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Abstract— Freezing of gait (FOG) is a debilitating symptom
of Parkinson’s disease (PD), in which patients experience
sudden difficulties in starting or continuing locomotion. It
is described by patients as the sensation that their feet are
suddenly glued to the ground. This, disturbs their balance,
and hence often leads to falls. In this study, directed transfer
function (DTF) and partial directed coherence (PDC) were used
to calculate the effective connectivity of neural networks, as
the input features for systems that can detect FOG based on
a Multilayer Perceptron Neural Network, as well as means for
assessing the causal relationships in neurophysiological neural
networks during FOG episodes. The sensitivity, specificity and
accuracy obtained in subject dependent analysis were 82%,
77%, and 78%, respectively. This is a significant improvement
compared to previously used methods for detecting FOG,
bringing this detection system one step closer to a final version
that can be used by the patients to improve their symptoms.

I. INTRODUCTION

Freezing of gait (FOG) is a common symptom affecting
more than 70% of advance Parkinson disease (PD) patients
[1]. It is characterized by an ”episodic” incapability to start
walking, suddenly failing to continue to move forward, a
reduction of forward progression of the feet so that the
patient ”shuffles” forwards (the festination), or a complete
absence of movement despite the intention to walk (akinesia)
[2]. Even a brief FOG episode may lead to falls, affecting
a patients’ level of activity and reducing quality of life [3].
It is resistant to pharmacological treatment, especially in the
advanced stages of the disease [4], making FOG prediction
systems highly important.

Early detection of FOG episodes has already been de-
veloped by our group by analyzing energy, entropy and
correlations of electroencephalography (EEG) signals. This
system enabled to detect FOG with a sensitivity of 83%,
however the specificity was only 58% and accuracy 70%
[5]. Compared to motion sensors, such as accelerometers
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or EMG [6], EEG has an advantage in its ability to track
the physiological process of freezing from the earliest stage
throughout the analysis of brain dynamics, which also pro-
vides insights into possible pathophysiological mechanisms
underlying neurological development and disease.

It is known that neural connectivity plays a crucial role
in determining the functional properties of neurons and
neuronal system. Therefore, the concept of brain connectivity
is central for our understanding of organized behaviour of
cortical regions beyond the simple mapping of their activity.
It has been successfully used to study neurological conditions
and disorders, such as Autism [7], Alzheimer’s disease [8],
and Schizophrenia [9]. In this paper, directed transfer func-
tion (DTF) and partial directed coherence (PDC) were used
to investigate the connectivity pattern of PD patients’ brain
area’s of interest during freezing episodes. DTF and PDC
were used due to their reliability and robustness in neuronal
directionality assessment, beyond correlational analyses [10].
The measures of DTF and PDC were taken as the input
for the Multilayer Perceptron Neural Network (MLP-NN) to
detect the transition of brain signals before freezing episodes.

II. METHODS

A. Data Collection and Preprocessing

The EEG data used in our study were collected from 10
patients (age 75.1 ±6.3 ) with idiopathic Parkinson’s disease
and significant FOG as measured during a structured series
of video-recorded timed up-and-go tasks (TUG). The patients
were recruited from the Parkinson’s Disease Research Clinic
at the Brain and Mind Research Institute, University of
Sydney. EEG data were acquired using a 4 channel wireless
EEG system with gold cup electrodes. Based on their role
in control movement, the electrodes were placed at the
following bipolar EEG channels: O1-T4 (visual), P4-T3
(sensorimotor affordance), Cz-FCz (motor execution) and
Fz-FCz (motor planning). The recordings were bandpass
filtered between 0.15 and 100 Hz and were segmented to
1-s durations and digitized at 500 samples per second.

Two physicians specialized in movement disorders in-
spected and labeled the start and duration of the freezing
episodes. Based on this analysis, two other groups were
determined: normal walking data and transition data (5
seconds before freezing), as has been reported elsewhere [5].
After removing the EEG data segment that were affected by
artifact using visual inspection, 843 selected samples data



were filtered from the low and high frequency noise and 50
Hz line frequency using band-pass (0.5-60 Hz) and bandstop
(50Hz) Butterworth IIR with zero phase shift. The EEG
data were normalized with a z-transformation to eliminated
differences in source strength due to inter-individual and
inter-electrode variance in absolute measurements.

B. Multivariate Autoregressive Process

DTF and PDC estimations are based on the application
of the Granger causality into multivariate autoregressive
(MVAR) models of time series. They are defined as a
frequency domain representation of the existing multivariate
relationships between simultaneously analyzed time series,
which provide a linear measures of causality, indicating the
direction and strength of the interactions between multiple
coupled variables [11]. When considering a set of stationary
EEG signals time series X(t) = X1, X2, ..., XN (N EEG
signals simultaneously observed), then the MVAR model is
defined as:
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where Ar are the model coefficients, p is the model or-
der, and wi(t) represents a random Gaussian white noise.
The model order p was estimated by means of Schawarz’s
Bayesian Criterion (SBC) due to its robustness [12]. The
Nuttall Strand method (multivariate Burg) which has been
reported as superior to other methods was used to estimate
the MVAR parameters [13].

The time domain representation was then translated to
frequency domain by computing the cross-spectral power
density matrix:

S(f) = H(f)
∑

HH(f) (2)

where the superscript H indicates the Hermitian transpose
and H(f) is a transfer function matrix

H(f) = A−1(f) = [I −A(f)]−1 (3)
where

A(f) = I −

p
∑

r=1

Are
−2iπfr (4)

is the Fourier transform of the model coefficient matrix.

C. Directed Transfer Function

The directed transfer function (DTF) estimates the causal
influence of the cortical waveform in the channel j on
channel i at a certain frequency f , and normalized by
dividing the inflow from channel j to channel i by all the
inflows to channel i. It is defined as [14]

DTF 2

j→i(f) =
|Hij(f)|

2

√

∑N

k=1
|Hik(f)|

2

. (5)

This normalization resulted in the interval [0, 1] values,
with 1 indicating that all of the signal in channel i is
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Fig. 1. Sample of estimated sGPDC values (solid lines) and their
corresponding surrogates as a threshold of significance estimation (dotted
lines), between O1 (channel 1), P4 (channel 2), Cz (channel 3) and P4
(channel 4) from patient 9 during transition preceding the FOG. Only values
between 0 Hz and 60 Hz were shown due to physiological significance. An
asterisk indicates channel pairs with significant sGPDC causality.

caused by the signal from channel j. The denominator of
this ratio depends on the frequency, making it difficult when
comparing the outflows at different frequencies. Besides, it
does not distinguish between direct and cascade flows.

For estimation of direct connections, different normal-
ization has been introduced as the full frequency Directed
Transfer Function (ffDTF) [14]

ffDTF 2

j→i(f) =
|Hij(f)|

2

√

∑

f

∑N

k=1
|Hik(f)|

2

. (6)

When multiplied by the partial coherence, this modifica-
tion of DTF results in the direct DTF (dDTF) [14]:

dDTF 2

j→i(f) = ffDTFij(f)PCohij(f) (7)

where

PCoh2

ij(f) =
M2

ij(f)

Mii(f)Mjj(f)
(8)

and Mij(f) is the minor obtained by removing ith row and
jth column from the spectral matrix S.

D. Partial Directed Coherence

The partial directed coherence (PDC) was introduced to
improve and add more information to DTF by distinguishing
direct from indirect flow between channels. It does not
involve the inversion of matrix A, making it computationally
more efficient and precise compared to DTF. With Āi,j being
the i, jth element of Ā(f), the PDC from channel j to i could
be calculated as [15]



PDCj→i(f) =
Āij(f)

√

∑N

k=1
Āki(f)Ā∗

kj(f)
. (9)

As in the DTF, the PDC has values between 0 and 1,
with higher values indicating a higher strength of signals
transmission from channel j to i at this frequency.

PDC emphasizes the sinks rather than the sources as it is
normalized to show a ratio between the outflow from channel
j to channel i to all the outflows from the source channel j.
Normalization factor was modified in the squared generalized
PDC to make PDC scale-invariant, has an absolute strength
of the coupling, emphasizes the sources, and has a greater
sensitivity[15] [10]:

sGPDCj→i(f) =
( 1

σi

∣

∣Āij(f)
∣

∣)2

∑N

k=1

1

σ2

k

Ākj(f)Ā∗

kj(f)
. (10)

Signals from four EEG electrodes were included in the
MVAR model. The short-time DTF, and PDC method was
used to measure the connectivity of the data due to its
ability to tract fast changes in the brain signals [12]. A data
epoch of one second was divided into short overlapping time
windows, with a window length of 256 ms and a quarter
overlap window. The DTF, dDTF, PDC, and sGPDC were
computed in each window over the 1-60Hz frequency range,
and were analyzed in five clinical EEG frequency bands:
delta, theta, alpha, beta and gamma. A surrogate data method
based on Theiler algorithm with 20 realizations was used to
select only a directed causal influence, which has less than
1% probability occurring by chance [14]. Surrogates, which
indicated the ’leak flows’ between channels, were produced
by randomizing the signal so that they maintained the
spectral properties of the original data sample but destroyed
nonlinear-phase relations. Fig.1 illustrates sGPDC measures
of the EEG data of subject 9 during the transition to freezing.

For connectivity analysis, individual trial DTF, dDTF,
PDC and sGPDC spectrograms were averaged within each
subject and then averaged across all subjects within each
group, for all directions of connectivity between pairs of
electrode regions. These measures represent the strength
and the number of causal interactions originating at each
electrode, which provides a measure of the source activity
arising from each node in a network.

E. Statistical Classification

The mean, the maximum and the minimum values of
DTF, dDTF, PDC and sGPDC for each pair of electrodes in
each EEG frequency band were taken from two conditions,
normal walking and transition to freezing, as features for
the prediction of FOG. The non parametric Wilcoxon Sum
Rank Test was used to select the most significant feature to
feed the classifier for each experiment. A p-value <0.05 and
r -value >2.5 were chosen for further process.

For classification, MLP-NN was used due to its good
results in classification of EEG signals [16]. A three layer
Back Propagation Neural Networks with 4 to 5 hidden nodes
was built. Bayesian regularization [17] was used to prevent
over-fitting and to improve generalization, with 80% of the
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Fig. 2. The mean value of sGPDC from 10 patients which indicates the
connection between four locations of EEG electrodes

dDTF

Normal Walking

Normal Walking

Transition Freezing of Gait

Freezing of GaitTransition

sGPDC

Fig. 3. The schematic interaction between four locations of EEG electrodes
during normal walking and FOG estimated using dDTF and sGPDC at theta
band frequency. The arrow line width shows the connectivity strength.

data trained by Levenberg Marquardt algorithm and 20% of
the data being used for testing. Mean squared prediction error
was used to measure the prediction of sensitivity, specificity
and accuracy. The average and standard deviation of fifty
training and testing were recorded for further analysis.

III. RESULT AND DISCUSSION

The first row of Fig. 1 indicates a lot of noise on the elec-
trode which picks signals from the occipital one (channel 1),
making the ”leak inflows” from this electrode relatively high.
When only directed causal influence which were higher than
the threshold were taken, we noticed that FOG episodes were
characterised by abnormal EEG hyperconnectivity involving
the frontal region. It received stronger outflows connection
from other regions (Fig. 2 and Fig. 3), especially in the lower
frequency bands (the theta and alpha band). This suggests
that the frontal region, which supports spatial attention,
motor intention, cognitive and decision making processes is
prominently involved in generating the hypersynchronization



TABLE I

CLASSIFICATION RESULTS OF PROPOSED FEATURES USING MLP-NN IN

DETECTING TRANSITION 5 SECOND BEFORE FREEZING

Features training testing
Sens Spec Acc Sens Spec Acc

% % % % % %
DTF 70.62 75.49 73.09 65.80 69.52 67.40

dDTF 83.18 85.42 84.31 68.55 73.17 70.86
PDC 82.73 81.51 80.27 71.11 69.07 70.02

sGPDC 79.96 81.62 80.80 72.76 70.28 71.67
Sens: Sensitivity; Spec: Specificity; Acc: Accuracy

TABLE II

CLASSIFICATION RESULTS OF TESTING DATA USING SGPDC AS A

FEATURE FOR INDIVIDUAL SUBJECT IN DETECTING TRANSITION 5

SECOND BEFORE FREEZING

Subj Sens Spec Acc Subj Sens Spec Acc
% % % % % %

1 85.93 70.24 77.50 6 85.28 74.10 75.33
2 93.24 88.41 91.00 7 96.53 95.27 94.80
3 74.37 70.64 70.00 8 83.54 87.98 86.17
4 86.80 73.71 78.57 9 60.40 63.67 59.33
5 74.50 73.73 70.67 10 81.77 75.40 77.00

Average: Sens: 82.24%, Spec: 77.32%, Acc: 78.04%

Subj: Subject; Sens: Sensitivity; Spec: Specificity; Acc: Accuracy

underlaying FOG. This finding supports the hypotheses that
attribute FOG to frontal executive dysfunction and visuo-
spatial impairment in PD patients with FOG [18].

Both dDTF and sGPDC revealed significant connectivity
of P4 >Fz and P4 >Cz in normal walking. They were also in
agreement when indicating O1 >Fz and Cz >Fz connectivity
during transition and a stronger P4 >Fz connectivity during
freezing episodes. The dDTF analysis shows that the signifi-
cant outflows from Cz to the other 3 electrode locations may
signify the overload of cognitive resources as a consequence
of a loss of automaticity which shifted neural activation from
the subcortical (basal ganglia) to more cortical areas [19].

When used as features for the early detection of FOG,
both dDTF and sGPDC show significant increases in perfor-
mance of the prediction system compared to their original
form, DTF and PDC. In addition, sGPDC appears to be
the strongest indicator of the transition to freezing with an
average sensitivity, specificity, and accuracy of 73%, 70 %,
and 72%, respectively (see Table 1). In the subject-dependent
analysis where training and testing data were taken from
the related subject only, the performance of classification
increased to 82%, 77%, and 78% of an average sensitivity,
specificity, and accuracy, respectively, with the best results
of all performance measures at around 90% obtained by 2
patients (see Table 2). However, the system achieved the
performance of all measures at around 60% in 1 patient. This
indicates the variability in brain connectivity among subjects.

IV. CONCLUSIONS

This study revealed that the information outflows from the
central area during the transition to FOG and the information
inflows to the frontal area during freezing episodes were
enhanced. This estimation, based on DTF and PDC, also

provides useful features for the prediction of FOG, especially
in the customized system, with an accuracy of 94.80%
obtained in one patient. The inclusion of more data from
more patients, the additional feature selection procedure and
the optimization of the algorithm on the brain connectivity
estimation and classification will be our future work, to
obtain a better performance of this potential approach.
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