

University of Technology, Sydney

Centre for Intelligent Mechatronic Systems Faculty of Engineering and Information Technology

Investigation into Dynamics of a Rolling Body-Bearing-Support System in a Cold Rolling Stand

by

Yoo Shin, Kim

A thesis submitted for fulfilment of requirements for the degree of

Doctor of Philosophy

August 2012

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Yoo Shin, Kim

August 2012

Acknowledgments

This PhD research would not have been completed without the guidance, assistance and support of a number of individuals, whose contributions I would like to gratefully acknowledge here. I would especially like to thank Professor Nong Zhang, Dr. Daniel Yuen, Dr. Jin Chen Ji and Dr. William Hu, who have supervised me during this research over the last four years.

Professor Nong Zhang, who has been my principal supervisor for this research, has been instrumental in guiding me throughout this research. His constant supervision and encouragement have helped me fulfil the objectives of this research and to complete this thesis.

I would like to convey my thanks to Dr. Daniel Yuen of BlueScope Steel Research, BlueScope Steel Limited, for being like a mentor throughout this research. His guidance and advice have been very important in motivating me throughout the research. I would also like to thank him for always taking time out of his busy schedule on a short notice whether it was for discussing intellectual challenge or for sharing ideas.

I would like to extend my deepest appreciation to Dr. Jin Chen Ji for his pioneering work in nonlinear control. When I am in a cold case, it was Dr. Jin Chen Ji who is willingly to share innovative ideas and encourage my inspiration. His sincere contribution and invigoration will never be forgettable.

Dr. William Hu has been very helpful throughout this research especially with his expert advice on the journal bearing theory. His suggestions and guidance has been very helpful in properly controlling the mill vibration.

On the social side, sincere appreciation is directed toward my fellow colleagues, Dr. Paul David Walker, Dr. Salisa Abdulrahman and Mr. Robert Heal and many other students who work in our group, for their enthusiastic help, inspiration and support in various aspects of this study. I will always treasure the times in the early days, sitting next to Paul and Salisa in the office. More importantly, Paul and Salisa provided great friendship at UTS offering valuable discussions and ideas throughout the research. Robert also inspired me throughout this research delivering many conceptions in a cold rolling mill. Furthermore, special thanks to Dr. Paul David Walker for reviewing and proofreading my work and encouraging me to establish the concrete knowledge. And if time allows us, I am enthusiastically looking forward to the weekend adventures with you all.

I would like to dedicate this work to my family, for their constant love, support and encouragement made my higher education possible. My mother Ms. Soon Ja Yoo, in particular, deserves special thanks for all her help over the decades. I also would like to dedicate this work to my sister Miss. Jee Young Kim for her encouragement and support. Finally, my wife Ms. Su Hee Yang, who stood by me all the time, I really appreciate her patience and understanding with sincere love.

The last four years have been a wonderful experience and will always be memorable. I learned a lot of new things but need to explore new areas.

I wish to gratefully acknowledge the financial support of this research by the Australian Research Council (ARC), University of Technology, Sydney and BlueScope Steel Limited through a Linkage Project (LP0776980).

Production Note: Signature removed prior to publication.

Yoo Shin, Kim

Sydney, August 2012

Table of Contents

Certificate of Authorship/Originality	ii
Acknowledgments	iii
Table of Contents	V
List of Figures	X
List of Tables	xvi
Nomenclature	xvii
Abstract	XXV
CHAPTER 1. INTRODUCTION	1
1.1. PROJECT STATEMENT	1
1.2. PROJECT OBJECTIVES	3
1.3. PROJECT SCOPE	4
1.4. SIGNIFICANCE AND INNOVATION	4
1.4.1. Significance	4
1.4.2. Innovation	5
1.5. PRESENTATION OF THIS THESIS	6
CHAPTER 2. BACKGROUND INFORMATION AND LITERATURE REV	VIEW9
2.1. INTRODUCTION	9
2.2. COLD ROLLING MILL MODELLING METHODS	12
2.2.1. One DOF Mechanical Model	13
2.2.2. Multi-DOF Mechanical Model	14
2.3. RELATIONSHIPS BETWEEN INTERSTANDS	18
2.4. CHATTER SIMULATIONS, MODELLING AND CONTROL	20
2.4.1. Types of Rolling Chatter	20
2.4.1.1. Torsional Chatter	20
2.4.1.2. Third-Octave-Mode Chatter	21
2.4.1.3. Fifth-Octave-Mode Chatter	24
2.4.2. Single-Stand Chatter Model	25
2.4.3. Multi-Stand Chatter Model	26
2.4.4. Stability Analysis for Chatter Model	

2.5. DISCUSSION	31
CHAPTER 3. EFFECTS OF ROLLING PARAMETERS	33
3.1. INTRODUCTION	33
3.2. ROLL BITE PROFILE (GEMETRY OF THE ROLL GAP)	33
3.3. ELASTIC FLATTENING OF THE WORK ROLL	36
3.4. FRICTION MODEL	38
3.5. ROLLING SPEED	42
3.5.1. Variation of the Peripheral Rolling Speed of the Work Roll	43
3.5.2. Forward Slip	44
3.6. FLOW STRESS	46
3.6.1. Yield Criterion (Orowan, 1943)	46
3.6.1.1. The Plane Problem of Plasticity	46
3.6.1.2. The Stress Distribution in a Plastic Slab Compressed betwee Plates	en 46
3.6.2. Plastic Deformation in the Roll Gap	48
3.6.2.1. Strain-Hardening	48
3.6.2.2. Full Range of Stress-Strain Curve	50
3.6.2.3. Simplified Stress-Strain Curve	52
3.6.2.4. Effective Stress-Strain Curve	54
3.7. STRAIN EXPONENT AND STRAIN-RATE SENSITIVITY	54
3.8. TENSION	57
3.8.1. Variation of Strip Tension by Arimura and Tlusty	58
3.8.2. Variation of Strip Tension by Yun and Hu	60
3.9. SUMMARY	62
CHAPTER 4. STEADY-STATE ROLLING FORCE AND DYNAMIC ROLL	ING
FORCE IN THE MODIFIED ROLL GAP MODEL	63
4.1. INTRODUCTION	63
4.2. STEADY-STATE ROLLING FORCE.	64
4.2.1. Normal Pressure at the Entry and Exit Sides	64
4.2.2. The Equation for the Neutral Angle (Point)	67
4.2.3. Flow Stress	68
4.2.4. The Estimation of the Rolling Force	72
4.2.5. Re-consideration of the Neutral Point (Angle)	74

4.3. DYNAMIC ROLLING FORCE COMPONENTS
4.3.1. Dynamic Rolling Force Components Resulting from Negative Gradient
Friction Coefficient with Rolling Speed76
4.3.2. Dynamic Rolling Force Components Resulting from the Reduction,
Reduction Rate and Rolling Speed Change78
4.3.3. Dynamically Coupled Vibration Model (Explicit Formula)84
4.3.4. Discussion
4.4. FRICTION FORCE
CHAPTER 5. MILL VIBRATION MODEL WITH A 6DOF SYSTEM
5.1. INTRODUCTION
5.2. VIBRATION MODEL OF A ROLLING STAND IN COLD ROLLING MILL95
5.2.1. Assumptions and Simplifications
5.2.2. Mill Vibration Model
5.3. LINEARISATION OF FORCE COMPONENTS
5.3.1. Linearisation Scheme
5.3.2. Bearing Housing Chock
5.3.3. Cross-Coupling Effect in the Journal Bearing
5.3.3.1. Oil Film Force Calculation in a BR
5.3.4. Mean Bearing Forces of the Tapered Roller Bearing in a WR104
5.3.5. Load-Displacement Relations between a BR and WR
5.4. CALCULATIONS OF ROLLING FORCE IN STANDS
5.4.1. Rolling Force Calculation Schedule
CHAPTER 6. STABILITY ANALYSIS OF A ROLLING STAND IN COLD
ROLLING MILL
6.1. INTRODUCTION
6.2. MODEL COMPARISON
6.2.1. Damping Coefficient in the Dynamic Roll Gap111
6.2.2. Stiffness Coefficient in the Dynamic Roll Gap114
6.3. SYSTEM MATRIX 115
6.3.1. Mode Shapes
6.3.2. Stability Threshold Curve (STC) 119
6.3.3. Other Aspects of Stability Threshold Curve (STC)

6.3.3.1. Influence of Strip Width12
6.3.3.2. Influence of Roll Diameter12
6.3.3.3. Influence of Strip Thickness
6.3.3.4. Influence of Strain Exponent
6.3.3.5. Influence of Strain-Rate Exponent
6.3.3.6. Influence of Offset in Two Rolls (BR and WR)12
6.3.3.7. Influence of Journal Bearing Viscosity in a BR
6.3.3.8. Influence of Journal Bearing Length in a BR13
6.3.3.9. Influence of Journal Bearing Clearance in a BR14
6.4. SUMMARY14
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF FORCE COMPONENTS
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF FORCE COMPONENTS
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF FORCE COMPONENTS
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF FORCE COMPONENTS
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OFFORCE COMPONENTS147.1. INTRODUCTION147.2. ANALYSIS METHOD147.3. TRANSIENT CHARACTERISTICS IN THE DYNAMIC ROLL GAP147.4. SUMMARY15
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OF FORCE COMPONENTS
CHAPTER 7. TRANSIENT ANALYSIS BASED ON LINEARISATION OFFORCE COMPONENTS147.1. INTRODUCTION147.2. ANALYSIS METHOD147.3. TRANSIENT CHARACTERISTICS IN THE DYNAMIC ROLL GAP147.4. SUMMARY15CHAPTER 8. FULLY TRANSIENT STUDIES OF A ROLLING STAND INCOLD ROLLING MILL15

OLD ROLLING MILL
8.1. INTRODUCTION
8.2. TENSION VARIATION MODEL IN THE DYNAMIC ROLL GAP155
8.3. ANALYSIS METHOD OF FULLY TRANSIENT MODELS
8.4. TRANSIENT CHARACTERISTICS UNDER THE STEADY-STATE
CONDITIONS
8.4.1. Variations of Stiffness and Damping Coefficients in the Journal Bearing
8.4.2. Variations of Stiffness Coefficients in the Tapered Roller Bearing 164
8.4.3. Variations of Stiffness Coefficients in the Surface Contact between the
Backup Roll and Work Roll165
8.4.4. Variations of Stiffness and Damping Coefficients in the Dynamic Roll
Gap167
8.4.5. Frequency Variations
8.4.6. Rolling Force Variations in the Dynamic Roll Gap

8.4.7. Phase Difference between Mass Elements	171
8.5. TRANSIENT RESPONSES IN TENSION VARIATION MODELS BY	
TLUSTY AND YUN	175
8.6. CHATTER OCCURRENCE	182
8.6.1. Simulation Results in Case of Rolling Speed of 28 <i>m/s</i>	182
8.6.2. Simulation Results in Case of Friction Gradient of 0.026s/m	184
8.6.3. Simulation Results in Case of Inter-Stand Distance of 3.0m	187
8.6.4. Simulation Results in Case of Time-Delay	191
8.7. SUMMARY	193
CHAPTER 9. CONCLUSION, CONTRIBUTIONS AND FUTURE WORK	195
9.1. SUMMARY OF THESIS	195
9.2. SUMMARY OF FINDINGS AND CONTRIBUTIONS	196
9.3. LIMITATIONS TO RESEARCH	200
9.4. FURTHER RESEARCH	201
9.5. CONCLUSION	202
APPENDIX	204
APPENDIX A: ROLLING FORCE CALCULATIONS	204
APPENDIX B: JOURNAL BEARING IN THE BACKUP ROLL	212
APPENDIX C: TAPERED ROLLER BEARING IN THE WORK ROLI	216
	010
KEFEKENUES	

List of Figures

Figure 1-1:	Overview for chapter descriptions in this thesis
Figure 2-1:	One DOF mechanical model14
Figure 2-2:	Model of a four-high mill (Five Degrees of Freedom)15
Figure 2-3:	Asymmetrical mass-spring-damper system with six degrees of freedom17
Figure 2-4:	Relationship between inter-stands in the tandem cold rolling mill19
Figure 2-5:	Single-stand chatter model
Figure 2-6:	Multi-stand chatter model
Figure 3-1:	Roll bite profile during steady-state rolling process
Figure 3-2:	Roll flattening ratio $\begin{pmatrix} R_d \\ R_{WR} \end{pmatrix}$ depending on materials used
Figure 3-3:	Rolling speed change in the roll gap
Figure 3-4:	Measurement of forward slip
Figure 3-5:	Plastic slab between parallel plates
Figure 3-6:	Non-parallel compression plates
Figure 3-7:	Representation of the roll contact angles between cylindrical rolls
Figure 4-1:	Many different types of stress-strain curves used in rolling process
[Alexander e	et al. (1988), Johnson and Cook (1983), Gronostajski (2000)]70
Figure 4-2:	Exaggerated curves for illustrating the rolling pressure distribution change
in determinin	ng (a) friction hill and (b) deformation hill [Roberts (1978)]71
Figure 4-3:	The pressure distribution curves based on Bland and Ford theory; (a) with
and without	tension applied to the strip, (b) reduction change, (c) friction coefficient
change and (d) rolling speed change
Figure 4-4:	Displacements of the neutral point calculated by Bland and Ford theory75
Figure 4-5:	Variation of the friction coefficient with relative velocity77
Figure 4-6:	The roll bite geometry: (a) when rolls are in steady-state conditions and (b)
when rolls a	re oscillating along the roll contact surface
Figure 4-7:	The roll velocity triangle at the neutral point
Figure 4-8:	Linearisation of dynamic spring and damper in the roll gap

Figure 4-9: Force variations in the roll gap depending on the change in the key rolling parameters (a) friction coefficient, (b) rolling speed, (c) reduction and (d) reduction rate **Figure 4-10**: Roll stack model based on the force components in the surface contact (a Figure 5-1: Assembly of a rolling stand in cold rolling mill: (a) backup roll bearing housing chock, (b) work roll bearing housing chock, (c) backup roll, (d) work roll, (e) mill Stand, (f) strip and (g) hydraulic cylinder92 Figure 5-2: Assembly of the upper part of a rolling stand: (a) backup roll bearing housing chock, (b) work roll bearing housing chock, (c) backup roll, (d) work roll, (e) Figure 5-6: Free-body-diagrams of lumped mass components; (a) bearing housing chock, (b) backup roll and (c) work roll97 Figure 5-7: An extended schematic of dynamically coupled cold rolling mill (6DOF)98 Figure 5-9: Mode coupling between the contact surface of BR and WR107 Figure 5-10: Iterative rolling force calculations: (a) resultant rolling force, (b) deformed contact length, (c) deformed roll radius......110 Figure 6-1: Variations of damping coefficient depending on the rolling speed (Zhao et Figure 6-2: Stability threshold curves depending on the rolling speed and friction Figure 6-3: Resultant rolling force variations recalculated from the critical rolling Figure 6-4: Stability threshold curves depending on the rolling speed and friction Figure 6-5: Stability threshold curves depending on the rolling speed and friction

Figure 6-6: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $h_x = 0.299 mm$ to $0.301 mm$, respectively
Figure 6-7: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $\gamma_1 = 0.24$ to 0.28, respectively
Figure 6-8: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $\gamma_2 = 0.078$ to 0.082, respectively
Figure 6-9: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and offset from 5 to 10mm, respectively
Figure 6-10: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $\eta = 0.0392$ to $0.0408 Pa.s$, respectively
Figure 6-11: Oil-film force and eccentricity variations due to the change in the bearing
viscosity
Figure 6-12: Variations of bearing stiffness coefficients due to the change in the
bearing viscosity
Figure 6-13: Variations of bearing damping coefficients due to the change in the
bearing viscosity
Figure 6-14: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $L_{bb} = 790$ to $810 mm$, respectively
Figure 6-15: Oil-film force and eccentricity variations due to the change in the bearing
length
Figure 6-16: Variations of bearing stiffness coefficients due to the change in the
bearing length
Figure 6-17: Variations of bearing damping coefficients due to the change in the
bearing length
Figure 6-18: Stability threshold curves depending on the rolling speed and friction
coefficient change at $\alpha_s = 0.026 s/m$ and $C_{bb} = 395$ to $405 \mu m$, respectively
Figure 6-19: Oil-film force and eccentricity variations due to the change in the bearing
clearance
Figure 6-20: Variations of bearing stiffness coefficients due to the change in the
bearing clearance
Figure 6-21: Variations of bearing damping coefficients due to the change in the
bearing clearance

Figure 7-2: Transient oscillations at friction coefficient 0.02 and rolling speed 20.0m/s with a zero friction gradient $\alpha_s = 0.0 s/m$; (a), (c) and (e): x-coordinates, (b), (d) and (f): **Figure 7-3**: Transient oscillations at friction coefficient of 0.020 and rolling speed of 20.0*m/s* with the friction gradient of 0.026s/m; (a) x_{BR} , (b) x_{WR} , (c) y_{BR} and (d) y_{WR}149 **Figure 7-4**: Unstable vibrations of the work roll $(x_{WR} \text{ and } y_{WR})$: (a) and (b) – $\alpha_s = 0.030 s/m$, $\mu_{s0} = 0.02$ and $v_{CR} = 22.73 m/s$; (c) and (d) $-\alpha_s = 0.026 s/m$, $\mu_{s0} = 0.01$ Figure 7-5: (a) and (b): Phase difference of mass elements and dynamic forces in x-**Figure 7-6**: (a) and (b): FFT frequency spectrum defined from vibration responses in Figure 8-1: Effect of tension variations by Tlusty, Yun and the current model on mill stability (Numerical flow of force variations depending on each tension model) 158 Figure 8-2: Comparison of tension variation results by (a) Yun and Tlusty, (b) current Figure 8-3: Variations of entry and exit velocity of the strip by (a) Tlusty, (b) current **Figure 8-4**: Flow chart for fully transient numerical simulations in a rolling stand in Figure 8-5: Dynamic characteristics of the journal bearing in the backup roll: (a) variations of stiffness coefficients (b) variations of damping coefficients164 Figure 8-6: Variations of stiffness coefficients in the work roll tapered roller bearing Figure 8-7: Variations of stiffness coefficients in the surface contact between rolls . 166 Figure 8-8: Dynamic characteristics in the roll gap: (a) variations of stiffness coefficients, (b) variations of negative damping coefficients, (c) variations of positive **Figure 8-9**: Frequency variations at friction coefficient of 0.02 and rolling speed of Figure 8-10: Dynamic rolling force variations at friction coefficient of 0.02 and rolling

Figure 8-11: Phase difference between mass elements at friction coefficient of 0.02 and
rolling speed of 20.00m/s by the current tension model
Figure 8-12: Phase-plane motions of mass elements by the current tension model 173
Figure 8-13: Displacements of the neutral point by the current tension model
Figure 8-14: Phase difference between the vertical work roll displacement and tension
variation by the current tension model
Figure 8-15: Dynamic characteristics of the journal bearing in the backup roll:
variations of stiffness coefficients by (a) Tlusty and (b) Yun, variations of damping
coefficients by (c) Tlusty and (d) Yun177
Figure 8-16: Variations of stiffness coefficients in the work roll tapered roller bearing,
(a) Tlusty and (b) Yun178
Figure 8-17: Transient oscillations of mass elements and force variations by Tlusty's
tension model
Figure 8-18: Phase-plane motions of mass elements by Tlusty' tension model180
Figure 8-19: Displacements of the neutral point by Tlusty's tension model181
Figure 8-20: Dynamic rolling force variations by Tlusty's tension model181
Figure 8-21: Transient oscillations by the current tension model at the friction
coefficient of 0.02, rolling speed of $28.0m/s$, the friction gradient of $0.020s/m$ and inter-
stand distance of 4.0 <i>m</i>
Figure 8-22: Transient oscillations by Tlusty's tension model at the friction coefficient
of 0.02, rolling speed of $28.0 m/s$, the friction gradient of $0.020 s/m$ and inter-stand
distance of 4.0 <i>m</i>
Figure 8-23: Transient oscillations by the current tension model at the friction
coefficient of 0.02, rolling speed of $22.73 m/s$, the friction gradient of $0.026 s/m$ and
inter-stand distance of 4.0m
Figure 8-24: Transient oscillations by Tlusty's tension model at the friction coefficient
of 0.02, rolling speed of $22.73 m/s$, the friction gradient of $0.026 s/m$ and inter-stand
distance of 4.0 <i>m</i>
Figure 8-25: Transient oscillations by the current tension model at the friction
coefficient of 0.02, rolling speed of $22.73 m/s$, the friction gradient of $0.020 s/m$ and
inter-stand distance of 3.0m
Figure 8-26: Transient oscillations by Tlusty's tension model at the friction coefficient
of 0.02, rolling speed of $22.73 m/s$, the friction gradient of $0.020 s/m$ and inter-stand
distance of 3.0 <i>m</i>

Figure 8-27 : Effect of inter-stand distance on (a) the current tension variation and (b)
Tlusty's tension variation
Figure 8-28: Transient oscillations by Tlusty's tension model with the time-delay of
90°
Figure 8-29: Tension variations with the resonant frequencies by Tlusty's tension
model
Figure B-1: The ZN/P curve and the three lubrication regimes (Vance et al, 2010)212
Figure B-2 : Three lubrication regimes in fluid film journal bearing (Vance et al, 2010)
Figure B-3: A rigid rotor-bearing system for the upper backup roll214
Figure C-1: Tapered roller bearing in the work roll (Rolling element bearing)216
Figure C-2: Comparison between Lim's approach and Gargiulo's formulas (Radial
stiffness variation depending on radial deflection)

List of Tables

1 able 4-1: Constitutive models for deformation resistance in metals and alloys
Table 4-2: Key rolling parameters for the calculation of the steady-state rolling force.73
Table 5-1: Notations of symbols for a given free-body-diagram
Table 5-2: Journal bearing parameters used for calculations 104
Table 5-3: Tapered roller bearing parameters used for calculations 105
Table 5-4: Stiffness and damping coefficients calculated for a cold rolling mill analysis
Table 5-5: Rolling force calculation for each stand in a tandem cold rolling mill109
Table 6-1: Unstable vibrational mode for the free vibration analysis at the friction
coefficient of 0.02 and rolling speed of $28.0m/s$ with the friction gradient of $0.026s/m$
Table 6-2: Summing-up of the dynamic model.117Table 6-3: Results for various gradients of the friction ($v_{CR} = 22.73 m/s$, $\mu_{s0} = 0.02$)120
Table 6-2: Summing-up of the dynamic model117Table 6-3: Results for various gradients of the friction ($v_{CR} = 22.73 m/s$, $\mu_{s0} = 0.02$)120Table 8-1: Comparison of linear and transient results at friction gradient of $0.026s/m$
Table 6-2: Summing-up of the dynamic model 117 Table 6-3: Results for various gradients of the friction ($v_{CR} = 22.73 m/s$, $\mu_{s0} = 0.02$) 120 Table 8-1: Comparison of linear and transient results at friction gradient of $0.026 s/m$ 186
Table 6-2: Summing-up of the dynamic model.117Table 6-3: Results for various gradients of the friction ($v_{CR} = 22.73 m/s$, $\mu_{s0} = 0.02$)120Table 8-1: Comparison of linear and transient results at friction gradient of $0.026 s/m$ 186Table A-1: Calculation of Rolling Force (Based on BSL Specifications)210
117 Table 6-2 : Summing-up of the dynamic model.119 Table 6-3 : Results for various gradients of the friction ($v_{CR} = 22.73 m/s$, $\mu_{s0} = 0.02$) Table 8-1 : Comparison of linear and transient results at friction gradient of $0.026s/m$ 186 Table A-1 : Calculation of Rolling Force (Based on BSL Specifications)210 Table B-1 : Bearing Oil-Film Force Calculation Results for the Short Bearing Solution
117 Table 6-2 : Summing-up of the dynamic model

Nomenclature

ABBREVIATIONS USED IN THIS THESIS

AGC	 Automatic Gauge Control
Assay's	 Assembly
CRM	 Cold Rolling Mill
BF	 Bland and Ford
MBF	 Modified Bland and Ford
BH	 Bearing Housing Chock
BR	 Backup Roll
WR	 Work Roll
ODE	 Ordinary Differential Equation
DDE	 Delay Differential Equation
DOF	 Degree Of Freedom
STC	 Stability Threshold Curve
COP	 Critical Operating Point
SSC	 Steady State Condition
LQ	 Linear Quadrant
ESO	 Extended State Observer

CHAPTER 2 NOTATION

m _{BH}		Lumped mass of the bearing housing chock
$m_{_{BR}}$		Lumped mass of the backup roll
m_{WR}	-	Lumped mass of the work roll
C_{yy}^{WR}		Equivalent damping component in the vertical direction
$K_{_{yy}}^{^{WR}}$		Equivalent stiffness component in the vertical direction
$F_{dyn,y}^{WR}$		Dynamic rolling force component in the vertical direction
$y_{\scriptscriptstyle WR}$, $\dot{y}_{\scriptscriptstyle WR}$, $\ddot{y}_{\scriptscriptstyle WR}$		Displacement, velocity and acceleration of the work roll, respectively
h_c		Roll gap spacing at the center plane of the roll gap
K_{2}, K_{3}		Elastic constant depending on the elastic contact between the backup roll and work roll, respectively
K_1, K_4		Elastic constant depending on the elastic deformation of the bearing housing chock and backup roll, respectively

K_6 —Spring constant depending on the contact between the work roll and strip K_{var} —Elastic deformation resistance in the roll gap $C_0 - C_5$ —Viscous damping coefficients z_1, z_2 —Displacements of the top and bottom surfaces of the strip respectively $t_{e,var,i}, t_{x,var,i}$ —Variation of tension at entry and exit side, respectively $v_{e,var,i}, v_{x,var,i}$ —Variation of rolling speed at entry and exit side, respective E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} y_{BH}, y_{BR}, y_{WR} —Coordinates of a rolling stand in cold rolling	$K_{\scriptscriptstyle 0}$, $K_{\scriptscriptstyle 5}$	 Elastic constant depending on the elastic contact between the mill housing and mill foundation, respectively
K_{var} —Elastic deformation resistance in the roll gap $C_0 - C_5$ —Viscous damping coefficients z_1, z_2 —Displacements of the top and bottom surfaces of the strip respectively $t_{e,var,i}, t_{x,var,i}$ —Variation of tension at entry and exit side, respectively $v_{e,var,i}, v_{x,var,i}$ —Variation of rolling speed at entry and exit side, respectively E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	K_6	 Spring constant depending on the contact between the work roll and strip
$C_0 - C_5$ —Viscous damping coefficients z_1, z_2 —Displacements of the top and bottom surfaces of the strip respectively $t_{e,var,i}, t_{x,var,i}$ —Variation of tension at entry and exit side, respectively $v_{e,var,i}, v_{x,var,i}$ —Variation of rolling speed at entry and exit side, respectively E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	$K_{\rm var}$	 Elastic deformation resistance in the roll gap
z_1, z_2 —Displacements of the top and bottom surfaces of the strip respectively $t_{e,var,i}, t_{x,var,i}$ —Variation of tension at entry and exit side, respectively $v_{e,var,i}, v_{x,var,i}$ —Variation of rolling speed at entry and exit side, respective E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	$C_0 - C_5$	 Viscous damping coefficients
$t_{e, var, i}, t_{x, var, i}$ —Variation of tension at entry and exit side, respectively $v_{e, var, i}, v_{x, var, i}$ —Variation of rolling speed at entry and exit side, respective E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	<i>Z</i> ₁ , <i>Z</i> ₂	 Displacements of the top and bottom surfaces of the strip, , respectively
$v_{e, var, i}$ —Variation of rolling speed at entry and exit side, respective E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	$t_{e, \mathrm{var}, i}, t_{x, \mathrm{var}, i}$	 Variation of tension at entry and exit side, respectively
E —Young's modulus D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	$\mathcal{V}_{e,\mathrm{var},i}$, $\mathcal{V}_{x,\mathrm{var},i}$	 Variation of rolling speed at entry and exit side, respectively
D_i —Inter-stand distance at (i)th stand s —Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	E	 Young's modulus
s—Laplacian operator Δ_i —Time delay at (i)th stand f_y —Rolling force per unit widthI—Identity matrixA—System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling	D_i	 Inter-stand distance at (<i>i</i>)th stand
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S	 Laplacian operator
f_y —Rolling force per unit width I —Identity matrix A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling y_{BH}, y_{BR}, y_{WR} —	Δ_i	 Time delay at (<i>i</i>)th stand
I—Identity matrixA—System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling y_{BH}, y_{BR}, y_{WR} —Coordinates of a rolling stand in cold rolling	f_y	 Rolling force per unit width
A —System matrix x_{BH}, x_{BR}, x_{WR} —Coordinates of a rolling stand in cold rolling y_{BH}, y_{BR}, y_{WR} —Coordinates of a rolling stand in cold rolling	Ι	 Identity matrix
$\begin{array}{c} x_{BH}, x_{BR}, x_{WR} \\ y_{BH}, y_{BR}, y_{WR} \end{array} \qquad $	A	 System matrix
	$egin{array}{llllllllllllllllllllllllllllllllllll$	 Coordinates of a rolling stand in cold rolling

Subscripts

BH	 Bearing Housing Chock
BR	 Backup Roll
WR	 Work Roll
dyn	 Dynamic component
var	 Variable component
i	 (<i>i</i>)th stand
е	 Entry side
x	 Exit side

CHAPTER 3 NOTATION

§ Any previously used terminology is not listed here.

V	 Strip velocity at any arbitrary point in the roll gap
v_e , v_x	 Strip velocity at entry and exit sides, respectively
v_R or v_n	 Work roll velocity (Peripheral rolling speed)
$\overline{\nu}_R$	 Average rolling speed
h	 Strip thickness at any arbitrary point in the roll gap
h_e, h_x	 Strip thickness at entry and exit sides, respectively
h_n	 Strip thickness at the neutral point

xviii

h_{c}		Roll gap spacing
Δh		Reduction of the strip thickness
W		Strip width
$R_{_{WR}}$		Undeformed roll radius
R_d		Deformed roll radius
L		Roll bite length
ϕ		Roll contact angle at any arbitrary point in the roll gap
V		Poisson's ratio
F_{sp}		Specific rolling force per unit width
С		Hitchcock constant
$ au_s$		Friction stress
μ		Coefficient of friction
р		Normal pressure
т		Friction factor
k		Material shear strength
α		Ratio of the real contact area to the apparent contact area
X		Location of the arbitrary point in the horizontal plane
X_n		Location of the neutral point in the horizontal plane
ω		Operating frequency in unit of <i>rad/s</i>
Q		Torque characteristics of the driving motor
G		Variation of the roll torque
$v_{R, \text{var}}$ or Δv_R		Variation of the rolling speed
S_f	and the second second	Forward slip
S_b		Backward slip
l_0		Parallel line distance in the roll surface
l_1		Distance between two imprints by slip
$\sigma_{_0}$		Base yield strength
$\sigma_{_{Y}}$		V: 11 days of an element of the second science
c		Y lead strength or now stress of the work-piece
0		Strain in the roll gap
Ė		Strain in the roll gap Strain-rate
έ έ ε _{ref}		Strain in the roll gap Strain-rate Strain-rate reference
$\dot{arepsilon}$ $\dot{arepsilon}_{ref}$ $\dot{arepsilon}_{gap}$		Strain-rate reference Strain-rate in the roll gap
$\dot{arepsilon}$ $\dot{arepsilon}_{ref}$ $\dot{arepsilon}_{gap}$ B		Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients
$\dot{arepsilon}$ $\dot{arepsilon}$ $\dot{arepsilon}$ arepsilon arepsi		Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients Temperature
$\dot{arepsilon}$ $\dot{arepsilon}_{ref}$ $\dot{arepsilon}_{gap}$ B T N		Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients Temperature Peripheral rolling speed of the work roll in unit of <i>rev/s</i>
$\dot{arepsilon}$ $\dot{arepsilon}_{ref}$ $\dot{arepsilon}_{gap}$ B T N heta		Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients Temperature Peripheral rolling speed of the work roll in unit of <i>rev/s</i> Angle subtended by the actual work roll axis
$\dot{arepsilon}$ $\dot{arepsilon}$ $\dot{arepsilon}$ $arepsilon$ $arepsi$		 Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients Temperature Peripheral rolling speed of the work roll in unit of <i>rev/s</i> Angle subtended by the actual work roll axis Angular velocity
$\dot{\varepsilon}$ $\dot{\varepsilon}_{ref}$ $\dot{\varepsilon}_{gap}$ B T N θ $\dot{\theta}$ $\dot{\lambda}$		 Strain in the roll gap Strain-rate Strain-rate reference Strain-rate in the roll gap Material-dependent coefficients Temperature Peripheral rolling speed of the work roll in unit of <i>rev/s</i> Angle subtended by the actual work roll axis Angular velocity Amplitude of the work roll

ΔD_i	 Variable amount of elongation at (i)th stand
t_e, t_x	 Tension stress at entry and exit sides, respectively
t _{avg}	 Average tension stress
A	 Cross-sectional area of the roll gap

Superscripts

γ_1	 Strain exponent (dimensionless)
γ_2	 Strain-rate sensitivity exponent (dimensionless)

Subscripts

ref	 Reference
gap	 Roll Gap
avg	 Average
Y	 Yield
b	 Backward
f	 Forward

CHAPTER 4 NOTATION

§ Any previously used terminology is not listed here.

f		Horizontal rolling force
S		Normal pressure
s^{-}, s^{+}		Normal pressure at entry and exit sides, respectively
С		Constant determined by Bland and Ford model
H, H_e, H_n		Constant at any arbitrary, entry and neutral planes, respectively
p, q		Horizontal and vertical pressures, respectively
σ		Yield stress in uniaxial compression
σ_e, σ_x		Yield (Flow) stress at entry and exit sides, respectively
ϕ_n	-	Neutral point/angle
$\dot{\mathcal{E}}^{*}$		Dimensionless strain-rate
F_R		Resultant rolling force
F_H , F_V		Horizontal and vertical rolling forces, respectively
R_{BR}		Backup roll radius
r		Reduction rate
μ_{s0}		Friction coefficient at the steady-state rolling condition
μ_{sl}		Sliding friction coefficient
\dot{h}_c		Reduction rate with respect to time or rate of change in strip thickness

$F_{dyn,R}^{WR}$	 Resultant component of dynamic rolling force
$F_{dyn,x}^{WR}$	 Horizontal component of the dynamic rolling force
$F_{dyn,y}^{WR}$	 Vertical component of the dynamic rolling force
K_{ij}^{var}	 Stiffness coefficient components in the dynamic roll gap
C_{ij}^{var}	 Damping coefficient components in the dynamic roll gap
α_{s}	 Friction gradient (s/m)
$v_{\scriptscriptstyle WR}$	 Work roll velocity
v_{s}	 Strip velocity at the exit side
$C_{\rm var0}$	 Variation of rolling force to the change in friction coefficient
Q	 Rolling force variation due to the change in exit strip thickness based on the strip plastic deformation
ΔS_0	 Variation of the dynamic roll displacement
ΔM_m	 Elastic mill modulus
Δv_H	 Variation of the horizontal rolling speed
Δh_c	 Variation of reduction rate (roll gap spacing)
$\Delta \dot{h}_c$	 Variation of reduction rate with respect to time
Ŕ	 Time derivative of roll radius
\dot{x}_n	 Time derivative of neutral position
$\dot{\phi}_n$	 Time derivative of neutral point
K _{var1}	 Stiffness component of the dynamic rolling force due to the variation of the vertical displacements
$C_{\rm var1}$	 Damping component of the dynamic rolling force due to the variation of the horizontal velocity
$C_{\rm var2}$	 Damping component of the dynamic rolling force due to the variation of the dynamic roll gap
$K_{ij}^{\mathrm{var}\mathrm{I}}$	 Stiffness components in the dynamic roll gap due to the variation of the vertical displacements
C_{ij}^{var1}	 Damping components in the dynamic roll gap due to the relative motion between the work roll and strip
$C_{ij}^{\mathrm{var}2}$	 Damping components in the dynamic roll gap due to the variation of the horizontal velocity
$C_{ij}^{\mathrm{var}3}$	 Damping components in the dynamic roll gap due to the variation of the reduction rate (with respect to time)
β	 Tilted angle caused by offset
μ_c	 Friction coefficient in metal-to-metal (between BR and WR)
F_{fc}	 Friction force between the backup roll and work roll
F_{fw}	 Friction force between the work roll and strip

Subscripts

ij	 x- or y-directional components, respectively
<i>R</i> 1, <i>R</i> 2, <i>R</i> 3, <i>R</i> 4	 First to fourth variable components in the dynamic roll gap

CHAPTER 5 NOTATION

§ Any previously used terminology is not listed here.

$F_{\rm HCH},\;F_{\rm HCV}$	 Reaction forces from the mill frame and Screw-down forces on top, respectively
$F'_{JBH}, F'_{JBV}, F'_{RBH},$ F'_{RBV}	 Bearing force components resulted from support bearings
F_H , F_V	 Horizontal and vertical rolling forces in the roll gap, respectively
F'_H , F'_V	 Surface contact force components between BR and WR
F_R, F_R'	 Resultant rolling force, respectively
F_{HCf}	 Frictional force in the sliding surface of the housing chock
k_{ij}^n	 Stiffness coefficients of the system resulted from the bearing housing, backup roll and work roll
c_{ij}^n	 Damping coefficient of the system resulted from the bearing housing, backup roll and work roll
$\left[K_{BR}\right]$	 Stiffness matrix for the backup roll
$\begin{bmatrix} C_{\scriptscriptstyle BR} \end{bmatrix}$	 Damping matrix for the backup roll
$\left[K_{_{WR}} \right]$	 Stiffness matrix for the work roll
F_{tot}	 Frictional and dynamic rolling force components
R_{bb}	 Journal bearing radius
L_{bb}	 Journal bearing length
η	 Dynamic viscosity in the journal bearing
C_{bb}	 Journal bearing clearance
\mathcal{E}_{bb}	 Eccentricity
\mathcal{O}_{bb}	 Rotation speed (RPM)
R_{wb}	 Tapered roller bearing radius
L_{wb}	 Tapered roller bearing length
Ζ	 Number of rolling element
C_{wb}	 Tapered roller bearing clearance
п	 Roller bearing exponent
K_n	 Load deflection constant
$\alpha_{_0}$	 Rolling element angle
\mathcal{O}_{wb}	 Rotational speed (<i>RPM</i>)
$\delta_{_{im}}$	 Mean displacement
$\delta_{_{Rm}}$	 Resultant elastic deformation
${arphi}_j$	 Angular position of (<i>j</i>)th rolling element
Δ_{ij}	 Relative displacement along the axis of loading of two points
f_{ij}	 Compressive load per unit length
$D_{\scriptscriptstyle BR}$	 Backup roll diameter
$D_{\scriptscriptstyle WR}$	 Work roll diameter

F_{ij}	 Rolling force component
k_{ij}^C	 Stiffness component between two rolls
φ	 Rotational angle
U_1,U_2,U_3	 Transformation matrix

Superscripts

п	 Refer to BH, BR and WR
ij	 <i>x</i> - or <i>y</i> -directional components, respectively

Subscripts

HCH, HCV	 Refer to the bearing housing chock in the horizontal and vertical directions, respectively
JBH, JBV	 Refer to the journal bearing in the horizontal and vertical directions, respectively
RBH, RBV	 Refer to the tapered roller bearing in the horizontal and vertical directions, respectively
H, V	 Refer to the horizontal and vertical directions, respectively
R	 Refer to the resultant component
HCf	 Frictional component of the bearing housing chock
tot	 Total
bb	 Backup roll bearing (Journal bearing)
wb	 Work roll bearing (Tapered roller bearing)

CHAPTER 6 NOTATION

§ Any previously used terminology is not listed here.

C_{Thusty}^1	 Damping component of a variable force component depending on the rolling speed by Tlusty
C^1_{Kimura}	 Damping component of a variable force component depending on the rolling speed by Kimura
k_f	 Deformation resistance of the material
C_{Tlusty}^2	 Damping component of a variable force component due to negative damping effect by Tlusty
C_{Gap}	 Positive damping component in the bearing support (resulted from the mill structure) and the roll gap
C_{var}	 Negative damping component in the dynamic roll gap
K _{Tlusty}	 Stiffness component of a variable force component presented by Tlusty
K _{Kimura}	 Stiffness component of a variable force component presented by Kimura
K_{Gap}	 Positive stiffness component in the bearing support (resulted from the mill structure) and the roll gap

$K_{ m var}$	 Stiffness coefficient in the deformed strip
[M]	 Mass matrix
$\left[K\right]$	 Stiffness matrix
$\begin{bmatrix} C \end{bmatrix}$	 Damping matrix
0 ₆	 6×6 zero matrix
I_{D6}	 6×6 identity matrix
ζ	 Damping ratio
f_i	 Damped natural frequency (Hz)
X	 Displacement vector of a rolling stand
X	 Velocity vector of a rolling stand
cSt	 Kinematic viscosity $(1cSt = 1mm^2/s)$
η	 Dynamic viscosity
$\eta_{\scriptscriptstyle 0}$	 Viscosity at ambient pressure and temperature
ρ	 Fluid density
υ	 Kinematic viscosity
P _{max}	 Oil-film pressure at a maximum
α	 Pressure coefficient of viscosity

Subscripts

i	 Refer to the first to sixth mode
JBH, JBV	 Refer to the journal bearing in the horizontal and vertical direction

CHAPTER 8 NOTATION

§ Any previously used terminology is not listed here.

ΔL	 Variation of length of arc contact in the roll gap)
${\mathcal Y}_i$	 Dynamic oscillation of the work roll
$t_{e, \text{var}} \Big _{Tlusty}$	 Tension variation at the entry side by Tlusty
$t_{e, \text{var}} \Big _{Yun}$	 Tension variation at the entry side by Yun
$t_{e, \text{var}} \Big _{Dyn}$	 Tension variation at the entry side by the current model
$\phi_{n,\mathrm{var}}$	 Variation of the neutral point

Subscripts

— Refer to the work roll

i

Abstract

The objective of this thesis is to gain a good understanding of the chatter phenomenon incorporating the dynamic rolling model and mechanical system model of a rolling stand in cold rolling. Although such systems have received great attention in the academic literature, research to-date has not covered dynamic characteristics of the multiple rolling body-bearing-support system due to its complexity and nonlinearities.

In this thesis, a steady-state rolling process model that includes the work hardening and work roll flattening effect was developed based on the homogeneous deformation theory with the relaxation of conventional assumptions. A dynamic model of the rolling process was then formulated by taking into account multiple nonlinearities such as the change in friction coefficient, rolling speed, roll gap (strip thickness) reduction and reduction rate with respect to time. In linearisation of rolling force variations as stiffness and damping coefficients, negative gradient of friction coefficient was introduced to identify the negative damping effect in the dynamic roll gap. Also, dynamic rolling force components were included in the analysis by the linearisation of variations of the strip thickness and rolling speed at exit side and of variations of reduction rate with respect to time.

In addition, a mechanical system model was derived through the inclusion of the support bearings and surface contact between rolls. For the backup roll, a journal bearing model was introduced to examine oil-film thickness change and a tapered roller bearing model was adopted to model the work roll motion. In order to explain dynamics in the surface contact between the backup roll and work roll, Hertzian contact theory is incorporated into the mode-coupling theory. Finally, by coupling the dynamic rolling process model with a mechanical system model including support bearings and surface contact, a 6DOF mill vibration model for the analysis of vibrations symmetric to the roll gap was developed.

In determination of stability in the derived cold rolling stand chatter model, stability analyses were performed through the change in the friction coefficient and rolling speed at a given friction gradient. Many different aspects of stability threshold curves (STC) have been obtained from the eigenvalues analysis of the system characteristic equation. Influences of 10 rolling parameters such as the friction gradient, strip width, roll radius, exit thickness, strain and strain-rate exponent, roll offset, bearing viscosity, length and clearance on mill stability were thoroughly investigated. With the linearised stiffness and damping coefficients at the given operating conditions, transient studies were executed to prove the validity of the presented model.

Finally, in order to understand the effects of tension variations from the adjacent mill stand, three different tension models were applied into the dynamic roll gap. By so doing, the mill stability has been determined through the inclusion of transient characteristics in the dynamic roll gap. In light of observation from the practical mill configuration, simulation results suggest that chatter arises as the rolling speed increases and friction coefficient decreases under the steady-state rolling conditions. When tension variation applied, instability occurs as the inter-stand distance decreases and a strip feed-in speed variation frequency matches to one of the system natural frequencies.