Development and evaluation of a new multi-metal binding biosorbent | 2 | A. Abdolali ^a , H. H. Ngo ^{a,*} , W. S. Guo ^a , D. J. Lee ^b , K. L. Tung ^b , X. C. Wang ^c | |--------------|---| | 3
4
5 | ^a Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering,
University of Technology Sydney, Broadway, NSW 2007, Australia. | | 6
7 | ^b Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan | | 8
9
10 | ^c Key Lab of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China | | 11 | *Corresponding author at: School of Civil and Environmental Engineering, University of Technology, | | 12 | Sydney (UTS), PO Box 123, Broadway, NSW 2007, Australia. Tel.: +61-2-9514-2745/1693; Fax: +61-2- | | 13 | 9514-2633. E-mail address: h.ngo@uts.edu.au | | 14 | | | 15 | Abstract | | 16 | A novel multi-metal binding biosorbent (MMBB) was developed by combining a group | | 17 | of three from the selective natural lignocellulosic agro-industrial wastes for effectively | | 18 | eliminating lead, cadmium, copper and zinc from aqueous solutions. Four MMBBs with | | 19 | different combinations (MMBB1: tea waste, corncob, sugarcane bagasse; MMBB2: tea | | 20 | waste, corncob and sawdust; MMBB3: tea waste, corncob and apple peel; MMBB4: tea | | 21 | waste, corncob and grape stalk) were evaluated. FTIR analysis for characterizing the | | 22 | MMBB2 explored that the MMBB2 contains more functional groups available for | | 23 | multi-metals binding. Comparing among the MMBBs as well as the single group | | 24 | biosorbents, MMBB2 was the best biosorbent with the maximum biosorption capacities | | 25 | of 41.48, 39.48, 94.00 and 27.23 mg/g for $Cd(II)$, $Cu(II)$, $Pb(II)$ and $Zn(II)$, respectively. | | 26 | After 5 times of desorption with CaCl ₂ , CH ₃ COOH and NaCl as eluent, the MMBB2 | | 27 | still remained excellent biosorptive capacity, so as it could be well regenerated for reuse | | 28 | and possible recovery of metals. | 29 **Keywords**: Agro industrial waste; Biosorption; Heavy metal; Isotherm; Kinetic study ### 1 Introduction | 31 | Typical heavy metals such as lead, cadmium, copper and zinc in water and wastewater | |----|--| | 32 | cause severe disasters in environment and subsequently serious types of acute and | | 33 | chronic diseases in human. The common techniques used for metal removal from water | | 34 | and wastewater includes chemical precipitation, membrane, filtration, ion exchange, | | 35 | carbon adsorption and co-precipitation/adsorption which involve high capital and | | 86 | operational costs and may have secondary wastes after processes (Bilal et al., 2013; | | 37 | Bulut and Tez, 2007). | | | | | 88 | In recent years, biosorption has been considered as cost effective alternatives for | | 39 | removing metals (Bulut and Tez, 2007; Gupta et al., 2009; Gadd, 2009a; Gadd, 2009b, | | 10 | Volesky, 2007). Generally, biosorption process can reduce capital costs by 20%, | | 11 | operational costs by 36% and total treatment costs by 28% compared with the | | 12 | conventional systems (Loukidou et al., 2004). Thus, the interest in utilization of cheap | | 13 | alternatives has been significantly increased. Many attempts have therefore been made | | 14 | by many researchers on feasibility of biosorption potential of lignocellulosic materials | | 15 | as economic and eco-friendly options, both natural substances and agro-industrial | | 16 | wastes and by-products. These adsorbents may be classified either on basis of their | | 17 | availability (natural materials and industrial/agro-industrial/domestic wastes or by- | | 18 | products and synthesized ones) or depending on their nature (organic and inorganic | | 19 | materials) (Gupta et al., 2009). Among inexpensive biosorbents, most of the studies | | 50 | have been engrossed in lignocellulosic wastes (as naturally intact or chemically | | 51 | modified) such as sawdust, weed and wood waste (Asadi et al., 2008; Bulut and Tez, | | 52 | 2007; Pereira et al., 2010), sugarcane bagasse (Homagai et al., 2010; Martín-Lara et al., | |----|---| | 53 | 2010; Pereira et al., 2010), fruit rind, pulp and seeds (Feng et al., 2011; Liu et al., 2012; | | 54 | Martín-Lara et al., 2010; Torab-Mostaedi et al., 2013), wheat or barley straw (Pehlivan | | 55 | et al., 2012), rice husk, hull and straw (Asadi et al., 2008; Kazemipour et al., 2008), | | 56 | olive pomace and stone (Blázquez et al., 2009; Martín-Lara et al., 2012), etc . The | | 57 | heavy metal bio-recovery can be affected by physico-chemical parameters of the | | 58 | solution such as pH, ion strength, initial metal concentration, temperature and by other | | 59 | characteristics of the adsorbent like concentration, presence of organic and inorganic | | 60 | functional groups and chemical modification (Gupta et al., 2009; Montazer-Rahmati et | | 61 | al., 2011; Pehlivan et al., 2012; Tan and Xiao, 2009; Tan et al., 2010; Velazquez- | | 62 | Jimenez et al., 2013). | | 63 | The present work is a preliminary study on developing a new multi-metal binding | | 64 | biosorbent (MMBB) by combining a group of high biosorptive capability natural | | 65 | lignocellulosic agro-industrial wastes (e.g. tea waste, corncob, sugarcane bagasse, grape | | 66 | stalk, sawdust, apple peel) to remove cadmium, copper, lead and zinc ions from aqueous | | 67 | solution. These wastes were selected because of the good results reported in other | | 68 | literatures for heavy metal removal. Besides, tea waste, sugarcane, sawdust, apple peel | | 69 | and grape stalk are properly available in Australia and also all over the world. | | 70 | The effect of pH, contact time, biosorbent dosage and also elution efficiency (sorption | | 71 | and adsorptions cycles) on adsorption capacity were then studied. Finally, the | | 72 | appropriate isotherm and kinetic models were established. | | | | #### **2** Materials and methods #### **2.1** Preparation of adsorbents and heavy-metal-containing effluent | 75 | The stock solution containing Cd, Cu, Pb and Zn were prepared by dissolving cadmium, | |---|--| | 76 | copper, lead and zinc nitrate salt, $Cd(NO_3)_2 \cdot 4H_2O$, $Cu_3(NO)_2 \cdot 3H_2O$, $Pb(NO_3)_2$ and | | 77 | $Zn(NO_3)_2\cdot 6H_2O$ in Milli-Q water. All the reagents used for analysis were of analytical | | 78 | reagent grade from Scharlau (Spain) and Chem-Supply Pty Ltd (Australia). For remove | | 79 | any inaccuracies in metal concentration, all stock solutions were analyzed by AAS | | 80 | (Contra® AA 300, Analytikjena, Germany) to correct their concentration to use in | | 81 | experiments with required amounts. | | 82 | All biosorbent were bought or collected from local market in Sydney area and after | | 83 | using the useful parts were washed by tap water and distilled water to remove any dirt, | | 84 | color or any impurity and then dried in oven (Labec Laboratory Equipment Pty Ltd., | | 85 | Australia) at 105°C over night. Having ground and sieved (RETSCH AS-200, Germany) | | 0.6 | 4 | | 86 | to a particle size of 75-150μm, the natural biosorbents were kept in desiccator prior to | | 86 | use. | | | | | 87 | use. | | 87
88 | use. 2.2 Biosorption studies in batch system | | 87
88
89 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution with concentration of | | 87
88
89
90 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution with concentration of 3000 mg/L for each metal by dilution in Milli-Q water for predetermined metal | | 87
88
89
90
91 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution with concentration of 3000 mg/L for each metal by dilution in Milli-Q water for predetermined metal concentration. The pH of suspensions was adjusted by appropriate amount of HCl and | | 878889909192 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution with concentration of 3000 mg/L for each metal by dilution in Milli-Q water for predetermined metal concentration. The pH of suspensions was adjusted by appropriate amount of HCl and NaOH with concentrations of 0.1 and 1 M. | | 87
88
89
90
91
92
93 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution with concentration of 3000 mg/L for each metal by dilution in Milli-Q water for predetermined metal concentration. The pH of suspensions was adjusted by appropriate amount of HCl and NaOH with concentrations of 0.1 and 1 M. A known weight of adsorbent (5 g/L) was added to a series of 100 mL Erlenmeyer | | 87
88
89
90
91
92
93
94 | use. 2.2 Biosorption studies in batch system The tests were performed with synthetic multi-metal solution
with concentration of 3000 mg/L for each metal by dilution in Milli-Q water for predetermined metal concentration. The pH of suspensions was adjusted by appropriate amount of HCl and NaOH with concentrations of 0.1 and 1 M. A known weight of adsorbent (5 g/L) was added to a series of 100 mL Erlenmeyer flasks containing 40 mL of metal solution on a shaker (Ratek, Australia) at room | #### 2.3 Desorption studies in batch system - Desorption of metal-loaded biosorbent was studied with four types of eluting agents including 0.1 M NaCl, 0.1 M CaCl₂, 0.1 M CH₃COOH and milli-Q water. This salts and organic acid were selected for eluting the use biosorbent due to prevent any damages to biosorbent structure. Following biosorption cycle with contact time of 3 hr, metal-loaded biosorbent was filtered and then added in 100 ml of above solutions and shaken at 150 rpm for 3 h. After desorption, adsorbent was washed repeatedly with milli-Q water to remove any residual eluting solution and used for the next biosorption cycle. - 2.4 Calculations - The amount of heavy metal ion adsorbed, q(mg/g) was calculated from the following - 108 Equation1: 106 115 98 $$_{109} \qquad q = \frac{v(C_i - C_f)}{m}$$ - 110 (1) - where, C_f and C_i (mg/L) are the initial and equilibrium metal concentrations in the - solution, respectively. v (L) the solution volume and m (g) is the mass of biosorbent. All - the experiments were carried out in duplicates and the deviation within 5%. #### 114 **3** Results and discussion #### 3.1 Selection of adsorbents - 6 individual biosorbents, namely, sawdust (SD), sugarcane (SC), corncob (CC) and tea - waste (TW), apple peel (AP) and also grape stalk (GS), individually (biosorbent dose: 5 | 118 | gr/L, 50 ppm initial metal Conc. at room temperature and pH of 5.0-5.5, rotary speed of | |-----|---| | 119 | 150 rpm for 24 hr) were evaluated and compared in terms of biosorption capacity | | 120 | (Figure 1). As can be seen in Figure 1, TW showed the best in removing all tested heavy | | 121 | metal ions (cadmium, copper, lead and zinc) while SC, SD and CC had quite less | | 122 | biosorptive capacity in comparison with GS and TW. AP for Pb, Zn, Cd and Cu | | 123 | removals was very dissatisfactory. Among four MMBBs with different combinations, | | 124 | MMBB2 had highest adsorption capacity of Pb, Cu and Zn (8.08 and 5.49 mg/g, 1.66 | | 125 | mg/g, respectively). However, MMBB2 was not as good as MMBB1 and MMBB3 in | | 126 | terms of Cd removal. Overall, MMBB2 (TW-CC-SD combination) with ratio of 1:1:1 | | 127 | was selected to apply for further experiments. The pH, moisture content (%), loss of | | 128 | mass and bulk density g/cm ³) of MMBB2 were 5.16, 18.63, 0.92 and 0.23, respectively. | | 129 | 3.2 Characterization of adsorbents by FTIR | | 130 | To determine the functional groups involved in biosorption of $Cd(II)$, $Cu(II)$, $Pb(II)$ and | | 131 | Zn(II) onto MMBB2, a comparison between the FTIR spectra before and after meal | | 132 | loading was done using SHIMADZU FTIR 8400S (Kyoto, Japan). The FTIR spectrum | | 133 | of MMBB2 exhibited a large number of absorption peaks, indicating the complexity in | | 134 | nature of this adsorbent. It also confirmed changes in functional groups and surface | | 135 | properties of MMBB2. The shift of some functional groups bands and their intensity | | 136 | changed because of heavy metal biosorption (Table 2). These shifts may be attributed to | | 137 | carboxylic (C=O) and hydroxylic (O-H) groups on the MMBB2's surface. They were | | 138 | dominantly active groups in Cd(II), Cu(II), Pb(II) and Zn(II) biosorption process, | | 139 | suggesting that acidic groups, carboxyl and hydroxyl, are main contributors in the | | 140 | complexation of metal cations and ion exchange processes. Amine and amide groups | | 4.9 cm ⁻¹ shift after biosorption process. The strong peaks detected in spectra were lied between 1320-1000 cm ⁻¹ and 1820-1680 cm ⁻¹ which are related to C–O stretch (COOH) and C=O stretch in amides, ketones, aldehydes, carboxylic acids and esters, respectively (Feng et al., 2011; Hossain et al., 2012). | |--| | and C=O stretch in amides, ketones, aldehydes, carboxylic acids and esters, respectively | | | | (Feng et al., 2011; Hossain et al., 2012). | | | | Moreover, a big change occurred on the biosorbent after metal loading which is | | reflected in the strong and broad band present between 3500-3200 cm ⁻¹ . This may be | | assigned to complexation of metal ions with the ionized O-H groups of polymeric | | compounds such as alcohols, phenols and carboxylic acids of cellulose and lignin of | | lignocellulosic materials (Feng et al., 2011; Hossain et al., 2012). | | The changes of peaks in the range of 3000-2850 cm ⁻¹ and 1470-1450 cm ⁻¹ indicated the | | involvement of H-C-H asymmetric and symmetric stretch and C-H stretch of alkanes, | | respectively which can be found in the molecular structure of MMBB2. | | 3.3 Effect of different physico-chemical parameters | | 3.3.1 Influence of pH | | The adsorption of cadmium, copper, lead and zinc was studied as a function of pH | | altering in the range of 2.0-5.5±0.1. At initial pH values of 6.0, lead and copper | | hydroxide precipitation occurred. Thus, the experiments were not conducted beyond pH | | 5.5 to avoid any precipitation. Figure 2 shows that the adsorption capacity of metals | | increased with increasing in pH values in all cases. However, the changes of Cu and Pb | | adsorption was much more obvious than that of Zn and Cd (e.g. Cu; 1.07 to 5.70 mg/g, | | Pb: 2.50 to 8.53 mg/g, Zn: 0.29 to 1.83 and Cd: 1.30 to 1.72 mg/g). | | | | 163 | In addition some metal ions have better affinity towards biosorbents than other ions and | |--|---| | 164 | this fact ascertains the selectivity potential of functional group (Šćiban et al., 2007). | | 165 | This phenomenon can be confirmed later by calculating the Langmuir parameter of b_{L} | | 166 | representing this attraction. | | 167 | 3.3.2 Influence of contact time | | 168 | A series of contact time experiments for cadmium, copper, lead and zinc adsorption on | | 169 | MMBB2 from 0-24 hr were carried out at 50 mg/L initial concentration and room | | 170 | temperature. It is evident from the Figure 3 that the rate of metal uptake was very fast | | 171 | within first 30 min as a result of exuberant number of available active sites on adsorbent | | 172 | surface and the process reached the equilibrium state withinapproximately180 min of | | 173 | contact time for all cases. | | | | | 174 | 3.3.3 Influence of adsorbent dose | | 174
175 | 3.3.3 Influence of adsorbent dose As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on | | | | | 175 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on | | 175
176 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it | | 175
176
177 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it plateaued, the optimum amount of adsorbent for future study would be 5 g/L whose | | 175
176
177
178 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it plateaued, the optimum amount of adsorbent for future study would be 5 g/L whose highest removal efficiencies were about 68 %, 75 %, 85 % and 55 % for Cd, Cu, Pb and | | 175
176
177
178
179 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it plateaued, the optimum amount of adsorbent for future study would be 5 g/L whose highest removal efficiencies were about 68 %, 75 %, 85 % and 55 % for Cd, Cu, Pb and Zn, respectively. | | 175
176
177
178
179 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it plateaued, the optimum amount of adsorbent for future study would be 5 g/L whose highest removal efficiencies were about 68 %, 75 %, 85 % and 55 % for Cd, Cu, Pb and Zn, respectively. 3.3.4 Sorption and desorption experiments | | 175
176
177
178
179
180 | As shown in Figure 4, there is a hike in removal efficiency of all heavy metal ions on MMBB2 when adsorbent dose increased and after 5 g/L of adsorbent dose. As it plateaued, the optimum amount of adsorbent for future study would be 5 g/L whose highest removal efficiencies were about 68 %, 75 %, 85 % and 55 % for Cd, Cu, Pb and Zn, respectively. 3.3.4 Sorption and desorption experiments The ability of biosorbent regeneration and batch sorption and desorption studies were | | 185 | time was 3 hours for sorption and desorption in each cycle.
The biosorption capacity of | |-----|---| | 186 | MMBB2 for Cd(II), Cu(II), Pb(II) and Zn(II) removal in the five cycles are indicated in | | 187 | Figure 5. To evaluate level of significance in the sorption and desorption cycles on the | | 188 | biosorption capacity, SPSS software was used for statistical testing of the model in the | | 189 | form of analysis of variance (ANOVA) and the one-sample t-test were done. For a 5% | | 190 | level of significance, the ANOVA data are given in Table 3. From this table for all | | 191 | metals, P value is less than 0.05 and also the values of F are higher than the critical F. | | 192 | Therefore, the type of eluent affects the sorption capacity and there is significant | | 193 | difference between the four desorbing agents in Cd(II), Cu(II), Pb(II) and Zn(II) | | 194 | removal. In this case, a P value less than 0.05 would result in the rejection of the null | | 195 | hypothesis at the 5% (significance) level. | | 196 | For a 5% level of significance T values for NaCl, CH ₃ COOH and CaCl ₂ , for all Zn(II) | | 197 | and Cd(II), the P value is higher than 0.05 and also the values of T are lower than the | | 198 | critical T (2.13). In other word, it is obvious from the t-tests that for these eluents, the | | 199 | number of elution times does not affect the biosorption process. However, biosorption | | 200 | results show that the effect of CaCl ₂ and NaCl on the biosorbent is significant and | | 201 | causes higher increase in the sorption capacity in comparison with CH ₃ COOH and | | 202 | Milli-Q water. Hence, these two chemicals are recommended as elution agents and | | 203 | desorption of cadmium, copper, lead and zinc from the biosorbent. Of course the much | | 204 | lower cost of NaCl should also be taken into consideration. | | 205 | 3.4 SEM Analysis | | 206 | Scanning Electron Microscopy (SEM) of the free and loaded biomass of TMM and | | 207 | MMBB2 was performed on ZEISS EVOILS15 (Germany) at an accelerating voltage of | 10 kV and with the working distance of 10-100μm for MMBB2 to elucidate the porous properties of the biosorbents. SEM images exhibited the morphological changes on the biosorbent surface before and after metal biosorption as well as 5 cycle of sorption and desorption. The surface of natural MMBB2 was found to be more porous and rougher than that of metal-loaded biosorbent. It was also observed that after 5 cycles of sorption and desorption, the surface of MMBB2 remained as rough as that of biosorbent after only one sorption process. #### 3.5 Adsorption kinetics - In batch systems, the adsorption kinetics was described by a number of models with - varying degrees of complexity such as pseudo-first-order, pseudo-second-order and - 218 intra-particle diffusion kinetic model. The pseudo-first-order kinetic model known as - 219 the Lagergren equation and takes the form as Febrianto et al., 2009: 220 $$q_1 t = q_1 e \left[1 - \exp(-K_1 t) \right]$$ (2) - where, q_t and q_e are the metal adsorbed at time t and equilibrium, respectively, and K₁ - 222 (min⁻¹) is the first-order reaction rate equilibrium constant. - 223 The pseudo-second-order kinetic model considered in this study is as follows:: $$\frac{t}{224} = \frac{1}{K_2 q_s^2} + \frac{t}{q_s}$$ - 225 (3) - where, K_2 (g mg⁻¹ min⁻¹) is the second-order reaction rate equilibrium constant. - The intra-particle diffusion model follows: $$228 q_{z} - K_{p} t^{\frac{1}{2}} + C (4)$$ - 229 The experimental data and obtained parameters of these models were measured by - 230 MATLAB® and shown in Table 4. The results indicate that pseudo-second-order kinetic - model can describe experimental data better than the two other kinetic models (R²= 0.99), suggesting that chemical reaction would be presumably the rate limiting step of Cd, Cu, Pb and Zn biosorption on MMBB2. The calculated value of q_e for pseudo-second-order kinetic model (1.92, 5.88, 8.06 and 1.60 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively) are also close to the experimental values (1.89, 5.57, 8.04 and - 3.6 Adsorption isotherm 1.60 mg/g). - To optimize the design of biosorption process, it is necessary to acquire the appropriate correlation for equilibrium curve. In this study, the metal biosorption capacity as a function of metal concentration (1-500 mg/g) at equilibrium state has been described by very common two-parameter models of Langmuir, Freundlich, Dubinin–Radushkevich and Temkin and three-parameter models of Sips, Redlich-Peterson and Radke-Prausnitz adsorption isotherms. All the model parameters were evaluated by non-linear regression using MATLAB® software. Furthermore, residual root mean square error (RMSE), error sum of square (SSE) and coefficient of determination (R²) were used to measure the goodness of fitting along with model parameters. - 247 Langmuir isotherm model is as follows: $$q_s = \frac{q_{m,L} b_L c_s}{1 + b_L C_s}$$ (5) where, q_{m,L} is the maximum metal biosorption and b_L(L/mg) the Langmuir constant. These constants related to monolayer adsorption capacity and energy of adsorption respectively [27]. Maximum monolayer adsorption capacities (q_{m,L}) were 41.48, 39.48, 94.00 and 27.23 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II) sorption, respectively. The b - values of Cd(II), Cu(II), Pb(II) and Zn(II) biosorption which were estimated from this - isotherm are 0.001, 0.004, 0.007 and 0.002 L/mg, respectively and shows the steepest - initial isotherm slope (the highest b_L) is for Pb(II) as can be expected. - 257 Freundlich isotherm model is an empirical equation presented as follows (Montazer- - 258 Rahmati et al., 2011): $$q_{\mathfrak{G}} = K_{\mathfrak{F}} C_{\mathfrak{G}}^{\frac{1}{m}} \tag{6}$$ - where K_F (L/g) is Freundlich constant and n the Freundlich exponent. It is assumed that - the stronger binding sites on a heterogeneous surface are occupied first and binding - strength decreases with increasing degree of site occupation. - From Table 5 (a), it is apparent that equilibrium data of Cd(II), Cu(II) and Pb(II) - biosorption fitted well by the Freundlich isotherm ($R^2 = 0.99$) and for Zn(II) the - 266 Langmuir isotherm was quite better fitted than Freundlich isotherm according to the - values of R² of Langmuir isotherm model (0.97) being higher than that of Freundlich - 268 isotherm (0.95) as well as values of RMSE and SSE which are quite less than those of - the other three models. Besides, it was understood that the Langmuir isotherm - 270 corresponded to a dominant ion exchange mechanism while the Freundlich isotherm - showed adsorption–complexation reactions taking place in the adsorption process - 272 (Asadi et al., 2008). - 273 The Dubinin–Radushkevich (D-R) equation is generally expressed as follows: $$q_s = q_{D-R} \exp\left(-B_{D-R} \varepsilon_{D-R}^2\right) \tag{7}$$ $$\varepsilon_{D-R} = RT \ln \left[\left(1 + \frac{1}{C_{\sigma}} \right] \right]$$ 275 (8) - Where ε_{D-R} the Polanyi potential, is a constant related to the biosorption energy, R is the - gas constant (8.314 kJ/mol) and T is the absolute temperature (K). q_{D-R} and B_{D-R} are the - D-R isotherm constants in mg/g and mol²/kJ², respectively. Moreover, the mean free - 280 energy of adsorption ($E = \frac{1}{\sqrt{2B_{D-R}}}$) calculated from Dubinin–Radushkevich isotherm - 281 which is applied to evaluate sorption properties and indicates if main mechanism is - chemical reaction dominated by ion exchange or physical adsorption. Based on - 283 hypothesis of D–R isotherm, E values between 8 and 12 kJ/mol mean chemical - adsorption by ion exchange process whereas E values less than 8 kJ/mol means physical - adsorption. Hence, according to calculated B_{D-R} for Cd, Cu, Pb and Zn, E values show - 286 physical adsorption for cadmium and zinc removal (7.81 and 5.27 kJ/mol, for Cd and - Zn, respectively) and ion-exchange process for lead and copper biosorption (9.45) - 288 kJ/mol for Cu and 10.54 kJ/mol for Pb). - 289 According to Temkin isotherm, interactions between adsorbate and adsorbent make - 290 linear decrease in adsorption energy and heat of adsorption. The model is - 291 mathematically represented as Febrianto et al., 2009: $$q_{\varepsilon} = \frac{RT}{b_{T\varepsilon}} \ln(K_{T\varepsilon}C_{\varepsilon}) \tag{9}$$ - where b_{Te} (kJ/mol) and K_{Te} (L/g) are Temkin model constants which are 0.77, 0.55, 0.31 - and 0.77 kJ/mol and 0.15, 0.21, 1.16 and 0.08 L/g, for for Cd(II), Cu(II), Pb(II) and - 295 Zn(II), respectively. This model is not a proper correlation for examined heavy metals - 296 according to R², RMSE and SSE values. - 297 Radke-Prausnitz isotherm can be represented as Montazer-Rahmati et al., 2011: $$q_{s} = \frac{a_{R-p}r_{R-p}C_{s}^{\beta_{R-p}}}{a_{R-p} + r_{R-p}C_{s}^{\beta_{R-p-1}}}$$ (10) where $a_{R\text{-P}}$ and $r_{R\text{-P}}$ are Radke-Prausnitz model constants and $\beta_{R\text{-P}}$ the Radke-Prausnitz model exponent. Radke-Prausnitz isotherm constants, a_{R-P} and r_{R-P} for Cd(II), Cu(II), 302 Pb(II) and Zn(II) were calculated as 5.10, 9.24, 3.25 and 4.10 L/mg, 0.21, 0.63, 2.57 and 303 0.18 L/g, respectively. 304 311 313 320 As the results in Table 5 (a) and (b), among two-parameter isotherms, both Freundlich and Langmuir models agreed very well with experimental data rather than the other 307 two-parameter isotherm models and these are confirmed by small values of RMSE and 308 SSE and R² amounts closed to 1.0, too. This result indicates the formation of monolayer 309 coverage of metal ions at the outer heterogeneous surface of the sorbent. 310 The Sips isotherm is a combination of the Langmuir and Freundlich isotherm models and is expected to describe heterogeneous surfaces much better. At high sorbate 312 concentrations it predicts a monolayer adsorption capacity characteristic of the Langmuir isotherm whereas at low sorbate concentrations it
reduces to the Freundlich isotherm. It is given as (Febrianto et al., 2009): $$q_e = \frac{K_S C_e^{\beta_S}}{1 + a_S C_e^{\beta_S}}$$ 316 (11) where K_S and A_S are the Sips model constants in L/g and L/mg, respectively and A_S is 318 the Sips model exponent. Cd(II), Cu(II) and Zn(II) biosorption data was As the results given by Sips model, the experimental results of Cd(II), Cu(II) and Zn(II) biosorption are well fitted by all Sips better than Redlich-Peterson and Radke-Prausnitz models due to small RMSE and SSE as well as high R^2 close to 1.0. - 322 Unlike Sips model, the Redlich–Peterson isotherm behaves like the Freundlich isotherm - at high adsorbate concentrations and comes close the Henry's law at low amounts of - 324 concentration. The model can be presented as (Febrianto et al., 2009; Montazer-Rahmati - 325 et al., 2011): $$q_{\sigma} = \frac{K_{RP}C_{\sigma}}{1 + \alpha_{RP}C_{\sigma}^{\beta_{RP}}}$$ - 327 (12) - 328 where K_{RP} and a_{RP} are the Redlich–Peterson model constants in L/g and L/mg, - respectively and β_{RP} is the Redlich–Peterson model exponent which lies between 0 and - 330 1 (0.27, 0.60, 0.19 and 0.56 for Cd(II), Cu(II), Pb(II) and Zn(II), respectively). Pb(II) - biosorption data is best correlated by the Redlich-Peterson as confirmed by the smallest - values of RMSE, SSE and R² values very close to 1.0 (0.999). - The foregoing analysis of isotherm models show that the best fit for Cd(II), Cu(II), - 334 Pb(II) and Zn(II) biosorption is produced by three-parameter isotherm models than two- - parameter isotherm models. - 336 Comparison between maximum adsorptive capacities of some adsorbents investigated - by other researchers is shown in Table 6. This study results are compatible with other - adsorbents by higher or at least equal sorptive potential for heavy metal removal from - aqueous solutions. Besides, combination of several types of low-cost agro-industrial - 340 waste provides more selectivity as a result of increase in different effective functional - groups involved in metal binding. Hence, this kind of adsorbent will be recommended - 342 for its significant advantages. #### 343 4 Conclusion | 344 | The new biosorbent containing tea waste, corncob and sawdust was found to be an | |-----|--| | 345 | effective and low-cost alternative for detoxifying of heavy metals contaminated aqueous | | 346 | solutions. The pH, contact time, adsorbent dose and initial metal concentrations of the | | 347 | adsorbate significantly governed the overall process of cadmium, copper, lead and zinc | | 348 | cations adsorption. The sorption equilibrium time was reached within 3 h and pseudo- | | 349 | second-order kinetic model well fitted the experimental data. NaCl was successfully | | 350 | used as eluent without affecting its sorption capability after five cycles of sorption and | | 351 | desorption. | | 352 | Acknowledgement | | 353 | This work was supported by Centre for Technology in Water and Wastewater (CTWW), | | 354 | School of Civil and Environmental Engineering, University of Technology, Sydney | | 355 | (UTS) and Australian Postgraduate Award (APA). | | 356 | References | | 357 | 1. Amarasinghe, B.M.W.P.K., Williams, R.A. 2007. Tea waste as a low cost | | 358 | adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J., 132, | | 359 | 299–309. | | 360 | 2. Asadi, F., Shariatmadari, H., Mirghaffari, N. 2008. Modification of rice hull and | | 361 | sawdust sorptive characteristics for remove heavy metals from synthetic | | 362 | solutions and wastewater. J. Hazard. Mater., 154, 451–458. | | 363 | 3. Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., | | 364 | Haroon, H., Mahmood, Q. 2013. Waste biomass adsorbents for copper removal | | 365 | from industrial wastewater—A review. J. Hazard. Mater., in press. | 366 4. Blázquez, G., Hernáinz, F., Calero, M., Martín-Lara, M.A., Tenorio, G. 2009. 367 The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. 368 Chem. Eng. J., 148, 473–479. 369 5. Bulut, Y., Tez, Z. 2007. Removal of heavy metals from aqueous solution by 370 sawdust adsorption. J. Environ. Sci., 19, 160-166. 371 6. Ding, Y., Jing, D., Gong, H., Zhou, L., Yang, X. 2012. Biosorption of aquatic 372 cadmium(II) by unmodified rice straw. Bioresour. Technol., 114, 20–25. 373 7. Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.-H., Indraswati, N., Ismadji, S. 2009. Equilibrium and kinetic studies in adsorption of heavy metals using 374 biosorbent: A summary of recent studies. J. Hazard. Mater., 162, 616-645. 375 376 8. Feng, N., Guo, X., Liang, S., Zhu, Y., Liu, J. 2011. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater., 377 185, 49–54. 378 379 9. Fiol, N., Villaescusa, I., Martínez, M., Miralles, N., Poch, J., Serarols, J. 2006. 380 Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive 381 stone waste. Sep. Purif. Technol., 50, 132–140. 382 10. Gadd, GM., 2009a. Heavy metal pollutants: environmental and biotechnological 383 aspects. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd ed. Elsevier, 384 Oxford, pp 321–334. | 385 | 11. Gadd, G.M., 2009b. Biosorption: critical review of scientific rationale, | |-----|---| | 386 | environmental importance and significance for pollution treatment. J. Chem. | | 387 | Technol. Biotechnol. 84 (1), 13–28. | | 388 | 12. Garg, U., Kaur, M.P., Jawa, G.K., Sud, D., Garg, V.K. 2008. Removal of | | 389 | cadmium (II) from aqueous solutions by adsorption on agricultural waste | | 390 | biomass. J. Hazard. Mater., 154, 1149–1157. | | 391 | 13. Gupta, V.K., Carrott, P.J.M., Carrott, M.M.L.R., Suhas. 2009. Low-Cost | | 392 | Adsorbents: Growing Approach to Wastewater Treatment—a Review. Crit. Rev | | 393 | Environ. Sci. Technol., 39, 783–842. | | 394 | 14. Homagai, P.L., Ghimire, K.N., Inoue, K. 2010. Adsorption behavior of heavy | | 395 | metals onto chemically modified sugarcane bagasse. Bioresour. Technol., 101, | | 396 | 2067–2069. | | 397 | 15. Hossain, M.A., Ngo, H.H., Guo, W.S., Setiadi, T. 2012. Adsorption and | | 398 | desorption of copper(II) ions onto garden grass. Bioresour. Technol., 121, 386- | | 399 | 395. | | 400 | 16. Kazemipour, M., Ansari, M., Tajrobehkar, S., Majdzadeh, M., Kermani, H.R. | | 401 | 2008. Removal of lead, cadmium, zinc, and copper from industrial wastewater | | 402 | by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot | | 403 | stone. J. Hazard. Mater., 150, 322–327. | | 404 | 17. Kumar, P.S., Ramalingam, S., Abhinaya, R.V., Kirupha, S.D., Vidhyadevi, T., | | 405 | Sivanesan, S. 2012. Adsorption Equilibrium, Thermodynamics, Kinetics, | | 406 | | Mechanism and Process Design of Zinc (II) ions onto Cashew Nut Shell. T. Can. | |-----|-----|---| | 407 | | J. Chem. Eng., 90, 973–982. | | 408 | 18. | . Liu, C., Ngo, H.H., Guo, W., Tung, KL. 2012. Optimal conditions for | | 409 | | preparation of banana peels, sugarcane bagasse and watermelon rind in | | 410 | | removing copper from water. Bioresour. Technol., 119, 349–354. | | 411 | 19 | . Loukidou, M.X., Zouboulis, A.I., Karapantsios, T.D., Matis, K.A. 2004. | | 412 | | Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas | | 413 | | caviae. Colloids Surf. Physicochem. Eng. Aspects, 242, 93–104. | | 414 | 20 | . Martín-Lara, M.A., Blázquez, G., Ronda, A., Rodríguez, I.L., Calero, M. 2012. | | 415 | | Multiple biosorption-desorption cycles in a fixed-bed column for Pb(II) removal | | 416 | | by acid-treated olive stone. J. Ind. Eng. Chem., 18, 1006–1012. | | 417 | 21. | . Martín-Lara, M.Á., Rico, I.L.R., Vicente, I.d.l.C.A., García, G.B., de Hoces, | | 418 | | M.C. 2010. Modification of the sorptive characteristics of sugarcane bagasse for | | 419 | | removing lead from aqueous solutions. Desalination, 256, 58–63. | | 420 | 22. | . Montazer-Rahmati, M.M., Rabbani, P., Abdolali, A., Keshtkar, A.R. 2011. | | 421 | | Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel | | 422 | | ions from aqueous solutions by intact and chemically modified brown algae. J. | | 423 | | Hazard. Mater., 185, 401–407. | | 424 | 23. | . Pehlivan, E., Altun, T., Parlayici, Ş. 2012. Modified barley straw as a potential | | 425 | | biosorbent for removal of copper ions from aqueous solution. Food Chem., 135, | | 426 | | 2229–2234. | | 427 | 24. Pereira, F.V., Gurgel, L.V.A., Gil, L.F. 2010. Removal of Zn2+ from aqueous | |-----|--| | 428 | single metal solutions and electroplating wastewater with wood sawdust and | | 429 | sugarcane bagasse modified with EDTA dianhydride (EDTAD). J. Hazard. | | 430 | Mater., 176, 856–863. | | 431 | 25. Šćiban, M., Radetić, B., Kevrešan, Ž., Klašnja, M. 2007. Adsorption of heavy | | 432 | metals from electroplating wastewater by wood sawdust. Bioresour. Technol., | | 433 | 98, 402–409. | | 434 | 26. Tan, G., Xiao, D. 2009. Adsorption of cadmium ion from aqueous solution by | | 435 | ground wheat stems. J. Hazard. Mater., 164, 1359–1363. | | 436 | 27. Tan, G., Yuan, H., Liu, Y., Xiao, D. 2010. Removal of lead from aqueous | | 437 | solution with native and chemically modified corncobs. J. Hazard. Mater., 174, | | 438 | 740–745. | | 439 | 28. Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., Khosravi, A. 2013. | | 440 | Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium | | 441 | and nickel on grapefruit peel. J. Taiwan Inst. Chem. E, 44, 295–302. | | 442 | 29. Velazquez-Jimenez, L.H., Pavlick, A., Rangel-Mendez, J.R. 2013. Chemical | | 443 | characterization of raw and treated agave
bagasse and its potential as adsorbent | | 444 | of metal cations from water. Ind. Crop. Prod., 43, 200–206. | | 445 | 30. Volesky, B., 2007. Biosorption and me. Water Research 41, 4017–4029. | | 446 | Figure Caption | |-----|--| | 447 | Figure 1 Comparison between different single and multi-metal binding biosorbent for | | 448 | Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.5±0.1; room temperature, 22±2 | | 449 | °C; contact time: 24 hr; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary | | 450 | speed: 150 rpm, particle size: 75-150µm) | | 451 | SC: Sugarcane, SD: Sawdust, CC: Corncob, TW: Tea Waste, GS: Grape Stalk and AP: | | 452 | Apple Peels | | 453 | Figure 2 Effect of initial pH of solution on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption | | 454 | (room temperature, 22±2 °C; contact time: 24 hr; initial metal conc.: 50 mg/L; | | 455 | biosorbent dose: 5g/L; rotary speed: 150 rpm, particle size: 75-150μm) | | | | | 456 | Figure 3 Effect of contact time on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption (pH | | 457 | 5.5±0.1; room temperature, 22±2 °C; initial metal conc.: 50 mg/L; biosorbent dose: | | 458 | 5g/L; rotary speed: 150 rpm, particle size: 75-150μm) | | 459 | Figure 4 Effect of biosorbent dose on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption (initial | | 460 | pH 5.5±0.1, room temperature, initial metal conc.: 50 mg/L, contact time: 3 hr, rotary | | 461 | speed: 150 rpm, particle size: 75-150µm) | | | | | 462 | Figure 5 Biosorption capacity of $Cd(II)$, $Cu(II)$, $Pb(II)$ and $Zn(II)$ onto MMBB2 washed | | 463 | by four eluting agents (optimum pH 5.5±0.1; room temperature: 22±2 °C; sorption time: | | 464 | 3 hr; desorption time: 3 hr; 5 cycles; initial metal conc.: 50 mg/L) | | | | **Figure 2** **Figure 3** ### **Figure 4** 477 478 479 Figure **5** | 481 | Table Caption | |-----|--| | 482 | Table 1 FTIR spectra of unloaded and metal loaded- biosorbents | | 483 | Table 2 ANOVA and One sample t-test data for sorption and desorption experiments of | | 484 | Cd(II), Cu(II), Pb(II) and Zn(II) biosorption onto MMBB2 (optimum pH 5.5±0.1; room | | 485 | temperature: 22±2 °C; sorption time: 3 hr; 5 cycles; initial metal | | 486 | conc.: 50 mg/L) | | 487 | Table 3 Comparison between adsorption rate constants, the estimated q _e and the | | 488 | coefficients of determination associated with the Lagergren pseudo-first-order, the | | 489 | pseudo-second order and intra-particle diffusion kinetic models (pH 5.5±0.1; room | | 490 | temperature, 22±2 °C; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: | | 491 | 150 rpm, particle size: 75-150μm) | | 492 | Table 4 Isotherm constants of (a)two-parameter and (b) three-parameter models for | | 493 | Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.5±0.1, initial metal Conc.: 1- | | 494 | 500 mg/L, contact time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5 g/L, particle | | 495 | size: 75-150µm) | | 496 | Table 5 Biosorption capacities of various biosorbent | | | | | P | | **Table 1** FTIR spectra of unloaded and metal loaded- biosorbents | Wavelength range (cm ⁻¹) | | Transmittar | nce (%) | | Bond/Functional group | |--------------------------------------|------------|-------------|---------|------------|---| | Frequency | Difference | Unloaded | Loaded | Difference | | | 3500-3200 | -8.3 | 71.8 | 64.4 | -7.4 | O-H stretch/Alcohols and phenols | | 3400-3250 | -4.9 | 64.5 | 53.5 | -11.0 | N-H band/1° and 2° amines and amides | | 3000-2850 | -10.4 | 73.2 | 65.7 | -7.5 | H-C-H asymmetric and symmetric stretch/Alkanes | | 1820-1680 | -9.1 | 69.3 | 64.3 | -5.0 | C=O stretch/Amides, ketones, aldehydes, carboxylic acids and esters | | 1470-1450 | -3.6 | 62.7 | 61.1 | -1.7 | C-H band/Alkanes | | 1550-1475 | +6.0 | 72.3 | 65.5 | -6.8 | N-O asymmetric stretch/Nitro compounds | | 1320-1000 | -9.3 | 79.1 | 68.5 | -10.6 | C-O stretch (COOH)/Alcohol, carboxylic acid, esters and ethers | **Table 2** ANOVA and One sample t-test data for sorption and desorption experiments of Cd(II), Cu(II), Pb(II) and Zn(II) biosorption onto MMBB2 (optimum pH 5.5±0.1; room temperature: 22±2 °C; sorption time: 3 hr; 5 cycles; initial metal conc.: 50 mg/L) | Statistical Analysis Method | Metal | Metal | | | | | | |--|--------|--------|--------|--------|--|--|--| | | Cd | Cu | Pb | Zn | | | | | One-way ANOVA for NaCl, CaCl ₂ , CH ₃ COOH and Milli-Q water | | | | | | | | | F factor | 12.23 | 4.66 | 4.86 | 4.59 | | | | | F _{critical} factor | 3.23 | 3.23 | 3.23 | 3.23 | | | | | P value | 0.0002 | 0.0158 | 0.0136 | 0.0166 | | | | | One–sample T for NaCl | | | | | | | | | T factor | 2.31 | 4.08 | 4.66 | 0.02 | | | | | T _{critical} factor | 2.13 | 2.13 | 2.13 | 2.13 | | | | | P | 0.04 | 0.007 | 0.004 | 0.49 | | | | | One–sample T for CaCl ₂ | | | | | | | | | T factor | 0.64 | 4.92 | 4.47 | 1.19 | | | | | T _{critical} factor | 2.13 | 2.13 | 2.13 | 2.13 | | | | | P | 0.27 | 0.004 | 0.005 | 0.15 | | | | | One–sample T for CH ₃ COOH | | | | | | | | | T factor | 1.93 | 7.16 | 5.19 | 2.81 | | | | | T _{critical} factor | 2.13 | 2.13 | 2.13 | 2.13 | | | | | P | 0.06 | 0.001 | 0.003 | 0.02 | | | | | One–sample T for Milli-Q water | | | | | | | | | T factor | 5.00 | 5.60 | 4.76 | 5.48 | | | | | T _{critical} factor | 2.13 | 2.13 | 2.13 | 2.13 | | | | | P | 0.003 | 0.02 | 0.004 | 0.005 | | | | **Table 3** Comparison between adsorption rate constants, the estimated q_e and the coefficients of determination associated with the Lagergren pseudo-first-order, the pseudo-second order and intra-particle diffusion kinetic models (pH 5.5±0.1; room temperature, 22±2 °C; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm, particle size: 75-150 μ m) | Model | Parameter | Metal | | | | |---|---------------------------------------|-------|------|------|------| | | | Cd | Cu | Pb | Zn | | Experimental | $q_{e,exp}$ (mg/g) | 1.89 | 5.57 | 8.04 | 1.60 | | 1 st -order kinetic model | $K_1 \text{ (min}^{-1})$ | 0.03 | 0.10 | 0.07 | 0.02 | | $q_1 t = q_1 s \left[1 - \exp(-K_1 1 t) \right]$ | $q_{e,cal}(mg/g)$ | 1.19 | 5.98 | 8.39 | 1.21 | | die - die [1 - syh(-wire)] | R^2 | 0.79 | 0.95 | 0.94 | 0.85 | | 2 nd -order kinetic model | $K_2 \times 10^3 (gmg^{-1} min^{-1})$ | 0.17 | 0.08 | 0.06 | 0.09 | | $\frac{t}{q_t} = \frac{1}{K_2 q_s^2} + \frac{t}{q_s}$ | $q_{e,cal}(mg/g)$ | 1.92 | 5.88 | 8.06 | 1.60 | | | \mathbb{R}^2 | 0.99 | 0.99 | 0.99 | 0.99 | | [| $K_P (mg g^{-1}min^{-0.5})$ | 0.07 | 1.12 | 0.15 | 0.07 | | Intra-particle diffusion model | С | 1.16 | 4.35 | 6.19 | 0.68 | | $q_c = K_p t^{0.5} + C$ | \mathbb{R}^2 | 0.93 | 0.81 | 0.88 | 0.90 | **Table 4** Isotherm constants of (a)two-parameter and (b) three-parameter models for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.5±0.1, initial metal Conc.: 1-500 mg/L, contact time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5 g/L, particle size: 75-150μm) | (a) | | | | | | | |--|--|--------------------------------|--------------------------|-------|--|--| | Two-parameter | Metal | Metal | | | | | | models | Cadmium | Copper | Lead | Zinc | | | | $q_{\theta} = \frac{q_{m_{\theta}}}{1 + 1}$ | b _L C _e | | | | | | | $q_{m,L}(mg/g)$ | 41.48 | 39.48 | 94.00 | 27.23 | | | | b _L (L/mg) | 0.001 | 0.004 | 0.007 | 0.002 | | | | SSE | 2.24 | 4.52 | 65.03 | 3.89 | | | | \mathbb{R}^2 | 0.99 | 0.99 | 0.97 | 0.97 | | | | RMSE | 0.75 | 1.06 | 4.03 | 0.98 | | | | 1.5 | 1 | | AV | | | | | Freundlich $q_s = K_F$ | C, | | M_{λ} | | | | | K_{F} | 0.21 | 0.63 | 2.57 | 0.18 | | | | n | 1.37 | 1.63 | 1.74 | 1.42 | | | | SSE | 1.83 | 0.27 | 12.71 | 6.65 | | | | R^2 | 0.99 | 0.99 | 0.99 | 0.95 | | | | RMSE | 0.67 | 0.25 | 1.78 | 1.29 | | | | Dubinin- Radushkev | $ich \mathbf{q}_{\sigma} = \mathbf{q}_{D} .$ | $_{\rm R} \exp(-B_D)$ | $_R \mathcal{E}_{D-R}^2$ | | | | | q_{D-R} (mg/g) | 18.00 | 21.68 | 47.99 | 14.56 | | | | $\mathrm{B}_{\mathrm{D-R}}$ | 0.008 | 0.005 | 0.004 | 0.018 | | | | SSE | 18.54 | 59.54 | 40.60 | 6.50 | | | | R^2 | 0.91 | 0.83 | 0.81 | 0.96 | | | | RMSE | 2.15 | 3.85 | 10.07 | 1.27 | | | | $q_{s} = \frac{RT}{b_{Ts}} \ln(K_{Ts}C_{s})$ | | | | | | | | K_{Te} (L/g) | 0.15 | 0.21 | 1.16 | 0.08 | | | | b _{Te} (kJ/mol) | 0.77 | 0.55 | 0.31 | 0.77 | | | | SSE | 50.17 | 56.4 | 42.34 | 26.89 | | | | \mathbb{R}^2 | 0.75 | 0.84 | 0.80 | 0.82 | | | | RMSE | 3.54 | 3.75 | 10.29 | 2.59 | | | | (b) | | | | | | | | Three-parameter | Metal | | | | | | | models | Cadmium | Copper | Lead | Zinc | | | | q_s | $= \frac{a_{R-P}r_{R-P}}{a_{R-P}r_{R-P}}$ | pCeR-P | | | | | | Radke-Prausnitz | $a_{R-P} + r_{R-}$ | $_{p}C_{\sigma}^{\mu_{R-P}-1}$ | | | | | | Three-parameter | Metal | | | | |---------------------------|-----------------------|---------|--------|----------| | models | Cadmi | um Co | pper L | ead Zinc | | $a_{R-P}(L/g)$ | 5.10 | 9.24 | 3.25 | 4.10 | | β_{R-P} | 0.68 | 0.61 | 0.57 | 0.70 | | $r_{R-P}(L/mg)$ | 0.21 | 0.63 | 2.57 | 0.18 | | SSE | 1.33 | 0.26 | 12.71 | 6.65 | | R^2 | 0.99 | 0.99 | 0.99 | 0.95 | | RMSE | 1.52 | 0.99 | 2.05 | 1.48 | | | $a = K_I$ | RP C e | | | | Redlich-Peterson | $q_s = \frac{1}{1+a}$ | RPC PRP | | | | a _{RP} (L/mg) | 1.25 | 0.10 | 2.09 | 5.39 | | β_{RP} | 0.27 | 0.60 | 0.19 | 0.56 | | $K_{RP}(L/g)$ | 5.65 | 0.89 | 1.00 | 0.05 | | SSE | 1.83 | 6.77 | 0.23 | 2.87 | | R^2 | 0.99 | 0.99 | 0.99 | 0.98 | | RMSE | 0.78 | 4.75 | 0.27 | 0.97 | | K_SC | β _S | | | | | $q_s = \frac{1}{1 + a_s}$ | $C_{s}^{\beta_{S}}$ | | | | | $a_{\rm S}$ (L/mg) | 0.001 |
0.004 | 0.063 | 0.001 | | $\beta_{\rm S}$ | 0.83 | 0.59 | 0.38 | 1.72 | | $K_{\rm S}$ (L/g) | 0.20 | 0.66 | 3.68 | 0.002 | | SSE | 1.52 | 0.25 | 2.92 | 1.89 | | R^2 | 0.99 | 0.99 | 0.99 | 0.98 | | RMSE | 0.23 | 0.29 | 0.98 | 0.79 | | RWISE | 0.23 | 0.27 | 0.76 | 0.17 | #### **Table 5** Biosorption capacities of various biosorbent | Adsorbent | Matal | q _{max} (mg/g) | Reference | |-------------------|---------|-------------------------|----------------------------------| | MMBB2 | Cd(II) | 41.48 | Present study | | | Zn (II) | 27.23 | | | | Pb(II) | 94.00 | | | | Cu (II) | 39.48 | | | Sugarcane bagasse | Cd(II) | 69.06 | (Garg et al., 2008) | | Sawdust | Cu(II) | 6.88 | (Šćiban et al., 2007) | | | Zn(II) | 0.96 | | | | Cd(II) | 0.15 | | | Rice straw | Cd(II) | 13.89 | (Ding et al., 2012) | | Olive stone | Pb(II) | 92.6 | (Fiol et al., 2006) | | | Cd(II) | 77.3 | | | | | | 6 | | | Ni(II) | 21.3 | | | | Cu(II) | 20.2 | (Feng et al., 2011) | | Orange peel | Pb(II) | 113.5 | | | | Cd(II) | 63.35 | | | | Ni(II) | 9.82 | | | Cashew nut shell | Zn(II) | 24.98 | (Kumar et al., 2012) | | Tea waste | Cu(II) | 48 | (Amarasinghe and Williams, 2007) | | | Pb(II) | 65 | | #### 4 **Highlights** - 6 - The effectiveness of a novel multi-metal binding biosorbent was studied. The biosorption of Cd²+, Cu²+, Pb²+ and Zn²+ on MMBBs was investigated. 7 - ▶ Equilibrium data were presented and the best fitting models were introduced. 8 - ► The pseudo-second order model best describe the biosorption kinetics. 9 - .sorben 10 ▶ The obtained results recommend this MMBB as potentially low-cost biosorbent.