusion process (JP), the geometric Brownian motion (GBM) process, the mean-
reverting process to a constant target level (MR constant) and to a time-dependent
target level (MR time-dep.). Initial leverage for the BBB-rated firm is L = 31.5%
and the volatility is σL = 0.213. Other parameters used for the jump-diffusion
model are μ̃L = 0, ρLr = 0, μ̃q = −0.3, σ2

q = 0.25, λ̃q = 0.1. For the pure diffu-
sion model, the drift is μ̃L = 0.002. For mean-reverting models, the constant target
level used is θ̃ = 31.5% and the time-dependent target ratio is based on equation
(7.66) with θ̃(0) = 73.2% and θ̃(15) = 31.5%.

probability will be calculated to be lower, while the default of good credit quality firms is mainly

due to sudden external shocks.

10.2. The Impact of Different Dynamic Leverage Ratio Processes on Joint Survival
Probabilities

In this section, we compare the joint survival probabilities of the two-firm model when the firms’

leverage ratios follow the three types of processes under consideration.

Figure 10.4 gives a comparison of the joint survival probabilities between the three types of pro-

cesses with positive correlation ρ12 = 0.5 for CCC-BBB paired firms. The joint survival proba-

bility of the two-firm model when leverage ratios follow mean-reverting processes to a constant

target ratio is the highest, while the other processes generate similar values of the joint survival

probability and much lower (by about 20% at 15 years) than the highest. This seems to suggest
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FIGURE 10.3. Comparison with S&P data for a AA-rated firm of the default proba-
bilities when the firm’s leverage ratio follows the three processes the jump-diffusion
process (JP), the geometric Brownian motion (GBM) process, the mean-reverting
process to a constant target level (MR constant) and to a time-dependent target level
(MR time-dep.). Initial leverage for the AA-rated firm is L = 9.5% and the volatil-
ity is σL = 0.156. Other parameters used for the jump-diffusion model are μ̃L = 0,
ρLr = 0, μ̃q = 0.6, σ2

q = 0.25, λ̃q = 0.1. For the pure diffusion model, the drift is
μ̃L = 0.08. For mean-reverting models, the constant target level used is θ̃ = 31.5%

and the time-dependent target ratio is based on equation (7.66) with θ̃(0) = 73.2%

and θ̃(15) = 31.5%.

that when the firms’ leverage ratios follow mean-reverting processes to a constant target ratio, their

joint survival probabilities are higher.

10.3. The Impact of Different Dynamic Leverage Ratio Processes on Default Correlations

In this section, we compare the default correlations of the two-firm model when the firms’ leverage

ratios follow these three types of processes.

Figure 10.5 compares the default correlations between the two-firm model when the leverage ratios

follow the three types of processes for CCC-BBB paired firms. We observe that for positively

correlated firms (ρ12 > 0), the two-firm model based on different types of processes generate

similar values of default correlation. When firms are negatively correlated (ρ12 < 0), with leverage

ratios follow mean-reverting processes to constant target ratios, the model generates very small

values (close to zero) of default correlation (in absolute value), while the model based on the other
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FIGURE 10.4. The comparison of joint survival probabilities for CCC-BBB paired
firms when their leverage ratios follow the jump-diffusion process (JP), the geomet-
ric Brownian motion (GBM) process, the mean-reverting process to a constant tar-
get level (MR constant) and to a time-dependent target level (MR time-dep.). Initial
leverage for thr CCC-rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5%
and volatilities are σ1=0.299, σ2 =0.213. Other parameters used for the jump-
diffusion model are μ̃i = 0, ρir = 0, μ̃q1 = 0.3, μ̃q2 = −0.3 σ2

qi = 0.25, λ̃q = 0.1.
For the pure diffusion model, the drifts used are μ̃1 = −0.007 and μ̃1 = 0.002.
For mean-reverting models, the constant target level used is θ̃i = 31.5% and the
time-dependent target ratio is based on equation (7.66) with θ̃i(0) = 73.2% and
θ̃i(15) = 31.5%.

processes, gives similar values for default correlation. Note that the default correlation of the

model based on mean-reverting to constant target ratios rises up at very small time, this is due to

the division of very small value of individual default probabilities discussed in Chapter 6.

The result seems to indicate that if firms’ leverage ratios are positively correlated, the default cor-

relation seems less affected by which types of dynamics of firm’s leverage ratio follows. However,

it does become an issue if firms’ leverage ratios are negatively correlated.

10.4. Overview

In this chapter, we have brought together and compared the performance of the model in terms of

individual default probabilities, joint survival probabilities and default correlations, when firms’

leverage ratios follow geometric Brownian motions, mean-reverting processes, or jump-diffusion
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FIGURE 10.5. The comparison of default correlations for CCC-BBB paired firms
when their leverage ratios follow the jump-diffusion process (JP), the geometric
Brownian motion (GBM) process, the mean-reverting process to a constant target
level (MR constant) and to a time-dependent target level (MR time-dep.). Initial
leverage for the CCC-rated firm is L1=73.2%, for the BBB-rated firm is L2=31.5%
and volatilities are σ1=0.299, σ2 =0.213. Other parameters used for the jump-
diffusion model are μ̃i = 0, ρir = 0, μ̃q1 = 0.3, μ̃q2 = −0.3 σ2

qi = 0.25, λ̃q = 0.1.
For the pure diffusion model, the drifts used are μ̃1 = −0.007 and μ̃1 = 0.002.
For mean-reverting models, the constant target level used is θ̃i = 31.5% and the
time-dependent target ratio is based on equation (7.66) with θ̃i(0) = 73.2% and
θ̃i(15) = 31.5%.

processes, so as to provide some insights for credit risk analysis and risk management into the use

of these different processes.

One may make a number of observations on the results. First, if the leverage ratio of low credit

quality firms follows a mean-reverting process, the firm’s default probability will be calculated to

be lower. Second, the default of good credit quality firms is mainly due to sudden external shocks.

Third, if the firms’leverage ratios follow mean-reverting processes to a constant target ratio, their

joint survival probabilities are higher. Fourth, if firms’ leverage ratios are positively correlated,

the default correlation seems to be less affected by the type of dynamics the firm’s leverage ratio

follows. However, it becomes an issue if the firms’ leverage ratios are negatively correlated. In

future empirical research, it would be interesting to study which process best models the real

market environment.



CHAPTER 11

Conclusions

In this chapter we summarize the main finding of the Thesis, draw some conclusions, and raise

suggestions for the future research topics.

11.1. Summary

The principal aim of this thesis has been to extend the dynamic leverage ratio model for Hui

et al. (2007) to the two-firm case so as to study its implications of default correlations and joint

survival probabilities. In Chapter 2 we surveyed the relevant background literature. In Chapter 3

we reviewed the one-firm dynamic leverage ratio model of Hui et al. (2007) for corporate bond

pricing. In their model by use of the separation of variables method, the corporate bond price can

be interpreted as the product of a riskless bond price and a discounting factor. The risk-free bond

price has a known closed-form solution, therefore the main focus is on solving for the discounting

factor. We reviewed the method of images approach for obtaining a closed-form solution in terms

of cumulative normal distribution functions and then the time varying barrier method proposed

by Lo et al. (2003) to deal with the case in which parameters are time varying. In the second

part of Chapter 3, we developed the framework for the dynamic leverage ratio model in the two-

firm situation for pricing financial derivatives involving default risks among two firms using the

credit linked note as the motivating example. We showed that the problem can be reduced to

that of solving the partial differential equation for the risk ratio function. We also discussed the

application of the results to the evaluation of default correlations.

In Chapter 4, we extended the method of images approach to the two-dimensional heat equation

case and obtained the analytical solution subject to zero boundary conditions. This result was then

applied to solve the partial differential equation for the risk ratio with constant coefficients. How-

ever, for coefficients in the time-dependent case, we extended the time varying barrier approach to

obtain an approximate solution. In the second part of Chapter 4, we developed solutions in terms

of the cumulative bivariate normal distribution functions. We saw that the limitation of the method

of images approach applied in the two-dimensional situation is that it works only for certain values

of the correlation coefficient between the dynamic leverage ratios of firms.
135
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In order to obtain solutions for general values of the correlation coefficient, we consider numerical

methods in Chapter 5. First we developed the alternating direction implicit numerical scheme

based on Douglas & Rachford (1956) (the Douglas-Rachford scheme). The challenge here was to

deal with the cross-derivative term and time-dependent drift terms. In order to develop an efficient

numerical solution, we focussed on alternating direction implicit schemes that are unconditionally

stable, that is stable without any restrictions on the time step. In Chapter 5, we also developed a

Monte Carlo scheme to serve as a benchmark. We then discussed the accuracy and the convergence

of the two methods and compared them to the solution developed by using the method of images

with an extreme value of the correlation coefficient for which this method is applicable. We found

that the relative percentage errors are generally less than 1% for the alternating direction implicit

results based on using the number of time steps of 100 per year and number of spatial points of

3, 830, and for the Monte Carlo methods based on using the number of time steps of 36, 500 per

year and the number of simulations between 500, 000 and 1, 000, 000. When coefficients are time-

dependent, we use the Monte Carlo results as a benchmark, and compared the accuracy of the

alternating direction implicit method and the approximate solution based on the method of images.

The relative percentage error for the approximate method is generally less than 1%. The relative

percentage error for the alternating direction implicit method is less than 1% except at fifteen years

where the error is around 1.3%.

In Chapter 6, we presented some numerical results for joint survival probabilities and default cor-

relations of the two-firm model when the leverage ratios are driven by Brownian motion. We also

studied the impact of different parameters on the joint survival probabilities and default correla-

tions. Our main finding were that the joint survival probabilities rise if there is (i) a decrease in the

leverage ratio volatility, the average mean levels, the initial leverage ratios, or (ii) an increase in the

correlation coefficient between leverage ratios processes, or in the correlation coefficient between

leverage ratio and interest rate processes. We also found that the default correlation (in absolute

value) rises if there is (i) an increase in the firms’ leverage ratios correlation, or their volatilities, or

average mean levels, or initial leverage ratios, or (ii) a decrease in the correlation between firm’s

leverage ratio and interest rate.

In order to study the impact on default correlations of firms altering their capital structure, in

Chapter 7 we extended the framework of the two-firm model to consider the case in which the

dynamic leverage ratios are mean-reverting to constant target ratios and time-dependent target

ratios. We extended the method of images approach to apply in this situation. Because of the

limitation that the method of images approach works only for certain values of the correlation

coefficient between leverage ratio processes, we also developed a Monte Carlo scheme to solve
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the problem for all values of the correlation coefficient between leverage ratio processes so as to

serve as a benchmark. We discussed the accuracy of the results for which we find that the relative

percentage error compared to the Monte Carlo results are very large. A way to solve this problem

is to develop the multi-stage approximation for the two-firm case. This task is beyond the scope

of the present thesis and we leave it to future research. As our focus here is on the study of the

impact of mean-reverting processes on default correlations, we do the calculations using the Monte

Carlo simulation approach. In the last part of Chapter 7, we studied the impact of mean-reverting

processes on joint survival probabilities and default correlations, in which the use of constant target

ratios generate higher joint survival probability values and smaller default correlation values, and

the use of time-dependent target ratios generates lower joint survival probabilities and larger default

correlations.

Chapter 8 contains our next extension that draws on the discussion of Zhou (1997), who argues that

in reality a firm can default either by a gradual diffusion process, or by a surprise due to unexpected

external shocks. Zhou (2001b) combines these measures of risk by assuming that the firm asset

value follows a jump-diffusion process. In order to capture the effect of external shocks on default

correlations, we extend the model of Hui et al. (2007) to the case in which the dynamic leverage

ratio follows a jump-diffusion process. We consider the one-firm model with jump risk, and extend

the Monte Carlo scheme to cover this case. The impact of jump components: the jump size mean,

the jump size volatility and the jump intensity, on single firm default probabilities for different

credit rated firms are studied. We also find the optimal values of average jump size by calibrating

to the S&P historical default data for different credit ratings. The results seems to indicate that for

low rated firms, default is driven by either gradual diffusion or jumps, while for high rated firms,

the default is mainly driven by jumps.

In Chapter 9, we extended the one-firm model with jump risk to the two-firm case, and studied the

impact of jump risk on joint survival probabilities and default correlations. Our main findings were

that the joint survival probability for a low and good credit quality paired firms declines as the jump

effect increases. If firms’ leverage ratios are positively correlated, the default correlation increases

as the jump size volatility decreases, or as either the jump size mean or jump intensity increase.

When firms’ leverage ratios are negatively correlated, the jump effect on default correlation is just

the other way around.

In Chapter 10, we brought together and compared the performance of the model in terms of indi-

vidual default probabilities, joint survival probabilities and default correlations, when the leverage
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ratios of firms follow simple geometric Brownian motions, mean-reverting processes and jump-

diffusion processes, so as to provide some insights for credit risk analysis and risk management.

The results seem to suggest that if the leverage ratios of low credit quality firms follow a mean-

reverting process, the firm’s default probability will be lower. On the other hand, the results show

that defaults of good credit quality firms are mainly due to the sudden external shocks. The re-

sults also seem to suggest a higher joint survival probability if firms’leverage ratios follow mean-

reverting processes to a constant target ratio. The result indicate that the default correlation seems

less affected by which types of dynamics the firm’s leverage ratio follows if firms’ leverage ratios

are positively correlated, however, if firms’s leverage ratios are negatively correlated, this becomes

an issue.

11.2. Topics for Future Research

The Thesis has confronted the mathematical challenges associated with the solution of first pas-

sage time problems in a two-dimensional situation, the further development of which will provide

some major directions for future research. For example, the method of images approach in the

two-dimensional case only works for certain values of the correlation coefficient between firms’

leverage ratio. An interesting problem for future research would be to try to develop some ap-

proximate ways of completing the loop for arbitrary values of the correlation coefficient. More-

over, the accuracy of the solution based on the method of images approach for the model with

mean-reverting processes is very low, therefore an improvement in the accuracy of the solution by

developing the multi-stage approximation scheme is another important issue for future research.

We note that it is difficult to obtain the analytical solution (even approximated ones) for the first

passage time problem of jump-diffusion processes. Such problems are usually solved by using

Monte Carlo simulation. However, Monte Carlo simulation requires long computational times,

especially in the two-dimensional case, therefore the development of an efficient and accurate

numerical scheme, for example the method of lines approach (see for example Chiarella et al.

(2009)), is a fruitful main topic for future research.

Another approach to solving the first passage time problem is the two-dimensional generalization

of the Fortet (1943) equation that was used by Collin-Dufresne & Goldstein (2001), who solved

the first passage time density under the risk-neutral measure in their one dimensional model by

discretizing the generalized Fortet equation. The extension of this approach to the two-firm model

would be an important topic for future research. The recent work of Bernard et al. (2008) offers

one possible approach.
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We note that the findings in this thesis are mostly based on the study of the impact of model

parameters the values of which have been from various pervious studies and so are plausible. The

values of the parameters need to be obtained by some robust econometric estimation methodology

from market data, this will certainly be a key topic for future research. Finally, the results of this

thesis could be used as a benchmark for assessing different copula functions used in valuing default

correlations, which would be another topic for future research.



APPENDIX A

Applying the Separation of Variables to the PDE for the Corporate Bond
Price

This appendix applies the separation of variables technique to simplify the partial differential equa-

tion for corporate bond price of the one-firm model. Suppose the differential equation (3.4) can be

written in terms of two separate functions as

P (L, r, t) = f(r, t)P̂ (L, t), (A.1)

where function f(r, t) depends only on r and t, and P̂ (L, t) is a function of L and t only.

To determine differential equations of f(r, t) and P̂ (L, t), we note that

∂P

∂t
= P̂

∂f

∂t
+ f

∂P̂

∂t
, (A.2)

∂P

∂L
= f

∂P̂

∂L
,

∂2P

∂L2
= f

∂2P̂

∂L2
, (A.3)

∂2P

∂r∂L
=

∂f

∂r

∂P̂

∂L
,

∂P

∂r
= P̂

∂f

∂r
,

∂2P

∂r2
= P̂

∂2f

∂r2
. (A.4)

Substituting equations (A.1)-(A.4) into (3.4), we obtain the partial differential equation

−P̂ ∂f
∂t

− f
∂P̂

∂t
= f

1

2
σ2

L(t)L
∂2P̂

∂L
+ P̂

1

2
σ2

r(t)
∂2f

∂r2

+
∂f

∂r
ρLr(t)σL(t)σr(t)L

∂P̂

∂L
+ fμ̃L(t)L

∂P̂

∂L

+P̂ κr(t)
[
θ̃r(t) − r

] ∂f
∂r

− rfP̂ . (A.5)

We group f and P̂ terms respectively, so that (A.5) becomes

1

f

(
∂f

∂t
+

1

2
σ2

r(t)
∂2f

∂r2
+ κr(t)

[
θ̃r(t) − r

] ∂f
∂r

− rf

)

=
1

P̂

(
−∂P̂
∂t

− 1

2
σ2

L(t)L2∂
2P̂

∂L2
− 1

f

∂f

∂r
ρLr(t)σL(t)σr(t)L

∂P̂

∂L
− μ̃L(t)L

∂P̂

∂L

)
. (A.6)

Since the LHS of (A.6) depends only on r and t and the RHS only on L and t, the only way that

both sides can be equal for all possible values of r, L and t is that both sides equal to a constant. We

note that the partial differential equation in the bracket of LHS of (A.6) is the partial differential
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equation of the risk-free bond price B(r, t) of the Hull & White (1990) model, which satisfies

∂B

∂t
+

1

2
σ2

r(t)
∂2B

∂r2
+ κr(t)(θ̃r(t) − r)

∂B

∂r
− rB = 0. (A.7)

Hence, both sides of (A.6) equal zero, and (A.1) becomes

P (L, r, t) = B(r, t)P̂ (L, t). (A.8)

The solution of the risk-free bond price B(r, t) is1

B(r, t) = e−a(t)+b(t)r, (A.9)

where

b(t) = −
∫ T

t

eK(t)−K(v)dv, (A.10)

a(t) =

∫ T

t

b(v)κr(v)θ̃r(v)dv − 1

2

∫ T

t

σ2
r(v)b

2(v)dv, (A.11)

for K(t) =
∫ t

0
κr(u)du.

Moreover, the solution (A.9) yields that the first derivative of B(r, t) with respect to r satisfies

1

B

∂B

∂r
= b(t). (A.12)

Substituting from equations (A.7) and (A.12) into (A.5), we obtain the differential equation of

P̂ (L, t) as

−∂P̂
∂t

=
1

2
σ2

L(t)L2∂
2P̂

∂L2
+ [μ̃L(t) + ρLr(t)σL(t)σr(t)b(t)]L

∂P̂

∂L
, (A.13)

in the region of 0 ≤ t ≤ T .

Since the final time condition for the risk-free bond price is B(r, T ) = 1, substituting this and

equation (3.9) into boundary conditions (3.5)-(3.6), gives boundary conditions for P̂ , namely

P̂ (L, T ) = 1, (A.14)

P̂ (L̂, t) = 0. (A.15)

1See for example, Wilmott et al. (1995) (Section 17.6) or Hull (2000) (Section 21.9).



APPENDIX B

Transformation to the Heat Equation with Time Independent Coefficients

This appendix gives the details of the transformation in (3.31).

Proposition B.1. The solution to the partial differential equation (3.30) may be written

P̄ (x, τ) = eηx+ξτu(x, ζ), (B.1)

where η, ξ and ζ are constants given by

η = − γ

σL

, (B.2)

ξ = −1

2
(
γ

σL

)2, (B.3)

ζ = σLτ. (B.4)

and u(x, ζ) satisfies the partial differential equation

∂u

∂ζ
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2
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. (B.5)

Proof: We Calculate
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]
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Substituting from equations (B.6) into equation (3.15), the partial differential equation reduces to
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The ∂u
∂x

and u terms can be eliminated by choosing

σ2
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, (B.8)
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the (B.7) becomes

∂u

∂τ
=

1

2
σ2

L

∂2u

∂x2
. (B.10)

Since u(x, ζ) depends on ζ, we can express ∂u
∂τ

= ∂ζ
∂τ

∂u
∂ζ

, then (B.10) becomes

[σ2
L]−1 ∂ζ

∂τ

∂u

∂ζ
=

1

2

∂2u

∂x2
, (B.11)

In order to eliminate the term [σ2
L]−1, we choose ζ to satisfy

[σ2
L]−1 ∂ζ

∂τ
= 1, (B.12)

from which

ζ = σ2
Lτ. (B.13)

So that (B.11) reduces to the heat equation (B.5).

�



APPENDIX C

Transformation to the Heat Equation with Time Dependent Parameters

This appendix illustrate the transformation of the equation (3.39).

Consider

ec(τ) ∂
∂xf(x, τ), (C.1)

where c(τ) is a time-dependent function. e ∂
∂x is an operator (the exponential operator), it operates

on a function to produce the other function according to the rule (3.38).

In order to transform the partial differential equation (3.38) using (3.39), we need to take the first

derivative of (C.1) with respect to τ , namely to calculate

∂

∂τ

[
ec(τ) ∂

∂xf(x, τ)
]
. (C.2)

This is done by applying the Baker-Campbell-Hausdorff formula. The Baker-Campbell-Hausdorff

formula is widely used in quantum mechanics to obtain a solution with combined exponentials

of operators when these operators do not commute. The Baker-Campbell-Hausdorff formula is

defined as (see for example, Hassani (1998), Chapter 2.2)

eABe−A ≡ B + [A,B] +
1

2!
[A, [A,B]] + · · · , (C.3)

where A and B are operators. The expression [A,B] is called the commutator of two operators,

and is defined as [A,B] ≡ AB − BA.

To carry out the operation in (C.2), we consider the following proposition.

Proposition C.1. The expression (C.2) may be written

ec(τ) ∂
∂x

[∂f(x, τ)

∂τ
+
∂c(τ)

∂τ

∂f(x, τ)

∂x

]
. (C.4)

Proof: First, we multiply (C.2) by the term

ec(τ) ∂
∂x e−c(τ) ∂

∂x ≡ 1, (C.5)

to obtain (
ec(τ) ∂

∂x e−c(τ) ∂
∂x

) ∂
∂τ

[
ec(τ) ∂

∂xf(x, τ)
]

= ec(τ) ∂
∂x

(
e−c(τ) ∂

∂x
∂

∂τ
ec(τ) ∂

∂x

)
f(x, τ). (C.6)
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Considering the term in the bracket and applying the Baker-Campbell-Hausdorff formula (C.3)

(setting A ≡ −c(τ) ∂
∂x

and B ≡ ∂
∂τ

), we have(
e−c(τ) ∂

∂x
∂

∂τ
ec(τ) ∂

∂x

)
=

∂

∂τ
+ [−c(τ) ∂

∂x
,
∂

∂τ
] +

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂

∂τ
]] + · · · ,

=
∂

∂τ
+

(
−c(τ) ∂

∂x
· ∂
∂τ

− ∂

∂τ
· (−c(τ) ∂

∂x
)

)
+ 0,

=
∂

∂τ
+
∂c(τ)

∂τ

∂

∂x
. (C.7)

Note that the higher order terms vanish, as is quite straight forward to see, for example, by calcu-

lating the second term

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂

∂τ
]] =

1

2!
[−c(τ) ∂

∂x
,
∂c(τ)

∂τ

∂

∂x
]

= −c(τ) ∂
∂x

· ∂c(τ)
∂τ

∂

∂x
− ∂c(τ)

∂τ

∂

∂x
· (−c(τ) ∂

∂x
)

= −c(τ)∂c(τ)
∂τ

∂2

∂x2
+ c(τ)

∂c(τ)

∂τ

∂2

∂x2
= 0. (C.8)

Substituting (C.7) into (C.6), we obtain

ec(τ) ∂
∂x

( ∂

∂τ
+
∂c(τ)

∂τ

∂

∂x

)
f(x, τ)

= ec(τ) ∂
∂x

[∂f(x, τ)

∂τ
+
∂c(τ)

∂τ

∂f(x, τ)

∂x

]
. (C.9)

�

We also take the first and second derivatives of (C.1) with respect to x in the following propositions.

Proposition C.2. The following result holds:-

∂

∂x

[
ec(τ) ∂

∂xf(x, τ)
]

= ec(τ) ∂
∂x

[∂f(x, τ)

∂x

]
. (C.10)

Proof: We calculate

∂

∂x

[
ec(τ) ∂

∂xf(x, τ)
]
, (C.11)

in a similar way to Proposition C.1. We multiply by the term

ec(τ) ∂
∂x e−c(τ) ∂

∂x ≡ 1, (C.12)

to obtain (
ec(τ) ∂

∂x e−c(τ) ∂
∂x

) ∂
∂x

[
ec(τ) ∂

∂xf(x, τ)
]

= ec(τ) ∂
∂x

(
e−c(τ) ∂

∂x
∂

∂x
ec(τ) ∂

∂x

)
f(x, τ). (C.13)
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Again apply the Baker-Campbell-Hausdorff formula to the term in the brackets to botain(
e−c(τ) ∂

∂x
∂

∂x
ec(τ) ∂

∂x

)
=

∂

∂x
+ [−c(τ) ∂

∂x
,
∂

∂x
] +

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂

∂x
]] + · · · ,

=
∂

∂x
+

(
−c(τ) ∂

∂x
· ∂
∂x

− ∂

∂x
· (−c(τ) ∂

∂x
)

)
+ · · · ,

=
∂

∂x
+ 0. (C.14)

Again all higher order terms are zero.

Substituting (C.14) into (C.13), we obtain

ec(τ) ∂
∂x

[∂f(x, τ)

∂x

]
. (C.15)

�

Proposition C.3. The following result holds:-

∂2

∂x2

[
ec(τ) ∂

∂xf(x, τ)
]

= ec(τ) ∂
∂x

[∂2f(x, τ)

∂x2

]
. (C.16)

Proof: We calculate

∂2

∂x2

[
ec(τ) ∂

∂xf(x, τ)
]
, (C.17)

in a similar way to Proposition C.1. We multiply by the term

ec(τ) ∂
∂x e−c(τ) ∂

∂x ≡ 1, (C.18)

to obtain (
ec(τ) ∂

∂x e−c(τ) ∂
∂x

) ∂2

∂x2

[
ec(τ) ∂

∂xf(x, τ)
]

= ec(τ) ∂
∂x

(
e−c(τ) ∂

∂x
∂2

∂x2
ec(τ) ∂

∂x

)
f(x, τ). (C.19)

Apply the Baker-Campbell-Hausdorff formula to the term in the bracket to obtain(
e−c(τ) ∂

∂x
∂2

∂x2
ec(τ) ∂

∂x

)
=

∂2

∂x2
+ [−c(τ) ∂

∂x
,
∂2

∂x2
] +

1

2!
[−c(τ) ∂

∂x
, [−c(τ) ∂

∂x
,
∂2

∂x2
]] + · · · ,

=
∂2

∂x2
+

(
−c(τ) ∂

∂x
· ∂

2

∂x2
− ∂2

∂x2
· (−c(τ) ∂

∂x
)

)
+ · · · ,

=
∂2

∂x2
+ 0. (C.20)

Again all higher order terms are zero.
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Substituting (C.20) into (C.19), we obtain the term

ec(τ) ∂
∂x

[∂2f(x, τ)

∂x2

]
, (C.21)

and hence the result of the proposition is proven.

�

Next, we obtain the functional form of the partial differential equation (3.15) after taking the

transformation, namely by setting

P̄ (x, τ) = e
R τ
0 γ(v)dv ∂

∂x P̃ (x, τ). (C.22)

We consider the following proposition.

Proposition C.4. The quantity P̃ (x, τ) appearing in the representation (C.22) satisfies the partial
differential equation

∂P̃

∂τ
=

1

2
σ2

L(τ)
∂2P̃

∂x2
. (C.23)

Proof: The partial differential equation P̃ (x, τ) is obtained by calculating

∂P̄

∂τ
=

∂

∂τ
[e

R τ
0 γ(v)dv ∂

∂x P̃ ], (C.24)

∂P̄

∂x
=

∂

∂x
[e

R τ
0 γ(v)dv ∂

∂x P̃ ], (C.25)

∂2P̄

∂x2
=

∂2

∂x2
[e

R τ
0 γ(v)dv ∂

∂x P̃ ]. (C.26)

By the relations in Proposition C.1, Proposition C.2 and Proposition C.3, we obtain

∂P̄

∂τ
= e

R τ
0 γ(v)dv ∂

∂x

(∂P̃
∂τ

+
∂[e

R τ
0 γ(v)dv]

∂τ

∂P̃

∂x

)
=
(∂P̃
∂τ

+ γ(τ)
∂P̃

∂x

)
, (C.27)

∂P̄

∂x
= e

R τ
0 γ(v)dv ∂

∂x
∂P̃

∂x
, (C.28)

∂2P̄

∂x2
= e

R τ
0 γ(v)dv ∂

∂x
∂2P̃

∂x2
. (C.29)

Substituting (C.29) into the partial differential equation (3.15), we obtain

∂P̃

∂τ
+ γ(τ)

∂P̃

∂x
=

1

2
σ2

L(τ)
∂2P̃

∂x2
+ γ(τ)

∂P̃

∂x
. (C.30)

We see readily that the ∂P̃/∂x term drops out so that

∂P̃

∂τ
=

1

2
σ2

L(τ)
∂2P̃

∂x2
. (C.31)

�
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Note that, equation (C.31) has a time dependent coefficient. This can be reduced by transforming

the time to maturity variable. Consider the following proposition.

Proposition C.5. Define the new time-to-maturity variable ζ as

ζ =

∫ τ

0

σ2
L(v)dv. (C.32)

and set ũ(x, ζ) = P̃ (x, τ), then ũ(x, ζ) satisfies

∂ũ

∂ζ
=

1

2

∂2ũ

∂x2
. (C.33)

Proof: Consider equation (C.31), and multiply both sides by the term [σ2
L(τ)]

−1, so that[
σ2

L(τ)
]−1 ∂P̃

∂τ
=

1

2

∂2P̃

∂x2
. (C.34)

Using the chain rule we transform to a new time-to-maturity variable ζ defined in (C.32), so that

(C.34) in terms of ũ, becomes [
σ2

L(τ)
]−1 ∂

∂ζ

[
ũ
]∂ζ
∂τ

=
1

2

∂2ũ

∂x2
. (C.35)

In order to eliminate the [σ2
L(τ)]

−1 term, we choose ζ to satisfy[
σ2

L(τ)
]−1 × ∂ζ

∂τ
= 1, (C.36)

from which

ζ =

∫ τ

0

σ2
L(v)dv. (C.37)

�

Proposition C.6. The evolution operator ec(τ) ∂
∂x satisfies the relation

ec(τ) ∂
∂xf(x) = f(x+ c(τ)). (C.38)

Proof: Using Taylor series expansion, f(x+ c(τ)) can be expressed as

f(x+ c(τ)) = f(x) + f ′(x)(c(τ)) +
1

2!
f ′′(x)(c(τ))2 + · · · ,

=
∞∑

n=0

1

n!
(c(τ))n∂

nf(x)

∂xn
,

=

[ ∞∑
n=0

c(τ)n

n!

∂n

∂xn

]
f(x),

= ec(τ) ∂
∂xf(x), (C.39)

where to obtain the last line we have used the definition (3.38). �



APPENDIX D

Derivation of Differential Equation Satisfied by a Credit-Linked Note

In this appendix, we derive the partial differential equation for the credit linked note price. Since

the leverage ratios L1, L2 are not themselves traded equations so we employ the “trick” of setting

up a portfolio that contains four credit linked notes with different maturities in order to hedge away

the risks of the non-traded assets L1, L2 and r, see Wilmott et al. (1995) (Chapter 17.5) for the

basic idea of this approach and Chiarella (2009) (Chapter 10.4) for a more genal discussion.

We consider three non-traded state variables following the stochastic differential equations

dxj = mjxjdt+ sjxjdZj, (j = 1, 2, 3). (D.1)

We write the correlation structure as

E[dZjdZk] = ρjkdt. (D.2)

We identify L1, L2 with x1, x2 and r with lnx3.

In order to hedge away these three non-traded risks we need to introduce l = 4 traded credit linked

notes of maturities T1, T2, T3 and T4. We use f l(x1, x2, x3, t) for l = 1, 2, 3, 4 to denote these

credit linked notes which are assumed to be dependent on x1, x2, x3 and t. Applying Ito’s lemma,

the dynamics of each credit linked note is given by

df l = μlf ldt+
3∑

j=1

σl
jf

ldZj, (D.3)

where

μlf l =
∂f l

∂t
+

3∑
j=1

mjxj
∂f l

∂xj

+
1

2

3∑
j,k=1

ρjksjskxjxk
∂2f l

∂xj∂xk

, (D.4)

σl
jf

l = sjxj
∂f l

∂xj

. (D.5)

We form a hedging portfolio consisting of Ql unit of the traded credit linked notes f l for l =

1, 2, 3, 4. The value of this portfolio at time t is given by

V =
4∑

l=1

Qlf l, (D.6)
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and the instantaneous change in V may be written

dV =
4∑

l=1

Qldf l, (D.7)

=
4∑

l=1

Ql[μlf ldt+
3∑

j=1

σl
jf

ldZj], (D.8)

=
4∑

l=1

Qlμlf ldt+
4∑

l=1

Ql

3∑
j=1

σl
jf

ldZj. (D.9)

In order to render the portfolio riskless the Ql have to be chosen to that
4∑

l=1

Ql

3∑
j=1

σl
jf

ldZj = 0, (D.10)

which can be rewritten as
3∑

j=1

[
4∑

l=1

Qlσl
jf

l

]
dZj = 0. (D.11)

For each dZj term to vanish, the quantity in the bracket in (D.11) must equal zero, that is
4∑

l=1

Qlσl
jf

l = 0, (D.12)

for 1 ≤ j ≤ 3. In this case, the return from the portfolio in equation (D.9) is then riskless and

given by

dV =
4∑

l=1

Qlμlf ldt. (D.13)

If there are no arbitrage opportunities, the riskless hedging portfolio can only earn the risk-free of

interest, so that (D.13) becomes

dV = r

4∑
l=1

Qldf ldt. (D.14)

Substituting (D.14) into (D.13), we have
4∑

l=1

Qlμlf ldt = r
4∑

l=1

Qldf ldt, (D.15)

then
4∑

l=1

Ql[μl − r]f l = 0. (D.16)

Following the argument Hull (2000) (Chapter 19), equations (D.12) and (D.16) can be regarded

as 4 homogeneous linear equations in the Ql’s, which are non-zero otherwise there would be no
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hedging portfolio. By the results from linear algebra, equations (D.12) and (D.16) can be consistent

only if

μl − r =
3∑

j=1

λjσ
l
j. (D.17)

for some parameters λj (j = 1, 2, 3) that are dependent only on the state variables and time.

Following the argument in Wilmott et al. (1995), the parameters λj are the market prices of risk

associated to the underlying non-traded variables.

Since the maturities Tl are arbitrary the relation (D.17) must hold for a credit linked note of any

maturity, that is we can write

μ− r =
3∑

j=1

λjσj. (D.18)

Substituting the expressions for σj and μ defined in equations (D.4)-(D.5), equation (D.18) reduces

to the partial differential equation

∂f

∂t
+

3∑
j=1

[mj − λjsj]xj
∂f

∂xj

+
1

2

3∑
j

3∑
k

ρjksjskxjxk
∂f

∂xj∂xk

− rf = 0. (D.19)

Replacing (x1, x2, lnx3) by (L1, L2, r), the partial differential equation (D.19) becomes the partial

differential equation (3.68) for the credit linked note P (L1, L2, r) with the drift coefficients m1,

m2 and m3 − s2
3/2 identified with μ1, μ2 and κr(θr − r) and the volatility coefficients s1, s2 and s3

identified with σ1, σ2 and σr.



APPENDIX E

Applying the Separation of Variables to the PDE for the CLN

This appendix applies the separation of variables technique to simplify the partial differential equa-

tion for the price of the credit linked note. Suppose the differential equation (3.74) can be written

in terms of two separate functions as

P (L1, L2, r, t) = f(r, t)P̂ (L1, L2, t), (E.1)

where function f(r, t) depends only on r and t, and P̂ (L1, L2, t) is a function of L1, L2 and t only.

To determine differential equations of f(r, t) and P̂ (L1, L2, t), we note that

∂P

∂t
= P̂

∂f

∂t
+ f

∂P̂

∂t
, (E.2)

∂2P

∂L1∂L2

= f
∂2P̂

∂L1∂L2

,
∂P

∂Li

= f
∂P̂

∂Li

,
∂2P

∂L2
i

= f
∂2P̂

∂L2
i

, (E.3)

∂2P

∂r∂Li

=
∂f

∂r

∂P̂

∂Li

,
∂P

∂r
= P̂

∂f

∂r
,
∂2P

∂r2
= P̂

∂2f

∂r2
, (E.4)

for i = 1, 2.

Substituting equations (E.1)-(E.4) into (3.74), we obtain the partial differential equation

−P̂ ∂f
∂t

− f
∂P̂

∂t
= f

1

2
σ2

1L
2
1

∂2P̂

∂L2
1

+ f
1

2
σ2

2L
2
2

∂2P̂

∂L2
2

+ P̂
1

2
σ2

r

∂2f

∂r2

+fρ12σ1σ2L1L2
∂2P̂

∂L1∂L2

+
∂f

∂r
ρ1rσ1σrL1

∂P̂

∂L1

+
∂f

∂r
ρ2rσ2σrL2

∂P̂

∂L2

+ fμ̃1L1
∂P̂

∂L1

+ fμ̃2L2
∂P̂

∂L2

+P̂ κr

[
θ̃r − r

] ∂f
∂r

− rfP̂ . (E.5)
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We group f and P̂ terms respectively, so that (E.5) becomes

1

f

(
∂f

∂t
+

1

2
σ2

r

∂2f

∂r2
+ κr

[
θ̃r − r

] ∂f
∂r

− rf

)

=
1

P̂

(
−∂P̂
∂t

− 1

2
σ2

1L
2
1

∂2P̂

∂L2
1

− 1

2
σ2

2L
2
2

∂2P̂

∂L2
2

− ρ12σ1σ2L1L2
∂2P̂

∂L1∂L2

− 1

f

∂f

∂r
ρ1rσ1σrL1

∂P̂

∂L1

− 1

f

∂f

∂r
ρ2rσ2σrL2

∂P̂

∂L2

−μ̃1L1
∂P̂

∂L1

− μ̃2L2
∂P̂

∂L2

)
. (E.6)

Since the LHS of (E.6) depends only on r and t and the RHS only on L1, L2 and t, the only way

that both sides can be equal for all possible values of r, L1, L2 and t is that both sides equal to a

constant. We note that the partial differential equation in the bracket of LHS of (E.6) is the partial

differential equation of the risk-free bond priceB(r, t) of the Vasicek (1977) model, which satisfies

∂B

∂t
+

1

2
σ2

r

∂2B

∂r2
+ κr(θ̃r − r)

∂B

∂r
− rB = 0. (E.7)

Hence, both sides of (E.6) equal zero, and (E.1) becomes

P (L1, L2, r, t) = B(r, t)P̂ (L1, L2, t). (E.8)

The solution of the risk-free bond price B(r, t) of the Vasicek (1977) model is1

B(r, t) = ea(t)+b(t)r, (E.9)

where

b(t) =
e−κr(T−t) − 1

κr

, (E.10)

a(t) =
(−b(t) − T + t)(κ2

r θ̃r − σ2
r/2)

κ2
r

− σ2
rb(t)

2

4κr

. (E.11)

Moreover, the solution (E.9) yields that the first derivative of B(r, t) with respect to r satisfies

1

B

∂B

∂r
= b(t). (E.12)

1For example, Wilmott et al. (1995), Section 17.5.
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Substituting from equations (E.7) and (E.12) into (E.5), we obtain the differential equation of

P̂ (L1, L2, t) as

−∂P̂
∂t

=
1

2
σ2

1L
2
1

∂2P̂

∂L2
1

+ ρ12σ1σ2L1L2
∂2P̂

∂L1∂L2

+
1

2
σ2

2L
2
2

∂2P̂

∂L2
2

+ [μ̃1 + ρ1rσ1σrb(t)]L1
∂P̂

∂L1

+ [μ̃2 + ρ2rσ2σrb(t)]L2
∂P̂

∂L2

, (E.13)

in the region of 0 ≤ t ≤ T .

Since the final time condition for the risk-free bond price is B(r, T ) = 1, substituting this and

equation (E.8) into boundary conditions (3.69)-(3.71), gives boundary conditions for P̂ , namely

P̂ (L1, L2, T ) = 1, (E.14)

P̂ (L̂1, L2, t) = 0, (E.15)

P̂ (L1, L̂2, t) = 0. (E.16)



APPENDIX F

The Number of Images and the Correlation Coefficient ρ12

The method of images applied in Chapter 4 for the two absorbing barriers case is only valid for

certain values of the correlation coefficient between two firms’ leverage ratios. This appendix

demonstrates the relationship between the total number of images required to form a “closed-loop”

and the corresponding value of the correlation coefficient ρ12.

In order to obtain the number of images that form the closed-loop, it is convenient to transform the

volatility adjusted correlated log-leverage ratio variables x1 and x2 to the uncorrelated variables

z1, z2 by setting

z2 = x2, (F.1)

z1 =
1√

1 − ρ2
12

(x1 − ρ12x2). (F.2)

In order to eliminate the mixed derivative term from the heat equation (4.1), we make the transfor-

mation

u(x1, x2, τ) = ũ(z1(x1, x2), z2(x2), τ), (F.3)

using the change of variables defined in equations (F.1)-(F.2).

Since

∂z2

∂x1

= 0 ;
∂z2

∂x2

= 1

∂z1
∂x1

= α ;
∂z1

∂x2

= −αρ,

with α = 1/
√

1 − ρ2, we have

∂u

∂x1

= α
∂

∂z1

P̃

∂2u

∂x2
1

= α2 ∂
2

∂z2
1

ũ

∂u

∂x2

=

[
∂

∂z2

− αρ
∂

∂z1

]
ũ

∂2u

∂x2
2

=

[
∂2

∂z2
2

− 2αρ
∂2

∂z1∂z2

+ (αρ)2 ∂
2

∂z2
1

]
ũ

∂2u

∂x1∂x2

=

[
α

∂2

∂z1∂z2

− α2ρ
∂2

∂z2
1

]
ũ. (F.4)
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Substituting (F.4) into (4.1), yields

∂ũ

∂τ
=

1

2

[
α2 ∂

2

∂z2
1

]
ũ+

1

2

[
∂2

∂z2
2

− 2αρ
∂2

∂z1∂z2

+ (αρ)2 ∂
2

∂z2
1

]
ũ+ ρ

[
α

∂2

∂z1∂z2

− α2ρ
∂2

∂z2
1

]
ũ

=
1

2
α2∂

2ũ

∂z2
1

+
1

2

∂2ũ

∂z2
2

− αρ
∂2ũ

∂z1∂z2

+
1

2
(αρ)2∂

2ũ

∂z2
1

+ ρα
∂2ũ

∂z1∂z2

− (ρα)2∂
2ũ

∂z2
1

=

[
1

2
α2 +

1

2
(αρ)2 − (ρα)2

]
∂2ũ

∂z2
1

+
1

2

∂2ũ

∂z2
2

,

rearranging the term in the bracket on the right hand side
[

1
2
α2 + 1

2
(αρ)2 − (ρα)2

]
we find that it

equals 1
2
, therefore we obtain

∂ũ

∂τ
=

1

2

∂2ũ

∂z2
1

+
1

2

∂2ũ

∂z2
2

. (F.5)

The absorbing barriers x1 = 0 and x2 = 0 determine the barriers of the uncorrelated variables,

which become

z2 = 0, (F.6)

z1 = − ρ12√
1 − ρ2

12

z2. (F.7)

The transformation of the barriers is also illustrated in Figure F.1, and we note that the barrier for

z1 depends on z2 as well.

x1

x2

� z1

z2

FIGURE F.1. The transformation of the barriers.

Since x1 and x2 are defined in the region x1, x2 ∈ (−∞, 0) × (−∞, 0) (represented by the non-

shaded region in the left hand panel in Figure F.2), then for z1, z2 the regions of definition are

z2 ∈ (−
√

1−ρ2
12

ρ12
z1, 0) and z1 ∈ (−∞,− ρ12√

1−ρ2
12

z2), and there is an angle φ′ (represented by the

angle φ′ in the right hand panel in Figure F.2) between the two planes of the barrier z2 = 0 and

z1 = − ρ12√
1−ρ2

12

z2.
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x1

x2

� z1

z2

�
�

�
��

φ′
�

φ

�

2π − φ′

�

FIGURE F.2. The non-shaded area in the left hand panel represents the restricted
region in x1, x2 co-ordinates. After the transformation, the wedge shaped non-
shaded region forming the angle φ′ in the right hand panel represents the restricted
region in z1, z2 co-ordinates.

In the ensuing discussion it is important to distinguish between the polar angle φ (measured clock-

wise from the positive z1 axis) and the angle φ′ (measured clockwise from the negative z1 axis), as

shown in the right panel of Figure F.2, and which are related by φ′ = φ− π.

Next, we relate the angle φ′ to the correlation coefficient ρ12. By simple trigonometry for a point

(z1, z2) in the line z1 = − ρ12√
1−ρ2

12

z2, we have

z1 = R cosφ, (F.8)

where R is the radius defined as R =
√
z2
1 + z2

2 .

Equation (F.8) may be written as

z1 =
√
z2
1 + z2

2 cosφ,

(F.9)

which by use of the relation (F.7) becomes

z2
1 =

(
z2
1 +

1 − ρ2
12

ρ2
12

z2
1

)
cos2 φ, (F.10)

from which we obtain

ρ12 = ± cosφ. (F.11)
From (F.11), we note that the condition −1 < ρ12 < 1 determines region of φwhich is π < φ < 2π,

hence the values of φ′ satisfy 0 < φ′ < π (since φ′ = φ − π). If ρ12 < 0 then 0 < φ′ < π
2
, if

ρ12 = 0 then φ′ = π
2

and if ρ12 > 0 then π
2
< φ′ < π as illustrated in Figure F.3:

Note that we can only form the closed loop of images for values of the angle φ′ that divide the

angle (2π − φ′) into an exact integer number. Denote by m the number of images, then in order to
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z1

z2

ρ12 < 0 ρ12 > 0
ρ12 = 0

φ′ �
� �

FIGURE F.3. The relationship between the correlation coefficient ρ12 and the angle φ′.

form the closed-loop, the integer m must be related to the angle φ′ by

m =
2π − φ′

φ′ . (F.12)

We stress that m must be a positive integer, also the values of m that satisfy this relation are the

odd integers starting from 3. These values of m via equation (F.12), will then determine the values

of ρ12 for which the method of images can be applied.

For example, given φ′ = π
2

(at which ρ12 = 0), we require m = 3 images to form the closed-loop

(see Figure F.4), that is if we successively reflect a point in the physical region in the mirrors at the

lines radiating from the origin at polar angles φ = 3π
2

, φ = 0, φ = π
2

and φ = π we will arrive back

at the original point.

z1

z2

��
��
��

�� �� ��

φ′

2π − φ′

�
	

�




FIGURE F.4. To form the closed-loop for the angle φ′ = π
2
, three images are required.

Next consider φ′ = π
3

(at which ρ12 = −0.5) illustrated in Figure F.5. The lines bounding the

image region (shaded in Figure F.5) lie between the polar angles φ = π and φ = 4π
3

in the
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clockwise direction. So the angle separating the two defining lines is 5π
3

(= 2π − φ′), which can

be divided precisely into five regions separated by lines at an angle of π/3 apart, as shown in

Figure F.5. These lines are five mirrors in which the point in the physical region is successively

reflected to give the five image points. A further reflection in the line φ = π would take us back

to the original point, thus completing the loop. Figure F.6 illustrates the situation for φ′ = π
4

(at

which ρ12 = −0.707) for which seven mirrors, resulting in seven images, are required to form a

closed loop.

z1

z2

φ′

2π − φ′

�
�

	

�



�

FIGURE F.5. To form a closed loop for the angle φ′ = π
3
, five images are required.

z1

z2

φ′

2π − φ′

�

�
	

�

� �






FIGURE F.6. To form a closed loop for the angle φ′ = π
4
, seven images are required.

We can now see that the general relationship between the value of ρ12 and the member of images

m needed to form a closed-loop is obtained by substituting (F.12) into (F.11), using the relation

φ′ = φ− π, to yield
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ρ12 = − cos(
2π

(m+ 1)
), (F.13)

for m = 3, 5, 7, . . . . The corresponding values of ρ12 are summarized in Table 4.1.



APPENDIX G

Transformation of the PDE (4.30) to the 2-D Heat Equation in the Case of
Constant Coefficients

Proposition G.1. The solution to the partial differential equation (4.30) may be written

P̄ (X1, X2, τ) = eη1X1+η2X2+ξτu(X1, X2, τ), (G.1)

where η1, η2 and ξ are constants given by

η1 =
γ2ρ12 − γ1

1 − ρ2
12

, (G.2)

η2 =
γ1ρ12 − γ2

1 − ρ2
12

, (G.3)

ξ = −
1
2
γ2

1 − ρ12γ1γ2 + 1
2
γ2

1

1 − ρ2
12

, (G.4)

and u(X1, X2, τ) satisfies the partial differential equation

∂u

∂τ
=

1

2

∂2u

∂X2
1

+ ρ12
∂2u

∂X1∂X2

+
1

2

∂2u

∂X2
2

. (G.5)

Proof: We define P̄ such that P̄ (X1, X2, τ) = eη1X1+η2X2P̃ (X1, X2, τ), where the η1 and η2 are to

be chosen in a “convenient” way. We calculate

∂P̄

∂τ
= eη1X1+η2X2

∂P̃

∂τ
,

∂P̄

∂Xi

= eη1X1+η2X2

[
ηiP̃ +

∂P̃

∂Xi

]
, (i = 1, 2)

∂2P̄

∂X2
i

= eη1X1+η2X2

[
η2

i P̃ + 2ηi
∂P̃

∂Xi

+
∂2P̃

∂X2
i

]
, (i = 1, 2)

∂2P̄

∂X1∂X2

= eη1X1+η2X2

[
η1η2P̃ + η2

∂P̃

∂X1

+ η1
∂P̃

∂X2

+
∂2P̃

∂X1∂X2

]
. (G.6)

Then equation (4.30) becomes

161
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∂P̃

∂τ
=

1

2

[
η2

1P̃ + 2η1
∂P̃

∂X1

+
∂2P̃

∂X2
1

]
+

1

2

[
η2

2P̃ + 2η2
∂P̃

∂X2

+
∂2P̃

∂X2
2

]

+ρ12

[
η1η2P̃ + η2

∂P̃

∂X1

+ η1
∂P̃

∂X2

+
∂2P̃

∂X1∂X2

]

+γ1

[
η1P̃ +

∂P̃

∂X1

]
+ γ2

[
η2P̃ +

∂P̃

∂X2

]
. (G.7)

Rearranging this last equation we obtain

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

+ [η1 + ρ12η2 + γ1]
∂P̃

∂X1

+ [η2 + ρ12η1 + γ2]
∂P̃

∂X2

+

[
1

2
η2

1 +
1

2
η2

2 + ρ12η1η2 + γ1η1 + γ2η2

]
P̃ . (G.8)

We may eliminate the ∂P̃/∂X1 terms and ∂P̃/∂X2 by choosing

η1 + ρ12η2 + γ1 = 0,

η2 + ρ12η1 + γ2 = 0, (G.9)

the simultaneous solution of which yields

η1 =
γ2ρ12 − γ1

1 − ρ2
12

,

η2 =
γ1ρ12 − γ2

1 − ρ2
12

. (G.10)

With these choices of η1 and η2 equation (G.8) reduce to

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

+ ξP̃ , (G.11)

where, by use of equation (G.10)

ξ = −
(

1
2
γ2

1 − ρ12γ1γ2 + 1
2
γ2

2

)
1 − ρ2

12

. (G.12)

Next, we define u such that

P̃ (X1, X2, τ) = eξτu(X1, X2, τ), (G.13)
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and calculate

∂P̃

∂τ
= eξτ

[
ξu+

∂u

∂τ

]
,

∂P̃

∂Xi

= eξτ ∂u

∂Xi

, (i = 1, 2)

∂2P̃

∂X2
i

= eξτ ∂
2u

∂X2
i

, (i = 1, 2)

∂2P̃

∂X1∂X2

= eξs ∂2u

∂X1∂X2

. (G.14)

It then follows that u(X1, X2, τ) satisfies

∂u

∂τ
=

1

2

∂2u

∂X2
1

+ ρ12
∂2u

∂X1∂X2

+
1

2

∂2u

∂X2
2

. (G.15)

�



APPENDIX H

The Derivation of the PDE (4.44) in the Case of Time Varying Barriers

In this appendix we show how to the transform equation (4.44) to equation (4.50). We remind the

reader of the operator ec(τ) ∂
∂x defined in equation (3.38) and the techniques used in Appendix C.

Proposition H.1. The partial differential equation (4.44) can be transformed by setting

P̄β(X1, X2, τ) = e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2 P̃ (X1, X2, τ), (H.1)

where the X∗
i (τ) is given by

X∗
i (τ) = −

∫ τ

0

γi(v)dv − βiτ, (i = 1, 2), (H.2)

and P̃ (X1, X2, τ) satisfies the partial differential

∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

− β1
∂P̃

∂X1

− β2
∂P̃

∂X2

. (H.3)

Proof: Apply the Baker-Campbell-Hausdorff formula in Appendix C, and after some algebraic

manipulations, we obtain

∂P̄β

∂τ
= e

−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

[
∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1

− ∂X∗
2 (τ)

∂τ

∂P̃

∂X2

]
,

∂P̄β

∂Xi

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂P̃

∂Xi

, (i = 1, 2),

∂2P̄β

∂X2
i

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂2P̃

∂X2
i

, (i = 1, 2),

∂2P̄β

∂X1∂X2

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂2P̃

∂X1∂X2

. (H.4)

Then equation (4.44) becomes

∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1

− ∂X∗
2 (τ)

∂τ

∂P̃

∂X2

=
1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

+γ1(τ)
∂P̃

∂X1

+ γ2(τ)
∂P̃

∂X2

. (H.5)
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Define X∗
1 (τ) and X∗

2 (τ) by setting

−∂X
∗
1 (τ)

∂τ
= γ1(τ) + β1, (H.6)

−∂X
∗
2 (τ)

∂τ
= γ2(τ) + β2, (H.7)

so that

X∗
1 (τ) = −

∫ τ

0

γ1(v)dv − β1τ, (H.8)

X∗
2 (τ) = −

∫ τ

0

γ2(v)dv − β2τ, (H.9)

then, the partial differential equation (H.5) becomes

∂P̃

∂τ
+ γ1(τ)

∂P̃

∂X1

+ β1
∂P̃

∂X1

+ γ2(τ)
∂P̃

∂X2

+ β2
∂P̃

∂X2

=
1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

+ γ1(τ)
∂P̃

∂X1

+ γ2(τ)
∂P̃

∂X2

, (H.10)

which then turns out to be equation (H.3).

We note that the partial differential equation (H.3) can be further reduced to the two-dimensional

heat equation u. We apply the transformation illustrated in Appendix G, simply replacing P̄ by P̃ ,

and replacing the coefficients γi by −βi (for i = 1, 2), we obtain

P̃ (X1, X2, τ) = eη1X1+η2X2+ξτu(X1, X2, τ), (H.11)

where η1, η2 and ξ are constants given by

η1 =
−β2ρ12 + β1

1 − ρ2
12

, (H.12)

η2 =
−β1ρ12 + β2

1 − ρ2
12

, (H.13)

ξ = −
1
2
β2

1 − ρ12β1β2 + 1
2
β2

1

1 − ρ2
12

. (H.14)

�

The following proposition gives the proof of equation (4.51).

Proposition H.2. The expression

e
c1(τ) ∂

∂x1
+c2(τ) ∂

∂x2 f(x1, x2), (H.15)

may be written as

f(x1 + c1(τ), x2 + c2(τ)). (H.16)
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Proof: Using Taylor series expansion, f(x1 + c1(τ), x2 + c2(τ))

f(x1 + c1(τ), x2 + c2(τ)) =
∞∑

n=0

∞∑
m=0

1

n!m!

∂n

∂xn
1

∂m

∂xm
2

[f(x1, x2)]c1(τ)
nc2(τ)

m,

=

[ ∞∑
n=0

c1(τ)
n

n!

∂n

∂xn
1

][ ∞∑
m=0

c2(τ)
m

m!

∂m

∂xm
2

]
f(x1, x2),

= e
c1(τ) ∂

∂x1 e
c2(τ) ∂

∂x2 f(x1, x2). (H.17)

The last equality follows from repeated application of the definition (3.38).

�



APPENDIX I

Expressing the JSP in terms of the Bivariate Normal Distribution

This appendix develops a scheme for the simplification of the expression for the joint survival

probability to the cumulative bivariate normal distribution function N2(.) given in Section 4.4.

This scheme involves five steps:

Step I. Consider the integral in the form∫ 0

−∞

∫ 0

−∞

1

2πs
√

1 − ρ2
12

exp

(
− φ(y1, y2)

2s(1 − ρ2
12)

)
dy1dy2, (I.1)

where

φ(y1, y2) = Ay2
1 +By2

2 + Cy1 +Dy2 + Ey1y2 +H, (I.2)

and A, B, C, D, E and H are constants (defined by equation (4.68)).

Step II. Group the terms y1 and y2 by completing the square, then

φ(y1, y2) = Ay2
1 + y1(C + Ey2) +By2

2 +Dy2 +H. (I.3)

By completing square, this last expression can be written as

φ(y1, y2) = A

(
C

2A
+

E

2A
y2 + y1

)2

+ h1

(
h2

2h1

+ y2

)2

+ h̃, (I.4)

where h1, h2 and h̃ are expressed in (4.73).

Step III. First we make the change of variable in the second term in equation (I.4) by setting

v2 = h1

(
h2

2h1

+ y2

)2

, (I.5)

which implies that

v =
√
h1

(
h2

2h1

+ y2

)
, (I.6)

so that

dv =
√
h1dy2, (I.7)

and the limits transform as

y2 → −∞ as v → −∞, (I.8)

y2 = 0 when v =
h2

2
√
h1

. (I.9)
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Substituting from (I.6) (that is y2 = v√
h1

− h2

2h1
) into equation (I.4), and setting

φ(y1,
v√
h1

− h2

2h1
) to φ̂(y1, v), yields

φ̂(y1, v) = A

[( C
2A

− Eh2

4Ah1

+ y1

)
+

Eh2

4Ah1

v

]2

+ v2 + h̃. (I.10)

Next, we make the change of variable to y1 in the above equation by setting

u =
C

2A
− Eh2

4Ah1

+ y1, (I.11)

so that

du = dy1, (I.12)

and take the limits

y1 → −∞ as u→ −∞, (I.13)

y1 = 0 when u =
C

2A
− Eh2

4Ah1

. (I.14)

Substituting from (I.11) into equation (I.10), and setting φ̂( C
2A

− Eh2

4Ah1
, v) to φ̃(u, v),

yields

φ̃(u, v) = Au2 +
E√
h1

uv + (1 +
E2

4Ah1

)v2 + h̃. (I.15)

Next, we make a further change of variables by setting

ũ =

√
A

2s(1 − ρ2
12)

u, (I.16)

so that,

dũ =

√
A

2s(1 − ρ2
12)

du, (I.17)

and the limits transform as

u → −∞ as ũ→ −∞, (I.18)

u =
C

2A
− Eh2

4Ah1

when ũ1 =

√
A

2s(1 − ρ2
12)

(
C

2A
− Eh2

4Ah1

)
. (I.19)

We also make change of variable with respect to v by setting

ṽ =

√
1 + E2

4Ah1

2s(1 − ρ2
12)

v, (I.20)

so that

dṽ =

√
1 + E2

4Ah1√
2s(1 − ρ2

12)
dv, (I.21)
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and transform the limits

v → −∞ as ṽ → −∞, (I.22)

v =
h2

2
√
h1

when ṽ1 =

√
1 + E2

4Ah1
· h2

2
√

h1√
2s(1 − ρ2

12)
. (I.23)

Substituting from (I.16) and (I.20) into equation (I.15), yield

φ(ũ, ṽ) = ũ2 +
E√
AB

ũṽ + ṽ2 + h̃. (I.24)

Substituting this into equation (I.1), we obtain the integral term

1√
AB

exp

(
− h̃

2s(1 − ρ2
12)

)

×
√

1 − ρ2
12

π

∫ eu1

−∞

∫ ev1

−∞
exp

{
−
(
ũ2 +

E√
AB

ũṽ + ṽ2

)}
dũdṽ, (I.25)

where ũ1 and ṽ1 are the limits that are given in equations (I.19) and (I.23).

Step IV. We let

ρ̃ = − E

2
√
AB

, (I.26)

ã =
√

2(1 − ρ̃2) ũ1 =

√
A

s

(
C

2A
− Eh2

4Ah1

) √
1 − ρ̃2

1 − ρ2
12

, (I.27)

b̃ =
√

2(1 − ρ̃2) ṽ1 =
1√
s

√
1 +

E2

4Ah1

h2

2
√
h1

√
1 − ρ̃2

1 − ρ2
12

, (I.28)

then Eq (I.25) can be written as√
(1 − ρ2

12)

AB(1 − ρ̃2)
exp

(
−h̃

2s(1 − ρ2
12)

)
×
√

1 − ρ̃2

π

∫ ea√
2(1−eρ2)

−∞

∫ eb√
2(1−eρ2)

−∞

× exp
{− (ũ2 − 2ρ̃ ũṽ + ṽ2

)}
dũdṽ. (I.29)

Step V. Note that the bivariate normal distribution function has the form

N2(a, b, ρ) =
1

2π
√

1 − ρ2

∫ a

−∞

∫ b

−∞
exp

(
−u

2 − 2ρuv + v2

2(1 − ρ2)

)
dudv,

and can also be expressed as

N2(a, b, ρ) =

√
1 − ρ2

π

∫ a√
2(1−ρ2)

−∞

∫ b√
2(1−ρ2)

−∞
exp

{−(x2 − 2ρxy + y2)
}
dxdy,

(I.30)

by making the change of variables
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x = u/
√

2s(1 − ρ2), (I.31)

and

y = v/
√

2s(1 − ρ2). (I.32)

By comparing equation (I.29) to equation (I.30), we see that the integral (I.1) can be

expressed in terms of the N2(.) function as

∫ 0

−∞

∫ 0

−∞

1

2πs
√

1 − ρ2
12

exp

(
− φ(y1, y2)

2s(1 − ρ2
12)

)
dy1dy2,

=

√
(1 − ρ2

12)

AB(1 − ρ̃2)
exp

(
−h̃

2s(1 − ρ2
12)

)
×N2(ã, b̃, ρ̃). (I.33)



APPENDIX J

The Operator ex ∂
∂x

This appendix gives a proof of equation (7.21).

First we define

ex ∂
∂xf(x) = 1 + x

∂

∂x
f(x) +

1

2!
(x

∂

∂x
)2f ′′(x) + · · · ,

=
∞∑

n=0

1

n!
(x

∂

∂x
)nf(x), (J.1)

where we use the notation

(x
∂

∂x
)nf(x) = (x

∂

∂x
)(x

∂

∂x
) · · · (x ∂

∂x
)f(x). (J.2)

Proposition J.1. The expression eax ∂
∂xf(x) may be written

eax ∂
∂xf(x) = f(xea). (J.3)

Proof: Using Taylor series expansion, eax ∂
∂xf(x) can be expressed as

eax ∂
∂xf(x) =

[ ∞∑
n=0

1

n!

(
ax

∂

∂x

)n

]
f(x),

=

[
1 + ax

∂

∂x
+

1

2!
(ax

∂

∂x
)2 +

1

3!
(ax

∂

∂x
)3 + · · ·

]
f(x),

= f(x) + ax
∂

∂x
f(x) +

1

2!
(ax

∂

∂x
)2f(x) +

1

3!
(ax

∂

∂x
)3f(x) + · · · ,

= f(x) + ax
∂

∂x
f(x) +

1

2!
a2xf ′(x) +

1

2!
a2x2f ′′(x)

+
1

3!
a3xf ′(x) +

1

3!
3a3x2f ′′(x) +

1

3!
a3x3f ′′′(x) + · · · ,

= f(x) + xf ′(x)[a+
1

2!
a2 +

1

3!
a3 + · · · ] + x2f ′′(x)[

1

2!
a2 +

1

3!
a3 + · · · ]

+x3f ′′′(x)[
1

3!
a3 + · · · ] + · · · (J.4)
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Notice that

xf ′(x)[a+
1

2!
a2 +

1

3!
a3 + · · · ] = (ea − 1)xf ′(x),

x2f ′′(x)[
1

2!
a2 +

1

3!
a3 + · · · ] =

(ea − 1)2

2!
x2f ′′(x),

x3f ′′′(x)[
1

3!
a3 + · · · ] =

(ea − 1)3

3!
x3f ′′′(x),

... =
... (J.5)

Therefore, (J.4) can be expressed as

f(x) + (ea − 1)xf ′(x) +
(ea − 1)2

2!
x2f ′′(x) +

(ea − 1)3

3!
x3f ′′′(x) + · · ·

= f(x) + (xea − x)f ′(x) +
(xea − x)2

2!
f ′′(x) +

(xea − x)3

3!
f ′′′(x) + · · ·

= f(xea). (J.6)

�

For the two variable case, the proof is similar to the one variable case.

Proposition J.2. The expression ea1x1
∂

∂x1
+a2x2

∂
∂x2 f(x1, x2) may be written

e
a1x1

∂
∂x1

+a2x2
∂

∂x2 f(x1, x2) = f(x1e
a1 , x2e

a2). (J.7)

Proof: Using Taylor series expansion, ea1x1
∂

∂x1
+a2x2

∂
∂x2 f(x1, x2) can be expressed as

e
a1x1

∂
∂x1

+a2x2
∂

∂x2 f(x1, x2) =
∞∑

n=0

∞∑
m=0

1

n!m!

(
a1x1

∂

∂x1

)n(
a2x2

∂

∂x2

)m
f(x1, x2),

=

[ ∞∑
n=0

1

n!

(
a1x1

∂

∂x1

)n

][ ∞∑
m=0

1

m!

(
a2x2

∂

∂x2

)m

]
f(x1, x2),

=

[
1 + a1x1

∂

∂x1

+
1

2!
(a1x1

∂

∂x1

)2 +
1

3!
(a1x1

∂

∂x1

)3 + · · ·
]

×
[
1 + a2x2

∂

∂x2

+
1

2!
(a2x2

∂

∂x2

)2 +
1

3!
(a2x2

∂

∂x2

)3 + · · ·
]

×f(x1, x2). (J.8)
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By applying the results of Proposition J.1 to the brackets in (J.8), then the right hand side of (J.8)

becomes

f(x1, x2) + (x1e
a1 − x1)f

′
x1

(x1, x2) + (x2e
a2 − x2)f

′
x2

(x1, x2)

+
1

2!

[
(x1e

a1 − x1)
2f ′′

x1
(x1, x2) + 2(x1e

a1 − x1)(x2e
a2 − x2)f

′′
x1x2

(x1, x2)

+(x2e
a2 − x2)

2f ′′
x2

(x1, x2)
]
+ · · ·

=
∞∑

n=0

∞∑
m=0

1

n!m!

∂n

∂xn
1

∂m

∂xm
2

f(x1, x2)(x1e
a1 − x1)

n(x2e
a2 − x2)

m,

= f(x1e
a1 , x2e

a2). (J.9)

�



APPENDIX K

The Transformation of the PDE for the CLN in the Mean-Reverting Case

This appendix gives a brief idea of the transformation of the partial differential equation (7.15) to

equation (7.22).

Proposition K.1. The solution to equation (7.15) may be written

P †(X1, X2, τ) = e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2P ‡(X1, X2, τ), (K.1)

= P ‡(X1e
−κ1τ , X2e

−κ2τ , τ). (K.2)

where P ‡(X1, X2, τ) satisfies the partial differential equation

∂P ‡

∂τ
=

1

2
e−2κ1τ ∂

2P ‡

∂X2
1

+ ρ12e
−κ1τ−κ2τ ∂2P ‡

∂X1∂X2

+
1

2
e−2κ2τ ∂

2P ‡

∂X2
2

+γ̄1(τ)e
−κ1τ ∂P

‡

∂X1

+ γ̄2(τ)e
−κ2τ ∂P

‡

∂X2

. (K.3)

Proof: Using the same approach back in Appendix C, we apply the Baker-Campbell-Hausdorff

formula to find the relationships of the functions of operator, when taking the first or (and) second

derivatives to the right hand side of equation (K.1) with respect to τ , X1 and X2, respectively.

After some algebraic manipulations as illustrated for example, Proposition C.1, Proposition C.2 or

Proposition C.3, we obtain

∂P †

∂τ
= e

−κ1τX1
∂

∂X1
−κ2τX2

∂
∂X2

[
∂P ‡

∂τ
− ∂(κ1τ)

∂τ
X1

∂P ‡

∂X1

− ∂(κ2τ)

∂τ
X2

∂P ‡

∂X2

]
,

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
∂P ‡

∂τ
− κ1X1

∂P ‡

∂X1

− κ2X2
∂P ‡

∂X2

]
,

∂P †

∂X1

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
e−κ1τ ∂P

‡

∂X1

]
,

∂P †

∂X2

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
e−κ2τ ∂P

‡

∂X2

]
,

∂2P †

∂X2
1

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
e−2κ1τ ∂

2P ‡

∂X2
1

]
,

∂2P †

∂X2
2

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
e−2κ2τ ∂

2P ‡

∂X2
2

]
, (K.4)
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moreover,

X1
∂P †

∂X1

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
X1

∂P ‡

∂X1

]
,

X2
∂P †

∂X2

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
X2

∂P ‡

∂X2

]
,

∂2P ‡

∂X1∂X2

= e
−κ1τX1

∂
∂X1

−κ2τX2
∂

∂X2

[
e−κ1τ−κ2τ ∂2P ‡

∂X1∂X2

]
. (K.5)

Substituting from the equation (K.5) into (7.15), we obatin

∂P ‡

∂τ
− κ1X1

∂P ‡

∂X1

− κ2X2
∂P ‡

∂X2

=
1

2
e−2κ1τ ∂

2P ‡

∂X2
1

+ ρ12e
−κ1τ−κ2τ ∂2P ‡

∂X1∂X2

+
1

2
e−2κ2τ ∂

2P ‡

∂X2
2

+ γ̄1(τ)e
−κ1τ ∂P

‡

∂X1

+γ̄2(τ)e
−κ2τ ∂P

‡

∂X2

− κ1X1
∂P ‡

∂X1

− κ2X2
∂P ‡

∂X2

, (K.6)

which is equation (K.3).

�



APPENDIX L

Derivation of the PDE with Time Varying Barriers in the Mean-Reverting
Case

This appendix gives details of the transformation of the partial differential equation (7.29) to the

heat equation (4.1) by use of the transformation on given in equation (7.35).

Proposition L.1. The partial differential equation (7.29) can be transformed to

P ‡
β

(X1, X2, τ) = e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2 P̃ (X1, X2, τ), (L.1)

where X∗
i (τ) is given by

X∗
i (τ) = −

∫ τ

0

γ̄i(v)e
−κvdv − βi

∫ τ

0

e−2κvdv, (i = 1, 2), (L.2)

and P̃ (X1, X2, τ) satisfies the partial differential equation

∂P̃

∂τ
=

1

2
e−2κτ ∂

2P̃

∂X2
1

+ ρ12e
−2κτ ∂2P̃

∂X1∂X2

+
1

2
e−2κτ ∂

2P̃

∂X2
2

− β1e
−2κτ ∂P̃

∂X1

− β2e
−2κτ ∂P̃

∂X2

. (L.3)

Proof: We apply the Baker-Campbell-Hausdorff formula in Appendix C, and after some algebraic

manipulations, we obtain

∂P ‡
β

∂τ
= e

−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

[
∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1

− ∂X∗
2 (τ)

∂τ

∂P̃

∂X2

]
,

∂P ‡
β

∂Xi

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂P̃

∂Xi

, (i = 1, 2),

∂2P ‡
β

∂X2
i

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂2P̃

∂X2
i

, (i = 1, 2),

∂2P ‡
β

∂X1∂X2

= e
−X∗

1 (τ) ∂
∂X1

−X∗

2 (τ) ∂
∂X2

∂2P̃

∂X1∂X2

. (L.4)

Then equation (7.29) becomes

∂P̃

∂τ
− ∂X∗

1 (τ)

∂τ

∂P̃

∂X1

− ∂X∗
2 (τ)

∂τ

∂P̃

∂X2

=
1

2
e−2κτ ∂

2P̃

∂X2
1

+ ρ12e
−2κτ ∂2P̃

∂X1∂X2

+
1

2
e−2κτ ∂

2P̃

∂X2
2

+γ̄1(τ)e
−κτ ∂P̃

∂X1

+ γ̄2(τ)e
−2κτ ∂P̃

∂X2

. (L.5)
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Define X∗
1 (τ) and X∗

2 (τ) by setting

−∂X
∗
1 (τ)

∂τ
= γ̄1(τ)e

−κτ + β1e
−2κτ , (L.6)

−∂X
∗
2 (τ)

∂τ
= γ̄2(τ)e

−κτ + β2e
−2κτ , (L.7)

so that

X∗
1 (τ) = −

∫ τ

0

γ̄1(v)e
−κvdv − β1

∫ τ

0

e−2κvdv, (L.8)

X∗
2 (τ) = = −

∫ τ

0

γ̄2(v)e
−κvdv − β2

∫ τ

0

e−2κvdv. (L.9)

Then, taking the first derivative of X∗
1 (τ) and X∗

2 (τ) which respect to the variable τ , and substitut-

ing into partial differential equation (L.5) yields

∂P̃

∂τ
+ γ̄1(τ)e

−κτ ∂P̃

∂X1

+ β1e
−2κτ ∂P̃

∂X1

+ γ̄2(τ)e
−κτ ∂P̃

∂X2

+ β2e
−2κτ ∂P̃

∂X2

=
1

2
e−2κτ ∂

2P̃

∂X2
1

+ ρ12e
−2κτ ∂2P̃

∂X1∂X2

+
1

2
e−2κτ ∂

2P̃

∂X2
2

+ γ̄1(τ)e
−κτ ∂P̃

∂X1

+ γ̄2(τ)e
−κτ ∂P̃

∂X2

,(L.10)

which then turns out to be equation (L.3).

�

We note that the time dependent coefficients in equation (L.3) can be eliminated by transforming

the time variable. This can be done by the following proposition.

Proposition L.2. Define the new time-to-maturity variable ζ as

ζ =

∫ τ

0

e−2κvdv. (L.11)

and set Ṕ (X1, X2, ζ) = P̃ (X1, X2, τ), then Ṕ (X1, X2, ζ) satisfies the partial differential equation

∂Ṕ

∂ζ
=

1

2

∂2Ṕ

∂X2
1

+ ρ12
∂2Ṕ

∂X1∂X2

+
1

2

∂2Ṕ

∂X2
2

− β1
∂Ṕ

∂X1

− β2
∂Ṕ

∂X2

. (L.12)

Proof: Consider equation (L.3), and multiply both sides by the term e2κτ , so that

e2κτ ∂P̃

∂τ
=

1

2

∂2P̃

∂X2
1

+ ρ12
∂2P̃

∂X1∂X2

+
1

2

∂2P̃

∂X2
2

− β1
∂P̃

∂X1

− β2
∂P̃

∂X2

. (L.13)
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Using the chain rule we transform to a new time-to-maturity variable ζ, so that (L.13) in terms of

Ṕ , becomes

e2κτ ∂

∂ζ

[
Ṕ
]∂ζ
∂τ

=
1

2

∂2Ṕ

∂X2
1

+ ρ12
∂2Ṕ

∂X1∂X2

+
1

2

∂2Ṕ

∂X2
2

− β1
∂Ṕ

∂X1

− β2
∂Ṕ

∂X2

. (L.14)

In order to eliminate the e2κτ term, we choose ζ to satify

e2κτ × ∂ζ

∂τ
= 1, (L.15)

from which

ζ =

∫ τ

0

e−2κvdv. (L.16)

We note that the partial differential equation (L.12) is similar to the partial differential equation

(4.30), which can be reduced to the two-dimensional heat equation (4.1) via the transformation

illustrated in Appendix G, by simply replacing P̄ by Ṕ , u by ũ, and replacing the coefficients γi

by −βi (for i = 1, 2), thus obtaining

Ṕ (X1, X2, ζ) = eη1X1+η2X2+ξζ ũ(X1, X2, ζ), (L.17)

where η1, η2 and ξ are constants given by the expressions in (4.52)-(4.54).

Therefore, equation (7.35) is obtained by making use the Proposition L.1, Proposition L.2 and

Appendix G.

�
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