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Linear MonoSLAM: A Linear Approach to Large-Scale Monocular
SLAM Problems

Liang Zhao, Shoudong Huang and Gamini Dissanayake

Abstract— This paper presents a linear approach for solving
monocular simultaneous localization and mapping (SLAM)
problems. The algorithm first builds a sequence of small initial
submaps and then joins these submaps together in a divide-
and-conquer (D&C) manner. Each of the initial submap is
built using three monocular images by bundle adjustment (BA),
which is a simple nonlinear optimization problem. Each step
in the D&C submap joining is solved by a linear least squares
together with a coordinate and scale transformation. Since the
only nonlinear part is in the building of the initial submaps,
the algorithm makes it possible to solve large-scale monocular
SLAM while avoiding issues associated with initialization,
iteration, and local minima that are present in most of the
nonlinear optimization based algorithms currently used for
large-scale monocular SLAM. Experimental results based on
publically available datasets are used to demonstrate that the
proposed algorithms yields solutions that are very close to those
obtained using global BA starting from good initial guess.

I. INTRODUCTION

The monocular simultaneous localization and mapping
(MonoSLAM) or structure-from-motion (SFM) problem con-
sidered in this paper refers to the process of estimating the
three-dimensional structure and the camera trajectory from
a sequence of images captured by a single camera [1][2].
Once the association among the features present in a set of
images are available, bundle adjustment (BA) can be used
to obtain the trajectory and structure by solving a nonlinear
least squares problem that minimizes the re-projection errors
[3]. In general, for small-scale problems BA easily converges
to the globally optimal solution. However, when the number
of images is large, BA can be very time-consuming and can
converge to a local minimum, unless a good initial guess to
the structure and motion is used.

To improve the convergence and efficiency of BA and
avoid local minima, skeletal graphs are proposed by Snavely
et. al. [4], where a small skeletal subset of images are used
to reconstruct the skeletal set, then the remaining leaf images
are added using pose estimation. This strategy for improving
the quality of initial guess is used in [5][6] for the city-scale
3D reconstruction using conjugate gradient method to solve
the linear equations involved in the BA algorithm. To further
improve the efficiency of large-scale BA, exact minimum
degree ordering and block-based preconditioned conjugate
gradient are proposed in [7] and subgraph-preconditioned
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conjugate gradients is proposed in [8]. However, local op-
timization method for the global BA often requires a large
number of iterations to converge [5] even if a good initial
value is available.

Building small-scale submaps and then combining the
submaps to build the global map is another efficient way
to solve large-scale monocular SLAM problems [9][10][11]
[12]. In [13], a number of submaps are first independently
built, then the variables in the submaps that are not directly
used in the process of merging of submaps are factored out
in order to speed up the submap joining process. In [14], the
relative scales between submaps are implicitly included in
the state vector of the global map and are optimized through
the nonlinear least squares optimization based submap join-
ing process. In all the above submap based algorithms, the
process of combining the submaps requires a solution to a
nonlinear optimization problem, thus the initialization is an
important issue that require further investigation [13].

This paper presents a linear approach for solving monoc-
ular SLAM problems by combining small submaps. The
process begins by building a set of initial submaps by BA.
Then a large-scale monocular SLAM problem is solved by
joining these initial submaps through a divide-and-conquer
(D&C) [15] process. An initial submap is defined as a
small submap built using three images. Building these initial
submaps is the only part requiring nonlinear optimization.
Each step of joining two submaps in the D&C process is
formulated as a linear least squares problem by judiciously
selecting an appropriate coordinate and scale transformation
of the submaps. Evaluations using publicly available datasets
show that the solutions obtained using the linear approach
are very accurate. If really necessary, a global BA can be
performed using the Linear MonoSLAM result as the initial
value.

Work presented in this paper is based on our recent
work on Linear SLAM [16] where range and bearing sen-
sors are required. The major additional challenge in Linear
MonoSLAM is that the different initial submaps built using
three monocular images have different scales. Thus a new
strategy for a scale and coordinate transformation is required
before the two submaps can be joined in a linear way.

The paper is organized as follows. Section II provides
some preliminaries for submap joining approach. Section III
presents the framework of the proposed linear algorithm for
monocular SLAM. Some details of the Linear MonoSLAM
algorithm is presented in Section IV. Section V presents
the experimental results using large-scale datasets. Finally,
Section VI concludes the paper.



II. PRELIMINARIES FOR SUBMAP JOINING

A. Submap Joining in SLAM
It is well known that the problem of point feature based

range-bearing SLAM [17] can be formulated as a nonlinear
optimization problem

minimize ‖Z − f(X)‖2IZ (1)

where Z is the vector of measurements (observations and
odometry information), X is the state vector containing
all the feature positions and the robot poses, f(X) is the
nonlinear function describing the relation between X and Z,
and IZ is the information matrix (inverse of the covariance
matrix) of the measurement noises.

Submap joining has shown to be an efficient strategy for
solving large-scale SLAM problems. The idea of submap
joining is to separate the measurements Z into different parts
and use each part to build a small submap, then combine the
submaps to get the global map. Suppose the measurements
are divided into two parts and each part is used to build one
submap. The two submaps are denoted by (X̂1, IX1) and
(X̂2, IX2). Here X1 and X2 are the state vectors of the two
submaps, defined in two different local coordinate frames.
IX1

and IX2
are the corresponding information matrices.

When combining the two submaps, one can use the
submaps (X̂1, IX1

) and (X̂2, IX2
) as two integrated mea-

surements to build the global map (X̂, IX) [18]. Since the
information matrices IX1

and IX2
represent the uncertainty

of the submap estimates X̂1 and X̂2, they are used as the
weights of the nonlinear least squares problem [19]. Thus
the optimization problem becomes

minimize ‖X̂1 − f1(X)‖2IX1
+ ‖X̂2 − f2(X)‖2IX2

(2)

where f1(X) and f2(X) are the functions relating the global
state vector X to the submap state vectors.

In traditional submap joining, the submap state vectors X1

and X2 are defined in different coordinate frames, at least
one of the functions f1(X) and f2(X) is nonlinear no matter
which coordinate frame is used for defining the global state
vector X. Thus the submap joining problem (2) is a nonlinear
optimization problem.

B. Submap Joining in Linear SLAM
Different from the traditional submap joining algorithms

as described in Section II-A, in Linear SLAM [16], submap
(X̂1, IX1

) is built in the coordinate frame defined by its end
pose, while submap (X̂2, IX2) is built in the coordinate frame
defined by its start pose, which is the same as the end pose of
(X̂1, IX1

). The coordinate frame of the global map (X̂, IX),
is defined by the robot end pose of submap (X̂2, IX2

), or the
robot start pose of submap (X̂1, IX1

).
It is shown in [16] that although the joining of the two

submaps to get the global map in (2) is still a nonlinear
optimization problem, it is equivalent to building the global
map in the coordinate frame defined by the end pose of the
first submap by a linear least squares optimization, plus a
nonlinear coordinate transformation. Please refer to [16] for
the details.

C. Submap Joining in Monocular SLAM

The submap joining idea can also be applied to monocular
SLAM problem. However, for monocular SLAM, the abso-
lute scale cannot be observed by a single camera unless some
external information is available. Thus the scales in different
submaps will be different. When joining the submaps with
different scales, the observation function f1(·) and f2(·) in
(2) must be carefully formulated by considering the relative
scale between the two submaps.

In the next sections, we will show that similar to Linear
SLAM for joining submaps built from range-bearing infor-
mation, submap joining in monocular SLAM can also be
formulated as a linear least squares problem by carefully
selecting the coordinate frames and performing coordinate
and scale transformation.

III. THE FRAMEWORK OF LINEAR MONOSLAM
A. Building Initial Submaps

In the proposed linear algorithm for monocular SLAM,
the only nonlinear optimization part is the building of a
sequence of small submaps for the linear submap joining
algorithm. Thus, we propose to build these submaps as small
as possible and call them initial submaps. This will make
the whole process of solving monocular SLAM problem as
linear as possible. In this paper, each initial submap is built
with 3 images, and there are two common camera poses
between two adjacent initial submaps. The reason for having
two common poses, instead of one common pose as in the
submap joining algorithms in the traditional range-bearing
SLAM, is to make sure that the relative scale between two
adjacent submaps can be worked out easily.

In order to get the best quality of the initial submaps, BA
is used to build the initial submaps. BA is the gold standard
for monocular SLAM as it solves the optimization problem
involving all observations as shown in Fig. 1.

When performing BA, 7 degree of freedom (DoF), namely
6 DoF for coordinate frame and 1 DoF for scale, should be
fixed [20]. The rotation and translation of one pose can be
fixed as 0 to define the coordinate frame, while one more
variable needs to be fixed as the scale. Without loss of
generality, we assume the translation in the Z direction is
the largest element in the translation vector. Thus we can fix
the z value of the translation from one pose to another pose
as 1 to define the scale.

B. Submap Transformation

When building submaps in Section III-A, if we fix the first
pose P1 as 0 to define the coordinates frame, and fix the z
value of the translation from the first pose P1 to the second
pose P2 as 1 to define the scale of the submap, then we can
get submap L = (X̂, I) in Fig. 1(a). If we fix the second
pose P2 as 0 to define the coordinates frame, and fix the z
value of the translation from the second pose P2 to the third
pose P3 as 1 to define the scale of the submap, then we can
get submap L′ = (X̂

′
, I ′) in Fig. 1(b).

Note that the two submaps in Fig. 1, L and L′, can be
easily converted from one to another by applying coordinate
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Fig. 1. Building different submaps from the same observations by using
different coordinate frames and different scales. The two submaps can be
transformed to each other by applying a coordinate and scale transformation.

and scale transformation. Thus there are two ways to obtain
L′. One is to solve BA by defining X′ as the state vector,
another is to first get the optimal estimate of the submap L =
(X̂, I), then apply a coordinate and scale transformation. The
results using these two ways are identical provided that the
scale is not degenerated by zero translation (The degenerate
case can be avoided by simply selecting the keyframes.)

The key idea of our Linear MonoSLAM algorithm is to
make necessary coordinate and scale transformation on the
submaps such that the two submaps to be joined together are
in the same coordinate frame and with the same scale.

C. Joining Two Submaps

Suppose the two submaps to be joined together are L′1
and L2 as shown in Fig. 2. Here L′1 is built by using the
projections from Image 1, 2 and 3, and L2 is built by using
the projections from Image 2, 3 and 4.

Both L′1 and L2 are in the coordinate frame of P2, with
the z value of the translation from P2 to P3 equal to 1 as
scale. Thus the two submaps are in the same coordinates and
with the same scale. So we can define the global state vector
X in the same coordinate frame, and the joining of these two
submaps can be solved as a linear least squares problem, as
seen in Fig. 2.

D. Solving the MonoSLAM Problem by Divide-and-Conquer

The process of joining a sequence of submaps using
divide-and-conquer (D&C) method is illustrated in Fig. 3.
The structure is similar to that in [15]. It can be seen that
at each step, only two submaps are joined together. As the
level in D&C increases, the size of the two submaps to be
joined together becomes larger and larger.

As can be seen from Fig. 3, two submaps L′1 and L2

are in the same coordinates with the same scale and they are
joined together to build submap L12. Similarly, two submaps
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Fig. 2. When the two submaps are in the same coordinate frame with the
same scale, joining the two submaps becomes a linear problem.

L′3 and L4 are also in the same coordinates with the same
scale and they are joined together to build submap L34. The
result of submap L12 and submap L34 are then transformed
into L′12 and L′34 with the same coordinate frame P3. The
two submaps L′12 and L′34 are then joined together to get
submap L1234.

Since the two submaps to be joined together are always in
the same coordinates with the same scale, the joining process
is a linear least squares problem. Thus, the whole submap
joining process can be done by joining a number of initial
submaps (e.g. submaps L1, L2, L3, and L4 in Fig. 3) to
build the global map by a D&C method, with only solving
linear least squares problems and performing coordinate and
scale transformations.

IV. SOME DETAILS OF LINEAR MONOSLAM
A. Building Initial Submaps by BA

The original observations of monocular SLAM are the fea-
ture projections in the images. Thus the feature projections
from three images are used to build an initial submap by
estimating the camera poses and feature positions using these
observations. Since only three camera poses are involved, the
initial value can be easily obtained, such as using the five-
point algorithm [21]. After obtaining the optimal estimate of
the state vector in BA, the corresponding information matrix
can be obtained by I = JTJ where J is the Jacobian of all
the projections in BA, evaluated at the optimal estimate of
the state vector.

B. Transformation of the Submap

Suppose submap L1 is given by

L1 = (X̂1, IX1) (3)

where X̂1 is the estimate of the state vector X1, and IX1 is
the associated information matrix.



 

Submap L1 

 

Linear Submap Joining 

Z3=1 

 

P4 

P2 

P3 
Z3=1 

 

 

 

P1 
P2 

P3 

Submap L12 

 

Z3=1 

 

 

 

P1 
P2 

P3 

Z3=1 

 

 

 

P4 

P2 

P3 

 

 

z2=1 P1 

P2 

P3 

Z4=1 

 

 

 

P4 P5 

P3 

Z5=1 

 

P4 
P5 

P3 
 

 

Z5=1 

 

P4 
P5 

P3 
 

 

P6 

Submap L2 

 
Submap L3 

 

Submap L4 

 

Submap L’1 

 

Submap L’3 

 

Submap L34 

 

Linear Submap Joining 

Transformation Transformation 

Z5=1 

 

P4 P5 
P6 

 

 

P4 

P2 

P3 

Z4=1 

 

P1 

 

 

P4 

P2 

P3 

Z4=1 

 

P1 

 

 

P5 

P6 

Z4=1 

 

P4 

P5 P3 

P6 

 

 

Transformation Transformation 

Submap L’12 

 

Submap L’34 

 

Submap L’1234 

 

Linear Submap Joining 

Fig. 3. The proposed divide-and-conquer process in Linear MonoSLAM. The poses and features in the circles are the common poses and features between
two submaps.

The state vector X1 is defined as (for simplicities, some
transposes of vectors are omitted in this paper)

X1 = [1r2, 1x2,
1y2,

1r3, 1t3, 1F]. (4)

Here and in the following, a number i at the upper left corner
of a variable means the coordinate frame is Pi.

In the state vector X1 in (4), pose P3 in the coordinate
frame of P1 is presented by

1P3 = [1r3, 1t3] (5)

where 1r3 = [1α3
1β3

1γ3]
T is the vector containing the

three Euler angles, and 1t3 = [1x3,
1y3,

1z3]
T is the

translation; 1F represents all the feature XYZ positions in
submap L1. P1 = 0 is fixed as the coordinate frame and
1z2 = 1 is fixed as the scale of submap L1, thus they are
not in the state vector.

The state vector of submap L′1 = (X̂
′
1, IX′

1
) is denoted as

X′1 = [2r1, 2t1, 2r3, 2x3,
2y3,

2F]. (6)

Here P2 = 0 is fixed as the coordinate frame and 2z3 = 1
is fixed as the scale of submap L′1, thus they are not in the
state vector X′1.

The relation between X1 and X′1 is the coordinate and
scale transformation function given by

X′1 = g(X1)⇒



2r1 = r−1(1R
T
2 )

2t1 = −1R2 [
1x2,

1y2, 1]
T /zs

2r3 = r−1(1R3
1R

T
2 )

2x3 = xs/zs
2y3 = ys/zs
2F = 1R2 (

1F− [1x2,
1 y2, 1]

T )/zs

(7)

where 1R2 = r(1r2), 1R3 = r(1r3) are the rotation matrices
of pose 1P2 and pose 1P3 in the state vector X1. And r(·) and
r−1(·) are the angle-to-matrix and matrix-to-angle functions.

In (7), the scale factor zs as well as xs and ys can be
computed as

[xs, ys, zs]
T = 1R2 (

1t3 − [1x2,
1 y2, 1]

T ). (8)

If we have already got the submap L1 = (X̂1, IX1), then
the estimate of the state vector X′1 in submap L′1 can be
obtained by

X̂
′
1 = g(X̂1). (9)

The corresponding information matrix IX′
1

can also be
obtained by

IX′
1
= ∇T IX1

∇ (10)
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Fig. 4. Linear MonoSLAM result of PARKING-6L dataset.

where ∇ is the Jacobian of X1 with respect to X′1, evaluated
at X̂

′
1

∇ =
∂g−1(X′1)
∂X′1

|X̂′
1

(11)

Here X1 = g−1(X′1) is the inverse function of g(·) in (7).

C. Joining Two Submaps as a Linear Least Squares Problem

Suppose there are two submaps L′1 and L2 given by

L′1 = (X̂
′
1, IX′

1
), L2 = (X̂2, IX2) (12)

where the state vectors X′1 and X2 of submaps L′1 and L2

are defined as

X′1 = [2r1, 2t1, 2F1,
2r3, 2x3,

2y3,
2FC ]

X2 = [2r3, 2x3,
2y3,

2FC ,
2r4, 2t4, 2F2]

(13)

and IX′
1

and IX2
are the associated information matrices.

Here P2 = 0 is fixed as the coordinate frame and 2z3 = 1
is fixed as the scale for both L′1 and L2, thus L′1 and L2 are
in the same coordinate frame, with the same scale.

Instead of using 2F to represent features as in (6), in the
state vectors X′1 and X2 in (13), 2F1,

2 FC ,
2 F2 are used to

represent the features, where 2FC represents the common
features appear in both of the two submaps, while 2F1

and 2F2 represent the features only appear in L′1 or L2,
respectively.

(a) PARKING-6L Dataset (b) CAMPUS-2L Dataset

Fig. 5. The trajectories of Malaga monocular datasets.
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Fig. 6. Linear MonoSLAM result of CAMPUS-2L dataset.

Denote the state vector of submap L12 as

X = [2r1, 2t1, 2F1,
2r3, 2x3,

2y3,
2FC ,

2r4, 2t4, 2F2].
(14)

Here all the variables are in the coordinate frame of P2, with
2z3 = 1 as the scale, so P2 and 2z3 are not included in X.

Because the two submaps L′1 and L2, as well as the
submap L12 are all in the same coordinates with the same
scale, the observation functions f1(·) and f2(·) in (2) of
submap joining becomes linear, thus the joining of two
submaps L′1 and L2 to build the submap L12 = (X̂, IX)
becomes a linear least squares problem

minimize ‖X̂
′
1 −A1X‖2IX′

1

+ ‖X̂2 −A2X‖2IX2
(15)

where the coefficient matrices A1 and A2 are formed by
identity and zero matrices as follows

A1 =
[
In1
| 0n1×m2

]
, A2 =

[
0n2×m1

| In2

]
. (16)

Here n1 and n2 are the dimensions of the state vectors X′1
and X2 of the two submaps, respectively. m1 = 3k1 + 6
and m2 = 3k2 + 6, where k1 and k2 are the number of
features in 2F1 and 2F2, respectively. Thus m1 and m2 are
the dimensions of the poses and features in the state vectors
X′1 and X2, which only appear in L′1 or L2.

The optimal solution X̂ of this linear least squares problem
can be computed by solving the linear equation

(AT IZA)X̂ = AT IZZ. (17)

where Z = [X̂
′T
1 , X̂

T

2 ]
T , IZ = diag(IX′

1
, IX2

), and A =
[AT

1 , A
T
2 ]

T .
The corresponding information matrix of X̂ can be com-

puted as
IX = AT IZA (18)

It is obvious that the above linear least squares formulation
can be extended to the joining of two submaps with any size
as long as they are in the same coordinate frame and with
the same scale.



Fig. 7. Linear MonoSLAM result of photogrammetric Village dataset.

V. EXPERIMENTAL RESULTS

First publicity available Malaga 2009 Robotic Dataset
Collection [22] is used for evaluating the proposed algorithm.
As described in [22], a centimeter-level ground truth is
provided which can allow us to compare the results of the
proposed linear approach.

Images captured by the right camera are used. The image
resolution is 1024× 768 and camera calibration parameters
are provided in the dataset. SIFT [23] and RANSAC [24]
are used for feature detection with subpixel accuracy and for
matching, including the loop closure matching.

As described in Section III-A, every three images are
used to build submaps as the initial submaps by BA. To
insure the quality of the initial submaps, in this paper, the
initial submaps are first built using BA with parallax angle
feature parametrization (ParallaxBA) [14], which has better
convergence and accuracy as compared with BA using Eu-
clidean XYZ feature parametrization, and then transformed
into XYZ presentation. With initial guess computed by two-
view geometry, ParallaxBA using 3 frames converged easily
with the mean square of the re-projection errors around
0.1 within 3-5 iterations, while BA using XYZ took more
iterations to converge and resulted in re-projection errors
about twice as large (because of the singularity problems).

A. PARKING-6L Dataset

First we select one sequence of images collected from a
250m close loop trajectory (Fig. 5(a)) with 508 images. There
are 508 poses, 190,711 features and 567,836 projections in
total after SIFT matching and RANSAC outlier removal.
The result of Linear MonoSLAM is shown in Fig. 4(a). The
estimated poses are compared with the result of global BA
as well as the ground truth in Fig. 4(b).

B. CAMPUS-2L Dataset

In the CAMPUS-2L dataset (Fig. 5(b)), the 2.2km long
trajectory with two loops is used in the experiments. The
1,020 keyframers are selected from the 5,103 images, by
simply selecting one from every 5 images. There are 1,020
poses, 198,563 features and 575,644 projections in total by
using SIFT and RANSAC. The result of the proposed Linear
MonoSLAM approach, the global BA result and the ground
truth are shown in Fig. 6.

Fig. 8. Linear MonoSLAM result of photogrammetric College dataset.

Two aerial photogrammetric datasets are also used for
evaluating the proposed Linear MonoSLAM algorithm. For
these two datasets, the cameras are mounted on the aerial
plane platforms to map the ground surface.

C. Aerial Photogrammetric Village Dataset

There are 90 images in the Village dataset, which are taken
by digital mapping camera (DMC) in snake track with image
resolution 7680 × 13824 pixels. After SIFT and RANSAC
are processed, 273,131 features and 779,268 projections are
extracted and matched as the input to the proposed Linear
MonoSLAM algorithm. The mapping result as well as the
camera poses by Linear MonoSLAM are shown in Fig. 7.
As comparison, the camera poses result by global BA is also
shown in Fig. 7.

D. Aerial Photogrammetric College Dataset

In the College dataset, 468 images with resolution 5616×
3744 are captured by Cannon camera. For this dataset,
444,596 features and 1,368,258 projections are obtained after
the process of SIFT and RANSAC, and used in the proposed
Linear algorithm. The Linear MonoSLAM result as well as
the poses of the global BA result are shown in Fig. 8.

The associated video presents the divide-and-conquer
process of Linear MonoSLAM for the CAMPUS-2L and
College datasets.

VI. DISCUSSION, CONCLUSION AND FUTURE WORK

This paper presents a linear approach for solving monoc-
ular SLAM problems. The initial submaps are built by BA
and then joined together in a divide-and-conquer manner by
solving linear least squares problems and applying coordi-
nate and scale transformations. The reason why linear least
squares can be used is that the two submaps are transformed
into the same coordinate frame with the same scale before
they are fused together. Experimental results demonstrated
that the linear approach can generate the camera trajectory
and feature structure very close to that using global BA.

Since nonlinear optimization is only used for the building
of small size initial submaps containing 3 camera poses, good
initial value of the nonlinear optimization can be obtained
easily without worrying about the local minima issue. The
joining of these initial submaps only requires linear least



TABLE I
RMSE* OF POSE POSITIONS BY LINEAR MONOSLAM ALGORITHM

Dataset Absolute Relative
PARKING-6L 0.57684567 m 0.00725283 m
CAMPUS-2L 4.81920339 m 0.14385726 m
AP Village 0.00054203 0.00007121
AP College 0.07791178 0.01064497

*All the RMSEs are respect to the results of global BA (to guarantee the
convergence, the results of the linear approach are used as the initial guess
in global BA). The relative scales are used in the aerial photogrammetric
Village and College datasets because of the lack of ground truth.

TABLE II
COMPUTATIONAL COSTS* OF LINEAR MONOSLAM ALGORITHM (IN

SECONDS)

Dataset Pose Feature Projection time
PARKING-6L 508 190711 567836 29.736
CAMPUS-2L 1020 198563 575644 47.688
AP Village 90 273131 779268 42.641
AP College 468 444596 1368258 102.854

*Run on the Virtual Box on an Intel Xeon CPU E5-2690@2.9GHz CPU.
Times for building initial submaps by BA and the D&C process are both
included. Times for data association are not included.

squares thus initialization and iterations are not needed and
local minimum does not exist. Thus the proposed approach
overcomes a fundamental limitation of most of the existing
nonlinear optimization based approach for BA, namely the
difficulty of getting good initialization and converging to the
global minimum.

The quality of the initial submaps is important to the
proposed Linear MonoSLAM algorithm. Thus ParallaxBA is
used for building initial submaps which are then transformed
into XYZ presentation. In the experimental results in this
paper, although very far features with near zero parallax
appear in many of the initial submaps resulting in large
uncertainty in feature position, they do not have much impact
on the final Linear MonoSLAM results probably because
of the linear map joining approach (from our experience,
submap joining using nonlinear optimization has issues with
very far features).

The proposed linear approach is still an approximation to
the global BA. If the optimal BA result is really desired, the
result obtained using the proposed linear approach can be
served as an excellent initial value for the global BA to get
the optimal solution.

In the proposed approach, it is assumed that the data
association is done (including loop closure data association),
it is also assumed that the images are ordered and taken
by calibrated cameras with nonzero translation between two
consecutive camera poses. Future research work include the
integration of the proposed approach with robust and efficient
feature tracking and matching algorithms to make it work
online, and the extension of the approach to more general
visual SLAM problems such as the cases when different
uncalibrated cameras are used.
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