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Highlights 

 Sodium titanate nanofibres(TNF) had high adsorption capacity for heavy metals 

 Metal removals in column with 4% TNF + 96% GAC were larger than in 100% GAC 

 TNF batch/column adsorption from single/mixed metals systems Pb > Cu, Cd > Zn > Ni 

 Ni and Zn adsorption in mixed metals solution decreased at high metals concentration 

Statement of significance 

Novelty of this study is the simultaneous removal of five heavy metals by a novel nanomaterial 

having high adsorption capacities for these metals in fixed-bed columns as practiced in water 

treatment plants by using a blend of small proportion of this nanomaterial with a commonly used 

adsorbent and providing an explanation of the metals removal mechanism. 
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Abstract 

Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, 

Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water 

by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 

10-3 M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and 

Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at 

high metals concentrations. In column experiments with 4% titanate material and 96% granular 

activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities  

(for both single and mixed metals systems) decreased in the order Pb > Cd, Cu > Zn > Ni within 266 

bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the 

granular activated carbon + titanate column than in the granular activated carbon column. The study 

showed that the titanate material has high potential for removing heavy metals from polluted water 

when used with granular activated carbon at a very low proportion in fixed-bed columns.  

 

Keywords: adsorption, granular activated carbon, heavy metals, titanate nanofibres,  

 
1. Introduction 

The ever-increasing pollutant levels in water are a serious global environmental problem. 

Heavy metals constitute major pollutants that are generating much concern due to their acute toxicity, 

long-term accumulation and persistence. Numerous methods are available for removing heavy metals 

from contaminated water such as chemical precipitation, ion exchange adsorption, membrane 

filtration and electrochemical technologies [1-3]. Of these methods, adsorption is preferred for its 

simplicity, efficiency, flexibility in design and low waste production [3-5].  

In the adsorbent group, nano-sized metal oxides are growing in importance due to their 

unique properties and use in many applications. Nano-sized metal oxides have promising metal 

removal capacities, partly due to their large surface areas and high activities in size-quantisation effect 

[6, 7]. However, these nano-sized particles are unusable as they are in fixed-bed columns where they 

cause excessive pressure drop and have poor mechanical strength [4,5,8]. To overcome this problem, 

nano-sized particles are commonly impregnated into coarse-sized porous material such as granular 

activated carbon (GAC) [9-12] and used in fixed-bed columns. 

Titanium-based adsorbents show robustness under harsh chemical conditions and are 

effective in a variety of media such as acidic, basic and neutral pH and high and low ionic strengths 

[2]. Mesoporous titanate nanostructures have been synthesised from TiO2 using a variety of 

technologies and used to remove pollutants including heavy metals [2,13,14]. For example, Hang et 

al. [15] reported that titanate whiskers prepared using an alkaline hydrothermal method starting from 
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hydrous metatitanic acid and KOH had a Langmuir maximum adsorption capacity of 144 and 385 

mg/g for Cu and Pb, repectively in a batch study. Sheng and Hu [16] found that titanate nanotubes 

prepared using a similar hydrothermal method with titanium oxide and NaOH had a Langmuir 

adsorption capacity of 51 mg/g for Th(IV). However, simultaneous removal of several heavy metals 

from their mixtures in both batch [17,18] and column adsorption conditions is rare. The simultaneous 

removal of several heavy metals is important as most wastewaters contain more than one heavy metal 

and there can be competition for adsorption between metals.  

This study aimed to determine the adsorptive removal efficiencies of five heavy metals (Cu, 

Zn, Pb, Cd and Ni) individually and together from synthetically polluted water using a sodium titanate 

nanofibrous material (TNF) in batch experiments and mixed with a wood-based GAC in fixed-bed 

column experiments.  

2. Experimental methodology 
 

2.1. Preparation of TNF  

A commercial titanium dioxide (P-25, Degussa AG, Germany) was used as a precursor for 

preparing the sodium form of titanate microspheres (TNF). P-25 is a non-porous, crystalline structure 

with 70% anatase, 30% rutile composition and a BET surface area of 50 m2/g with a mean particle 

size of about 30 nm [14]. TNF was prepared using a modified hydrothermal method similar to that 

described by El Saliby et al. [14]. In this method, 12 g of NaOH pellets were weighed into a Teflon 

cell containing 6 g of the TiO2 powder. To this container which was kept in a water bath at room 

temperature (24±1oC), 36 ml of H2O2 (50% V/V) was added drop-wise and the mixture was 

mechanically stirred for 5 min at 300 rpm. The resultant slurry was kept in a water bath for 24 h at 

80oC without any vigorous agitation. The precipitate obtained was washed repeatedly with Milli Q 

water, pH neutralised to 7.0 using 2 N HCl, and dried at 100oC. The resultant nanotitanate had a pale 

yellow colour characteristic of peroxotitanate materials precipitated under alkaline conditions [2].  

 

 

2.2. GAC  

A wood-based granular activated carbon (GAC) obtained from James Cummins P/L, 

Australia was sieved to a particle size range of 0.3-0.6 mm and used in the study. The GAC had a 

BET surface area of 950 m2/g. 

 

2.3. Characterisation of TNF 
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X-ray diffraction (XRD) was conducted using a XRD Shimadzu S6000 (Japan) diffractometer 

on powder samples of TNF. The X-ray diffraction unit (Theta/2Theta) was equipped with a Cu target 

operated at 40 kV and 30 mA with a setting of 5–45° 2-theta, step time 2° 1/min. Scanning electron 

microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, surface area, and porosity 

measurements were also conducted on TNF. For the SEM analysis, samples were imaged, uncoated, 

in a Zeiss Evo LS15 SEM using its variable pressure mode and an accelerating voltage of 15 kV. 

FTIR pattern was recorded in a Nicolet 6700 FTIR Spectrometer equipped with a room temperature 

DLaTGS detector and a Nicolet FT-IR Smart System with Smart Accessories using a Diamond crystal 

HATR. Surface area and porosity were determined by nitrogen-sorption measurements carried out at 

77 K with a Micromeritics 3Flex surface characterisation analyser.  

 

2.4. Zeta potential 

Zeta potential which is linked to the surface charge was measured at different pHs on GAC 

and TNF suspensions using a zetasizer nano instrument (Nano ZS Zne 3600, Malvern, UK). For each 

sample, the instrument automatically made triplicate measurements and a mean value was produced. 

Zeta potential was measured at pH 3 to 9, after adjusting the pH of 100 ml suspension of TNF in 

deionised water with background ionic strength of 10-3 M NaNO3 (0.5 g/L dose of TNF) and agitating 

it at 120 rpm for 24 h.  

 

2.5. Batch adsorption experiments 

For the laboratory batch experiments, Milli Q water was spiked with individual heavy metals 

(Cu, Zn, Pb, Cd, and Ni) using their nitrate salts at a concentration of 5 mg/L. Different doses of TNF 

(0.01 to 0.09 g/L) were added to 100 ml of these metal solutions, and the suspensions were agitated at 

120 rpm for 24 h at room temperature (24±1oC) and different suspension pHs. The background ionic 

strength was kept at 10-3 M NaNO3. After 2 h of agitating the suspensions, pH was adjusted back to 

the initial pH using 0.1 M NaOH or 0.1 M HNO3, in order to eliminate the possibility of any major pH 

changes during adsorption. Buffered solutions were not used to keep the pH constant because the 

buffer components may have interfered with metals adsorption by forming metals complexes and 

competing with metals for adsorption. After a further 20 h of agitation the suspensions were filtered 

using filter disks with 1.2 µm openings and heavy metal concentrations in the filtrate were analysed 

using a Microwave Plasma-Atomic Emission Spectrometer (Agilent 4100 MP-AES). The experiments 

were repeated utilising a mixture of heavy metals with a concentration of 15 mg/L each and TNF 

doses of 0.05-0.5 g/L. The amount of heavy metal adsorption at equilibrium, Qe (mg/g), was 

calculated using equation (1): 
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𝑄𝑒 =
(C0 − C𝑒)V

M  
 

Where, C0 = initial concentration of the heavy metal (mg/L); Ce = equilibrium concentration of the 

heavy metal (mg/L); V = volume of the solution (L); and M = mass of TNF (g). 

 

2.6.  Batch desorption and TNF regeneration experiment 

 To use an absorbent economically and effectively it should be reutilized many times. This 

requires complete desorption of the previously adsorbed metals and regeneration of the adsorbent to 

its original adsorption capacity. An experiment was conducted where Ni, Zn, Cd, Cu, and Pb were 

adsorbed by 2 g TNF from a 1.5 L solution containing 20 mg/L of each metal at pH 5.0, after shaking 

the suspensions for 3 h and filtering these suspensions. The adsorbed metals were desorbed by 

shaking the residues with 1.5 L of 0.1 M NaNO3, or 0.1 M HNO3  for 3 h. 0.1 M NaNO3 was selected 

because it provided large amounts of a cation that could displace the adsorbed metals. 0.1 M HNO3 

was chosen to produce low pH where the adsorption of metals is low (Fig. 4). Following the metals’ 

desorption the TNF was again tested for its adsorption capacity. A portion of the TNF, after 

desorption with 0.1 M HNO3, was treated with 0.2 M NaOH for 3 h to introduce the lost Na into the 

TNF structure [19] and the adsorption of metals was resumed.  

 

2.7. Fixed-bed column experiments 

Using TNF alone as the filter media to remove heavy metals from water in the fixed-bed 

column is not practical because it causes poor hydraulic conductivity giving rise to large head loss. 

Therefore a mixture of TNF (75-150 µm) and GAC (0.3-0.6 mm), a material commonly used in fixed-

bed columns to remove pollutants, at a weight ratio of 25:1 (GAC: TNF) was used in this study. To 

determine the effect of TNF alone, two columns - one with GAC alone and the other with GAC + 

TNF - were used. TNF’s removal of heavy metals was calculated by subtracting the amounts of heavy 

metals removed by GAC from those removed by GAC + TNF.  

The GAC used was initially washed thoroughly with deionised water to remove any fine and 

floating particles. Then 39g of the washed GAC or 37.5g GAC + 1.5g TNF was packed into a 2 cm 

internal diameter transparent acrylic fibre column to 30 cm height. Tap water at pH 5.0 was passed 

through the column in a gravity flow mode at a velocity of 5 m/h for 24 h to eliminate the pH increase 

normally expected when using unwashed GAC as an adsorbent [20]. The tap water was spiked with 

(1) 
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heavy metals, one at a time, at a concentration of 5 mg/L each, at pH 5.0. Tap water (ionic strength of 

95.1 mg/L) was utilised instead of distilled water at the ionic strength of 10-3 M NaNO3 as in the batch 

study because large volumes of distilled water that were required for the long-term column study were 

not available. Concentrations of heavy metals larger than those normally observed in stormwater and 

wastewater were used to simulate metals concentrations normally observed in the first flush of 

stormwater after long dry periods [21,22] and in industrial spills in water and wastewater. 

Experiments were then conducted by filtrating metals-spiked tap water at a velocity of 5 m/h in the 

gravity flow mode with two peristaltic pumps; one before the water enters the column and the other 

when the water leaves the column. The empty bed contact time (EBCT) at this filtration velocity was 

3.6 min. Samples were collected at 30 min and thereafter every hour and analysed for pH and heavy 

metals concentrations. The experiments were repeated with a mixture of heavy metals with each metal 

at a concentration of 1 mg/L. 

The maximum column adsorption capacity, q total (mg) for a given feed concentration is equal 

to the area under the plot of the adsorbed metal concentration, Cad (Cad = Co-C) (mg/L) versus time (t, 

min) and was calculated manually from the breakthrough curves using Microsoft Excel spreadsheet 

according to equation (2) where Q is the flow rate of the solution (L/min):  

 

𝑞 𝑡𝑡𝑡𝑡𝑡 = 𝑄
1000 ∫ 𝐶𝑡𝑎

𝑡=16ℎ
𝑡=0  dt                           (2) 

 

 

3. Results and Discussion 

 

3.1. Characterisation of TNF 

Scanning electron microscopic images revealed that TNF had a nanofibrous appearance 

(Supplementary figure SF1) similar to that observed for materials prepared by others using similar 

methods [2,23,24]. The exact appearance of the nanomaterials depends on the duration and 

temperature of the NaOH reaction in their preparations. For example, Yada et al. [24] reported that at 

20 h and 100-120oC NaOH reaction conditions, short nanofibres were evident, but when the reaction 

time was increased to 72 h, a clear long fibrous material was observed. 

X-ray diffraction pattern of the TNF sample had peaks corresponding to anatase, rutile and 

sodium titanate (Fig. 1). The peaks at 2-theta of 25.5, 38 and 48.5 are characteristics of the presence 

of anatase [14,25]. Those at 2-theta of 27.5 and 63 are characteristic of rutile [14,26] and those of 9.5, 

24.5, 28.5 and 48.5 are typical of sodium titanate [26,27-39]. The peak at 48.5 is common for both 

anatase and sodium titanate as also found by Wang et al. [26]. The anatase and rutile peaks observed 

in the XRD pattern are those of the unreacted Degussa P-25 used to prepare the nanotitanate material. 
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The major peaks observed in the XRD pattern in the current study are the same as those reported for 

the titanate nanorods, nanoflowers and nanosheets synthesised by the hydrothermal treatment of 

anatase using 10 M NaOH [28]. 

 

FIG. 1 

 

Four FTIR transmittance bands, centred at 3390, 1635, 1347, and 450 cm-1, similar to those 

reported for sodium titanate nanofibres [24] and nanotubes [30], were obtained for TNF (Fig. 2). 

Kubo and Nakahira [31] also reported similar FTIR bands, one at 3400 cm-1 and another at 1630 cm-1 

for a nanotubular titanate material and assigned them to O-H stretching mode of interlayer water, 

oxonium ions, and hydroxyl groups, and H-O-H bending of water, respectively. Huang et al. [32] also 

assigned the 1630 cm-1 band obtained for their titanate nanotubes and nanowires to H-O-H 

deformation mode. The band at 450 cm-1 is probably due to Ti-O-Ti vibrations in TiO6 octahectrons 

[30,32]. The band at 1347 cm-1 is probably due to Na-O vibration as reported for a titanate nanotube 

material prepared by an alkaline hydrothermal method where a band appeared at 1400 cm-1 [30]. 

 

FIG. 2 

 

The BET surface area and total pore volume of TNF were 58.6 m2/g and 0.142 cm3/g, 

respectively. These values are comparable to those of 64.8 m2/g and 0.25 cm3/g, respectively, as 

reported by El Saliby et al. [14].  

The zeta potential data at different pHs showed that a rise of pH increased the negative zeta 

potential of GAC and TNF (Fig. 3). TNF had higher negative zeta potential than GAC at all pHs. The 

zero point of charge (ZPC, i.e. the pH at which the net surface charge is zero) of TNF and GAC were 

3.2 and 5.5, respectively, suggesting that at the normal pH of 6-7 of most wastewaters the net surface 

charge on these materials is negative. This favours the adsorption of the positively charged heavy 

metal cations. The ZPC of 5.5 obtained for GAC is within the range of 4.75-7.00 reported for five 

types of activated carbons by Faust and Aly [33]. The ZPC of TNF of 3.2 agrees well with the ZPC 

values of 3.16- 3.55 reported by Chen et al. [30] for sodium titanate nanomaterials.  

 

FIG. 3 
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3.2. Batch adsorption 

3.2.1. pH effect 

The adsorption of all the heavy metals continued to increase when equilibrium pH rose from 3 

to 7.5 (Fig. 4). There are many reasons for this increased adsorption. Firstly, at low pHs the 

adsorption is low because there are less negative charges on the TNF surface (Fig. 3) for adsorbing 

the positively charged heavy metal cations (M2+) by coulombic forces. Secondly, the abundant protons 

(H+) compete with the metal cations for adsorption. Thirdly, as the pH increases the concentrations of 

the metal hydroxyl complexes (MOH+), which have higher affinity to metal oxides and hydroxides 

surfaces, become significant and this causes an abrupt increase in metal adsorption [34]. Fourthly, 

when the pH further increases the metal initially precipitates on the TNF surface before precipitation 

occurs in solution [35,36]. The abrupt increase in the adsorption occurred at pH 3-4 for Pb, 4-6 for Cu 

and Cd and 5-7 for Zn and Ni. This abrupt elevation in the adsorption of metals is due to the large 

increase in concentration of metal hydroxide complex species in solution, or degree of surface 

precipitation within a narrow pH increases as observed for heavy metal adsorption on many other 

adsorbents [34,37,38].  

The degree of metal adsorption at pH 6.5 was in the order Pb > Cu > Cd > Zn > Ni, which 

follows the order of the ease of metal precipitation (pKs)/or metal hydroxide complex formation 

(pK1) except Cd (Table 1). At pH < 6.5 the order changed to Pb > Cd > Cu > Zn > Ni. This is 

probably because at low pH, instead of metals forming significant amounts of hydroxyl complexes 

they exist as hydrated divalent ions where the tendency for adsorption depends on the hydrated ionic 

radius and hydration energy. Ions with smaller hydrated ionic radius are able to move closer to the 

adsorbent surface as well as easily enter the channels in the adsorbent for preferential adsorption. Ions 

with low hydration energies can easily become dehydrated and shrink in size for greater adsorption 

[37]. On this basis, Pb with the lowest hydrated radius and hydration energy has produced the highest 

degree of adsorption, followed by Cd, Cu, Zn, and Ni in that order. Similar orders of adsorption were 

observed by others for Pb, Cu, Cd, and Zn on a titanosilicate at pH 5 [37] and Pb, Cd, and Zn on a 

zeolite and granular activated carbon ([39], pH not reported), and Pb, Cd, Cu, and Cr on a titanate 

nanotube at pH 5 [40].  

 

FIG. 4 

TABLE 1 
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3.2.2. Langmuir adsorption model 

The batch adsorption data were analysed using the Langmuir model (equation 3): 

                        (3)  

 where, qmax =  maximum amount of the heavy metal adsorbed per unit weight of TNF (mg/g) and KL 

= Langmuir adsorption constant (L/mg).   

 

This model can be linearized as follows: 

 

                          (4)  
 
Plots of Ce/Qe vs Ce indicated significant linear relationships for all metals at all pHs (supplementary 

figure (SF1); Table 2, R2 = 0.955-0.998), demonstrating that the adsorption data fitted satisfactorily to 

the Langmuir adsorption model. This suggests that the adsorption sites on TNF were homogeneous 

with monolayer adsorption coverage. 

 

3.2.2.1. Single metal adsorption 

The Langmuir adsorption maxima calculated from the slope of the linear plots of Ce/Qe vs Ce 

for the metals at different pHs followed the order Pb > Cd > Cu > Zn > Ni when the adsorption 

capacities were expressed as mg/g and Pb > Cu > Cd > Zn > Ni when they are expressed as mmol/g 

(Table 2). The difference in the adsorption capacity between Cu and Cd changed in favour of Cu 

when: firstly, the data were expressed as mmole/g; and secondly, when the pH increased for the 

reasons presented in the previous section. When pH increased, all the metals revealed an increase in 

the maximum adsorption capacities up to pH 5 and remained nearly the same beyond pH 5 up to 6.5. 

Lead adsorption capacity is presented only for pH 4.0. The adsorption data for Pb at higher pHs could 

not be described using the Langmuir adsorption model because nearly all the Pb from the solutions 

were adsorbed or precipitated.    

The Langmuir adsorption maxima (mg/g) of 60, 83, 115, and 149 at pH 6.5 for Ni, Zn, Cu, 

and Cd, respectively, and 250 for Pb at pH 4.0 (Table 2) are higher than the corresponding values at 

pH 5.0-7.0 of several carbon nanotubes adsorbents. These values are 7-48, 10-44, 24, 1-11 and 1-97, 

and agricultural and industrial wastes adsorbents of 3-26, 3-18, 6-109, 5-60, and 11-267 for Ni, Zn, 

Cu, Cd, and Pb, respectively [46]. The Langmuir adsorption maxima of TNF are also higher than the 

values reported for the commercial ion exchange resins, Amberlite IR-120 (Langmuir adsorption 

maxima (mg/g) of 48, 85, 22, 100, and 84 for Ni, Zn, Cu, Cd, and Pb, respectively, pH not reported) 

[47] and Lewatit CNP 80 (Langmuir adsorption maxima (mg/g) of 19, 20, 10, 5, and 73 for Ni, Zn, 

Cu, Cd, and Pb, respectively, pH 8.0 ) [48]. The adsorption capacities of TNF improve on those 

eL

eLmax
e CK1

CKqQ
+

=

Ce /Qe=1/qmax  K 𝐿𝐿  + Ce/qmax  
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reported for a similar titanate material (microporous titanosilicate) (11, 27, 41, and 170 mg/g for Zn, 

Cu, Cd, and Pb, respectively, pH 5.0) [37]. 

 

 

TABLE 2 

 

3.2.2.2. Mixed metals adsorption  

The data for the adsorption of metals from solutions containing mixed metals showed that at 

equilibrium concentrations greater than 2-4 mg/L, the adsorption of all metals except Pb decreased at 

both low and high pHs (Fig. 5). The reason for this decrease is that at high concentrations of the 

metals, these metals competed for adsorption on the limited number of unoccupied adsorption sites on 

the TNF surface. The weakly adsorbed metals, Ni and Zn, showed a greater reduction in adsorption 

than the other metals. 

 

 

TABLE 3 

FIG. 5 

 

Since greater competition for adsorption of metals occurred at high solution metal 

concentrations, the adsorption data were divided into two groups: one at solution concentrations of 0-

3 mg/L; and the other at > 3 mg/L. When the data were fitted to the Langmuir adsorption model, 

results showed that both groups of data satisfactorily fitted to the model (Table 3; R2 = 0.935-0.999 

low concentrations; R2 = 0.698-0.981 high concentrations, Supplementary figures SF2 and SF3). 

However, the fits were better at low solution concentrations than at high ones and when the entire 

concentration ranges were considered for all metals except Pb (R2 = 0.772-0.992). For Pb, the whole 

concentration range was less than 3 mg/L, probably due to significant surface precipitation of 

Pb(OH)2 above this concentration range, and therefore the above comparison was not possible. To 

determine whether other adsorption models could explain the data at both low and high metals 

concentrations better than the Langmuir model, the adsorption data was modelled using Freundlich 

and Dubinin-Radushkevick models (REF). However, the data fit to these models were less 

satisfactory than the Langmuir fits (Supplementary tables ST 1 and 2). Langmuir adsorption maxima 

for all metals except Pb were higher at lower solution metal concentrations than for the entire 

concentration range. As explained earlier this is due to greater competition between metals for 

adsorption at higher concentrations. The adsorption maxima followed the order Cu > Cd > Zn > Ni at 
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low metal concentration ranges and at the entire concentration ranges whether they were expressed as 

mg/g or mmol/g (Table 3). 

 

3.2.3. Metals desorption and TNF regeneration 

 The data on adsorption/desorption of metals showed that 0.1 M HNO3 desorbed nearly 100% 

of the adsorbed Zn, Cd, Cu, and Ni but only 12% of Pb (Table 4). However, desorption of all the 

metals using 0.1M NaNO3 was poor (0.7-35%). The adsorption capacities after the desorption process 

were very much reduced for many metals, especially after desorption with 0.1 M HNO3. In contrast to 

desorption using these two reagents, when the metals were desorbed using 0.1 M HNO3 and TNF was 

regenerated by adding 0.1 M NaOH, the TNF almost regained its original adsorption capacity for all 

metals. Wang et al. [19] also reported that this method was effective in regenerating titanate 

nanotubes (TNT) adsorbent. They stated that during metals desorption using acid the TNT’s structure 

and morphology changed due to losing Na from the structure. This in turn reduced the adsorption 

capacity but adding NaOH neutralized the acid and introduced Na so that the adsorption capacity was 

restored. 

 

TABLE 4 

 

3.2.3. Fixed-bed column experiments 

3.2.3.1. Single Metals 

 In columns packed with only GAC the metals’ breakthrough occurred faster and the 

breakthrough curves were steeper for Ni, Zn, and Cd whereas the breakthrough was the slowest and 

the curves were least steep for Pb (Fig. 6). The characteristic of the curve for Cu was in between Pb 

and the other metals. The patterns of the breakthrough curves are reflected in the order of the 

cumulative adsorption of the metals on GAC: Pb > Cu > Cd > Zn > Ni (Table 5).  

 

 

FIG. 6 

TABLE 5 
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            The breakthrough curves for all the metals were less steep and the breakthroughs were slower 

when TNF was added to GAC in the column (Fig. 6) because of the much greater adsorption capacity 

of TNF compared to GAC. The adsorption capacity of TNF in the presence of GAC was calculated to 

be 10-20 times higher than that of GAC (Table 4). However, the order of the cumulative adsorption of 

metals on GAC + TNF remained the same as in the GAC-only column (Pb > Cu > Cd > Zn > > Ni). 

The contribution of TNF to adsorption in the GAC + TNF column was assessed by subtracting the 

cumulative adsorption by GAC from that of GAC + TNF. The results showed that TNF strongly 

influenced the removal of Cd. This is consistent with the results of the batch adsorption study where 

the Langmuir adsorption capacity of TNF followed the order Pb > Cd > Cu > Zn > Ni at low pHs 

(Table 2). Adsorption capacity of TNF for Pb obtained by the above calculation is low because of the 

high adsorption capacity of Pb on GAC (Table 5). 

 

3.2.3.2. Simultaneous removal of metals 

The patterns of metals breakthrough from solutions containing mixed metals (Fig. 7) were 

similar to those of solutions containing single metals (Fig. 7). The steepness of the breakthrough 

curves followed the order Ni > Zn > Cd > Cu > Pb in both the GAC and GAC + TNF columns as 

observed in the single metals experiment. The cumulative amounts of each metal adsorbed up to 16 h 

(266 bed volumes) (Table 5)  were smaller than the respective metal adsorption in the single metals 

experiment (Table 5) due to the lower influent concentration of the metals in the mixed metals system. 

The order of the cumulative amounts adsorbed was Pb > Cu > Zn > Cd > Ni in the GAC column but it 

was Pb > Cu > Cd > Zn > Ni in GAC + TNF column. This indicates that GAC has less adsorption 

preference for Cd than Zn in a competitive adsorption system whereas the opposite occurred on TNF. 

The cumulative amounts of metals adsorbed in the GAC + TNF column were larger than those in the 

GAC column for all metals, thus indicating the higher adsorptive capacity of TNF. In the case of Cd 

the amount adsorbed was nearly 80 times larger in the GAC + TNF column. 

 

 

FIG. 7 

 

 

4. Conclusions 

Batch experiments on heavy metals adsorption on TNF (zero point of charge 3.2) from 

solutions containing single or mixed metals showed that elevated pH increased the adsorption of Pb, 
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Cd, Cu, Zn and Ni. Adsorption data at pH 4.0, 5.0, 5.5 and 6.5 for the single metal system fitted 

satisfactorily to the Langmuir isotherm model for Cd, Cu, Zn and Ni. The Langmuir adsorption 

maxima at pH 6.5, which is the pH of most natural and waste waters, for these metals were 149, 115, 

83 and 60 mg/g, respectively. For Pb, because TNF removed all solution Pb above pH 4.0, only the 

data for pH 4.0 fitted to the Langmuir isotherm model which gave an adsorption maximum of 250 

mg/g. For the mixed metal systems, the adsorption of all metals except Pb decreased at high solution 

concentration, especially for weakly adsorbed Ni and Zn, due to the competition between metals for 

adsorption. Most waters contaminated from diffuse sources of metals have metal concentrations less 

than 3 mg/L and therefore their competition for adsorption on TNF is unlikely. The Langmuir 

adsorption capacities for Cd, Cu, Zn, Ni, and Pb in mixed metals system at pH 6.5 were lower than 

the respective values in the single metal system. For the repeated use of TNF the adsorbed metals 

need to be desorbed and TNF regenerated. Desorption using 0.1 M HNO3 followed by regeneration of 

the TNF by the addition of 0.1 M NaOH appeared to be an efficient method. 

 

Column experiments on TNF (4%) mixed with GAC (96%) in both single and mixed metal 

systems showed that the metals removed by adsorption varied widely and up to 80 times greater than 

in the column with only GAC. Metal breakthrough times decreased in the same order as the 

adsorption capacities in batch studies. The study showed that TNF can potentially remove a large 

percentage of heavy metals from polluted water. Because TNF is finer in size, it can be mixed with 

GAC to provide better hydraulic properties, and at the same time it can effectively remove heavy 

metals.   
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Table 1   

Some characteristics of heavy metal ions. 

Metal Hydrated radius 

(nm) 

 [41] 

Hydrated energy 

(kJ/mol) 

 [41] 

Solubility of 

hydroxides (pKS) 

[42,43]  

First hydrolysis 

constants  (pK1) 

[44,45] 

Ni 0.302 -2005 15.2 9.86 

Zn 0.295 -1880 16.5 8.96 

Cu 0.297 -1920 19.3 7.96 

Cd 0.275 -1575 14.4 10.08 

Pb 0.261 -1345 19.9 7.71 
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Table 2  
Langmuir parameters for individual heavy metals adsorption on TNF (ionic strength 10-3 M NaNO3) and coefficients of determination for the Langmuir plots 
(R2). 

Metals 
pH 4.0   pH 5.0 

  
  
  
  
  
  
  
  

pH 5.5 
  
  
  
  
  
  
  
  

pH 6.5 
qmax qmax KL R2  qmax qmax KL R2 qmax qmax KL R2 qmax qmax KL R2 

(mg/g) (mmol/g) (L/mg)   (mg/g) (mmol/g) (L/mg)  (mg/g) (mmol/g) (L/mg)  (mg/g) (mmol/g) (L/mg)  
Ni 37 0.62 4.6 0.960  63 1.08 26.3 0.982 69 1.19 2.2 0.992 60 1.02 13.9 0.992 
Zn 47 0.72 13.0 0.981  70 1.07 71.5 0.961 79 1.21 9.1 0.985 83 1.26 24.2 0.972 
Cu 54 0.85 18.5 0.996  75 1.17 10.3 0.983 99 1.56 6.7 0.955 115 1.81 17.4 0.993 
Cd 93 0.83 5.9 0.978  159 1.41 10.5 0.994 143 1.27 11.7 0.988 149 1.33 10.5 0.992 
Pb 250 1.21 20.0 0.998  

- - - - - - - - - - - - 
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Table 3  
Langmuir parameters for heavy metals adsorption on TNF from mixed metals solutions (ionic 
strength 10-3 M NaNO3) and coefficients of determination for the Langmuir plots (R2) (n denotes 
number of data points). 
Data for all metal concentrations 

Metals 
pH 5.0 

  

pH 6.5 
qmax qmax R2 n qmax qmax R2 n 

(mg/g) (mmol/g)     (mg/g) (mmol/g)     
Ni 6.5 0.11 0.828 16 7.5 0.13 0.899 9 
Zn 9.5 0.15 0.884 16 7.0 0.10 0.772 9 
Cd 22.0 0.20 0.950 11 29.0 0.25 0.984 9 
Cu 34.0 0.53 0.981 11 39.0 0.62 0.992 9 
Pb 322.5 1.56 0.938 15 333.5 1.61 0.953 13 

 

Data separated into low (L) and high (H) metal concentrations  

Metals 
pH 5.0 (L) 

  

pH 5.0 (H) 
qmax qmax R2 n qmax qmax R2 n 

(mg/g) (mmol/g)     (mg/g) (mmol/g)     
Ni 13.5 0.23 0.989 8 2.0 0.03 0.802 8 
Zn 16.0 0.25 0.987 9 3.5 0.05 0.812 7 
Cd 31.0 0.27 0.999 6 12.0 0.11 0.936 5 
Cu 40.0 0.63 0.995 6 24.0 0.38 0.960 5 
Pb 322.5 1.56 0.938 15 - - - - 

 

Metals 
pH 6.5 (L) 

  

pH 6.5 (H) 
qmax qmax R2 n qmax qmax R2 n 

(mg/g) (mmol/g)     (mg/g) (mmol/g)     
Ni 14.0 0.24 0.982 5 3.5 0.06 0.946 5 
Zn 21.5 0.33 0.988 5 3.0 0.05 0.698 5 
Cd 36.0 0.32 0.997 5 25.5 0.23 0.974 5 
Cu 39.5 0.62 0.998 5 37.0 0.58 0.981 5 
Pb 333.5 1.61 0.953 13 - - - - 
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Table 4 
Adsorption/desorption of metals on TNF (mg/g) 

 Ni Zn Cd Cu Pb 
Amount adsorbed in original TNF  14.0 14.6 14.4 15.4 19.2 
Amount desorbed using 0.1 M NaNO3  4.9 1.7 0.1 0.5 4.0 
Amount desorbed using 0.1 M HNO3  14.2 14.8 14.4 15.1 2.4 
Amount adsorbed after desorption with 0.1 M NaNO3  0.0 1.7 12.1 13.8 21.3 
Amount adsorbed after desorption with 0.1 M HNO3  0.6 1.0 2.4 3.6 19.4 
Amount adsorbed after desorption with 0.1 M HNO3 
and TNF regeneration with 0.2 M NaOH  11.9 12.8 13.9 15.1 19.1 

 

  



 20  
 

Table 5   
Cumulative adsorption of heavy metals by GAC and GAC + TNF from single metals and mixed 
metals solutions after 16 h (266 BV) at pH 5.0.  
 Column media Units Ni Zn Cu Cd Pb 

Single 
metals 
Experiments 

GAC, q total  mg 2.5 5.0 44.0 9.0 85.0 

GAC + TNF, q total  mg 15.5 29.5 88.5 70.0 123.0 

TNF, q total a mg 13.0 24.5 44.5 61.0 38.0 

GAC b (%) 2.0 4.0 32.0 8.0 69.0 

GAC + TNF b (%) 12.0 23.5 64.5 58.0 100.0 

Mixed 
metals 
Experiments 

GAC, q total  mg 0.25 1.75 14.25 0.25 26.25 

GAC + TNF, q total  mg 2.50 8.00 27.25 20.50 29.50 

TNF, q total a mg 2.25 6.25 13.00 20.25 3.25 

GAC b (%) 1.0 6.5 46.0 1.5 86.0 

GAC + TNF b (%) 9.5 29.5 87.0 79.5 96.0 

aadsorption on TNF = adsorption on GAC + TNF minus adsorption on GAC 
bpercentage of cumulative metal adsorption = (cumulative metal added – cumulative metal in effluent) 
/ cumulative metal added 
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Figure Captions 
 
Fig. 1. XRD pattern of TNF (A- anatase, R- rutile, T- sodium titanate). 
 
Fig. 2. FTIR pattern of TNF.  
 
Fig. 3. Zeta potential of TNF and GAC (ionic strength 10-3 M NaNO3). 

Fig. 4. Effect of equilibrium pH on heavy metal adsorption from single metal solutions by TNF (ionic 

strength 10-3 M NaNO3. Adsorption percentage (%) = metals adsorbed (mg) / metals initially 

present (mg) x 100).   
Fig. 5.  Metals adsorption by TNF from mixed metals solution at (a) pH 5.0, (b) pH 6.5 (ionic strength 
10-3 M NaNO3). 

Fig. 6. Breakthrough plots of (a) Ni, (b) Zn, (c) Cu, (d) Cd and (e) Pb in GAC and GAC + TNF 

column study for single metals. 

Fig. 7. Breakthrough plots of (a) Ni, (b) Zn, (c) Cu, (d) Cd and (e) Pb in GAC and GAC + TNF 

column study for mixed metals. 



 22  
 

 

Fig. 1  



 23  
 

 

Fig. 2.  
 



 24  
 

 

Fig. 3.  

 

-50

-40

-30

-20

-10

0

10

20

30

2.5 4.5 6.5 8.5 10.5

Ze
ta

 p
ot

en
tia

l c
ha

rg
e 

(m
V

) 

Equlibrium pH 

TNF

GAC



 25  
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Fig. 5.  
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Fig. 6.  
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Fig. 7.  
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Supplementary Data 

Supplementary Table 1(ST 1). Freundlich isotherm model parameters for the adsorption of heavy 
metals on TNF from solutions containing mixed metals at an ionic strength of 10-3 M NaNO3 for two 
pHs and coefficients of determination for the Freundlich isotherm fit to data (R2). 
 

Freundlich isotherm model 

Equation: 𝑞𝑒 =  𝐾𝐹𝐶𝑒
1/𝑛 

Linear form: 𝑙𝑙𝑞𝑒 = 𝑙𝑙𝐾𝐹 + 1
𝑛

ln𝐶𝑒 with 𝐶𝑒 = the equilibrium concentration of the adsorbate (mg/L); 
𝑞𝑒 = the amount of adsorbate adsorbed per unit mass of adsorbent (mg/g); 𝐾𝐹 and n = Freundlich 
constants. From the plots of  𝑙𝑙𝑞𝑒 vs ln𝐶𝑒 the  𝐾𝐹 and n were calculated. 

 

Data separated into low (L) and high (H) metal concentrations  

 Low metal concentration  High metal concentration 

Metals 

pH 5.0  

  

pH 5.0 
KF n R2 N KF n R2 N 

(mg/g)  
(L/mg)1/n       (mg/g)  

(L/mg)1/n       

Ni 15.9 -34.0 0.1486 8 4136.9 -0.4 0.8314 8 
Zn 17.6 93.5 0.0382 9 915.8 -0.6 0.7715 7 
Cd 27.1 13.4 0.6574 6 186.0 -1.1 0.8354 5 
Cu 30.9 7.2 0.8728 6 85.4 -2.6 0.7236 5 
Pb - - - - - - - - 

Metals 

pH 6.5 

  

pH 6.5 
KF n R2 N KF n R2 N 

(mg/g) 
(L/mg)1/n       (mg/g)  

(L/mg)1/n       

Ni 22.2 -6.5 0.7098 5 477.4 -0.59 0.9140 5 
Zn 22.9 -41.2 0.1577 5 1649.1 -0.45 0.7575 5 
Cd 34.2 8.5 0.8806 5 44.6 -5.36 0.7003 5 
Cu 42.0 8.0 0.9028 5 42.0 -57.80 0.0237 5 
Pb - - - - - - - - 

N- Number of data points  
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Supplementary Table 2(ST 2). The Dubinin–Radushkevick isotherm model parameters for the 
adsorption of heavy metals (15 mg/L) on TNF from solutions containing mixed metals at an ionic 
strength of 10-3 M NaNO3 for two pHs and coefficients of determination for the Langmuir isotherm fit 
to data (R2). 

 
The Dubinin–Radushkevick isotherm model 

Equation: 𝑞𝑒 = 𝑞𝑚 exp (−𝛽ɛ2) 

Linear form: ln (𝑞𝑒) = ln (𝑞𝑚)−  𝛽ɛ2 

With 𝑞𝑒 = the amount of heavy metal adsorbed per unit dosage of the adsorbent (mg/g); 𝑞𝑚 = the 
monolayer capacity, and β is the activity coefficient related to mean sorption energy and ɛ is the 
Palanyi potential described as: ɛ = 𝑅𝑅𝑙𝑙[1 + ( 1

𝐶𝑒
)]. From the plots of ln (qe) versus ɛ2 the values of β 

and qm were determined. 

 

Data separated into low (L) and high (H) metal concentrations  

 Low metal concentration  High metal concentration 

Metals 
pH 5.0  

  

pH 5.0  
qm β R2 N qm β R2 N 

(mg/g)  (mol2/kJ2)      (mg/g)  (mol2/kJ2)      
Ni 2.2 -3 x 10-5 0.7996 7 15.8 -4 x 10-10 0.0018 9 
Zn 4.3 -2 x 10-5 0.7285 8 18.4 3 x 10-9 0.2651 8 
Cd 15.6 -8 x 10-6 0.7766 5 30.8 5 x 10-8 0.9117 6 
Cu 28.8 -3 x 10-6 0.6427 5 38.0 7 x 10-8 0.9436 6 
Pb - - - - - - - - 

Metals 

pH 6.5   pH 6.5  
qm β R2 N 

 

qm β R2 N 

(mg/g) (mol2/kJ2)   (mg/g) (mol2/kJ2)   
Ni 4.0 -5 x 10-8 0.3893 5 17.4 -2 x 10-5 0.9154 5 
Zn 3.4 -2 x 10-5 0.7217 5 22.5 -3 x 10-9 0.0253 5 
Cd 29.7 -3 x 10-7 0.4451 5 35.1  8 x 10-9 0.9365 5 

Cu 41.1 2 x 10-8 0.0161 5 39.3 5 x 10-9 0.9313 5 
Pb - - - - - - - - 

N- Number of data points 
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Supplementary Figure 1 (SF 1). SEM images of TNF (magnifications 5,000X (left), 30,000X (middle) and 33000X (right)). 
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Supplementary Figure 3 (SF 3). Langmuir plots for adsorption of metals on TNF from solutions 
containing mixed metals at low and high metal concentrations at pH 5. 
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Supplementary Figure 4 (SF 4). Langmuir plots for adsorption of metals on TNF from solutions 
containing mixed metals at low and high metal concentrations at pH 6.5. 
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Supplementary Figure 5 (SF 5). Langmuir plots for adsorption of metals on TNF from solutions 
containing mixed metals at different pHs (not divided into two regions). 
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