
Rescheduling Policies for Large-Scale Task Allocation of

Autonomous Straddle Carriers under Uncertainty at

Automated Container Terminals

Binghuang Cai∗, Shoudong Huang, Dikai Liu, Gamini Dissanayake

Centre for Autonomous Systems (CAS), Faculty of Engineering and Information
Technology (FEIT), University of Technology, Sydney (UTS), PO Box 123, Broadway,

NSW 2007, Australia.

Abstract

This paper investigates replanning strategies for container-transportation
task allocation of autonomous Straddle Carriers (SC) at automated con-
tainer terminals. The strategies address the problem of large-scale scheduling
in the context of uncertainty (especially uncertainty associated with unex-
pected events such as the arrival of a new task). Two rescheduling policies -
Rescheduling New arrival Jobs (RNJ) policy and Rescheduling Combination
of new and unexecuted Jobs (RCJ) policy - are presented and compared for
long-term Autonomous SC Scheduling (ASCS) under the uncertainty of new
job arrival. The long-term performance of the two rescheduling policies is
evaluated using a multi-objective cost function (i.e., the sum of the costs of
SC travelling, SC waiting, and delay of finishing high-priority jobs). This
evaluation is conducted based on two different ASCS solving algorithms -
an exact algorithm [i.e., branch-and-bound with column generation (BBCG)
algorithm] and an approximate algorithm (i.e., auction algorithm) - to get
the schedule of each short-term planning for the policy. Based on the map
of an actual fully-automated container terminal, simulation and comparative
results demonstrate the quality advantage of the RCJ policy compared with
the RNJ policy for task allocation of autonomous straddle carriers under

∗Corresponding author. Tel: +61-2-9514-2676. Fax: +61-2-9514-2655.
E-mail Addresses: bhcai8@gmail.com, bhcai@ieee.org (B. Cai).
Postal Address: Centre for Autonomous Systems (CAS), Faculty of Engineering and In-
formation Technology (FEIT), University of Technology, Sydney (UTS), PO Box 123,
Broadway, NSW 2007, Australia (B. Cai).

Preprint submitted to Robotics and Autonomous Systems December 8, 2013

uncertainty. Long-term testing results also show that although the auction
algorithm is much more efficient than the BBCG algorithm for practical ap-
plications, it is not effective enough, even when employed by the superior
RCJ policy, to achieve high-quality scheduling of autonomous SCs at the
container terminals.

Keywords: Rescheduling policy, Uncertainty, Optimisation, Task
allocation, Autonomous straddle carriers, Automated container terminals

1. Introduction

In the past several decades, the capacity and frequency of container ships
arriving at container terminals has increased steadily due to both increasing
containerization and world trade. Correspondingly, container terminals need
to turn around larger ships carrying more containers as fast as possible to
improve productivity and reduce the terminal operation costs. As a conse-
quence, the terminals have a number of different types of yard resources to
assist in the movement of containers, including for example, yard vehicles
(for transporting containers around different yard areas) and yard cranes
(for transporting containers in a fixed small area at the terminal) [1–3]. It is
important for modern container terminals that these yard resources are used
efficiently to load, unload and transfer containers during the transhipment
process. Yard vehicles play a very essential role in container transporta-
tion because they are more flexible than yard cranes in being able to move
freely within the yard. The rapid development of autonomous material han-
dling vehicles and robots has facilitated the development and deployment of
automated equipment for container terminals, such as Automated Guided
Vehicles (AGVs) [4–6] and Automated Lifting Vehicles (ALVs) [7] as yard
vehicles. Compared with human-operated vehicles, these automated mate-
rial handling robots require a high degree of coordination and efficiency. The
effective operation of automated yard vehicles hence becomes an essential
issue, one that has been investigated by researchers and engineers in robotics
and logistics. A number of methods and approaches have been proposed
including, for example, two heuristic methods - one based on a flexible prior-
ity rule for AGV dispatching at highly automated container terminals in [5]
and another based on a mixed-integer programming model for dispatching
a small fleet of ALV [7]. Different approaches, such as simulated anneal-
ing, ant colony, auction algorithm, job grouping and column generation have

2

Figure 1: Patrick AutoStrad container terminal [Google Earth, 16 June, 2009].

been investigated for multiple autonomous vehicle operation at an automated
container terminal by the authors [8–13].

The Patrick Autostrad container terminal (a fully-automated container
terminal shown in Fig. 1) uses a type of ALV known as an autonomous
Straddle Carrier (SC) [14–16]. The operation of the autonomous SCs plays
a key role in enabling container transportation to increase the transhipment
productivity of the terminal. A fundamental problem for the SC operation is
SC task allocation. This is known as Autonomous Straddle Carrier Schedul-
ing (ASCS): finding a feasible and efficient schedule for the straddle carriers
to finish a list of container transportation jobs. The found schedule should
satisfy the relations and constraints of yard vehicles, transhipment jobs, and
seaport environments, as well as meet performance requirements of the ter-
minal operation. The ASCS problem is very difficult to solve due to 1) large
number of jobs, 2) large number of SCs and 3) complicated terminal environ-
ments. Scheduling algorithms have been developed and employed to solve
such a problem and some of these algorithms (e.g., genetic algorithms and
job grouping developed by the authors) have been or are being implemented

3

in the real operation system of the Patrick AutoStrad container terminal [11].
These methods are based on approximate methodology, which could get a
feasible solution but may not be optimal. Note that optimal scheduling can
greatly reduce the cost of the operation of the container terminal [14–16].
An exact algorithm based on column generation has been presented for the
ASCS problem to obtain the optimal schedule [12, 13]. However, this column
generation based algorithm is more time-consuming for large-scale problem
than approximate methods. Thus, to improve algorithm efficiency and so-
lution quality, there remains a need to investigate approaches for solving
large-scale ASCS problem.

An important aspect of the task allocation problem of autonomous SCs is
that the operation of autonomous SCs is subject to uncertainties that occur
due to interaction with the real-world (autonomous vehicles can stop, delay
or face problems like a new job arrival) and hence job and vehicle schedules
need to be replanned [17]. Replanning of autonomous SC in dynamic con-
tainer handling environments is essential for maintaining high productivity
in the face of unexpected events. Thus, the ASCS problem should be solved
in a way that it can react to such uncertainties. One of the most common
and effective ways to do this is to formulate and solve small-scale ASCS
problem from time to time using updated information based on the change
of jobs and the state of the SCs. To some extent, this is similar to job-shop
rescheduling in manufacturing systems [18, 19]. Different strategies and poli-
cies, such as new job rerouting, complete rerouting, periodic rescheduling and
event-driven rescheduling, have been investigated for job-shop rescheduling
[18, 19]. Dynamic replanning methods have been investigated and devel-
oped by robotic and logistic researchers in relation to the replanning of yard
cranes and yard vehicles at container terminals [17, 20, 21]. However, their
efficiency and effectiveness still require improvement for long-term operation
performance, especially for application in autonomous SC task allocation
under uncertainties.

This paper focuses on investigating replanning strategies for large-scale
ASCS problems under the uncertainty of new job arrival and on provid-
ing related guidelines for the operation of automated container terminals.
Two event-driven rescheduling policies are developed and compared for the
long-term task allocation of autonomous straddle carriers to handle an un-
expected event of new job arrival: 1) Rescheduling New Jobs (RNJ) policy
(solving the ASCS problem with new arrival jobs only in each planning)
and 2) Rescheduling Combination of new and unexecuted Jobs (RCJ) policy

4

(solving the ASCS problem with all the new jobs and unexecuted jobs in the
previous planned schedule). To evaluate the performance of the two policies,
a multi-objective cost function is used in the form of combining the costs of
SC travelling, SC waiting and delay of finishing high-priority jobs via weight-
ing factors. For each rescheduling policy, a Branch-and-Bound with Column
Generation (BBCG) algorithm [12, 13] and a simple auction algorithm are
alternatively employed to get the schedule in each small-scale planning. Sim-
ulations are conducted based on the practical map of the Patrick container
terminal. These demonstrate the superior performance of the RCJ policy
compared with the RNJ policy for large-scale SC scheduling. They further
demonstrate the need for an improved auction algorithm to aid optimisation
of large scale SC scheduling, especially in long time horizon.

The remainder of this paper is organized into five sections. Section 2
describes the large-scale ASCS problem under uncertainty. Section 3 explains
the RNJ and RCJ rescheduling policies. The mathematic model of the ASCS
subproblem in each planning and its solution algorithms are provided in
Section 4. Simulation and comparative results are presented in Section 5.
Section 6 concludes this paper with final remarks.

2. Large-Scale ASCS Problem under Uncertainty

The Patrick AutoStrad container terminal (with satellite view shown in
Fig. 1) is a representative automated container terminal located in Bris-
bane, Australia, with Fig. 2 showing the schematic diagram of the static
seaport environment. The seaport can be modelled as a yard environment
map with 18380 positional nodes and 83155 predefined links [11, 14]. A fleet
of autonomous SCs, capable of independently lifting a container, transfer-
ring the container from the pickup position and setting down the container
at a destination, operate within the actual port environment for container
transportation between different yard areas.

The ASCS problem is defined as assigning container transportation jobs
to straddle carriers so that the SC and job constraints can be satisfied and
the objective cost can be optimised. For each job, the SC should pickup a
container from one position and transfer it to another position to set down.
Both the pickup and setdown operations should be started within a given
time window if required. In the solution of the ASCS problem, different job
sequences are assigned to different SCs and a given job is only assigned to one
SC. For the objective cost, the sum of costs of different yard resources, such

5

Straddle Carrier Traversal Area

Truck Node

Truck Gate

Quay Crane

Ship

Containers

Yard Area

Buffer Node

Quay Crane Bay

Straddle Carrier Traversal Area

Buffer Area

Truck Area

Yard Area

Figure 2: Schematic diagram of the static seaport environment [12].

as SC utilisation cost and delay cost of high-priority tasks, can be considered
in the ASCS problem solving and the SC operation performance evaluation.
For long-term performance, the main focus should be on actual benefit and
cost, and the objective should be maximising the economic benefit. Thus,
the unit of all the costs of the yard resources are needed to be the same (e.g.
dollars) [22].

In the reality of SC task allocation, there are often many jobs to be allo-
cated to many SCs, and hence the ASCS problem would always be in large-
scale. Schedules would be very difficult or even impossible to get (especially,
in the case of achieving the optimal solution) due to the large search space
of the combination of jobs and SCs. According to [12, 13], solving the ASCS
problem optimally is an integer-programming problem, which is an NP-hard
(Non-deterministic Polynomial-time hard) problem. Exact algorithms (e.g.,
BBCG algorithm [12, 13]) can only efficiently solve small-scale ASCS prob-
lems, such as the ones with 10 jobs and 3 vehicles. For a large-scale ASCS

6

problem, the BBCG algorithm is very time-consuming and it may not be able
to be applied in a real-time operation situation. For example, it took more
than 2 hours to get the optimal solution of a 40-job 9-vehicle ASCS problem
[12], which may not satisfy the requirement of solving the problem in cou-
ple of minutes for a practical SC operation. Generally speaking, exact (or
even nearly-optimal) solution algorithms (e.g., BBCG algorithm) may not
be efficient enough for large-scale SC task allocation problems at automated
container terminals.

In addition to its large-scale, SC operation at automated container ter-
minals is further characterized by the intermittent and unexpected arrival
of new tasks. Expected new tasks (e.g. transporting containers being dis-
charged from ships or trucks) may be taken into account in the ASCS problem
at the beginning of planning. However, many of the new arrival jobs are un-
expected tasks, and information about these jobs are unknown and unable
to be considered into the ASCS problem at the beginning of planning. In
this sense, the ASCS problem can not be solved in one go at the beginning.
Note, however, that, from the problem point of view, new job arrival does
not change the ASCS problem and does not increase the difficulty of solving
the ASCS problem. By contrast, from the operation point of view, new jobs
do affect the operation and need to be handled in different ways.

Replanning is commonly and effectively used to handle the large-scale
ASCS problem and dynamic new job arrivals for the operations of a large
fleet of straddle carriers. The large-scale ASCS problem can be divided into
small-scale subproblems for planning based on the job arrival time. In each
planning, the small-scale ASCS subproblem can be formulated and solved,
significantly reducing the computational time and effectively handling the un-
certainty of new job arrivals for large-scale SC task allocation. Furthermore,
in the operation of an automated container terminal, long-term operation
performance (e.g. operation cost and productivity) is key to evaluating the
efficacy of the operation of a multiple SC system. As un-predicted events, es-
pecially new job arrivals, occur frequently, simple replanning strategies have
been used in the practical implemented straddle carrier system. But which
replanning strategy performs better, when replanning should be triggered,
and how good the replanning strategy can perform in a long time horizon
still needs to be determined.

7

3. Rescheduling Policies

To address the issues stated above, two event-driven rescheduling policies
are presented and compared for large-scale task allocation of autonomous
straddle carriers under job arrival uncertainty at an automated container
terminal. The two rescheduling policies are Rescheduling New Jobs (RNJ)
policy and Rescheduling Combination of new and unexecuted Jobs (RCJ)
policy, with detailed descriptions given below.

3.1. RNJ policy

At the time of a new job arriving, the RNJ policy solves the ASCS prob-
lem with new arrival jobs only and keeps the planned schedules unchanged.
Assuming nnew new jobs arrive at time t, RNJ policy will solve the ASCS
subproblem (modelled in the next section) with the new number of jobs
n = nnew. Note that, the number of SCs m is unchanged in the rescheduling,
since we consider the same group of SCs during the whole scheduling opera-
tion in this paper. In the new ASCS subproblem, the initial position of SC v

is updated as the final position of SC v in the previous planned schedule, i.e.,
the setdown position of the last job assigned to the SC in the previous sched-
ule; while SC available time is updated as the finishing time of the previous
planned schedule assigned to SC v, i.e., the servicing time of SC v at the
setdown position of the last job assigned to SC v in the previous schedule.
Other parameters (e.g., operation time windows and SC travel time) for the
new ASCS subproblem can be updated based on the information of the new
arrival jobs. Then, the new ASCS subproblem can be solved by solution al-
gorithm (e.g., the BBCG algorithm or the auction algorithm to be developed
in the next section) to get the new schedule for the new jobs.

3.2. RCJ policy

At the time of a new job arriving, the RCJ policy solves the ASCS sub-
problem with new arrival jobs and unexecuted jobs from the previous planned
schedule, and the jobs being executed (i.e., the ones are being executed at
the time of new job arrivals) will keep unchanged and not be taken into ac-
count in the new replanning. Assuming nnew new jobs arrive at time t and
nunexecuted jobs have not yet been executed in the planned schedule at time
t, RCJ policy will solve the ASCS subproblem with the new number of jobs
n = nnew +nunexecuted. In the new ASCS subproblem of the new planning, SC
initial position (SC available time) is the setdown position (finishing time)

8

of the job being executed by the SC in the previous planned schedule, or the
setdown position (finishing time) of the last job assigned to the SC in the
previous plan if the SC has already finished all assigned jobs. Other param-
eters (e.g., operation time windows and SC travel time) for the new ASCS
subproblem can be updated based on the information of the new arrival jobs
and the unexecuted jobs. The new ASCS subproblem then can be solved by
ASCS solution algorithm (e.g., BBCG algorithm or auction algorithm) for
the new and unexecuted jobs.

In summary, the RNJ policy is to simply fix the already planned sched-
ule and only plan the new arrived tasks (unscheduled tasks) with available
straddle carriers. The RCJ policy is to fix the tasks already executed and
being executed unchanged and replan all the unexecuted tasks (scheduled
in the previous planning) together with the new arrived tasks (unscheduled
tasks). The jobs being executed will keep unchanged and will not be taken
into account in the newly rescheduling. For the RNJ policy, we can say
that the current schedule is left in place for execution and new arrival jobs
are rescheduled using available resources (i.e., straddle carriers). For the
RCJ policy, the unexecuted jobs in the previous schedule will be rescheduled
together with the new jobs in current scheduling, which is a kind of back-
tracking. It is worth mentioning that, in practice, the scheduling of straddle
carriers is operated in real time. Once the straddle carrier is executing a job,
it would not be able to change the job and it would not be free before the
job is finished. Thus, the jobs currently being executed are kept unchanged
in both polices. Moreover, both of the rescheduling policies are triggered by
the event of the arrival of new tasks. The BBCG algorithm and the auction
algorithm will be applied to obtain the optimal solution for the deterministic
task allocation problem in each planning (i.e., ASCS subproblem). Further-
more, multiple objective cost function, combining costs of SC travelling, SC
waiting and delay of high-priority job together, will be employed for the
evaluation of long-term performance of the presented polices when new tasks
keep arriving for a long time period. Note that the resource (i.e., straddle
carriers) used for the new scheduling can be available at the current time
and also at a later time. The available time of straddle carriers can be easily
considered in the ASCS subproblem modeling in the next section by setting
the time windows of the straddle carriers.

9

4. Model and Solution of ASCS Subproblem

Based on our previous work [12, 13], the ASCS subproblem in each plan-
ning is modelled and formulated as a Pickup and Delivery Problem with
Time Windows (PDPTW) [23] in the form of Binary Integer Programming
(BIP). Three types of costs for yard resource operation are considered as the
objective to be minimised in the modelling. The first one is to minimise the
total travelling cost of all SCs to finish all given jobs, which is proportional to
the total SC Travelling Time (SCTT). The second, is to minimise the total
cost of SC waiting during the transportation of a list of given jobs, being
proportional to the total SC Waiting Time (SCWT), which can reduce the
SC idle time and effectively use the SCs for container transhipment. The
third, is to minimise the total cost of delaying high-priority jobs [defined as
the proportional value of High-priority Job Finishing Time (HJFT)], since
such jobs have to be finished as soon as possible to satisfy customers’ re-
quirements. As the three objective costs are all proportional to time, they
are combined together via weighting factors (with the unit being dollar per
second) to form the objective cost (in dollar) for the ASCS subproblem and
the operation performance evaluation. Extending from [12, 13], the multi-
objective ASCS subproblem is then modelled in mathematical formulation
below.

4.1. Definitions of parameters and variables

The given parameters and defined variables for the multi-objective PDPTW-
BIP model of the ASCS subproblem are described as follows.

4.1.1. Given parameters

• n: number of jobs.

• m: number of SCs.

• V = {1, · · · , m}: SC set, indexed by v.

• S = {1, · · · , m}: SC initial points.

• F = {m + 2n + 1, · · · , 2m + 2n}: SC final points.

• P+ = {m + 1, · · · , m + n}: pickup point set.

• P− = {m + n + 1, · · · , m + 2n}: setdown point set.

10

P

1
+1

P+ P−V F

...
...

...
...

m

m+

m+
2n2n

m + 1

m + n

m + n

2m+

2n + 1

Figure 3: The definitions of vehicle and job point sets.

• P = P+ ∪ P−: job (pickup and setdown) point set.

• H+ ⊂ P+: pickup point set of high-priority jobs.

• Nv = P ∪ {S(v), F (v)}: point set including job points and initial and
final points of a particular SC v.

• [ei, ui]: time window for point i ∈ P ∪ S ∪ F , where ei is the earliest
servicing time and ui is the latest servicing time at point i.

• tij: travel time of a SC from point i to point j.

• Av: set of all feasible point-links corresponding to SC v. Problem
constraints (e.g., time windows) should be considered to obtain such a
feasible point-links set.

• hij ∈ {0, 1}, (i, j) ∈ Av: high priority job index. hi,j = 1 if i ∈ H+ and
j = n + i, otherwise hij = 0.

• λ1, λ2, λ3: weighting factors (in dollar per second) for SCTT, SCWT,
and HJFT objectives, respectively. Such weighting parameters can be
set as different combinations to meet different operational requirements.
Detailed theoretical analysis and simulation verification can be found
in [13].

11

Fig. 3 shows the parameter definitions of SC initial point set V , SC final
point set F , and job point set P , including job pickup point set P+ and job
setdown point set P−, in the ASCS problem based on PDPTW.

4.1.2. Defined variables

• Xv
ij ∈ {0, 1}: binary integer decision variable, v ∈ V , i, j ∈ Nv, i 6= j.

Xv
ij = 1 if SC v travels from point i to point j, otherwise Xv

ij = 0.

• Ti: the time at which SC services at point i ∈ P ∪ S ∪ F .

4.2. Model formulation

The ASCS subproblem of each planning can be modelled as the following
binary integer programming formulation.

Minimise
∑

v∈V

∑

(i,j)∈Av

[

λ1tij + λ2(Tj − Ti − tij) + λ3hijTj

]

Xv
ij (1)

Subject to
∑

v∈V

∑

j∈Nv

Xv
ij = 1, i ∈ P+, (2)

∑

i∈Nv

Xv
ij −

∑

i∈Nv

Xv
ji = 0, j ∈ P, v ∈ V, (3)

∑

j∈P+∪{F (v)}

Xv
S(v),j = 1, v ∈ V, (4)

∑

i∈P−∪{S(v)}

Xv
i,F (v) = 1, v ∈ V, (5)

∑

j∈P

Xv
ij −

∑

j∈P

Xv
j,n+i = 0, i ∈ P+, v ∈ V, (6)

∑

j∈Nv

Xv
ij − Xv

i,n+i = 0, i ∈ P+, v ∈ V, (7)

Ti + ti,n+i ≤ Tn+i, i ∈ P+, v ∈ V, (8)

Xv
ij(Ti + ti,j − Tj) ≤ 0, i, j ∈ Av, v ∈ V, (9)

ei ≤ Ti ≤ ui, i ∈ Nv, v ∈ V, (10)

Xv
ij ∈ {0, 1}, (i, j) ∈ Av, v ∈ V. (11)

12

The objective function (1) is to minimise the weighted sum cost of SCTT
(i.e.,

∑

v∈V

∑

(i,j)∈Av

tijX
v
ij), SCWT (i.e.,

∑

v∈V

∑

(i,j)∈Av

(Tj − Ti − tij)X
v
ij), and HJFT

(i.e.,
∑

v∈V

∑

(i,j)∈Av

hijTjX
v
ij), which in the long-term can maximise the economic

benefit of container terminal operation. Constraint (2) forces one pickup
point to be visited only once and by one SC only, which guarantee that all
jobs are finished and each job is only done once. (3) is the flow conservation
constraint, i.e., if a SC arrives at a pickup/setdown point, it should leave to
other points after picking up/setting down a container. Constraint (4) forces
a SC to start from its initial point. Constraint (5) forces SCs to travel to the
final point after finishing the assigned jobs. Constraints (6) and (7) force the
same SC to visit the pickup and setdown points of a job, and ensure the set-
down point is visited immediately following the pickup point of the same job.
Constraint (7) ensures that one SC can only transport one container at one
time. Constraint (8) forces a visit to the pickup point before the correspond-
ing setdown point for the same job. (9) is the time constraint in the case of
SC travelling from point i to point j. (10) is the time window constraint of
all SC and job points. (11) is the decision variable constraint. We see that
the ASCS subproblem is very difficult to solve (especially for a large-scale
problem), as integer programming problem is an NP-hard problem.

4.3. BBCG solution algorithm

To get the possible optimal schedule of SC task allocation in each plan-
ning, the exact algorithm based on branch-and-bound and column-generation
developed in our previous work [12, 13] is employed to solve the multi-
objective ASCS subproblem modelled as (1)-(11). The BBCG algorithm
embeds the column-generation method into the branch-and-bound frame-
work, with the solution structure shown in Fig. 4.

Specifically, according to the basic theory of Dantzig-Wolfe decomposi-
tion [24, 25], the multi-objective model (1)-(11) is decomposed into master
problem and subproblem. Column generation is employed to solve the linear
relaxation of the master problem [i.e., Restricted Master Problem (RMP)],
while dynamic programming is employed as the subproblem solver to gen-
erate new columns for the RMP. The branch-and-bound method is used for
the exploration of the integer solution for the master problem so as to get
the solution of the PDPTW-BIP model for the ASCS subproblem. The main
solving steps can be described as follows.

13

A S C S S u b �p r o b l e mP D P T W �B I P M o d e l M a s t e rP r o b l e mS u b p r o b l e mD a n t z i g � W o l f eD e c o m p o s i t i o n R e s t r i c t e dM a s t e r P r o b l e m(R M P)L i n e a rR e l a x a t i o n L i n e a rP r o g r a m m i n gS o l v e rD y n a m i cP r o g r a m m i n gB r a n c h a n d B o u n dE x p l o r a t i o n
D u a l V a r i a b l eN e w C o l u m n

Figure 4: Solution structure of BBCG algorithm.

1) Solve RMP by column generation, and go to 5) if there is no feasible
solution;

2) If the optimal solution to RMP is integer and better than the objective
of the previous solution, update optimal solution and go to 5);

3) For a non-integer solution case, select one non-integer variable (closest
to 0.5) and do branching;

4) Select one branch, update the searching space using the branching in-
formation, and construct a new RMP, then repeat step 1);

5) If all branches are all explored, output result and terminate the algo-
rithm, otherwise repeat 4).

For detailed ASCS subproblem modelling and BBCG solution procedure,
please refer to [12, 13].

4.4. Auction solution algorithm

In order to evaluate the performance of the two presented rescheduling
policies based on different ASCS solving algorithms and to compare the solu-
tion quality with that obtained using the BBCG algorithm, an approximate
algorithm, i.e., auction algorithm [26], is also developed to solve the ASCS
subproblem modelled as (1)-(11). The main idea is assigning a job to the cur-
rently available SC with minimal cost introduced. Detailed steps are shown
below.

1) Given the most recent available SC, calculate all the additional cost
that may be introduced into the objective function (1) when assigning
each job in the unassigned job list to this SC;

14

2) Assign the job with the minimal additional cost to the recent SC, and
update the available time of the recent SC;

3) Update the available SC order list according to the new SC available
time, and delete the assigned job from the unassigned job list;

4) If the unassigned job list is empty, output the result and terminate the
algorithm, otherwise repeat 1).

5. Simulation and Comparative Results

In this section, the simulation and comparative results are presented to
demonstrate the performance of the rescheduling polices (i.e., RNJ and RCJ
polices) with different solution algorithms (i.e., BBCG algorithm and auction
algorithm) for short-term and long-term task allocation of straddle carriers
under the event of a new job arrival. The rescheduling policies and the solu-
tion algorithms for the ASCS problem are implemented in MATLAB 7.12.0
[27]. Computational experiments are conducted on a computing cluster com-
puter with Linux operation system at the University of Technology, Sydney
[28]. The specification of the cluster computer is 2x 3.46GHz Intel Xeon
X5690 (6 Core) 6.4GT/s QPI, 96GB 1333MHz ECC DDR3-RAM.

5.1. Short-term performance testing

To test the quality and efficiency of the presented rescheduling policies
for a short time horizon (i.e., in solving small-scale scheduling problem), 3
different-scale ASCS problems (called testing cases below) are tested in the
simulation, with the total number of jobs being 18, 20, and 24, the total num-
ber of high-priority jobs being 6, 9, and 11, the number of new arrival jobs
in each replanning being 6, 4, and 6, and hence the number of replannings
being 3, 5, and 4, respectively. The number of SCs employed for the task
allocation is 3. The test problems (i.e., job lists and time windows) are ran-
domly generated based on the yard environment map of Patrick AutoStrad
container terminal, mentioned in Section 2 and Figs. 1 and 2.

In each test case, we use fixed and random replanning time to test the
performance of the RNJ and RCJ rescheduling policies. For the fixed one,
replanning time is fixed as 300s, which means that new jobs arrive every
300s and the ASCS subproblem is solved every 300s. For the random one,
replanning time is randomly generated based on uniformly-distributed func-
tion with the values in the range of [300,420]s, which means that the new
job arriving interval is a random value of time between 300s to 420s, and

15

the ASCS subproblem is repetitively solved in different replanning intervals.
Note that, the setting of new-job-arrival/replanning time in the simulation
is just a representative example, which is used to show the capability of the
rescheduling policies to handle different kinds of job arrival time. In real
applications, the replanning time intervals are based on the arrival time of
new jobs, as replanning is triggered by the event of new job arrival. Each test
case with fixed/random replanning time is tested 100 times. For comparative
purpose, we calculate a globally optimal solution by assuming that all jobs for
each time of testing are known at the beginning of scheduling, although their
arrival times are various. The globally optimal solution is obtained by solv-
ing the ASCS problem combining all jobs of all replanning using the BBCG
algorithm. Note that, the objective cost used to evaluate the performance
of the policies is the cost sum of SCTT, SCWT and HJFT with weighting
factors in (1) setting as λ1 = λ2 = λ3 = 1 dollar/s. The simulation results
and comparisons between the two rescheduling policies are shown in Table
1. In each case, the ASCS subproblem is solved by the BBCG algorithm.

In Table 1, Columns “Average Computational Time (s)” show the aver-
age computational time of each time of testing. Specifically, for each time of
testing, the computational time of the RNJ (or RCJ) policy is the sum of the
calculation time of all replanning (including the time for ASCS subproblem
updating and solving), while the computational time of the global problem is
the computing time to get the optimal schedule for the ASCS problem with
all jobs. From the table, we can see that to get the globally optimal solution
takes much more time than the solution obtained by the RNJ (or RCJ) pol-
icy, e.g., 12.386s vs 1.2304s (or 10.146s) for the 18-job fixed-replanning-time
testing case. This is because the computational complexity increases expo-
nentially as the size of the ASCS problem increases, i.e., solving the ASCS
problem with a large number of jobs needs much more time than replanning
several times in terms of solving several small-size ASCS subproblems. In
this sense, replanning several ASCS subproblems is much more efficient than
computing the ASCS problem in one go, no matter which policy is used.
Moreover, the average computational time of the RNJ policy to get all the
schedules for the allocation of container transportation tasks to the three SCs
is less than the average computational time of the RCJ policy, e.g., 1.1311s
vs 9.4133s for the 20-job random-replanning-time test case. This is mainly
because the size (number of jobs) of the ASCS subproblem for the RCJ policy
in each replanning is mostly larger than the one for RNJ policy, since RCJ
policy considers unexecuted jobs in additional to new arrival jobs.

16

Table 1: Performance of RNJ and RCJ rescheduling policies as compared with globally optimal scheduling for different-scale
container-transportation task allocation using three SCs based on BBCG algorithm (each case is tested 100 times)

Total Number of Number of Average Number of Objective Cost Comparison
Jobs (Number of Replanning Computational Time (s) Tests RCJ= RNJ/ RCJ/ RCJ/

High Priority Jobs) (Interval) Global RNJ RCJ Global Global Global RNJ
18 (6) 3 (Fixed) 12.386 1.2304 10.146 100 116.50% 100.00% 85.83%

3 (Random) 12.448 1.2982 10.651 100 116.29% 100.00% 85.99%
20 (9) 5 (Fixed) 24.606 1.1293 13.301 85 142.67% 101.56% 71.19%

5 (Random) 22.580 1.1311 9.4133 41 143.40% 105.67% 73.69%
24 (11) 4 (Fixed) 56.389 1.8418 38.617 85 132.98% 100.14% 75.30%

4 (Random) 53.702 1.8545 30.601 49 133.43% 102.99% 77.19%

Moreover, Column “Number of Tests RCJ=Global” of Table 1 shows in how many of the 100 tests the
RCJ policy gets the schedules with the same total cost as the cost of the globally optimal solution. From
the column, we can see that the RCJ policy can achieve optimality in many tests and can get the optimal
solution in all tests in the 18-job test cases. By contrast, from the simulation results, we find that the RNJ
policy does not achieve optimality in all the tests and that the total costs of schedules from the RCJ policy
are all better than the ones from the RNJ policy in each test. Thus, we can say that the RCJ policy is a
better policy in view of the number of testings with better qualities, as compared with the RNJ policy.

Furthermore, the Columns “Objective Cost Comparison” of Table 1 show the comparisons of the cost
values of the objective function between the globally optimal solution, the solution from RNJ policy, and
the solution from RCJ policy. From Columns “RNJ/Global” (the cost of RNJ divided by the optimal) and
“RCJ/Global” (the cost of RCJ divided by the optimal), we see that the RCJ policy has better performance
since it can get the schedule with nearly the same cost as the globally optimal solution with less than 6%

17

Table 2: Performance of RNJ and RCJ rescheduling policies for long-term SC task allocation (each case tests 10 times) using
BBCG algorithm and auction algorithm

Numbers of Number of Average Computational Time (s) Objective Cost Objective Cost
Jobs - High Replanning of Each Planning Comparison Comparison
Priority Jobs (Replanning RNJ RNJ RCJ RCJ RCJ/RNJ Auction/BBCG

- SCs Interval) BBCG Auction BBCG Auction BBCG Auction RNJ RCJ
40 - 18 - 3 5 (Fixed) 1.1199 0.0085 92.960 0.0114 72.40% 91.10% 152.06% 191.34%

5 (Random) 1.1050 0.0086 73.724 0.0116 73.38% 90.75% 152.57% 188.66%
48 - 20 - 4 6 (Fixed) 1.3427 0.0088 245.20 0.0108 75.07% 90.78% 170.38% 206.03%

6 (Random) 1.3048 0.0085 243.03 0.0104 76.13% 89.97% 171.82% 203.02%
60 - 27 - 6 6 (Fixed) 4.3606 0.0123 1688.9 0.0141 83.59% 91.96% 185.70% 204.28%

6 (Random) 4.1508 0.0121 1862.7 0.0128 82.54% 91.70% 186.91% 207.64%

bigger than the optimality, using less computational time than the global one as shown in the Columns
“Average Computational Time (s)”. In addition, from the last column [i.e., Column “RCJ/RNJ” (which
means the objective cost of RCJ divided the one of RNJ)], we can see that the average total costs of the
schedules from the RCJ policy can be reduced by maximally 26% and minimally 14% as compared with the
RNJ policy. In this sense, the RCJ policy is a better rescheduling policy in terms of achieving small cost.

Above all, the two presented rescheduling policies (i.e., RNJ and RCJ policies) can effectively solve the
task allocation problem of autonomous SCs with less computational time than the one of solving the whole
ASCS problem with all the jobs. Comparison of the two rescheduling policies reveals the RCJ policy to be
a better policy as it can achieve a higher quality of solution due to its considering both information from
unexecuted jobs and from new jobs. Although the RCJ policy may take more computational time than the
RNJ policy to get the solution, it is still feasible for short-term practical applications.

18

5.2. Long-term performance testing

For long-term scheduling, since the number of jobs to be scheduled would
be very large and many jobs are unknown at the beginning of the scheduling,
it is impossible to solve the global ASCS problem in the way (combining
all jobs together and solving the problem in one go optimally) mentioned in
the previous subsection. In this subsection, the RNJ and RCJ rescheduling
policies are tested for the long-term task allocation of autonomous straddle
carriers under the uncertainty of new job arrival.

Different-scale testing cases are used in the simulation, with the number
of new jobs arriving in each replanning varying from 8 to 12, the number of
replannings being 5 or 6, and the number of SCs being 3 to 6. The total
number of jobs changes from 40 to 60, with the total number of high-priority
jobs varying from 18 to 27. Details are shown in the first two columns of
Table 2. The test problems (i.e., job lists and time windows) are also ran-
domly generated based on the yard environment map. Fixed replanning time
(300s) and random replanning time (uniformly-distributed in [300,420]s) are
also used in the testing. Each test case is tested 10 times. The objective
cost is also calculated based on Equation (1) with λ1 = λ2 = λ3 = 1 dol-
lar/s. For comparison purpose, both the BBCG algorithm and the auction
algorithm are implemented to solve the ASCS subproblem so as to evaluate
the presented rescheduling policies. The simulation results and comparisons
are shown in Table 2.

For the efficiency of the two policies, Columns “Average Computational
Time (s) of Each Planning” of Table 2 show that the average computational
time of each planning via RNJ policy is much less than the one using the
RCJ policy when using the BBCG algorithm. RNJ policy only takes less
than 5 seconds to get the solution of each planning in all testings, while
the RCJ policy takes much more time than that, e.g., about 30 minutes
for the 60-job cases. On the other hand, when using the auction algorithm
to solve the ASCS subproblem in each planning, the average computational
times of RNJ and RCJ policies decrease greatly to almost the same length of
time, i.e., about 0.01s. This shows that both the rescheduling policies can be
efficient enough for real-time practical operation of straddle carriers if using
an efficient solution algorithm for the ASCS subproblem in each planning.

For the quality of the two policies, the total objective cost of the sched-
ules from the RCJ policy is much smaller than from the RNJ policy, with
the cost value improving more than 16 percent using the BBCG algorithm

19

and 8 percent using the auction algorithm, as shown in the Columns “Objec-
tive Cost Comparison RCJ/RNJ” of Table 2. By considering the efficiency
analysis together, using the auction algorithm, the RCJ policy can get better
solution with a very similar computational time as compared with the RNJ
policy. As compared with the BBCG algorithm, the auction algorithm takes
much less time to get the solution in each planning, but the quality of the
solution is not as good as the one from the BBCG algorithm. The objective
cost of the solution from the auction algorithm is much bigger than the one
from the BBCG algorithm as shown in the Columns “Objective Cost Com-
parison BBCG/Auction” of Table 2. For example, in a 48-job case, the cost
of the auction solution is more than 1.7 times of the BBCG solution when
using RNJ policy, while it is more than 2 times when using the RCJ policy.
This shows that the simple auction algorithm is still not good enough to be
employed in the rescheduling policies to achieve a high quality solution as it
is still a bit far away from the optimality.

In summary, the simulation results show the short-term and long-term
performance of the RNJ and RCJ rescheduling policies for large-scale task
allocation of autonomous straddle carries under the uncertainty of new job
arrival. The test results demonstrate the superiority of the RCJ rescheduling
policy in terms of solution quality compared with the RNJ policy. From the
results, we can also see that auction algorithm can be an efficient algorithm
for the ASCS subproblem solving in each planning to meet practical real-time
long-term operation requirement. However, the quality of the solutions from
auction algorithm with the RCJ policy is still not good enough as compared
with the ones from the BBCG algorithm. This shows a need for further
investigations for a more efficient algorithm for the ASCS subproblem solving
in each replanning to improve the solution quality for long-term operation of
straddle carriers at automated container terminals.

6. Conclusions

This paper presented and compared two rescheduling policies, i.e., RNJ
policy and RCJ policy, to solve large-scale scheduling problems and han-
dle unexpected events (especially new job arrival) in the task allocation of
autonomous SCs at automated container terminals. An optimisation model
based on PDPTW, the exact BBCG algorithm or the auction algorithm have
been employed to get the schedule for the ASCS subproblem in each planning.
The sum of the costs of SC travelling, SC waiting, and delay of high-priority

20

jobs have been used as the objective function for the solving of the ASCS
subproblem and for the evaluation of the performance of the rescheduling
policies. Computational and comparative simulations have demonstrated
the performance of the presented policies, the superiority of the RCJ policy
to achieve small objective cost, and the need for an improved solution algo-
rithm for the ASCS subproblem in each planning. Future research includes
improvement of the rescheduling policies to handle other unexpected events
(e.g., SC breakdown and delay), strategies for the selection of the replan-
ning time for rescheduling policy, and improvement of the ASCS subproblem
solving algorithm.

Acknowledgments

This work is supported by the ARC Linkage Grant (LP0882745), the
Patrick Stevedores Holdings and the University of Technology, Sydney, Aus-
tralia.

References

[1] S. Hartmann, A general framework for scheduling equipment and man-
power at container terminals, in: Container Terminals and Automated
Transport Systems, Springer, Berlin, 2005, Part 1, pp. 207-230.

[2] J. Zeng, W.-J. Hsu, Conflict-free container routing in mesh yard layouts,
Robotics and Autonomous Systems, 56 (5) (2008) 451-460.

[3] I.F.A. Vis, R. de Koster, Transshipment of containers at a container
terminal: an overview, European Journal of Operational Research, 147
(2003) 1-16.

[4] S. Hoshino, J. Ota, A. Shinozaki, H. Hashimoto, Hybrid design method-
ology and cost-effectiveness evaluation of AGV transportation systems,
IEEE Transactions on Automation Science and Engineering, 4 (3) (2007)
360-372.

[5] M. Grunow, H.-O. Günther, M. Lehmann, Dispatching multi-load AGVs
in highly automated seaport container terminals, OR Spectrum, 26
(2004) 211-235.

21

[6] E.K. Xidias, P.N. Azariadis, Mission design for a group of autonomous
guided vehicles, Robotics and Autonomous Systems, 59 (1) (2011) 34-43.

[7] V.D. Nguyen, K.H. Kim, A dispatching method for automated lifting
vehicles in automated port container terminals, Computers & Industrial
Engineering, 56 (3) (2009) 1002-1020.

[8] D. Liu, A.K. Kulatunga, Simultaneous planning and scheduling for
multi-autonomous vehicles, in: K.P. Dahal, K.C. Tan, P.I. Cowling
(Eds.), Evolutionary Scheduling, Springer-Verlag, 2007, pp. 437-464.

[9] S. Yuan, H. Lau, D. Liu, S. Huang, G. Dissanayake, D. Pagac, T. Pratley,
Simultaneous dynamic scheduling and collision-free path planning for
multiple autonomous vehicles, in: Proceedings of the IEEE International
Conference on Information and Automation (ICIA), Zhuhai/Macau,
China, June 2009, pp. 522-527.

[10] D. Liu, X. Wu, A.K. Kulatunga, G. Dissanayake, Motion coordination
of multiple autonomous vehicles in dynamic and strictly constrained
environments, in: Proceedings of the IEEE International Conference on
Cybernetics and Intelligent Systems (CIS), Bangkok, Thailand, June
2006, pp. 204-209.

[11] S. Yuan, B.T. Skinner, S. Huang, D. Liu, G. Dissanayake, H. Lau, D.
Pagac, A job grouping approach for planning container transfers at auto-
mated seaport container terminals, Advanced Engineering Informatics,
25 (3) (2011) 413-426.

[12] B. Cai, S. Huang, D. Liu, S. Yuan, G. Dissanayake, H. Lau, D. Pa-
gac, Optimisation model and exact algorithm for autonomous straddle
carrier scheduling at automated container terminals, in: Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), San Francisco, USA, Sep. 2011, pp. 3686-3693.

[13] B. Cai, S. Huang, D. Liu, S. Yuan, G. Dissanayake, H. Lau, D. Pagac,
Multi-objective optimisation for autonomous straddle carrier scheduling
at automated container terminals, IEEE Transactions on Automation
Science and Engineering, 10 (3) (2013) 711-725.

[14] S. Yuan, B.T. Skinner, S. Huang, D. Liu, G. Dissanayake, H. Lau, D.
Pagac, T. Pratley, Mathematical modelling of container transfers for a

22

fleet of autonomous straddle carriers, in: Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA), Anchorage,
Alaska, USA, May 2010, pp. 1261-1266.

[15] G. Nelmes, Container port automation, in: Springer Tracts in Advanced
Robotics: Field and Service Robotics, vol. 25, Springer, Berlin, 2006, pp.
3-8.

[16] H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, G. Nelmes, Field
and service applications - an autonomous straddle carrier for movement
of shipping containers - from research to operational autonomous sys-
tems, IEEE Robotics & Automation Magazine, 14 (3) (2007) 14-23.

[17] G. Paul, D. Liu, Replanning of multiple autonomous vehicles in ma-
terial handling, in: Proceedings of IEEE International Conference on
Robotics, Automation & Mechatronics, Thailand, June 2006, pp. 231-
236.

[18] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufac-
turing systems, Journal of Scheduling, 12 (4) (2009) 417-431.

[19] M. Merdan, T. Moser, P. Vrba, S. Biffl, Investigating the robustness of
re-scheduling policies with multi-agent system simulation, International
Journal of Advanced Manufacturing Technology, 55 (2011) 355-367.

[20] X.F. Yin, L.P. Khoo, C.-H. Chen, A distributed agent system for port
planning and scheduling, Advanced Engineering Informatics, 25 (3)
(2011) 403-412.

[21] T. Thurston, H. Hu, Distributed agent architecture for port automation,
in: Proceedings of the 26th Annual International Computer Software
and Applications Conference (COMPSAC), Oxford, England, 26-29th
Aug., 2002.

[22] B.P. Gerkey, M.J. Mataric, A formal analysis and taxonomy of task
allocation in multi-robot systems, International Journal of Robotics Re-
search, 23 (9) (2004) 939-954.

[23] Y. Dumas, J. Desrosiers, F. Soumis, The pickup and delivery prob-
lem with time windows, European Journal of Operational Research, 54
(1991) 7-22.

23

[24] L.A. Wolsey, Integer Programming, John Wiley & Sons, New York, NY,
1998.

[25] D.-S. Chen, R.G. Batson, Y. Dang, Applied Integer Programming: Mod-
eling and Simulation, John Wiley & Sons, Hoboken, NJ, 2010.

[26] B.P. Gerkey, M.J. Matarić, Sold!: Auction methods for multirobot coor-
dination, IEEE Transactions on Robotics and Automation, 18 (5) (2002)
758-768.

[27] The MathWorks Inc. MATLAB 7.12.0 (R2011a), 2011.

[28] Faculty of Engineering and IT, University of Technology, Syd-
ney, The High Performance Computing Linux Cluster, available at
https://cluster.eng.uts.edu.au/.

Binghuang Cai was born in Chenghai, Guangdong, China,
in 1981. He received the B.S. degree in electronic informa-
tion engineering from Shantou University, Shantou, China,
in 2004, the M.S. degree in signal and information process-
ing from Shantou University, Shantou, China, in 2007, and
the Ph.D. degree in communication and information systems
from Sun Yat-sen University, Guangzhou, China, in 2010.

He has been a Research Fellow with the Centre for Autonomous Systems,
University of Technology, Sydney, Australia, from September 2010 to May
2012. He is currently a Postdoctoral Associate at the University of Pitts-
burgh. His research interests include robotics, optimisation, neural networks,
and image/signal processing. His current research focuses on coordination
and planning of autonomous robots.

Shoudong Huang received the Bachelors’ and Masters’ de-
grees in mathematics and the Ph.D. degree in automatic
control from Northeastern University, Shenyang, China, in
1987, 1990, and 1998, respectively. He is currently an As-
sociate Professor at the Centre for Autonomous Systems,
Faculty of Engineering and Information Technology, Univer-
sity of Technology, Sydney (UTS), Australia. His research

interests include nonlinear control systems and mobile robots simultaneous
localisation and mapping (SLAM), exploration, navigation, and path plan-
ning.

24

Dikai Liu received the B.E. degree in mechanical engineer-
ing, the M.E. degree in mechatronics, and the Ph.D. degree
in dynamics and control from the Wuhan University of Tech-
nology, Wuhan, China, in 1986, 1991, and 1997, respectively.
He is currently a Professor of Mechanical and Mechatronic
Engineering at the Centre for Autonomous Systems, Fac-
ulty of Engineering and Information Technology, University

of Technology, Sydney (UTS), Australia. His research interests include novel
methods and algorithms for intelligent machines, and intelligent robotic sys-
tems including autonomous robots for complex infrastructure maintenance,
robot teams for material handling, assistive robots for assisted care, and
bio-inspired robots.

Gamini Dissanayake received the graduate degree in me-
chanical / production engineering from the University of
Peradeniya, Peradeniya, Sri Lanka, and the M.Sc. degree in
machine tool technology and the Ph.D. degree in mechanical
engineering (Robotics) from the University of Birmingham,
Birmingham, U.K., in 1981 and 1985, respectively. He is
currently the James N Kirby Professor of Mechanical and

Mechatronic Engineering at the University of Technology, Sydney (UTS),
Australia. He leads the Centre for Autonomous Systems at UTS. His current
research interests include localisation and map building for mobile robots,
navigation systems, dynamics and control of mechanical systems, cargo han-
dling, optimisation, and path planning.

25

