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Effect of initial GAC weight on % TMP removed pH 7 

Effect of initial GAC weight on % TMP removed pH 10 

Adsorption kinetics modeling 

Adsorption model (fixed bed) at different GAC bed depths (TMP 

Cone. = 10 mg/L; Column flow volume= 1 ml/min) 

Effect of [H202]0 and [Fe]O on% TMP removed [TMP]O = 50 mg/L; 

pH 2.5. 

Percent H20 2 consumed at different [Fe] 0 concentration 

Fenton oxidation kinetics 

TMP removal by different treatment processes (adsorption contact 

time = 72 hours, mixing rate = 130 rpm, Ti02 dose = 0.5 g/L; UV 

light intensity= 92.32 mW/cm2; temperature= 25°C) 

Effect of flow rate/detention time on the Ti02/UV photocatalysis 

(Ti02 dose = 0.5 g/L; TRI concentration = 10 mg/L; UV light 

intensity= 92.32 mW/cm2) 

Schematic of Fenton's oxidation ofMeS in column 

Adsorption of MeS in sand column (Flow rate 20 ml/min) 

Impact of flow rate on MeS removal rate recorded at various times 

for four column lengths: (a) SP 1, (b) SP2, ( c) SP3, ( d) SP4. 

MeS Removal rates with residence times for five different effluent 
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Figure 8.5 

Figure 8.6 

Figure 8.7 

Figure 8.8 

Figure 8.9 

Figure 8.10 

Figure 8.11 

Figure 8.12 

collection times. 

Experimental and model fitted MeS breakthrough curves for column 

experiments without the Fenton's reagent (adsorption only case). 

MeS removal with residence time: Experimental values and fitted 

model values 

Schematic of combined process (Fenton's Oxidation and GAC 

Adsorption) of MeS in Fixed bed 

MeS Removal rates with residence times for five different effluent 

collection times. 

Adsorption of PCP on sand column at different SPs [PCP = 10 mg/L; 

Flow rate 160 ml/min] 

Experimental and model fitted PCP breakthrough curves for column 

experiments without the Fenton's reagent (adsorption only case). 

Removal of PCP by Fenton's oxidation in sand columns [PCP =10 
mg/L; H20 2 =60 mg/L; Fe2

+ 10 mg/L; Flow rate 160 ml/min] 

PCP removal with residence time: Experimental values and fitted 

model values 
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ABSTRACT 

Water scarcity due to persistent drought is forcing the countries around the world to 

explore alternative fresh water resources. Groundwater is one of the natural freshwater 

resources that can be used for human and agricultural use. But, contamination due to 

improper disposal of untreated human and industrial wastes affects the groundwater 

quality and renders it unsuitable for human and agricultural purpose unless the water is 

treated for contamination removal. Some of the common contaminants that contaminate 

groundwater are: landfill leachate from domestic landfills, Persistent Organic Pollutants 

(POPs) such as pesticides (Metsulfuron methyl-MeS), Pharmaceutically Active 

Substances (PhAcS-Trimethoprim (TMP) and pentachlorophenol (PCP). These 

contaminants cannot be removed effectively by conventional treatment processes such 

as coagulation, adsorption and are not easily bio-degradable. Therefore, Advanced 

Oxidation Processes (AOPs) are preferably being used to remove these contaminants of 

concern because of their effectiveness against bio-refractory contaminants, faster 

degradation kinetics and economic viability. Common AOPs include: Photocatalysis; 

Fenton's oxidation; Ozonation and their combinations. Our study used Adsorption!bio-

sorption (conventional treatment process) and Photocatalysis and Fenton's oxidation 

(AOPs) for the degradation of above mentioned contaminants. 
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Synthetic Landfill Leachate (SLL) 

The adsorption/bio-degradation of diluted Landfill Leachate representing contaminated 

ground water on granular activated carbon was investigated both in batch and column 

(fixed bed studies) modes. The total organic carbon (TOC) (64 mg/1) removed due to 

adsorption by 20, 40, 60 gil GAC was 44, 48 and 63%, whereas bio-degradation 

removed 85, 92 and 97% TOC respectively. The biodegradation of TOC was supported 

by consistent increase in microbial count on GAC particles. The Langmuir and Sips 

adsorption isotherms were found to fit well with the batch equilibrium. A mathematical 

model was developed to simulate the organics removal efficiency of the GAC bio-

filtration system. In the cmnbined process, a pre-treatment of SLL by Fenton's 

oxidation followed by bio-filtration led to an organic retnoval of 75%> (an improvement 

of 15o/o over only biodegradation) even with a small oxidant (H20 2) dose of as low as 

200-800 milli mole/L and Fe2
+ of 15 milli moles. Photocatalysis with Ti02 as catalyst 

degraded SLL by only 30%. 

Metsulfuron methyl (MeS) - an Herbicide 

The GAC adsorption removed tnore than 90°/o of MeS for an initial MeS concentration 

[MeS]o of 50 mg/L. The adsorption and kinetics of MeS on GAC were a function of the 

solution pH. The linear driving force approximation (LDF A) kinetic equation with 

Langmuir and Freundlich adsorption isotherm models were successfully applied to 

predict the batch adsorption kinetics data in various concentrations of MeS. The Bohart-

Adams and Thomas models were found to best sin1ulate the fixed bed adsorption of 

MeS. 
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The Fenton's process was very effective in the degradation of MeS. The MeS was 

degraded by more than 99o/o at a reaction time of 2 hand more at the optimum Fenton's 

reagent concentration. The results suggested that as long as a minimum threshold level 

of H20 2 (i .e., 60 mg/L) is applied, the long term (more than 1 hour) removal of MeS is 

primarily affected by the initial Fe2
+ and MeS concentrations. The Fenton's process was 

successfully modeled using an 8-reaction, 2nd order kinetic model. 

The removal of MeS by photocatalysis with Ti02 was not effective as Fenton's 

oxidation. This study also investigated the toxicity of degradation by-products due to 

Fenton's oxidation of MeS. The herbicide toxicity of the parent and degradation by-

products of MeS after Fenton's oxidation was determined by toxicological bioassay. 

The plant selected for this bioassay was the small aquatic flowering plant Lemna 

disperma, commonly known as duckweed, which is sensitive to MeS. The measured 

toxicity to Lemna in these treated samples was comparable to the concentrations of MeS 

measured by chemical n1ethod (HPLC/UV) detection. 

Pentachlorphenol (PCP) 

The removal of PCP from contaminated aqueous solution was investigated by GAC 

adsorption, photocatalysis and Fenton's oxidation processes. Adsorption by GAC was 

very successful in removing PCP from aqueous solution even with very small quantities 

of GAC. The adsorption efficiency was highest at lower pH. The adsorption of PCP on 

GAC occurred in two phases; a faster and a slower phase. This was modeled. 

The combination of UV I Ti02 photocatalysis removed PCP completely within 30 

minutes of reaction. Significant degradation of PCP was achieved even with a very low 
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dose of Ti02 of 0.05g.L- 1 (for [PCP]o range of 10-40 mg.L- 1) and 0.1 g.L-1 (for [PCP]o 

of 60-80 mg.L-1
). The first order and Sips kinetics were successfully used to predict the 

degradation rate of organic contaminants. The chemical analysis of cr and PCP and 

calculation from chemical formula showed that only 44.8o/o PCP was completely 

mineralized although all 1 OOo/o pure PCP underwent degradation to lower chlorinated 

phenol and other compounds. 

Fenton's process was very effective in PCP degradation. The PCP degradation by 

Fenton oxidation was a function of initial concentration of FR and their ratio (H20 2 and 

Fe2+), PCP (organic loading) and initial solution pH. The Sips Kinetic equation gave the 

best fit with the experimental data among different kinetic models tried. 

Trimethoprim (TMP) 

The removal of TMP by GAC adsorption was investigated at alkaline and acidic 

conditions. The percent TMP removed by 500 mg/L GAC at pH 3, 7 and 10 was 62.5, 

82.5 and 99% respectively. Sips isotherm and dual first order kinetics explained the 

equilibrium and kinetic adsorption results. The removal of TMP in a GAC column 

(fixed bed) was also studied using 3 different shallow GAC bed heights of 2.5, 5 and 10 

em. Overall, the fit of the Thomas model was the best for fixed bed adsorption of TMP 

as indicated by the higher r2 values. 

In Fenton's oxidation the percent TMP removed was a function of initial FR dose. The 

[Fe2+]0 concentration for maximum TMP removal of 60°/o at an opti1num [H202]o 

concentrations of 1.2 giL was 100 mg/L. The effect of catalyst concentration on the 

removal of TMP was more pronounced than the oxidant concentration. 
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Photocatalysis (Ti02/UV) decomposed 80% of TMP concentration within 180 minutes 

of irradiation. The optimum Ti02 dose was 0.5 g/L which degraded TMP by 82%> for an 

initial TMP concentration of 10 mg/L. In the continuous system, the feed flow rate 

through the photoreactor or detention time was an important factor in enhancing the 

TMP removal. A detention time of 50 minutes achieved 55o/o TMP removal. 

In-situ Fenton's oxidation (ISFO) of MeS and PCP 

In-situ contaminant reduction was investigated in sand columns (fixed beds). Both 

adsorption and Fenton's oxidation mechanisms were taken into account in ISFO to 

calculate theMeS removed. The In-situ Fenton's oxidation of MeS showed that for the 

transport and degradation of MeS in the column the residence time was the primary 

factor in determining the amount of MeS removal. The transport and degradation of 

MeS was modeled using the advection diffusion equation with reactions and rate limited 

sorption. The steady state adsorption of PCP in the sand filter was higher compared to 

that observed forMeS. The PCP removed by in-situ Fenton's oxidation was in the range 

of 80-90o/o. The in-situ Fenton's oxidation of PCP also showed that the residence time 

was the primary factor responsible in determining the amount of contaminant removal. 

Adsorption and Fenton's oxidation of PCP in the sand column was satisfactorily 

modeled in the same manner as MeS. 
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