The Life History and Ecology of Bluefish, *Girella cyanea*, at Lord Howe Island

Melanie A Lewis

April 2012

Thesis submitted in fulfilment of the requirements for the Degree of Master of Science (Research)

Picture source: NSW Department of Primary Industries
Certificate of Authorship & Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis.

Melanie A Lewis

3rd April 2012
Girella cyanea is a conspicuous member of the reef-fish community in the Lord Howe Island Marine Park (LHIMP), but very little is known about its life history. Rareness of this species on mainland Australian coasts in recent years has initiated a fishing ban across the state of New South Wales, however recreational fishing is still permitted on LHI. Effective management and conservation of this population requires increased information on life history and demographics. Management currently in place for this species is limited. A bag limit of 5 fish person$^{-1}$ day$^{-1}$ is imposed in habitat protection zones across the Marine Park. It is difficult to measure the effectiveness of this strategy, however, without the knowledge of the resource requirements of the species and how these may change throughout the course of life. This study aimed to describe distribution, diet and growth in G. cyanea to provide important information for best-practice management of the LHI population.

An extensive literature search was conducted for published life history, ecology and management data on Girellidae, revealing relatively scarce information for the family. A pilot study assessed the utility of a roaming survey method towing a GPS-receiver behind an observer on snorkel/SCUBA. This new method proved effective and was used for size-based assessments of habitat-use at nearshore and offshore locations around the LHI archipelago. Densities of G. cyanea were highest in complex rocky intertidal and rocky-reef areas. Dietary analyses helped explain this distribution, with gut contents showing intertidal green algal species (i.e. Ulva and Enteromorpha) are important food resources for post-settlement fish.

An ontogenetic dietary shift was found, with fish < 40 mm standard length (L_s) found in intertidal habitat having a mainly carnivorous diet and a digestive system without pyloric caeca. In contrast, pyloric caeca were well-developed in fish > 40 mm L_s and diets exhibited increased ingestion of algae.

Age-at-size using otoliths and von Bertalanffy parameters revealed G. cyanea is fast-growing and long-lived (up to 41 yrs). It is likely the transition to sexual maturity occurs between 2 and 5 years of age or 200 mm L_s. Size-based observations place fish of this life stage within complex rock habitats at depths < 5 m. Future management policies should ensure adequate (representative) areas of rocky intertidal habitat are within sanctuary zoning to protect G. cyanea at this important life stage.
Acknowledgements

My supervisor Professor David Booth and co-supervisor Dr Alan Jordan gave me the freedom to develop my project in a remote place that I was determined to visit. Thank you for the pep talks when the journey seemed endless and for comments that significantly improved this thesis. Further leadership came from Dr Will Figuiera and Dr Belinda Curley who deserve a special mention for putting up with my rants and encouraging me onwards and upwards over the years.

To my husband, Mark Lewis – you kept the light at the end of the long, dark tunnel always shining bright. Your attempts to teach me a thing or two about project management didn’t go unnoticed, even though they must have felt like it at the time! I love you ♥

On two special occasions I was treated to field assistants that are both valued friends and respected colleagues, Dr Paul York and Stephen Summerhayes. You facilitated some great fieldwork moments, including dancing to ABBA and all the other daggy tunes at the “Bowlo”. I hope I helped you experience paradise through the eyes of a bluey ☺

Kerryn Parkinson was always a stable sounding board and a constant source of encouragement, both as a mother and a scientist.

My “Study Buddy”, Cybele Shorter: a confidante and counsellor that helped me stay productive or get productive more than a couple of times throughout the journey. Thank you, thank you, thank you – I wouldn’t have reached the end without you: the sandwiches, the tea breaks, the chocolate. We did it!!!! Undies ‘n all!

Dr Matthew Lockett, for adult otolith work and keeping a pregnant lady happy - if you could do it and stay (semi) sane, so could I! ☺ And a special thank you for the time you were allowed to give me during your work hours, as well as the otolith processing equipment of the NSW DPI Fisheries Research Centre at Cronulla.

Ashley Fowler helped me get excited about the incy wincy teeny tiniest of fish ear bones and grinding my fingertips down to a painful level. You rock! And thank you also for commandeering the facilities at the UNSW School of Biological, Earth and Environmental Sciences laboratories.

Valeriya Komyakova – your volunteer work in the lab was a big help, and you distracted me only at the most appropriate of times ☺
My brother, **Ben Crowther**, who allowed me to convert his Man Cave into my Writer’s Retreat. This was more important than you know and, though brief as it was, I really loved the time we spent without the cavalry!

To the LHIMP staff, past and present: Geoff Kelly, Ian Kerr, and Sallyann Gudge. I sincerely thank you for all of your support, feedback, encouragement, and patience.

Thank you to both Scott Wilson and James Thompson for helping me to find the blueys, for island education, and for trying to teach a fish conservationist how to fish!

Harry, after coming nine weeks early (presumably because he could bare the smell of fish guts no longer), finally learnt to sleep so I could make a come-back. Enjoying your days at school made dropping you off each day so much easier than it could have been. I hope you will be proud of what you helped your mummy achieve.

To my mum who stayed up way past her bedtime to read a lengthy document and saw all the things I could no longer see, and who cheered me on... and on... and on. Thanks Mum xox

My BFF **Jemma**, a chic corporate gal that is great at pretending she really is interested in what I do – thanks for accepting me anyway.

Many of my **friends and family** have been accommodating of the times when I have been Absent Without Leave or Missing in Action. For this, and your support in light of this, I thank you. I promise I’ll be in touch real soon 😊

This thesis is dedicated foremost to **Uncle Brian**, who had all the makings of a scientist: curiosity, scepticism, eccentricity, and a relentless passion for intellectual improvement. I just wish you got to read it.

I must include **Baby Baxter**, an unexpected tragedy but the blessing you brought me is bigger than anyone knows. You changed my life and gave me a renewed passion for my passions. I hope I make your star shine brighter.

And of course, I wouldn’t be me if I did not acknowledge the ultimate sacrifice of the many bluefish described in this research. I hope my findings serve them as I intended: in best practice management.

So what did I learn from this process? In the words of American writer Poul Anderson:

> "I am yet to see any problem, however complicated, which when you look at it the right way did not become still more complicated."
Permissions, Permits and Funding

This study involved a species protected in part of its distributional range, and was conducted within a State and Commonwealth Marine Park listed as a UNESCO World Heritage Site. The study forms part of the Marine Parks Authority (MPA) 2006-2012 Research Work Plan, and was approved and supported by the Lord Howe Island Board.

The following permits apply:

- RNSH & UTS Animal Care & Ethics Committee (ACEC) approval RNS/UTS 0610-038A
- NSW Department of Primary Industries (DPI) scientific collections permit P05/0130-02

Funding support was gratefully received from a number of sources:

- Research Grant - NSW Department of Environment and Climate Change (DECC)
- Grant Award - Project AWARE Foundation
- UTS Department of Environmental Sciences student allocation

Additional in-kind support was provided by the Lord Howe Island MPA

Conference attendance was partially financed by UTS:

- Vice-Chancellor Award
- Faculty of Science Post-graduate International Conference Allocation

Further dissemination of the results was achieved through a scholarship from the University of the Sea aboard the *RV Marion Dufresne*.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>I</td>
</tr>
<tr>
<td>CERTIFICATE OF AUTHORSHIP & ORIGINALITY</td>
<td>II</td>
</tr>
<tr>
<td>THESIS ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>IV</td>
</tr>
<tr>
<td>PERMISSIONS, PERMITS AND FUNDING</td>
<td>VI</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XII</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>XIV</td>
</tr>
</tbody>
</table>

CHAPTER 1 - GENERAL INTRODUCTION ... 1

1.1 STUDYING THE ECOLOGY AND LIFE HISTORY OF FISHES 1
1.2 LIFE HISTORY AND ECOLOGY OF THE BLUEFISH, *Girella cyanea*, Macleay 1881 2
1.3 PROJECT AIMS 3
1.4 *Girella cyanea* AT LORD HOWE ISLAND 4
1.5 THESIS STRUCTURE 11
 (1) *What resources do G. cyanea require/use?* 12
 (2) *What life history traits do G. cyanea exhibit?* 12
 (3) *Do the life history and demographic attributes of G. cyanea display ontogenetic change?* 13

CHAPTER 2 - LITERATURE REVIEW .. 14

2.1 REVIEWING WHAT WE KNOW ABOUT THE FAMILY GIRELLIDAE 14
2.2 TAXONOMY 15
2.3 GEOGRAPHIC RANGE 15

FIGURE 2.1 WORLDWIDE ANTITROPICAL DISTRIBUTION OF GIRELLIDAE. ADAPTED FROM YAGISHITA & NAKABO (2003) 18

2.4 HABITAT 19
2.5 BIOLOGY AND BEHAVIOUR ... 19
 Diet 19
 Reproduction 22
 Age and growth 22

2.6 FISHERIES AND POPULATIONS 23
 The Americas 23
 Australasia 24
 Japanese archipelago 25

2.7 BIBLIOGRAPHY (CH. 2 ONLY) 26

CHAPTER 3 - METHOD DEVELOPMENT ... 34

3.1 PREFACE 34
Preliminary Study A: Optimisation of underwater visual survey methods for patchily distributed fish

3.2 INTRODUCTION .. 35
3.3 MATERIALS AND METHODS .. 36
3.5 DISCUSSION ... 39

Preliminary Study B: Determining the accuracy and precision of underwater estimates of fish lengths

3.6 INTRODUCTION .. 47
3.7 MATERIALS AND METHODS .. 48
3.8 RESULTS .. 49
3.9 DISCUSSION ... 49

CHAPTER 4 - PUTTING BLUEFISH (GIRELLIDAE: GIRELLA CYANE'A) ON THE MAP: PATTERNS OF ABUNDANCE AND POPULATION SIZE STRUCTURE USING THE ROAMING TRANSECT SURVEY METHOD

4.1 INTRODUCTION .. 54
4.2 MATERIALS AND METHODS .. 54
Study site ... 54
Nearshore sampling ... 55
Offshore sampling .. 57
Data analyses ... 57

4.3 RESULTS .. 59
Habitat partitioning ... 59
Depth stratification ... 63
Environmental factors .. 63
LHIMP zones ... 63

4.4 DISCUSSION ... 67
Distribution of juveniles to adults, from complex intertidal to rocky-reef 67

CHAPTER 5 - HERBIVORY, PSEUDO-HERBIVORY OR OMNIVORY? THE HIGHLY VARIABLE DIET OF THE BLUEFISH (GIRELLIDAE: GIRELLA CYANE'A) AT LORD HOWE ISLAND

5.1 INTRODUCTION .. 71
5.2 MATERIALS AND METHODS .. 72
Sample collections ... 72
Fish dissection and measurements .. 73
Dietary examination .. 75
Diet composition and data analyses .. 76

5.3 RESULTS .. 77
Appendix 1: Archived collections of G. cyanea 151
Appendix 2: Dissemination of research results ... 152
List of Tables

TABLE 2.1 LIST OF CURRENT SPECIES RECOGNISED IN GIRELLA ... 16

TABLE 2.2 DIETS OF ADULT GIRELLA AND KYPHOSUS SPECIES. ADAPTED FROM CLEMENTS & CHOAT (1997) 21

TABLE 3.1 DEFINING CHARACTERISTICS OF HABITAT CATEGORIES USED IN RTS AT NORTH BAY, LHI. 38

TABLE 3.2 DEPENDENT SAMPLES T-TEST OF DENSITY (NUMBER OF FISH CALCULATED 100m⁻²) AND ABUNDANCE (NUMBER OF FISH COUNTED PER 3MIN RTS) IN EACH HABITAT WHERE FISH WERE OBSERVED ... 42

TABLE 4.1 DESCRIPTION OF HABITATS ASSESSED FOR G. CYANEA DISTRIBUTIONS AT LOCATIONS NEARSHORE ON THE MAIN ISLAND OF LHI (RK, AZ, CD, DR, SA, SG), AND AT OFFSHORE ISLETS AND DIVE SITES (DI) .. 58

TABLE 4.2 DETAILS OF TOTAL SAMPLING EFFORT AND G. CYANEA ABUNDANCE ACROSS HABITAT CATEGORIES SURVEYED AT LOCATIONS ACROSS THE LHI ARCHIPELAGO .. 60

TABLE 5.1 FOOD ITEMS IN THE DIET OF SAMPLED G. CYANEA ... 82

TABLE 5.2 DEGREE OF DIETARY SPECIALIZATION WITHIN SIZE CLASSES ... 85

TABLE 5.3 DISCRIMINATORY FOOD ITEMS CONTRIBUTING TO DISSIMILARITY IN PAIRWISE COMPARISONS OF SIZE CLASSES ... 86

TABLE 6.1 MEAN AGE OF SIZE CLASSES .. 107

TABLE 6.2 GROWTH PARAMETERS DERIVED FROM THE VON BERTALANFFY GROWTH MODEL AND POPULATION CHARACTERISTICS .. 110
List of Figures

FIGURE 1.1 MAP OF THE GLOBAL DISTRIBUTION OF *G. CYANEA* ... 5

FIGURE 1.2 THE LORD HOWE ISLAND ARCHIPELAGO ... 6

FIGURE 1.3 LOCATION OF LORD HOWE ISLAND WITHIN THE SOUTH-WEST PACIFIC OCEAN, AND EXPANDED TO SHOW THE LHI ARCHIPELAGO .. 7

FIGURE 1.4 OCEANIC CURRENTS OF THE SOUTH-WEST PACIFIC OCEAN. FROM: SCHIEL ET AL. (1986) 9

FIGURE 2.1 WORLDWIDE ANTITROPICAL DISTRIBUTION OF GIRELLIDAE. ADAPTED FROM YAGISHITA & NAKABO (2003) 18

FIGURE 3.1 SCHEMATIC OF THE ROAMING TRANSECT SURVEY (RTS) TECHNIQUE SHOWING SWATHE DIMENSIONS AND FIELD OF VIEW OF THE OBSERVER ... 37

FIGURE 3.2 DISTANCE COVERED DURING A THREE-MINUTE RTS PER HABITAT AT NORTH BAY, LHI 40

FIGURE 3.3 DISTANCE *(o)* VERSUS SPEED *(s)* OF EACH RTS CONDUCTED OVER A THREE MINUTE INTERVAL 41

FIGURE 3.4 DENSITY (NUMBER OF FISH CALCULATED PER 100M3) AND ABUNDANCE (NUMBER OF FISH COUNTED PER THREE MINUTE RTS) FOR EACH HABITAT THAT *G. CYANEA* WERE OBSERVED .. 43

FIGURE 3.5 A: ACCURACY OF MODEL FISH SIZE ESTIMATIONS IN THE FIELD. B: SIZE CLASS CATEGORIES USED TO ASSIGN FISH LENGTH ESTIMATES AD HOC. .. 50

FIGURE 3.6 PRECISION OF MODEL SIZE ESTIMATIONS IN THE FIELD .. 51

FIGURE 4.1 SAMPLING LOCATIONS WITHIN THE LHI ARCHIPELAGO .. 56

FIGURE 4.2 MEAN DENSITIES (± S.E.M) OF *G. CYANEA* IN NEARSHORE HABITATS, RECORDED FROM RTS SWIMS POOLED ACROSS LOCATIONS .. 62

FIGURE 4.4 DEPTH DISTRIBUTIONS OF *G. CYANEA* ... 64

FIGURE 4.5 OCCURRENCE OF FOUR ENVIRONMENTAL FACTORS ASSOCIATED WITH *G. CYANEA* SIGHTINGS ... 65
Figure 4.6 Segregation of RTS-observed G. cyanea across LHI Marine Park zones. 66

Figure 5.1 Sampling locations of G. cyanea at Lord Howe Island .. 74

Figure 5.2 The relationship of length and weight in G. cyanea .. 79

Figure 5.3 Schematic drawings of the digestive tract of G. cyanea .. 80
Figure 5.4 The relationship between the length of digestive tract and two measures of body size 81

Figure 5.5 Volume of major food groups in digestive tract and relative gut length per size class 87

Figure 5.6 Gut length standardised for body mass, expressed as Zihler's index (ZI) 89

Figure 5.7 Seasonal frequency of the most common dietary items in plant (Ulva spp.) and animal (Euphausid sp.) categories found in gut contents. Total animal tissue is also displayed......................... 90

Figure 6.1 Transversely sectioned sagittal otolith of a four year old G. cyanea, showing a dense central opaque region (F) and a subsequent alternating sequence of opaque and translucent banding. 101

Figure 6.2 Linear growth of otoliths in relation to opaque bands (presumed age in yrs) in Girella cyanea. 106

Figure 6.3 Temporal patterns of reproductive development across size classes (A), ages (B) and months (C). ... 110

Figure 7.1 Diagrammatic representation of horizontal (habitat) and vertical (depth) partitioning in G. cyanea through ontogeny .. 122
Abbreviations

ANOVA Analysis of Variance
DPI Department of Primary Industries
EAC East Australian Current
EAUC East Auckland Current
GLM General Linear Model
HPZ Habitat Protection Zone (some fishing permitted, see p. 10)
LHI Lord Howe Island
LHIMP Lord Howe Island Marine Park
L_T Fish total body length (rostrum to caudal fin tip)
L_F Fish body length (rostrum to fork)
L_S Fish standard body length (rostrum to last vertebrae)
MHWM Mean high water mark
MLL Minimum Legal Length
MPA Marine Park Authority
NSW New South Wales
QLD Queensland
RTS Roaming Transect Survey
SZ Sanctuary Zone (no-take reserve)
UNESCO United Nations Educational, Scientific and Cultural Organisation
UTS University of Technology, Sydney
UVC Underwater Visual Census
VBGM von Bertalanffy Growth Model