2 A. ele D .

6	Development of biochars from pyrolysis of lotus stalks for Ni(II) sorption: using
7	zinc borate as flame retardant
8	
9	Hai Liu ^a , Shuang Liang ^{a,*} , Jinhong Gao ^a , Huu Hao Ngo ^b , Wenshan Guo ^b , Zizhang
10	Gou ^a , Yiran Li ^a
11	^a Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of
12	Environmental Science and Engineering, Shandong University, Jinan 250100, China
13	^b School of Civil and Environmental Engineering, University of Technology Sydney,
14	Broadway, NSW 2007, Australia
15	Abstract
16	In this work, zinc borate (ZB) was employed as flame retardant for preparation of
17	biochar (BC). A series of BC samples were generated by varying the ZB to lotus
18	stalks (LS) ratio (0.25, 0.5 and 1.0) under different temperatures (300, 350 and 400 $^{\circ}$ C)
19	for 1 h. The BCs were analyzed for their surface morphologies, surface areas, surface
20	elemental compositions and yields. The results indicated that, after charring, ZB kept
21	the structures of the produced BCs as its starting material (LS), dramatically
22	enhancing their yields, and promoting their surface oxygen content. The BCs were
23	used as adsorbent for removal of Ni(II) from aqueous solutions. Sorption of Ni(II) on
24	the BCs was enhanced about 3-10 times compared with that of BCs derived from
25	pyrolysis of LS without adding ZB.

Keywords: Zinc borate; Biochar; Ni(II) 26

Corresponding author. Tel.: +86 531 88361712; fax: +86 531 88364513.

E-mail addresses: sliang@live.com, liangshuang@sdu.edu.cn(S.Liang)

27 **1. Introduction**

28	Sorption onto activated carbon has been proven to be a very simple and effective
29	technology for eliminating undesirable heavy metal ions from wastewater. Activated
30	carbon is usually fabricated at high temperatures (≥450 °C) under well-controlled
31	activating conditions. In order to produce activated carbon with a well-developed
32	structure and high yield, the precursor after impregnating with activating agent is
33	activated at high temperatures (\geq 450 °C for H ₃ PO ₄ and ZnCl ₂ activation and \geq 700 °C
34	for KOH and NaOH activation) under inert gas atmosphere (nitrogen). Nevertheless,
35	its high cost precludes its large-scale application in developing countries. However, as
36	another carbonaceous material, biochar (BC) was produced by pyrolysis of biomass
37	under conditions of lower temperatures (≤ 400 °C) and easier preparation conditions
38	[1-3]. Thus, it shows much lower cost than activated carbon.
39	Recently, BC has been successfully applied as an effective adsorbent for removal
40	of metal ions from aqueous solution [4-6]. The properties of BC are mainly influenced
41	by its precursors and pyrolysis conditions. The time-temperature pyrolysis profile for
42	various biomasses was discussed thoroughly in previous publications [7-9]. However,
43	little information is available on addition of flame retardant for BC production.
44	During the past decade a very large number of zinc borate (ZB) was employed as
45	a highly efficient flame retardant for polymer materials [10-13]. ZB contains both
46	zinc oxide and boric oxide and acts as multifunctional flame retardant. During thermal
47	treatment, ZB functions not only as fire retardant, but as highly effective smoke
48	suppressant and corrosion inhibitor [14].

SCR 12 리민

49	The objectives of this paper are 1) to study the effect of additive amount of ZB
50	and charring temperature (300, 350 and 400 $^{\circ}$ C) on the textural and chemical
51	properties of produced BCs; and 2) to evaluate the sorption capacities of produced
52	BCs toward Ni(II) by comparing with the BCs derived from pyrolysis of LS without
53	adding ZB.
54	2. Materials and methods
55	2.1. Materials

2. Materials and methods 54

56	All the chemical reagents were of analytical grade and were used as purchased.
57	Lotus (Nelumbo nucifera), a kind of hydrophytes, has been widely planted as an
58	important and popular cash crop in many Asian countries. Lotus stalks (LS), with
59	porous caudex system and large cell gap, can be used as a low-cost and efficient
60	precursor for BC production. LS were obtained from a wetland located in Shandong,
61	China. After harvest, the LS were washed several times with distilled water, dried at
62	105 °C for 24 h and crushed to pieces of approx. 0.45-1.0 mm. ZB
63	$(2ZnO\cdot 3B_2O_3\cdot 3.5H_2O)$ with particle size of $1\sim 2 \mu m$ was used as flame retardant. Ni ²⁺
64	solution was prepared by dissolving a weighed quantity of analytical grade
65	$Ni(NO_3)_2 \cdot 6H_2O$ in distilled water.

2.2. Preparation of BCs 66

About 10 g of LS were fully mixed with a weighted amount of ZB and 20 mL 67

68	distilled water, and the mixed samples were then dried at 105 $^{\circ}$ C for 9 h to remove
69	moisture. The ratio (R , g ZB/g LS) was chosen from 0.25:1.0 to 1.0:1.0. After drying,
70	the samples were then placed in 150 mL ceramic crucibles, and each ceramic crucible
71	was covered with a fitting lid. The samples were charred at 300, 350 and 400 °C for 1
72	h under oxygen-limited conditions in a muffle furnace (combustion chamber, $300 *$
73	200 * 120 mm). In order to evaluate the effect of ZB addition on the yields and
74	physicochemical properties of the final BCs, another three BC samples were also
75	prepared from LS without adding ZB at charring temperature of 300, 350 and 400 $^{\circ}$ C
76	for 1 h. After cooling to room temperature, the resulting charred residues were
77	pulverized for subsequent demineralization with 0.5 mol/L HCl. Then, the samples
78	were thoroughly washed with distilled water until the washing liquids attained a
79	constant pH, filtered and dried for 9 h at 105 °C. The BC samples were hereafter
80	referred to as BC-X-Y, with X and Y indicating the final charring temperature (300,
81	350 and 400 °C) and the <i>R</i> (0, 0.25, 0.5, and 1.0), respectively.

82 2.3. Characterization methods

83	The thermo-gravimetric analysis (TGA) and derivative thermogravimetric (DTG)
84	curves of the raw LS and the mixture of LS and ZB were obtained by using a
85	thermo-gravimetric analysis (TGA-50 analyzer). The samples were referred to as
86	LS-X-Y, with X and Y indicating the final charring temperature (300, 350 and 400 $^{\circ}$ C)
87	and the ratio (g ZB/g LS; 0, 0.25, 0.5, and 1.0), respectively. Each sample was heated
88	up to a designed temperature and kept at this temperature for 1 h at a heating rate of

89 10 °C/min.

90	The BET surface area (S_{BET}) of BCs was determined by adsorption of N ₂ at 77 K
91	using a surface area analyzer (Quantachrome Corporation, USA). The S_{BET} was
92	calculated from the isotherms using the Brunauer-Emmett-Teller (BET) equation. The
93	surface texture of the BCs was observed by using a scanning electron microscope
94	(SEM Hitachi S4800, Japan). The surface elemental composition of BCs was
95	determined using energy-dispersive spectrometer (EDS).
96	2.4. Nickel sorption
97	Sorption experiments were carried out with the initial concentration of Ni ²⁺ in the
97 98	Sorption experiments were carried out with the initial concentration of Ni^{2+} in the range of 20-80 mg/L. The sorption dose was 600 mg/L using 100 mL flask. The initial
98	range of 20-80 mg/L. The sorption dose was 600 mg/L using 100 mL flask. The initial
98 99	range of 20-80 mg/L. The sorption dose was 600 mg/L using 100 mL flask. The initial pH was adjusted with addition of 0.01 M HCl or NaOH to the value of 6.00 ± 0.02 .
98 99 100	range of 20-80 mg/L. The sorption dose was 600 mg/L using 100 mL flask. The initial pH was adjusted with addition of 0.01 M HCl or NaOH to the value of 6.00 ± 0.02 . The flasks were kept in an isothermal water bath and agitated at 120 rpm for 48 h to
98 99 100 101	range of 20-80 mg/L. The sorption dose was 600 mg/L using 100 mL flask. The initial pH was adjusted with addition of 0.01 M HCl or NaOH to the value of 6.00 ± 0.02 . The flasks were kept in an isothermal water bath and agitated at 120 rpm for 48 h to ensure that equilibrium was reached. The amount of Ni(II) adsorbed at equilibrium

105 **3. Results and discussion**

106 3.1. Thermo-gravimetric analysis of LS-X-Y samples

107 The TGA and DTG curves obtained from the thermo-gravimetric analysis of

108 LS-X-Y samples are shown in Fig. 1. The weight loss for the samples during

109	thermo-gravimetric analysis could be divided in to three stages. In the first stage, the
110	small amount of weigh loss as temperature ranged from room temperature to 200 $^{\circ}$ C
111	was due to the loss of water and light volatile compounds in LS. A significant weight
112	loss occurred in the second stage, as temperature increased from 200 °C to the final
113	temperature (300, 350 or 400 $^{\circ}$ C), which was mainly attributed to the evolution of
114	volatile compounds generated by decomposition of hemicellulose, cellulose and lignin
115	in LS. In the third stage, as temperature kept at a constant value of 300, 350 or 400 $^{\circ}$ C,
116	the samples displayed a continuous and slight weight loss.
117	It can be seen from Fig.1a that LS-X-Y (Y>0) samples displayed much lower
118	weight loss than LS-X-0 samples and their weight losses started at higher temperature
119	than LS-X-0 samples. These results indicated that ZB has good flame-retardant
120	performance for LS. The DTG curves of the samples heating at same conditions
121	showed a maximum peak at the same temperatures. Compared with LS-350-Y and
122	LS-400-Y samples, LS-300-Y samples exhibited more obvious a weight loss for the
123	third stage, indicating the incomplete charring of LS-300-Y samples. ZB started
124	decompose at about 290 °C by liberating water, boric acid and boron oxide. The boric
125	acid and soften boron oxide at temperature > 350 °C could promote the dehydration
126	and formation of a carbonized layer [11]. Thus, for LS-300-Y samples (Y>0),
127	LS-300-0 showed the highest maximum decomposition rate, while, for LS-350-Y and
128	LS-400-Y samples(Y>0), LS-350-0 and LS-400-0 samples exhibited lower maximum
129	decomposition rates than the other LS-350-Y and LS-400-Y samples.

130 *3.2. Physical and chemical characteristics and yield of BC*

131	SEM images of the BCs are shown in Fig. 2. After charring, BC-300-Y samples
132	showed a similar structure to LS, while the structures of BC-350-Y and BC-400-Y
133	samples were obviously corroded. Compared with the other BC-X-Y samples, the
134	structures of BC-X-0 samples were more severely corroded. Some particles or flakes
135	on the surfaces of BC-X-0 samples were observed, which could be attributed to the
136	chemical vapor deposition of pyrolysis products. The surfaces of BC-X-Y samples
137	(Y>0) were more smooth than BC-X-0 samples resulting from the formation of
138	carbonization layer promoted by the presence of ZB and its good afterglow
139	suppressant performance.
140	As shown in Table 1, the BET surface area of BC-X-0 samples increased with
141	increasing pyrolysis temperature. The production of volatile compounds inside the LS
142	particles gradually increased with increasing final temperature, resulting in increase of
143	porosity [15]. The BC-X-Y samples ($Y > 0$) got the highest surface areas at
144	temperature of 300 °C. This result may be due to the formation for boric acid
145	decomposed by ZB that made the BCs' surfaces smooth at high temperature.
146	For the external heating (muffle furnace), thermal energy is supplied to the surface
147	of sample and then transferred inside by heat conduction, and therefore it is difficult
148	to achieve a uniform temperature for the sample [16]. As a result, the internal and
149	external elemental composition of the produced BC would be different [17]. Surface
150	elemental compositions of the BCs are shown in Table 1. The relatively higher values
151	of O/C for BC-X-Y samples (Y > 0) compared with BC-X-0 samples indicated that

152	more O-containing groups existed on their surfaces. As the most active minor element
153	in biochar, the oxygen atoms can be present in various forms of surface functional
154	groups. At high temperature ZB could form an impervious layer on the surface of LS,
155	promote the formation of char at the surface of LS and prevent the release of
156	combustible gases from the surface of LS. These properties of ZB promoted the
157	carbonation lignocellulosic materials and also preserved its surface oxygen content.
158	Zinc and boron were not detected in these samples, indicating Zn and B compounds
159	were removed in the washing stage.
160	The yields of each BC were recorded in Table 1. The yield is defined as the $\%$
161	ratio of weight of BC produced to the weight of LS utilized for charring. Yields of the
162	BCs declined with increasing temperature and increased with increasing the amount
163	of ZB added. The yields of BC-X-Y samples $(Y > 0)$ were dramatically much higher
164	than BC-X-0 samples.

165 3.3. Ni(II) sorption capacities of BC

The sorption isotherms of Ni(II) onto the BCs were studied at different initial Ni(II) concentrations ranging from 20 to 80 mg/L and are shown in Fig. 3. In order to estimate the maximum sorption capacity and the sorption intensity of Ni(II) onto the BCs, Langmuir ($Q_e = Q_m K_L C_e/(1 + K_L C_e)$) and Freundlich ($Q_e = K_F C_e^{1/n}$) isotherm models are conducted to simulate the sorption. Herein, Q_e (mg/g) is the amount adsorbed; C_e (mg/L) is the equilibrium concentration; Q_m (mg/g) is the maximum sorption capacity; K_L is the Langmuir sorption constant; and K_F and 1/n are the

173 Freundlich constants.

174	The constants of Langmuir and Freundlich models fitting into the sorption data
175	were listed in Table 2. The values of correlation coefficient (R^2) obtained from
176	Langmuir model were much higher than those obtained from Freundlich model,
177	which indicated that the sorption of Ni(II) on the BCs was simulated better by
178	Langmuir model than by Freundlich model. It can also be observed from Fig. 3 that
179	the Langmuir model fits the data better. The $1/n$ values of the BCs were between 0
180	and 1, representing a favorable sorption of Ni(II) onto the BCs.
181	As shown in Table 2 and Fig 3, the sorption capacity of Ni(II) onto the BC-X-Y
182	samples obtained its maximum at $Y = 0.5$ (BC-300-0.5, BC-350-0.5 and BC-400-0.5)
183	for different charring temperatures and at X =300 °C for different R (g ZB/g LS). The
184	considerable Ni(II) sorption capacity of BC-300-Y samples ($Y > 0$) could be
185	attributed to the roles of the higher O-containing groups and non-carbonized biomass
186	fractions in heavy metal immobilization, as proposed by Uchimiya [18]. It is obvious
187	that the Q_m (mg/g) for the BC-X-Y samples (Y > 0) was about 3-10 times higher than
188	that on BC-X-0 samples. The higher sorption capacity for Ni(II) may be attributed to
189	their much higher O-containing groups, resulting in more positive sites for Ni(II)
190	sorption by cation exchange, electrostatic attraction or surface complexation.

191 **4.** Conclusion

192 This study investigated the preparation of BCs by using ZB as flame retardant.

193 The obtained promising results indicated that, by comparing to the BC-X-0 samples, 1)

- 194 ZB prevented the structure of the BCs from corrosion at high temperature; 2) much
- more oxygen-containing groups and yields of the BCs were developed by using ZB as
- 196 flam retardant; 3) using ZB as flame retardant for BC production can dramatically
- 197 enhanced the Ni(II) sorption capacities of the produced BCs.

198 Acknowledgements

199	This work was supported by the Independent Innovation Foundation of Shandong
200	University (2012JC029), Natural Science Foundation for Distinguished Young
201	Scholars of Shandong Province (JQ201216) and National Water Special Project
202	(2012ZX07203-004).
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	

215 **References**

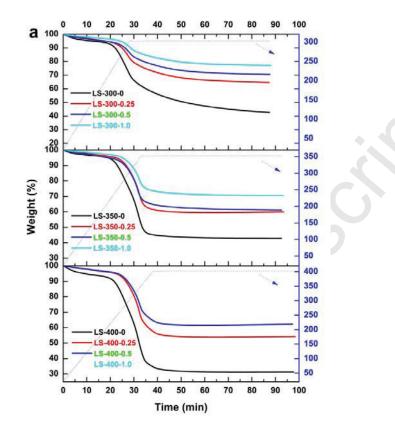
- 216 [1] Z. Liu, F.-S. Zhang, Removal of lead from water using biochars prepared from
- hydrothermal liquefaction of biomass, J. Hazard. Mater. 167 (2009) 933-939.
- 218 [2] W. Ding, W. Peng, X. Zeng, X. Tian, Effects of phosphorus concentration on
- 219 Cr(VI) sorption onto phosphorus-rich sludge biochar, Front. Environ. Sci. Eng., (2013)
- **220** 1-7.
- 221 [3] J. Ni, J.J. Pignatello, B. Xing, Adsorption of Aromatic Carboxylate Ions to Black
- 222 Carbon (Biochar) Is Accompanied by Proton Exchange with Water, Environ. Sci.
- 223 Technol. 45 (2011) 9240-9248.
- 224 [4] T.-Y. Jiang, J. Jiang, R.-K. Xu, Z. Li, Adsorption of Pb(II) on variable charge soils
- amended with rice-straw derived biochar, Chemosphere 89 (2012) 249-256.
- 226 [5] Y. Qiu, Z. Zheng, Z. Zhou, G.D. Sheng, Effectiveness and mechanisms of dye
- adsorption on a straw-based biochar, Bioresource Technol. 100 (2009) 5348-5351.
- [6] L. Beesley, M. Marmiroli, The immobilisation and retention of soluble arsenic,
- cadmium and zinc by biochar, Environ. Pollut. 159 (2011) 474-480.
- 230 [7] Y. Chun, G. Sheng, C.T. Chiou, B. Xing, Compositions and Sorptive Properties of
- 231 Crop Residue-Derived Chars, Environ. Sci. Technol. 38 (2004) 4649-4655.
- [8] B. Chen, D. Zhou, L. Zhu, Transitional Adsorption and Partition of Nonpolar and
- 233 Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic
- 234 Temperatures, Environ. Sci. Technol. 42 (2008) 5137-5143.
- [9] D. Mohan, C.U. Pittman Jr, M. Bricka, F. Smith, B. Yancey, J. Mohammad, P.H.
- 236 Steele, M.F. Alexandre-Franco, V. Gómez-Serrano, H. Gong, Sorption of arsenic,

- cadmium, and lead by chars produced from fast pyrolysis of wood and bark during
- bio-oil production, J. Colloid Interf. Sci. 310 (2007) 57-73.
- [10] B. Garba, Effect of zinc borate as flame retardant formulation on some tropical
- 240 woods, Polym. Degrad. Stabil. 64 (1999) 517-522.
- 241 [11] F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New
- 242 prospects in flame retardant polymer materials: From fundamentals to
- 243 nanocomposites, Mat. Sci. Eng. R. 63 (2009) 100-125.
- [12] H. Pi, S. Guo, Y. Ning, Mechanochemical improvement of the flame-retardant
- and mechanical properties of zinc borate and zinc borate–aluminum trihydrate-filled
- 246 poly(vinyl chloride), J. Appl. Polym. Sci. 89 (2003) 753-762.
- [13] A. Genovese, R.A. Shanks, Structural and thermal interpretation of the synergy
- and interactions between the fire retardants magnesium hydroxide and zinc borate,
- 249 Polym. Degrad. Stabil. 92 (2007) 2-13.
- 250 [14] S. Kim, Flame retardancy and smoke suppression of magnesium hydroxide filled
- 251 polyethylene, J. Polym. Sci. Pol. Phys. 41 (2003) 936-944.
- 252 [15] M. Ertaş, M. Hakkı Alma, Pyrolysis of laurel (Laurus nobilis L.) extraction
- residues in a fixed-bed reactor: Characterization of bio-oil and bio-char, J. Anal. Appl.
- 254 Pyrol. 88 (2010) 22-29.
- [16] L.M. Norman, C.Y. Cha, production of activated carbon from coal chars using
- 256 microwave energy, Chem. Eng. Commun. 140 (1995) 87-110.
- 257 [17] R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched
- microporous activated carbon from high volatile bituminous coal, Fuel 88 (2009)

- 259 1871-1877.
- 260 [18] M. Uchimiya, I.M. Lima, K. Thomas Klasson, S. Chang, L.H. Wartelle, J.E.
- 261 Rodgers, Immobilization of Heavy Metal Ions (CuII, CdII, NiII, and PbII) by Broiler
- Litter-Derived Biochars in Water and Soil, J. Agr. Food Chem. 58 (2010) 5538-5544.
- 263
- 264

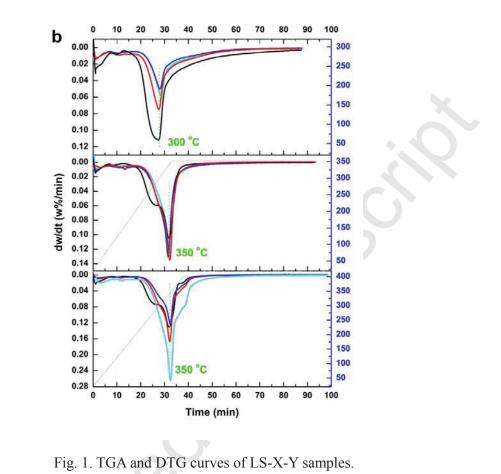
265 Figure captions

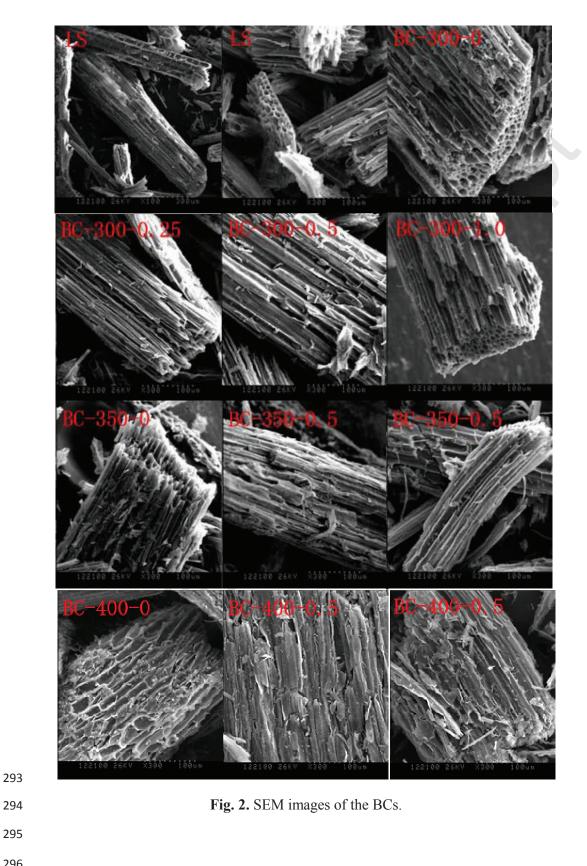
- **Fig. 1**. TGA and DTG curves of LS-X-Y samples.
- **Fig. 2.** SEM images of the BCs.
- **Fig. 3.** Sorption isotherms of Ni(II) on the BCs.
- 269


USCRIP1 ACCEP

Samples	$S_{\rm BET} ({ m m}^2/{ m g})$	C (%)	O (%)	O/C (%)	Si (%)	Yield (%)
BC-300-0	9	60.15	39.62	65.87	0.23	38.4
BC-300-0.25	24	48.23	51.63	107.1	0.14	43.1
BC-300-0.5	41	47.49	52.35	110.2	0.16	45.7
BC-300-1.0	45	51.39	48.22	93.83	0.39	50.2
BC-350-0	21	65.83	34.06	51.74	0.11	31.0
BC-350-0.25	24	53.77	46.15	85.83	0.08	36.4
BC-350-0.5	18	52.09	47.86	91.88	0.05	37.9
BC-350-1.0	17	55.78	44.05	78.97	0.17	43.5
BC-400-0	41	72.30	27.47	37.99	0.23	26.9
BC-400-0.25	17	60.79	39.02	64.19	0.19	32.6
BC-400-0.5	26	57.63	41.98	72.84	0.39	34.6
BC-400-1.0	21	62.70	37.17	59.28	0.13	38.6

269	Table 1	I Surface area,	surface elementa	l composition a	and yields of the BCs.
-----	---------	-----------------	------------------	-----------------	------------------------


	Langmuir			Freundlich		
Samples	q_m mg·g ⁻¹	k_L L·mg ⁻¹	R^2	1/ <i>n</i>	k_F mg ¹⁻ⁿ L ⁿ /g	R^2
BC-300-0	6.4	0.456	0.9999	0.059	4.85	0.9761
BC-300-0.25	59.9	0.255	0.9942	0.234	23.5	0.9821
BC-300-0.5	61.7	0.267	0.9987	0.233	24.3	0.9871
BC-300-1.0	49.5	0.288	0.9991	0.194	22.4	0.9689
BC-350-0	10.3	0.226	0.9996	0.109	6.10	0.9988
BC-350-0.25	38.8	0.411	0.9998	0.131	22.5	0.9623
BC-350-0.5	40.8	0.298	0.9996	0.161	20.7	0.9823
BC-350-1.0	38.0	0.266	0.9995	0.166	2.93	0.9603
BC-400-0	10.5	0.321	0.9996	0.078	7.21	0.9977
BC-400-0.25	34.7	0.464	0.9996	0.110	21.8	0.9434
BC-400-0.5	40.0	0.315	0.9988	0.147	21.3	0.9902
BC-400-1.0	29.9	0.348	0.9994	0.119	17.7	0.9452


Table 2 Langmuir and Freundlich constants related to the sorption isotherms of Ni(II) for the BCs.

289

Ree Contraction

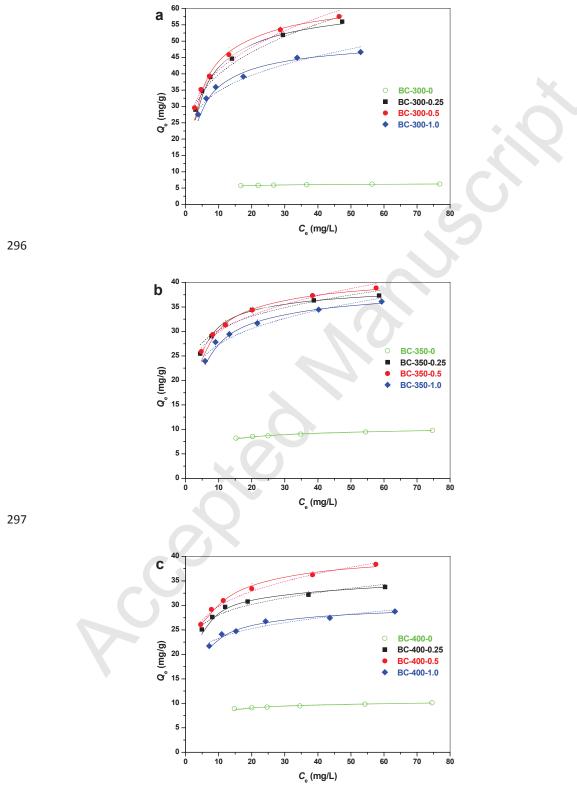


Fig. 3. Sorption isotherms of Ni(II) on the BCs (dosage = 60 mg/100 mL; time = 48 h;

- and temperature = 22 ± 1 °C). Solid and dashed lines represent Langmuir model and
- 301Freundlich model fitting to the data, respectively.
- 302