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ABSTRACT

Free-piston internal combustion engines found commercial success as air
compressors in the 1920°s and 1930’s, and afterward as gas turbine gasifiers for
stationary applications. Since that time they have failed to see commercial
application, however in the last decade or so there has been a resurgence of interest
in free-piston engines because of their ostensible simplicity and in the flexibility

afforded by an unconstrained piston.

This thesis reports the testing and modelling on a free-piston engine by Pempek
Systems Pty. Ltd. 1t is an opposed cylinder, electric machine, operating on a two
stroke cycle with direct fuel injection. Analysis of experimental cylinder pressure
shows that while compression ignition is suitably fast and reliable, the Pempek
engine suffers from (among other things) low charging efficiency. The aim of the
modelling work is to understand the reasons for this, and to investigate design

options for improvement.

A comprehensive, generally applicable 1D gas dynamics engine model has been
developed. The important features of this model are described in some detail. While
the model builds on existing methods, a number of unique contributions have been
made. A chemical equilibrium code was developed which is computationally
efficient and flexible. The 1D gas dynamics method is based on a method developed
at Queens University, Belfast (QUB) in the early 1990’s but has been thoroughly re-
worked in the way it handles friction, gas property changes and heat transfer. The
originally first order accurate method has been changed to second order, and a way
of preserving full mass conservation has been developed. An unsteady heat transfer
model is proposed. A comprehensive boundary solution is presented, which has
relevance to all 1D gas dynamics models. The gas dynamics model is validated
against extensive single shot data from QUB, and also against some experimental

engine-run data.

The 1D gas dynamics engine model is used to assess the viability of utilising exhaust
pipe tuning to drive the charging process of the Pempek engine. Simulation results

show that it is possible to charge the engine using exhaust gas dynamics alone.



viil



1X

PREFACE

At a stand at the World Energy Congress 2004 in Sydney I met Bert Van Der Broek
and Edward Wechner and was introduced to the Pempek free-piston engine. Ed
explained to me the fascinating features of his new engine design and invited me to
visit the workshop to see some prototype testing. This was the start of my
association with Pempek Systems, which lead to a final year project exploring the

scavenging of the engine, then on to this PhD in a similar vein.

Pempek Systems had done what few research groups had yet achieved — they had
built and run a full scale electric free-piston engine, demonstrating unequivocally
that generator based piston motion control was accurate and robust. Their working
prototype was an excellent platform from which to launch a theoretical investigation
- which was aimed at providing tools to interpret results, and doing predictive

modelling to guide future directions of the project.

A little should be said about the contents of this thesis which follow from the
requirements of the project. There are two main topics addressed. The first is the
developing technology of free-piston engines. This is the subject of the first two
chapters. The second topic is that of engine modelling and makes up the middle part
of the thesis. Even though the modelling was developed for the Pempek project, it is
nonetheless broadly applicable to all IC engines and even to other fields. Thus, the
sections on modelling can be read profitably without concern for the preceding
chapters on free-piston engine technology. Likewise, readers with little interest in
physics and methods of modelling will be able to read the sections reporting free-
piston engine technology. The final section of the thesis takes the engine model and

looks at two possible design variations for the Pempek engine.

- Synopsis -

Chapter 1 - Free-piston Engines — overview of developments
Surveys the current state of the art in free-piston engine technology. The survey
shows that despite the relative immaturity of the field, promising solutions have been

found for the main difficulties, such as piston motion control.

Chapter 2 - Pempek free-piston engine — details and experimental results
Describes the Pempek free-piston engine project in some detail, highlighting the
successful piston motion control, and describing some of the difficulties that were

faced, in particular low combustion energy and high compressor power
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consumption. In order to explore the potential for lower compressor pressure, it was
deemed necessary to analyse the gas dynamics of inlet and exhaust systems. This is

the motivation for the modelling work which follows.

Chapter 3 - Thermodynamic and gas property models
Describes three key components of the engine model — namely the single zone
thermodynamic cylinder model, the gas property model and the chemical

equilibrium model.

Chapter 4 - Unsteady 1D gas dynamics model
Describes the unsteady gas dynamics model, which was based on an existing
method, but with several modifications. Concludes with some simple validation

cases.

Chapter 5 - Other sub models
Describes miscellaneous other parts of the engine model which were not covered in

the previous two chapters.

Chapter 6 - The engine model — integrating all sub models

Explains the integration of all the sub models into the overall engine model

Chapter 7 - Validations using experimental results
Validates the gas dynamics model against a suit of single shot experiments, and also

a superficial comparison to measured data from the Pempek engine.

Chapter 8 - Predictive modelling

Applies the gas dynamics model to the original Pempek engine but with a modified
low pressure compressor, and a tuned exhaust pipe. Simulation results show that
low compressor pressure operation is possible. Next, a radical design modification
is proposed, and the gas dynamics model is used to test the viability of un-boosted
charging. These two applications of the gas dynamics model demonstrate the
usefulness of the model, and the sort of design options that are available for free-

piston engines to take advantage of gas dynamics to improve and control charging.

Chapter 9 - Summary and conclusion
Summarises the specific findings for the Pempek project, summarises the model
scope and usefulness, and lists the unique contributions of the thesis. A list of

suggested further work is also included.
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Appendices
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Symbols
A
a

ap

aA

XX1X

NOMENCLATURE

area (m°)

speed of sound (m/s)

isentropic reference speed of sound (m/s)
acceleration (m/s”)

moles of atomic element i.e. aC, aH, aN, a0 (mol)
circumference or wetted perimeter of a duct (m)
Coefficient of friction (Fanning friction factor) (-)
Coefficient of heat transfer (W/m*/K)

specific heat at constant pressure and constant volume (J/kg/K)
specific heat at constant pressure and constant volume (J/mol/K)
frozen specific heats (see Appendix II) (J/kg/K)

wave velocity  (m/s)
hydraulic diameter (m)

force (N)

Enthalpy, enthalpy flow rate (J, J/s)

specific enthalpy, enthalpy of formation (J, J/kg, J/mol)
thermal conductivity (W/m/K)

Length

Large eddy length

momentum (kg.m/s)

molar mass (g/mol)

mass, mass flow rate (kg, kg/s)

Total mixture moles (mol)

Species moles (mol)



Nomenclature

XXX

X =
Vs
V=&
Cy
VA %
v
u
A%
P

pressure, reference pressure (absolute pressure, Pa)
heat transfer rate (J/s, J/kg/s)

gas constant (J/kg/K)

universal gas constant (8.314472 J/mol/K)

Reynolds Number, turbulent Reynolds number (-)
temperature (K)

isentropic reference temperature (K)

time (s)

fluid velocity, quiescent fluid velocity (m/s)
turbulence intensity, RMS of fluctuating velocity (m/s)
internal energy, specific internal energy (J, J/kg, J/mol)
velocity (m/s)

volume, specific volume (m’, m’/kg)

work rate (J/s), specific work rate (J/kg/s),

pressure amplitude ratio (-)

species mole fraction (-)

ratio of specific heats (-)

ratio of frozen specific heats (-)

viscosity (N.s/m’)
Courant number (-)

density (kg/m’)

[CO],[CO2] etc species molar concentration (kmol/m?)



Nomenclature

XXX1

Subscripts
L

R

leftward
rightward
iteration, incident
flow

previous
reflected

species
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BDC
BTDC
CFD

FPEC

HCCI
IMEP
QUB
TDC

WRT

XXX1i1

ACRONYMS

Bottom dead centre
Before top dead centre
Computational Fluid Dynamics

Free-piston Energy Converter, project name for a European free-

piston engine consortium

Homogenous Charge Compression Ignition
Indicated mean effective pressure

Queens University Belfast

Top dead centre

With respect to
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