Numerical Modelling of the Gas Dynamics of a Prototype Free-Piston Engine

Gregory Paul Gibbes

Submitted in fulfilment of the degree of

Doctor of Philosophy

University of Technology, Sydney

Australia

2011

keywords: free-piston, 1D gas dynamics, two-stroke, specific heat, chemical equilibrium, charging, scavenging, tuning

ii

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

ACKNOWLEDGEMENTS

I would first like to acknowledge the men who created Pempek Engine project. Edward Wechner, who designed most of engine's hardware, and Bert Van Der Broek for his company's provision of the Pempek scholarship and for his leadership. Thanks also goes to Douglas Carter who designed the electrical systems, and who was a constant, friendly, professional source of ideas and fruitful discussion. Thanks to Slobadan Ilic, who was likewise a friendly and helpful member of the small Pempek engine team, and who worked tirelessly to manufacture and assemble much of the engine. I was glad for his encouragement, advice, and readiness to share information.

My supevisor Guang Hong has been supportive over this long road, and has provided much guidance, insight and advice which, I hope, has borne fruit in making this thesis more useful to others. Thank you for your hard work to support me, even when we didn't always agree. I am in your debt.

Thanks also to Phyllis Agius for her ready helpfulness in all postgraduate student matters, both to me and numerous other students.

Thanks to Matt Gaston, Peter Brady and John Reizes who were always generous with their time, as I learned the art of CFD modelling early in this project.

Thanks go to the many people who I have learned from but never met except through the pages of technical papers and text books. In particular, I would like to acknowledge the late Gordon P. Blair, whose method of modelling 1D gas dynamics I have adapted for this work. Thanks to Samuel J. Kirkpatrick who's carefully published experimental work was invaluable to me in validating my code. Thanks also to John D. Anderson Jr. from whom I learned much about compressible flow; and Markus Klein and Gary L. Borman in the field combustion modelling.

Thanks to Randy Lewis, a kindred spirit in the joys 1D gas dynamic modelling, who provided valuable feedback for the material which appears in Chapter 4.

Thanks to my research friends here at UTS from all corners of the globe: Janitha Wijesinghe, Reza Fathollahzadeh, Fabio Cumbe, Wade Smith, Ulrike Dackermann, Debbie Marsh, Fook Choi, Minh Nguyen, Kifayah Amar, Dang Ho, Thanh Nguyen, Jiping Niu, Wen Xing, Zhinous Zabihi, Xiaohang Pang, Ibrahim El-Saliby and Sherub Phuntsho.

ABSTRACT

Free-piston internal combustion engines found commercial success as air compressors in the 1920's and 1930's, and afterward as gas turbine gasifiers for stationary applications. Since that time they have failed to see commercial application, however in the last decade or so there has been a resurgence of interest in free-piston engines because of their ostensible simplicity and in the flexibility afforded by an unconstrained piston.

This thesis reports the testing and modelling on a free-piston engine by *Pempek Systems Pty. Ltd.* It is an opposed cylinder, electric machine, operating on a two stroke cycle with direct fuel injection. Analysis of experimental cylinder pressure shows that while compression ignition is suitably fast and reliable, the Pempek engine suffers from (among other things) low charging efficiency. The aim of the modelling work is to understand the reasons for this, and to investigate design options for improvement.

A comprehensive, generally applicable 1D gas dynamics engine model has been developed. The important features of this model are described in some detail. While the model builds on existing methods, a number of unique contributions have been made. A chemical equilibrium code was developed which is computationally efficient and flexible. The 1D gas dynamics method is based on a method developed at *Queens University, Belfast* (QUB) in the early 1990's but has been thoroughly reworked in the way it handles friction, gas property changes and heat transfer. The originally first order accurate method has been developed. An unsteady heat transfer model is proposed. A comprehensive boundary solution is presented, which has relevance to all 1D gas dynamics models. The gas dynamics model is validated against extensive single shot data from QUB, and also against some experimental engine-run data.

The 1D gas dynamics engine model is used to assess the viability of utilising exhaust pipe tuning to drive the charging process of the Pempek engine. Simulation results show that it is possible to charge the engine using exhaust gas dynamics alone.

PREFACE

At a stand at the World Energy Congress 2004 in Sydney I met Bert Van Der Broek and Edward Wechner and was introduced to the Pempek free-piston engine. Ed explained to me the fascinating features of his new engine design and invited me to visit the workshop to see some prototype testing. This was the start of my association with Pempek Systems, which lead to a final year project exploring the scavenging of the engine, then on to this PhD in a similar vein.

Pempek Systems had done what few research groups had yet achieved – they had built and run a full scale electric free-piston engine, demonstrating unequivocally that generator based piston motion control was accurate and robust. Their working prototype was an excellent platform from which to launch a theoretical investigation - which was aimed at providing tools to interpret results, and doing predictive modelling to guide future directions of the project.

A little should be said about the contents of this thesis which follow from the requirements of the project. There are two main topics addressed. The first is the developing technology of free-piston engines. This is the subject of the first two chapters. The second topic is that of engine modelling and makes up the middle part of the thesis. Even though the modelling was developed for the Pempek project, it is nonetheless broadly applicable to all IC engines and even to other fields. Thus, the sections on modelling can be read profitably without concern for the preceding chapters on free-piston engine technology. Likewise, readers with little interest in physics and methods of modelling will be able to read the sections reporting free-piston engine technology. The final section of the thesis takes the engine model and looks at two possible design variations for the Pempek engine.

- Synopsis -

Chapter 1 - Free-piston Engines – overview of developments

Surveys the current state of the art in free-piston engine technology. The survey shows that despite the relative immaturity of the field, promising solutions have been found for the main difficulties, such as piston motion control.

Chapter 2 - Pempek free-piston engine – details and experimental results

Describes the Pempek free-piston engine project in some detail, highlighting the successful piston motion control, and describing some of the difficulties that were faced, in particular low combustion energy and high compressor power

consumption. In order to explore the potential for lower compressor pressure, it was deemed necessary to analyse the gas dynamics of inlet and exhaust systems. This is the motivation for the modelling work which follows.

Chapter 3 - Thermodynamic and gas property models

Describes three key components of the engine model – namely the single zone thermodynamic cylinder model, the gas property model and the chemical equilibrium model.

Chapter 4 - Unsteady 1D gas dynamics model

Describes the unsteady gas dynamics model, which was based on an existing method, but with several modifications. Concludes with some simple validation cases.

Chapter 5 - Other sub models

Describes miscellaneous other parts of the engine model which were not covered in the previous two chapters.

Chapter 6 - The engine model – integrating all sub models

Explains the integration of all the sub models into the overall engine model

Chapter 7 - Validations using experimental results

Validates the gas dynamics model against a suit of single shot experiments, and also a superficial comparison to measured data from the Pempek engine.

Chapter 8 - Predictive modelling

Applies the gas dynamics model to the original Pempek engine but with a modified low pressure compressor, and a tuned exhaust pipe. Simulation results show that low compressor pressure operation is possible. Next, a radical design modification is proposed, and the gas dynamics model is used to test the viability of un-boosted charging. These two applications of the gas dynamics model demonstrate the usefulness of the model, and the sort of design options that are available for freepiston engines to take advantage of gas dynamics to improve and control charging.

Chapter 9 - Summary and conclusion

Summarises the specific findings for the Pempek project, summarises the model scope and usefulness, and lists the unique contributions of the thesis. A list of suggested further work is also included.

Appendices

A wide range of material with further details of free-piston engine projects and the engine model.

Appendix I	Review of recent free-piston engine projects
Appendix II	Specific heats of a reacting mixture
Appendix III	Further applications of the energy equation
Appendix IV	Tables of Thermodynamic Properties
Appendix V	Method for Calculating Chemical Equilibrium of Combustion Products
Appendix VI	Derivation of fundamental one dimensional unsteady gas equation
Appendix VII	Derivation of Boundary Flow Equations
Appendix VIII	Model Data Structures
Appendix IX	2 nd Order Interpolation – further details
Appendix X	Re-meshing Criteria and Method
Appendix XI	Single Shot Experiments Cross Reference
Appendix XII	Derivation of normal shock equations
Appendix XIII	Rayleigh and Fanno Flow

- Appendix XIV Graphical user interface screen shots
- Appendix XV Table of contents of data CD

xii

TABLE OF CONTENTS

Abstract		vii
Preface.		ix
Table of	Contents	xiii
List of F	gures	xvii
List of T	ables	xxvii
Nomencl	ature	xxix
Acronyn	18	xxxiii
Chapter	1 Free-piston Engines – overview of developments	1
1.1	Introduction	2
1.2	Summary of free-piston projects	4
1.3	Piston Motion Control	6
1.4	Discussion on free-piston engines state of the art	9
1.5	Free-piston Engine Modelling	11
Chapter	2 Pempek free-piston engine – details and experimental results	19
2.1	Overview of the project	19
2.2	Details of the engine	
2.3	Cylinder pressure analysis	27
2.4	Compressor analysis	
2.5	Summary	
Chapter	3 Thermodynamic and gas property models	
3.1	Thermodynamic control volume model	
3.2	Gas mixture property model	
3.3	Reacting gas mixture model	
Chapter	4 Unsteady 1D gas dynamics model	55
4.1	Introduction	
4.2	Theoretical Basis	61
4.3	Wave Propagation	
4.4	Flow Boundary solution	

4.5	Mass and thermal energy transport	79
4.6	Validation using analytical results	
4.7	Summary	
Chapte	r 5 Other sub models	91
5.1	Duct friction and heat transfer	
5.2	Combustion cylinder models	
5.3	Separated flow model	
5.4	Flow area coefficient maps	
5.5	Multi body dynamics	117
Chapte	r 6 The engine model – integrating all sub models	
6.1	Overview of model building blocks	
6.2	Calculation sequence for a complete time-step evaluation	
6.3	Programing details of the engine model	
Chapte	r 7 Validations using experimental results	129
7.1	Description of the single shot tests	
7.2	Slide valve tests	
7.3	P1 driven simulation	141
7.4	Straight pipe shots	
7.5	Converging flow	147
7.6	Diverging flow	
7.7	Modelling the Pempek engine	161
Chapte	r 8 Predictive modelling	171
8.1	Optimising the existing layout	
8.2	Port admission layout	
8.3	Gas dynamics driven scavenging	
8.4	Conclusion	
Chapte	r 9 Summary and conclusion	
9.1	Findings for the Pempek project	
9.2	The model, its scope and usefulness	
9.3	Unique contributions to modelling art	
9.4	Contribution to free-piston engine research	
9.5	Further Work	

Publications	193
References	195
Appendices	207
Appendix I Review of recent free-piston engine projects	209
Appendix II Specific heats of a reacting mixture	235
Appendix III Further applications of the energy equation	237
Appendix IV Tables of Thermodynamic Properties	241
Appendix V Method for Calculating Chemical Equilibrium of Combustion Products .	247
Appendix VI Derivation of fundamental one dimensional unsteady gas equation	255
Appendix VII Derivation of Boundary Flow Equations	259
Appendix VIII Model Data Structures	263
Appendix IX 2 nd Order Interpolation – further details	269
Appendix X Re-meshing Criteria and Method	271
Appendix XI Single Shot Experiments Cross Reference	273
Appendix XII Derivation of normal shock equations	275
Appendix XIII Rayleigh and Fanno Flow	281
Appendix XIV Graphical user interface screen shots	285
Appendix XV Table of contents of data CD	291

xvi

LIST OF FIGURES

Figure 1-1 Various free-piston engine layouts
Figure 1-2 Two control methodologies
Figure 1-3 Scavenging modes analysed by Goldsborough [58]15
Figure 1-4 Simulated 1D model compared to experiment for pressure in exhaust pipe. Larmi et al [74]
Figure 2-1 Spark ignition prototype
Figure 2-2 Cross section of engine module (shown vertically)
Figure 2-3 Typical exhaust valve actuator trajectory
Figure 2-4 Real vs. target mover velocity
Figure 2-5 Example engine run indicated work (efficiency indicated by black markers)
Figure 2-6 Sample indicator plot – fired cycle
Figure 2-7 Sample indicator plot - motored cycle
Figure 2-8 Apparent heat release
Figure 2-9 Cylinder and compressor pressure during scavenging
Figure 2-10 Comparison of cylinder pressure with and without exhaust pipe
Figure 2-11 Indicator plot of compressor
Figure 2-12 Proposed advanced passive inlet valve design [96]
Figure 3-1 Numerical solution of the energy equation
Figure 3-2 Pressure history and error for various time steps
Figure 3-3 Prescribed fuel burn rate and cylinder volume
Figure 3-4 Pressure and temperature for combustion case
Figure 3-5 Error for various time steps
Figure 3-6 Specific heat C_p of common exhaust gas species
Figure 3-7 Typical pressure error incurred for setting $\gamma = 1.4$
Figure 3-8 Variation of γ * with temperature and equivalence ratio for unburned and burned mixture

Figure 3-9 Equilibrium species mass fractions of a fuel-air mixture a	at various
temperatures and pressure	
Figure 3-10 Equilibrium species mass fractions of a fuel air mixture wit fuel to oxygen ratio	h varying 52
Figure 4-1 Evolving mass flow rate into an idealised duct	55
Figure 4-2 A right travelling pressure wave	61
Figure 4-3 Oppositely moving pressure waves	
Figure 4-4 Advancing pressure waves by one time step	63
Figure 4-5 Second order interpolation of pressure waves	64
Figure 4-6 Modifying pressure waves to account for heat transfer a conservation	and mass 65
Figure 4-7 Re-meshing a duct	
Figure 4-8 Detection of a travelling shock	67
Figure 4-9 Duct cell boundary nodes in space and time	68
Figure 4-10 Variation of gas properties around a node in space and time	68
Figure 4-11 Catalogue of all flow types considered	70
Figure 4-12 A typical flow boundary showing all flow properties	
Figure 4-13 Mass and thermal transport	
Figure 4-14 Calculating boundary flow properties	
Figure 4-15 Temperature transport with different mixing coefficients	
Figure 4-16 Standard shock tube results	
Figure 4-17 Shock tube with mass conservation	85
Figure 4-18 Shock tube comparison between first and second or interpolation.	der wave
Figure 4-19 Fanno flow	87
Figure 4-20 Rayleigh flow	87
Figure 4-21 Smearing of a triangular pulse traversing 100 mesh spaces	88
Figure 5-1 Coefficient of friction for flow over a flat plate [90]	

Figure 5-2 Fluid element experiencing friction
Figure 5-3 Fluid element experiencing heat transfer
Figure 5-4 Heat transfer model compared to Dittus-Boelter for steady flow
Figure 5-5 Heat transfer model turbulent kinetic energy for different turbulence length scales
Figure 5-6 Heat transfer model for a turbulence generating inlet 100
Figure 5-7 Heat transfer model compared to Dittus-Boelter for low speed flow 100
Figure 5-8 Heat transfer model for different cell spacing 101
Figure 5-9 Heat transfer modelled for single shot using different turbulence length scales
Figure 5-10 Heat transfer modelled for single shot using different timestep size 103
Figure 5-11 Sketch of piston-cylinder crevice
Figure 5-12 Blowby CFD model mesh
Figure 5-13 Blowby correlation
Figure 5-14 Finding fuel injection enthalpy
Figure 5-15 Spark ignition combustion rate model
Figure 5-16 Compression ignition combustion rate model 111
Figure 5-17 Control volume for applying the momentum equation to a diffusing flow
Figure 5-18 Modified area ratio for tapered ducts
Figure 5-19 Example flow area coefficient map
Figure 5-20 Cutaway of FP3 showing moving parts117
Figure 5-21 Forces on the mover
Figure 5-22 Forces on the exhaust valves
Figure 5-23 Aero force coefficients for normal flow through exhaust and inlet valves
Figure 5-24 Forces on the passive inlet valves
Figure 5-25 Typical collision trajectory

Figure 6-1 Integration of sub models to make an engine model	123
Figure 7-1 Straight pipe	130
Figure 7-2 Straight pipe with density discontinuity	131
Figure 7-3 Sudden contraction	131
Figure 7-4 Convergent taper	131
Figure 7-5 Sudden enlargement	132
Figure 7-6 Divergent taper	132
Figure 7-7 Short megaphone	132
Figure 7-8 Long megaphone	132
Figure 7-9 Flow area coefficients used for slide valve	135
Figure 7-10 Slide valve P_{rel} =1.5 bar, T_{rel} =293K	136
Figure 7-11 Slide valve $P_{rel}=1.5$ bar, $T_{rel}=293$ K, air in cylinder, CO2 in pipe	136
Figure 7-12 Slide valve $P_{rel}=1.5$ bar, $T_{rel}=293$ K, CO ₂ in cylinder, air in pipe	136
Figure 7-13 Slide valve P_{rel} =2.4 bar, T_{rel} =293K	137
Figure 7-14 Slide valve P_{rel} =2.4 bar, T_{rel} =293K, air in cylinder, CO ₂ in pipe	137
Figure 7-15 Slide valve P_{rel} =2.4bar, T_{rel} =293K, CO ₂ in cylinder, air in pipe	137
Figure 7-16 Slide valve $P_{rel}=2$ bar, $T_{rel}=623K$	138
Figure 7-17 Slide valve P_{rel} =5 bar, T_{rel} =623K	138
Figure 7-18 Slide valve $P_{rel}=0.5$ bar, $T_{rel}=293$ K	138
Figure 7-19 Slide valve $P_{rel}=0.8$ bar, $T_{rel}=293$ K	139
Figure 7-20 Slide valve $P_{rel}=0.5$ bar, $T_{rel}=293$ K short pipe shot	139
Figure 7-21 Slide valve $P_{rel}=0.8$ bar, $T_{rel}=293$ K short pipe shot	139
Figure 7-22 Slide valve P_{rel} =2.4 bar, T_{rel} =293K short pipe shot	140
Figure 7-23 Straight pipe P2, P_{rel} =0.5 bar, T_{rel} =293K	143
Figure 7-24 Straight pipe P2, P_{rel} =0.8 bar, T_{rel} =293K	143
Figure 7-25 Straight pipe P2, P_{rel} =1.5 bar, T_{rel} =293K	143
Figure 7-26 Straight pipe P2, P_{rel} =2.4 bar, T_{rel} =293K	144

Figure 7-27 Density discontinuity P3, CCC, $P_{rel}=2.4$ bar, $T_{rel}=293$ K, closed end. 144
Figure 7-28 Density discontinuity P1, AAC, $P_{rel}=1.5$ bar, $T_{rel}=293K$
Figure 7-29 Density discontinuity P3, AAC, $P_{rel}=1.5$ bar, $T_{rel}=293K$
Figure 7-30 Density discontinuity P1, AAC, $P_{rel}=2.4$ bar, $T_{rel}=293K$
Figure 7-31 Density discontinuity P3, AAC, $P_{rel}=2.4$ bar, $T_{rel}=293K$ 145
Figure 7-32 Density discontinuity P1, CCA, <i>P_{rel}</i> =1.5 bar, T _{<i>rel</i>} =293K145
Figure 7-33 Density discontinuity P3, CCA, $P_{rel}=1.5$ bar, $T_{rel}=293K$ 145
Figure 7-34 Density discontinuity P1, CCA, <i>P_{rel}</i> =2.4 bar, T _{<i>rel</i>} =293K146
Figure 7-35 Density discontinuity P3, CCA, $P_{rel}=2.4$ bar, $T_{rel}=293K$ 146
Figure 7-36 Flow area coefficients used for sudden area change
Figure 7-37 Sudden contraction 53mm P1, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-38 Convergent taper 53mm P1, P_{rel} =2.4bar, T_{rel} =293K148
Figure 7-39 Sudden contraction 53mm, P3, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-40 Convergent taper 53mm, P3, P_{rel} =2.4bar, T_{rel} =293K148
Figure 7-41 Sudden contraction 80.2mm, P1, P_{rel} =2.4bar, T_{rel} =293K149
Figure 7-42 Convergent taper 80.2mm, P1, P_{rel} =2.4bar, T_{rel} =293K149
Figure 7-43 Sudden contraction 80.2mm, P3, P_{rel} =2.4bar, T_{rel} =293K149
Figure 7-44 Convergent taper 80.2mm, P3, P_{rel} =2.4bar, T_{rel} =293K149
Figure 7-45 Sudden enlargement 53mm, P1, $P_{rel}=1.5$ bar, $T_{rel}=293$ K 152
Figure 7-46 Divergent taper 53mm, P1, P_{rel} =1.5bar, T_{rel} =293K152
Figure 7-47 Sudden enlargement/ Divergent taper 53mm, P3, $P_{rel} = 1.5$ bar, $T_{rel} = 293$ K
Figure 7-48 Sudden enlargement 53mm, P1, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-49 Divergent taper 53mm, P1, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-50 Sudden enlargement/ Divergent taper 53mm, P3, P_{rel} =2.4bar, T _{rel} =293K
Figure 7-51 Sudden enlargement 80.2mm, P1, $P_{rel}=1.5$ bar, $T_{rel}=293$ K
Figure 7-52 Divergent taper 80.2mm, P1, <i>P_{rel}</i> =1.5bar, T _{<i>rel</i>} =293K

Figure 7-53 Sudden enlargement/ Divergent taper 80.2mm, P3, $P_{rel} = 1.5$ bar, $T_{rel} = 293$ K
Figure 7-54 Sudden enlargement 80.2mm, P1, P_{rel} =2.4bar, T_{rel} =293K 155
Figure 7-55 Divergent taper 80.2mm, P1, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-56 Sudden enlargement/ Divergent taper 80.2mm, P3, P_{rel} =2.4bar, T _{rel} =293K
Figure 7-57 Divergent taper 80.2mm, P2, P_{rel} =2.4bar, T_{rel} =293K
Figure 7-58 Divergent taper 105.6mm, P1, <i>P_{rel}</i> =2.4bar, T _{<i>rel</i>} =293K
Figure 7-59 Divergent taper 105.6mm, P2, <i>P_{rel}</i> =2.4bar, T _{<i>rel</i>} =293K
Figure 7-60 Divergent taper 105.6mm, P3, <i>P_{rel}</i> =2.4bar, T _{<i>rel</i>} =293K
Figure 7-61 Short Megaphone P1, P_{rel} =2.0bar, T_{rel} =293K
Figure 7-62 Long Megaphone P1, P_{rel} =2.0bar, T_{rel} =293K
Figure 7-63 Sudden contraction 53mm, P1, $P_{rel}=0.5$ bar, $T_{rel}=293$ K 158
Figure 7-64 Convergent taper 53mm, P1, P_{rel} =0.5bar, T_{rel} =293K158
Figure 7-65 Sudden contraction / Convergent taper 53mm, P3, P_{rel} =0.5bar, T _{rel} =293K
Figure 7-66 Sudden contraction 53mm, P1, $P_{rel}=0.8$ bar, $T_{rel}=293$ K
Figure 7-67 Convergent taper 53mm, P1, P_{rel} =0.8bar, T_{rel} =293K159
Figure 7-68 Sudden contraction / Convergent taper 53mm, P3, $P_{rel} = 0.8$ bar, T _{rel} =293K
Figure 7-69 Short Megaphone P1, $P_{rel} = 2.0$ bar, $T_{rel} = 293$ K, various simulation timesteps
Figure 7-70 Long Megaphone P1, $P_{rel} = 2.0$ bar, $T_{rel} = 293$ K, various simulation timesteps
Figure 7-71 Pempek engine inlet side ducting half section 3D view 161
Figure 7-72 Pempek engine1D model layout 162
Figure 7-73 Motored engine comparison with experiment 163
Figure 7-74 Motored engine, indicator diagram 164
Figure 7-75 Motored engine, indicator diagram

Figure 7-76 Fired engine comparison with experiment
Figure 7-77 Fired engine, indicator diagram
Figure 7-78 Fired engine, indicator diagram
Figure 7-79 Valve trajectories and mass flows
Figure 7-80 Cylinder mass and inlet mass
Figure 7-81 Cylinder species mass fractions
Figure 7-82 Cylinder temperature and specific heat ratio
Figure 8-1 Tuned exhaust pipe layout for existing engine
Figure 8-2 Results for optimised layout
Figure 8-3 Valve trajectories and mass flows (full power) 173
Figure 8-4 Cylinder mass and inlet mass (full power) 174
Figure 8-5 Cylinder species mass fractions (full power) 174
Figure 8-6 Modification of Pempek engine for port admission 175
Figure 8-7 Contactless pistons with air bearings
Figure 8-8 Port admission engine model layout
Figure 8-9 General results for port admission layout
Figure 8-10 Port openings and mass flows (full power) 180
Figure 8-11 Cylinder pressure during scavenging (full power) 180
Figure 8-12 Modelled inlet and exhaust plenum pressure (full power) 180
Figure 8-13 Cylinder mass and inlet mass (full power) 181
Figure 8-14 Cycle temperatures
Figure 8-15 Cycle pressures
Figure 8-16 Cycle pressures during scavenging
Figure I-1 Junkers four-stage free-piston air compressor [8]
Figure I-2 Partial cut-away diagram of the SIGMA Type GS-34 Free-Piston Gasifier [8]
Figure I-3 INNAS "Chiron" hydraulic free-piston engine [7]

Figure I-4 Tampere University of Technology hydraulic free-piston engine prototype "Emma2" [113]
Figure I-5 Third Generation prototype engine [114]
Figure I-6 Cutaway view of the Toyohashi university of Technology hydraulic free- piston engine [63]
Figure I-7 EPA six-cylinder four-stroke FPE [32]
Figure I-8 West Virginia University, second generation linear engine prototype (2- stroke) [115]
Figure I-9 West Virginia University, four stroke concept [97]
Figure I-10 First Sandia Free-piston Linear Alternator concept [116] 220
Figure I-11 Sandia opposed piston layout [119]
Figure I-12 Sandia bounce chamber detail showing compressed air injection valves on the left and vent ports on the right [119]
Figure I-13 Sandia Opposed Piston Free-piston Engine [120] 223
Figure I-14 Timeline of Sandia free-piston engine project [119] 223
Figure I-15 FPEC prototype electric generator – opposed cylinder, two-stroke diesel with pnumatic exhaust valves [78]
Figure I-16 Korea Institute of Energy opposed cylinder engine [125]
Figure I-17 Four-stroke free-piston engine concept by Nanjing University of Science and Technology [128]
Figure I-18 German Aerospace Center free-piston prototype on test bench [60] 227
Figure I-19 Linear alternator built at WVU [34]
Figure I-20 Sandia linear alternator design [117]
Figure I-21 Magnaquench linear alternator stator [117]
Figure I-22 University of Sheffield FPEC linear permanent magnet generator [122]
Figure I-23 Royal Institute of Technology Stockholm, Sweden transverse flux permanent magnet generator [40]
Figure I-24 German Aerospace Center linear generator on the test stand [60] 231

Figure I-25 Design concept for a miniature HCCI free-piston engine [112]
Figure I-26 Photo of Kvaerner test cylinder unit
Figure I-27 Liquid piston air compressor prototype (high inertance model) Vanderbilt University [73]
Figure III-1 Variation of <i>R</i> with temperature for products of combustion in chemical equilibrium
Figure V-1 Heat release of n-octane at various equivalence ratios and temperatures
Figure VI-1 A fluid element influenced by a pressure wave
Figure VII-1 Schematic of a duct boundary
Figure IX-1 Interpolating discontinuous pressure waves
Figure IX-2 Handling the duct ends
Figure IX-3 Single cell ducts
Figure XII-1 Schematic of a normal shock
Figure XII-2 Travelling shock
Figure XIV-1 Main screen
Figure XIV-2 Edit Ducts screen
Figure XIV-3 Edit Volumes screen
Figure XIV-4 Edit Bodies screen
Figure XIV-5 Edit Area Coefficients screen
Figure XIV-6 Edit Functions screen
Figure XIV-7 Create Animated plot screen
Figure XIV-8 Example Animation screen grab (shock tube problem)
Figure XIV-9 History plot screen

LIST OF TABLES

Table 3-1 Thermodynamic cylinder model calculation sequence	41
Table 3-2 List of species considered in equilibrium calculation	50
Table 3-3 Equilibrium equations	51
Table 4-1 Shock tube setup	83
Table IV-1 Enthalpy of some combustion products	241
Table IV-2 Specific heat of some combustion products	242
Table IV-3 Properties of some fuels (various sources [30, 62, 107])	243
Table IV-4 Equilibrium equations	244
Table IV-5 Equilibrium constants for selected reactions	245
Table XIV-1 Cross reference figure numbers for single shot data	273

xxviii

NOMENCLATURE

Symbols

A	area (m ²)
а	speed of sound (m/s)
a_0	isentropic reference speed of sound (m/s)
a	acceleration (m/s^2)
aA	moles of atomic element i.e. aC, aH, aN, aO (mol)
С	circumference or wetted perimeter of a duct (m)
C_f	Coefficient of friction (Fanning friction factor) (-)
C _h	Coefficient of heat transfer $(W/m^2/K)$
C_p , C_v	specific heat at constant pressure and constant volume (J/kg/K)
\hat{C}_p , \hat{C}_{v}	specific heat at constant pressure and constant volume (J/mol/K)
\mathcal{C}_p^* , \mathcal{C}_v^*	frozen specific heats (see Appendix II) (J/kg/K)
С	wave velocity (m/s)
$D_h = \frac{4A}{C}$	hydraulic diameter (m)
F	force (N)
Н,Н	Enthalpy, enthalpy flow rate (J, J/s)
h, \hat{h} , $\Delta \hat{h}^o$	specific enthalpy, enthalpy of formation (J, J/kg, J/mol)
k	thermal conductivity (W/m/K)
L	Length
L_{∞}	Large eddy length
М	momentum (kg.m/s)
М	molar mass (g/mol)
m, ṁ	mass, mass flow rate (kg, kg/s)
${\mathcal N}$	Total mixture moles (mol)
	Species moles (mol)

<i>P</i> , <i>P</i> ₀	pressure, reference pressure (absolute pressure, Pa)
<i></i> , ġ	heat transfer rate (J/s, J/kg/s)
R	gas constant (J/kg/K)
Ŕ	universal gas constant (8.314472 J/mol/K)
Re, Re _t	Reynolds Number, turbulent Reynolds number (-)
Т	temperature (K)
T ₀	isentropic reference temperature (K)
t	time (s)
<i>u</i> , <i>u</i> ₀	fluid velocity, quiescent fluid velocity (m/s)
<i>u'</i>	turbulence intensity, RMS of fluctuating velocity (m/s)
U, u, û	internal energy, specific internal energy (J, J/kg, J/mol)
V	velocity (m/s)
<i>V</i> , <i>v</i>	volume, specific volume (m ³ , m ³ /kg)
Ŵ,ŵ	work rate (J/s), specific work rate (J/kg/s),
$X = \left(\frac{P}{P_0}\right)^{\frac{\gamma-1}{2\gamma}}$	pressure amplitude ratio (-)
\mathcal{Y}_{S}	species mole fraction (-)
$\gamma = \frac{C_p}{C_v}$	ratio of specific heats (-)
$\gamma^* = \frac{C_p^*}{C_v^*}$	ratio of frozen specific heats (-)
μ	viscosity (N.s/m ²)

v Courant number (-)

 ρ density (kg/m³)

[C0], [C02] etc species molar concentration (kmol/m³)

Subscripts

L	leftward
R	rightward
i	iteration, incident
f	flow
prev	previous
r	reflected
S	species

xxxii

. . . .

. .

ACRONYMS

BDC	Bottom dead centre
BTDC	Before top dead centre
CFD	Computational Fluid Dynamics
FPEC	Free-piston Energy Converter, project name for a European free- piston engine consortium
HCCI	Homogenous Charge Compression Ignition
IMEP	Indicated mean effective pressure
QUB	Queens University Belfast
TDC	Top dead centre
WRT	With respect to

xxxiv