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Abstract—Based on the latest achievements in computer vision
and RGB-D SLAM, a practical way for dense moving object
segmentation and thus a new framework for robust dense RGB-
D SLAM in challenging dynamic scenarios is put forward. As the
state-of-the-art method in RGB-D SLAM, dense SLAM is very
robust when there are motion blur or featureless regions, while
most of those sparse feature-based methods could not handle
them. However, it is very susceptible to dynamic elements in
the scenarios. To enhance its robustness in dynamic scenarios,
we propose to combine dense moving object segmentation with
dense SLAM. Since the object segmentation results from the
latest available algorithm in computer vision are not satisfactory,
we propose some effective measures to improve upon them so
that better results can be achieved. After dense segmentation of
dynamic objects, dense SLAM can be employed to estimate the
camera poses. Quantitative results from the available challenging
benchmark dataset have proved the effectiveness of our method.
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I. INTRODUCTION

As simultaneous localization and mapping (SLAM) ma-
tures, more and more researchers are interested in enhancing
its robustness thus making it more applicable in various chal-
lenging real scenarios [1] [2]. In sparse feature-based SLAM,
although RANSAC [3] and robust kernels [4] are being widely
used to handle outliers, good results can be obtained only when
the outliers constitute a minority of the data. When it comes to
dynamic scenarios where moving objects amount to be a larger
part of the data, their performance will degrade dramatically
[5]. Furthermore, sparse feature-based SLAM cannot handle
motion blur and featureless regions. On the other hand, dense
SLAM [6], as the latest achievement in RGB-D SLAM,
is very robust against motion blur and featureless regions.
Nevertheless, it is very susceptible to dynamic elements in the
images. Therefore, neither kind of the available approaches in
SLAM area is capable of handling scenarios composed of large
motions, and how to extend these mature solution frameworks
originally designed for doing SLAM in static environments to
handle dynamic scenarios gracefully is still an open problem.

On the other hand, in multibody SLAM (also known as
multibody structure and motion (MSaM) [7] in computer
vision) which aims to describe the structures of both the
static and moving objects as well as the objects’ motions and
camera poses, various motion segmentation methods have been

proposed to firstly separate different motion groups from each
other. Although, based on feature trajectory analysis, there
exist some algebraic methods, such as generalised principal
component analysis (GPCA) [8] and local subspace affinity
(LSA) [9], that can separate moving objects from each other
as long as the objects are all rigid and enough frames have
been taken into account, they usually require that the same
feature set is available throughout the n chosen frames (there-
fore called n-view based motion segmentation thereafter for
convenience), which amounts to be a very tough condition in
real scenarios. As the result, most of the applicable motion
segmentation methods in multibody SLAM/MSaM are two-
view based [7], which only need two frames for analysis, but it
also means that across every two consecutive video frames the
moving objects may not be separated out completely. Instead,
due to the inherent sensor noises, only when those movements
go well beyond the noise level can the motion segmentation
methods detect them as moving parts confidently.

Nevertheless, as the latest achievement in computer vision
for n-view based motion segmentation, [10] tries to get grid
of some unrealistic conditions and has proved to be capable
of producing good dense segmentation results of non-rigid
moving objects for some real data.

In this paper, we are concerned about doing SLAM with
some continuous videos taken by a freely-moving RGB-D
camera which is the only input and no other prior knowledge
available. In addition to motion blur and featureless regions,
those videos contain non-rigid objects that may be static,
partially moving, or totally moving within large ranges from
time to time. To cope with motion blur and featureless regions,
dense SLAM [6] is a better choice than those sparse feature-
based methods. However, special measures need to be taken
to enhance its robustness in dynamic scenarios. Inspired by
multibody SLAM, to do dense SLAM in such kinds of
environment, we need to densely separate the moving objects
out before doing SLAM. And [10] is quite promising for
this goal. To substantiate our ideas, firstly, through theoretical
analysis, we argue that moving object segmentation is a better
choice to enable us to do robust SLAM in dynamic scenarios as
well as multibody SLAM when compared with other motion
segmentation methods. Then, we propose a practical avenue
to achieve this goal: based on the output of [10], we propose
practical measures to improve the dense segmentation results,



then employ dense SLAM to estimate camera poses. The
main characteristics of our method are that it aims to separate
different moving objects out before doing SLAM, it can handle
both rigid and non-rigid moving objects in a unified manner,
and both the segmentation and SLAM are done densely.

The structure of this paper is as follows. Firstly we talk
about different motion segmentation methods and RGB-D
SLAM algorithms in Section II, showing the advantages of
combining n-view based moving object segmentation and
dense SLAM to handle general dynamic scenarios. After this,
we propose the framework for robust dense RGB-D SLAM in
dynamic scenarios, at the centre of which is a practical way
for dense moving object segmentation based on [10] in Section
III. Then in Section IV, to demonstrate the effectiveness of
our approach, we show the moving object segmentation results
and the improved SLAM results of our method compared with
those of the original dense SLAM as well as sparse feature-
based SLAM when possible using some challenging real data.
And Section V concludes the paper.

II. RELATED WORK

In this section, we firstly give a brief review of different
ways to do motion segmentation. Motion segmentation con-
stitutes a very important step for doing SLAM in dynamic
scenarios, but practical ways capable of handling general
dynamic scenarios are still missing.

Furthermore, we give a short comparison of the available
methods for visual odometry in RGB-D SLAM, showing their
advantages and disadvantages.

A. Motion Segmentation: Two-view Versus N-view

Motion segmentation aims to separate the available sce-
narios into different motion groups without prior knowledge
about the moving objects or the camera’s motion. Generally
speaking, most of the available methods are only suitable for
rigid or articulated objects, falling into either the two-view
based or n-view based group. The output of the former group
are the detected moving groups (corresponding to detectable
moving parts beyond a threshold) of different objects; while
that of the latter maybe correspond to the moving objects or
not, depending on the whether the moving objects are rigid,
the motion is big enough and the length n is big enough.

From 2D to 3D, numerous two-view based motion seg-
mentation methods have been proposed [11], [7], [5], [12].
They constitute a quick way for us to detect instant motion
and get visual odometry in SLAM and structure and motion
[7] [5]. However, intuitively, only when the two frames are
discrete, the scenarios only contain rigid moving objects, and
the motion between them are big enough (but not too big), two-
view base motion segmentation methods can separate different
objects into different motion groups. Otherwise, this kind of
methods can only tell us those moving parts that have gone
beyond the threshold determined by the sensor noise level.
Accordingly, because of the inevitable overlapping between
different motion groups, the visual odometry and loop-closures
constraints obtained by two-view based motion segmentation

methods are usually biased or even wrong no matter which
threshold we choose, and a theoretically better way capable of
avoiding this problem is the n-view based motion segmentation
methods.

As a matter of fact, there are also lots of n-view based 3D
motion segmentation methods available in computer vision,
and interested readers can refer to [13] for a detailed review.
Nevertheless, some strong assumptions have prevented most
of them from finding practical applications in SLAM. Firstly,
most of them usually assume that every point has the same
trajectory length, which can only be met in controlled exper-
iments. Secondly, most of them are sensitive to non-Gaussian
noises and cannot tolerate errors brought forward from feature
detection, matching and tracking. Last but not least, most of
them can only handle rigid or articulated body while practical
SLAM frameworks need to handle rigid as well as various
non-rigid moving objects including human beings. Therefore,
in SLAM, we need a robust motion segmentation method that
can handle noisy continuous data with outliers and can handle
non-rigid and rigid bodies in a unified manner.

B. From Motion Segmentation to Moving Object Segmentation

As we can see, depending on the composition of the
related scenarios, chosen method and video length, motion
segmentation results can be divergent. However, for most
applications, separating moving objects apart is more desirable.
For example, in the SLAM area, firstly it will enable us to get
robust visual odometry results in dynamic scenarios. Secondly,
the continuous presence of moving objects can also disable the
traditional loop-closure estimation methods [14], and moving
object segmentation is the only way out of the dilemma.

Nevertheless, moving object segmentation is even harder
than motion segmentation when it comes to handling non-
rigid moving objects. Until quite recently, [10] proposes a
robust method for moving object segmentation based on long
term point trajectory analysis without prior model, making
it applicable for some real scenarios. Firstly, it can handle
point trajectories of arbitrary length. Secondly, by employing
spectral clustering and a model selection process, it can handle
noisy data with outliers. Furthermore, for some scenarios that
contain more than one non-rigid moving object, it can also
get good segmentation results. It is based on this method
that we propose a practical way to do dense moving object
segmentation for robust dense SLAM in dynamic scenarios.

C. RGB-D SLAM: Sparse Versus Dense?

With the advent of affordable Microsoft Kinect, we are
endowed with dense depth information along with RGB data.
And with the help of pose-graph SLAM, localization and
mapping can be decoupled into two sub-steps. In RGB-D
SLAM, maps are naturally dense. However, when calculating
camera poses, we can choose to employ sparse feature-based
methods or dense methods to get visual odometry and loop-
closure relative pose constraints [15]. Initially, sparse feature-
based methods are very popular because dense methods are
usually very slow. Now with the emergence of dense SLAM



[6], the situation is changing. Dense SLAM is making use of
every pixel, both its color and depth information, and it can
do so in real time. To cope with motion blur and featureless
regions, dense SLAM is a better choice.

Nevertheless, as we will see, dense SLAM is vulnerable to
the negative effects of dynamic elements in the images. As the
result, if we still want to make use of dense SLAM to handle
dynamic scenarios, we firstly need to densely separate the
dynamic objects out. In this paper, we propose to combine
a practical dense moving object segmentation method to fulfil
this purpose, and the improved dense SLAM results after this
step have attested the effectiveness of our method.

III. MOVING OBJECT SEGMENTATION BASED ROBUST
DENSE SLAM

A robust moving object segmentation method is proposed to
enhance the robustness of dense SLAM in dynamic scenarios,
and the overall process of our SLAM framework is illustrated
in Fig. 1.

A. Proposed Robust Moving Object Segmentation Method
Moving object segmentation, as the pre-requisite of SLAM,

need to be robust and adaptive enough to handle various
dynamic scenarios. However, the state-of-the-art method may
produce under or over-segmentation results, depending on the
scenarios. Therefore, we propose further measures solely based
on RGB information to overcome this kind of problems.

1) The Original Moving Object Detection and Segmenta-
tion Method and Its Results: As shown in Fig. 2, the original
moving object segmentation method [10] can be divided into
three steps: calculating optical flow, sparse point trajectory
clustering and densification. Through this process, we can get
good segmentation results for some videos including rigid and
non-rigid moving objects. However, for many other videos,
over-segmentation or under-segmentation can happen, and ex-
amples are shown in the left columns of Fig. 3 and 4, and
tuning the related parameters can only help convert these two
kinds of results into each other, instead of solving the problem.

2) Robust Measures to Improve Results: Since under-
segmentation is harder to tackle, we firstly turn it into the
over-segmentation scenario by tuning the related parameters
of the original method.

Secondly, we propose to look for those separated regions
that always share the same motion model during the process
and merge them. According to multi-view geometry [16], for
those points belonging to a rigid body or the static environ-
ment, if we can get their positions in every two consecutive
frames based on [17], we can find a fundamental matrix to
describe their motion. On the other hand, for non-rigid human
body, we cannot find a fundamental matrix to describe its
motion as a whole; instead, each part of it may need one to
approximate its motion, and the corresponding fundamental
matrices are changing. For those regions whose predominant
parts always share the same fundamental matrices across the
process, we will merge them into one group. A typical result
is illustrated in Fig. 3. As we can see, after this step, over-
segmented static groups can be found and combined together.

Fig. 2: Flowchart of [10] with images showing the results at
different stages.

Fig. 3: The left column represents the result before the merging
using fundamental matrix, while the right one represents that
after merging. The lower images represent the segmented
group masks in different color intensities, and the upper images
are the combination of the original image and segmentation
results. Best viewed in color.

Thirdly, based on the assumption that the largest group
corresponds to the static environment, we look for the biggest
group in each frame and remove it. And for the available
benchmark dataset [18], the aforementioned assumption is
valid.

Fourthly, we check the changes of the connection rela-
tionship between the remaining neighboring regions across
all of the frames of the video. For those regions that appear
simultaneously for some period of time and remain connected
(the distances between the closest points from different regions
are always within 1 pixel) during this process, it is highly
possible that they belong to the same object, so we propose
to agglomerate them at this step. This step can re-combine the
over-segmented parts of human body together as shown in Fig.
4.

Through these steps, we can reasonably combine some
segregated regions to produce more elegant segmentation re-
sults for the static environment and moving objects. Fig. 5
has shown the final segmentation results after applying our
merging procedures.

B. Dense SLAM
After densely separating the moving objects out of the

images, we can employ dense SLAM to get camera poses only



Fig. 1: Flowchart of the whole process for robust SLAM

Fig. 4: The left column represents the result before merging the
connected neighboring regions, while the right one represents
that after merging. The lower images represent the segmented
group masks in different color intensities, and the upper images
are the combination of the original image and segmentation
results. Best viewed in color.

using the remaining static parts.
The overall process of dense SLAM is as follows: after

getting visual odometry by using both dense color and depth
information, selecting keyframes and detecting loop-closures,
dense SLAM makes use of g2o [19] for pose optimization,
with pose trajectories as the output. Interested reader can refer
to [6] for more details.

There are several practical reasons why we need to densely
remove the moving objects before using dense SLAM. Firstly,
to improve robustness, dense SLAM proposes a fast dense
image registration method based on joint optimization of the
color and depth errors of all the available pixels. Although t-
distribution has also been employed to deal with large errors, as
we will see, those pixels corresponding to the moving objects
in the scenarios can impose unavoidable negative effects on
the optimization results. Secondly, dense SLAM proposes an
entropy-based method for keyframe selection and loop-closure
validation to reduce drift. However, without firstly densely
removing the moving objects, the entropy value will be spoiled.
As the result, unexpected keyframes may be selected and false
loop closures may be found. So, to some degree, dense SLAM
amounts to be a method specially designed for static scenarios,
and very susceptible to moving objects.

To further support our analysis, we have shown the dense

SLAM results both before and after dense moving object
segmentation in the next section as a comparison.

IV. EXPERIMENTAL RESULTS USING THE BENCHMARK
DATASET

To show the effectiveness of our method, we have chosen
to compare the SLAM results on some challenging benchmark
sequences (the walking series) provided by [18].

A. RGB-D SLAM Benchmark and Methods Involved

Soon after the establishment of RGB-D SLAM as an inde-
pendent research area, [18] provides a large benchmark dataset
for it. It is composed of 39 sequences recorded using Kinect
in different indoor environments. RGB and depth images are
provided along with ground-truth trajectories of the camera
obtained from a high-accuracy motion capture system.

Although many good results have been reported for most
of this dataset [6], the walking sequences are still among the
few most challenging ones that have not been fully solved
yet. According to [18], the walking sequences are specially
designed for evaluating the robustness of visual SLAM and
odometry algorithms when there are non-rigid moving objects
dynamically occupying large parts of the visible scene. The
major difficulties of these sequences lie in that motion blur,
featureless zones and large human movements are pervasive
in the images.

Recently, we propose a sparse feature-based two-view mo-
tion segmentation method [5]. By combining with pose-graph
SLAM, we reported a meaningful result for one challenging
walking sequence. In addition, we have also chosen dense
SLAM as another reference. Therefore, including our own
method, there are altogether three methods involved in this
paper for comparison. Nonetheless, only for one sequence the
results of the three methods are presented; while for the rest
sequences we mainly compare the results gotten by our method
with those obtained by directly applying dense SLAM to the
original videos.

B. Comparison of the Experimental Results Using Real Data

1) Experimental sequences: We firstly applied our method
and dense SLAM to four challenging walking sequences in the
TUM dataset, whose details are illustrated as follows:

a) walking static: In this sequence, the camera is being
kept in place manually, so its movement is small, whereas two
people are moving around the table with large motions.



(a) The original image (b) The found static part

(c) Found people1 (d) Found people2

Fig. 5: The original image and segmentation results (from the
walking static sequence).

b) walking halfsphere: In this sequence, the camera is
moving on a small half sphere whose diameter is about one
meter, while two persons are freely walking around in the
office scene.

c) walking xyz: In this sequence, the camera’s move-
ment is small while the two people are moving around the
table arbitrarily.

d) walking rpy: In this sequence, the camera mainly
rotates, and two people are walking around the table. Since
large parts of the visible scenes are dynamic, it constitutes a
very difficult task.

2) Comparison of the results: Following the rules proposed
by [1] [6], we have quoted both the root mean square error
(RMSE) of relative pose error (RPE) in meters per second and
the RMSE of absolute trajectory error (ATE) for comparison.

Among the four sequences, [5] only reports a meaningful
result for the first one: the RMSE of RPE is 0.084m/s,
and the RMSE of ATE is 0.161m. And for parts of the
other three sequences, the overall comparison of the results
obtained by our method (represented as MS DSLAM) versus
those of dense SLAM is summarized in Table I. In addition,
two representative detailed comparison of RPE of the four
sequences is shown in Fig. 6, and similar results can be
observed in the ATE case.

As we can see, the applicability of the traditional sparse
feature-based SLAM to challenging dynamic scenarios is lim-
ited [5], nor could dense SLAM [6], which is known as the
state-of-the-art method in RGB-D SLAM, produce good results
as in static scenarios, while our method has demonstrated its
effectiveness and robustness.

3) Discussion: As we know, sparse feature-based methods
as a classical choice in SLAM can usually produce satisfactory
results. However, as noted in [5], when it comes to blurred
images and featureless regions in dynamic scenarios, both the

TABLE I: Comparison of the RPE (m/s) & ATE (m) Results
of Dense SLAM Versus Those of Our Method (MS DSLAM)
Using the Four Sequences

Seq. RPE ATE
DenseSLAM MS DSLAM DenseSLAM MS DSLAM

1 0.309 0.022 0.470 0.024
2 0.175 0.080 0.116 0.055
3 0.321 0.055 0.202 0.040
4 0.477 0.088 0.515 0.076

quantity and quality of detectable features decreases dra-
matically, thus jeopardizing the applicability of this kind of
methods in this case. Similarly, the results also prove that dense
SLAM is very sensitive to moving objects, as our previous
analysis has indicated.

On the contrary, our method has managed to acquire good
results comparable to those produced by dense SLAM in
static scenarios. It has verified not only our related theoretical
analysis, but also the usability and effectiveness of our practical
measures in handling some challenging dynamic scenarios.

V. CONCLUSIONS

Compared to motion segmentation, moving object segmen-
tation amounts to be a less understood, yet more difficult
and more relevant research topic to doing SLAM in dynamic
scenarios, semantic understanding of changing environments
among many other practical applications.

In this paper, we propose a practical moving object seg-
mentation method that can densely segment rigid and non-
rigid moving objects in a unified manner by building upon the
latest achievements in computer vision. Combined with dense
SLAM, it constitutes a new way for robust dense SLAM in
dynamic scenarios as well as multibody SLAM. Results from
some challenging real data have shown that this method is
quite promising.

On the other hand, in the near future, we aim to further
improve the robustness of our method and the accuracy of the
dense moving object segmentation results, and build a com-
plete solution for robust SLAM in general dynamic scenarios
and multibody SLAM problem.
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