Biomechanics of the Baseball Swing

Brendan J. Inkster

BA (Human Movement Studies)

This thesis is submitted to fulfil the requirements for the degree Masters by Research (Sport Studies) at the University of Technology, Sydney, August, 2010.
Certificate of Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledge within the text.

I also certify that the thesis has been written solely by me. Any help that I have received in my research work and the preparation of thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of candidate
Acknowledgements

I would first like to thank Dr Aron Murphy for his assistance with the thesis. His knowledge, expertise and support have all helped in the completion of this project. His ability to help turn ok work into great work and constant encouragement is greatly appreciated. Thanks Murf.

I would like to thank Dr Mark Watsford for being my right hand man during the completion of this thesis. Dr Watsford was always willing to answer a question at any time of the day, pertaining to any topic (academic or trivial). Watty will forever be the holder of the key to the sweetest office at UTS.

Next to thanks is Dr Rob Bower, who without his efforts this thesis would not be as technically sound, accurate and methodological. I am very thankful for Rob’s expertise in the field of biomechanics and his attention to detail.

I would like to thank my fellow postgraduate students of UTS for making me feel welcome and allowing lunch to be a greatly anticipated event. Special mentions to Daniel Lock and Anthony Witty for their unstoppable humour, sarcasm and support. To Sven Rees for initially showing me the way of how a post-grad should really be
and getting me a job. Thanks also must go to Dr Aaron Coutts for his assistance with
the project and invaluable input into lunchtime discussions.

I would like to thank Kanchana Gamage for his technical assistance provided
throughout the project, along with his always optimistic attitude (we all know where
that dent on the wall came from).

I would like to thank my family for their interest and support throughout the
completion of this thesis. Notably, coming in to help with data collection and
constantly asking me when exactly the due date was.

I extend thanks to all the participants of the study. Without all the subjects this thesis
would never have been possible. Thank you for going out of your way and applying
yourselves professionally.

Finally, I would like to thank a very close friend and her family for their
encouragement, interest and support during the project. Her thoughts and opinions
were always valid and of use within the study. I also thank them for providing
another place for me to go outside of university and home.
This thesis is dedicated to my parents. They are still the two most knowledgeable people I know and have always been there to support me through my studies.
Abstract

The purpose of this research was to describe the kinematics of the baseball swing. In particular, this study aimed to determine differences in bat swing kinematics in hitters of varying ability. Further, changes in swing pattern that occur when using bats of varying mass were also observed.

Twenty sub-elite male baseballers participated in the study (22.3 ± 5.3 yr, 1.82 ± 0.07 m, 83.5 ± 10.9 kg). Three baseball bats of equal length (0.838 m) and varying mass (Bat1 = 0.795 kg, Bat2 = 0.847 kg, Bat3 = 0.943 kg) were used. Each subject performed 10 maximal swings with each bat at a ball on a hitting tee replicating a line drive. Infrared cameras obtained high speed three-dimensional data to quantify the biomechanics during the baseball swing. One-way ANOVA was used to determine kinematic differences between conditions. In addition, the participants were ranked prior to testing based on a novel coach’s rating scale and seasonal batting average. They were subsequently separated into a relatively good group of hitters (n=10) and a relatively poor group of hitters (n=10) for comparison. Importantly, the two groups were significantly different in terms of coach’s rating (p<0.01) and batting average (p<0.05).
The results showed a significant difference in maximum bat swing velocity (p<0.05) with good hitters having a higher velocity (36.8 m·s⁻¹) in comparison to relatively poor hitters (33.8 m·s⁻¹). Left elbow maximum angular velocity was significantly higher (35.9%) amongst relatively good hitters (p<0.05). Good hitters also had a right knee angle of 106° at ball contact which was significantly (p<0.05) higher than relatively poor hitters (100°). There were no between-group differences for wrist and hip joint velocities at ball contact.

The results also showed a difference in maximum bat swing velocity (p<0.01) between Bat₁ (36.0 m·s⁻¹) and Bat₃ (34.4 m·s⁻¹). Resultant ball velocity was 17% higher using Bat₁ compared to Bat₃ (p<0.05). Subject head movement was lower using Bat₁ (8 cm) when compared to Bat₃ (10 cm). Maximum linear left hip velocity was significantly higher (p<0.01) when using Bat₃ compared to other bats. In contrast, maximum linear right hip velocity was lower (p<0.01) when using Bat₃.

This study established that bat swing velocity is a key characteristic of the baseball swing when identifying skill level and performance between hitters. Additionally, good hitters display greater lead elbow maximum angular velocity. Future research should develop and evaluate specific baseball training programs designed primarily to improve these two aspects of the baseball swing. Further, this study has identified aspects of the baseball swing that differ when using bats of varying mass. Notably, a relationship exists between bat mass and hip linear velocity which could be a
potential mechanism for underlying training effects. Further studies are needed to
determine acute and longitudinal kinematic effects of using bats of varying mass.
Table of contents

Certificate of Originality .. ii
Acknowledgements .. iii
Dedication .. v
Abstract .. vi
Table of contents .. ix
List of Tables ... xii
List of Figures .. xiv
List of Equations ... xv
List of Abbreviations ... xvi
List of Publications .. xviii

CHAPTER 1 - INTRODUCTION .. 1

1.1 Background ... 2
1.2 Statement of the Problem ... 6
1.3 Research Hypothesis ... 7
1.4 Purpose and Significance of the Project... 7
1.5 Limitations ... 9
1.6 Delimitations ... 9
CHAPTER 2 - REVIEW OF LITERATURE ... 10

2.1 Overview ... 11
2.2 The Game of Baseball .. 11
2.3 Biomechanics of Baseball Batting ... 15
 2.3.1 Biomechanics of the Baseball Swing ... 15
 2.3.1.1 Preparation .. 19
 2.3.1.2 Initiation .. 19
 2.3.1.3 Load ... 20
 2.3.1.4 Shift and Transfer .. 20
 2.3.1.5 Contact ... 22
 2.3.1.6 Summary .. 23
2.4 Characteristics of the Baseball Bat ... 24
 2.4.1 Mass and Length .. 27
 2.4.2 Moment of Inertia ... 27
 2.4.3 Coefficient of Restitution .. 30
 2.4.4 Aluminium vs. Wood .. 31
2.5 Bat Swing Velocity .. 32
 2.5.1 Acute Methods for Improving Bat Swing Velocity 33
 2.5.2 Training Methods for Improving Bat Swing Velocity------------- 36
2.6 Summary ... 41

CHAPTER 3 - METHODS ... 43

3.1 Overview ... 44
3.2 Participants ... 44
3.3 Testing Procedures .. 46
3.4 Data Collection .. 49
3.5 Data Processing .. 51
3.6 Data Analysis .. 53
CHAPTER 4 - RESULTS ... 55

4.1 Overview ... 56
4.2 Relatively Good vs. Relatively Poor Hitters 56
4.3 Correlations between bat swing kinematics 60
4.4 Manipulating Bat Mass ... 62
4.5 Summary of Key Results .. 66

CHAPTER 5 - DISCUSSION ... 68

5.1 Overview ... 69
5.2 Relatively Good vs. Relatively Poor Hitters 70
5.3 Manipulating Bat Mass ... 74
5.4 Summary ... 78

CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS 79

6.1 Overview ... 80
6.2 Summary of Major Findings and Conclusions 80
6.3 Directions for future research .. 82

REFERENCE LIST .. 85

APPENDICES ... 95
List of Tables

Table 2.1 – Elite Hitter’s Swing Characteristics .. 18

Table 2.2 – Bat Velocity after warm-up with bats of varying mass (adapted
from De Renne et al. (1992, p. 216)) .. 35

Table 2.3 – Group mean bat swing velocities and percent change (Sergo &
Boatwright, 1993) ... 39

Table 2.4 – Training Schedule (DeRenne et al., 1995, pp. 248) 40

Table 2.5 – Group mean bat swing velocities and percent change (DeRenne
et al., 1995) ... 41

Table 3.1 – Biomechanical variables calculated for the bat swing 52

Table 4.1 – Kinanthropometric data for each group (mean ± SD) 57

Table 4.2 – Results for all participants and comparative data for the good
group and poor group for bat swing kinematics (mean ± SD) 58

Table 4.3 – Upper body bat swing kinematics (mean ± SD) 58

Table 4.4 – Lower body bat swing kinematics (mean ± SD) 59

Table 4.5 – Pearson’s correlation data for the relationship between bat and
ball variables (A = Maximum Bat Linear Velocity, B = Bat Linear
Velocity at Contact, C = Maximum Ball Linear Velocity) 61
Table 4.6 – Pearson’s correlation data for left elbow kinematics 61

Table 4.7 – Pearson’s correlation data for hip kinematics 62

Table 4.8 – Kinematic comparisons between bats of different mass.
Data is mean ± SD ... 65
List of Figures

Figure 2.1 – Participation Rates in Baseball and Cricket – 2009 (ASC, 2009) 14

Figure 2.2 – Phases of the Swing .. 17

Figure 2.3 – Theoretical effects of increased bat swing velocity. Assuming
a pitched ball speed of 40m.s\(^{-1}\), a take off angle of 35 degrees, and
neglecting wind and air resistance .. 33

Figure 3.1 – Marker Placement on the Subject .. 47

Figure 3.2 – Baseball Bats ... 49

Figure 3.3 – Camera set-up surrounding batting tee and hitting net 51

Figure 4.1 – Bat swing velocities (+ SD) and resultant ball velocity
(+ SD) between bats .. 63

Figure 4.2 – Left and right hip velocities (+ SD) for each bat 64
List of Equations

Equation 1 – Rotational Inertia .. 27

\[I = \left(\frac{1}{4}\right)MR^2 + \left(\frac{1}{12}\right)ML^2 \]

Equation 2 – Moment of Inertia .. 28

\[I_o = \frac{T^2 \cdot w \cdot r}{4\pi^2} \]

Equation 3 – Radius of Gyration .. 28

\[k = \sqrt{\frac{I_o}{m}} \]

Equation 4 – Centre of Percussion .. 29

\[q = \frac{k^2}{r} \]

Equation 5 – Coefficient of Restitution .. 30

\[e_o = -\frac{v' - V'}{v - V} \]
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>BP</td>
<td>Batting Practice Group</td>
</tr>
<tr>
<td>BSV</td>
<td>Bat Swing Velocity</td>
</tr>
<tr>
<td>BSV_{con}</td>
<td>Bat Swing Velocity at Contact</td>
</tr>
<tr>
<td>BSV_{max}</td>
<td>Maximum Bat Swing Velocity</td>
</tr>
<tr>
<td>BV_{max}</td>
<td>Maximum Resultant Ball Velocity</td>
</tr>
<tr>
<td>CG</td>
<td>Control Group</td>
</tr>
<tr>
<td>COP</td>
<td>Centre of Percussion</td>
</tr>
<tr>
<td>COR</td>
<td>Coefficient of Restitution</td>
</tr>
<tr>
<td>$^\circ$</td>
<td>Degrees</td>
</tr>
<tr>
<td>$^\circ \cdot s^{-1}$</td>
<td>Degrees per second</td>
</tr>
<tr>
<td>DS</td>
<td>Dry Swing Group</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>ICC</td>
<td>Interclass Correlation</td>
</tr>
<tr>
<td>in</td>
<td>Inches</td>
</tr>
<tr>
<td>kg</td>
<td>Kilograms</td>
</tr>
<tr>
<td>KP</td>
<td>Kilopond</td>
</tr>
<tr>
<td>LEAV_{max}</td>
<td>Maximum Left Elbow Angular Velocity</td>
</tr>
<tr>
<td>m</td>
<td>Metres</td>
</tr>
<tr>
<td>$m \cdot s^{-1}$</td>
<td>Metres per second</td>
</tr>
<tr>
<td>MLB</td>
<td>Major League Baseball</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MOI</td>
<td>Moment of Inertia</td>
</tr>
<tr>
<td>NCAA</td>
<td>National Collegiate Athletic Association</td>
</tr>
<tr>
<td>NSWML</td>
<td>New South Wales Major League</td>
</tr>
<tr>
<td>oz</td>
<td>Ounces</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>TEM</td>
<td>Technical Error of Measurement</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>WBC</td>
<td>World Baseball Classic</td>
</tr>
<tr>
<td>yrs</td>
<td>Years</td>
</tr>
</tbody>
</table>
List of Publications

Conference Proceedings
