
L2-SIFT: SIFT Feature Extraction and Matching for

Large Images in Large-Scale Aerial Photogrammetry

Yanbiao Suna,b, Liang Zhaob, Shoudong Huangb, Lei Yana,∗, Gamini
Dissanayakeb

aInstitute of Remote Sensing and GIS, School of Earth and Space Science, Peking
University, Beijing, 100871, China

bCentre for Autonomous Systems, Faculty of Engineering and Information Technology,
University of Technology, Sydney, NSW 2007, Australia

Abstract

The primary contribution of this paper is an efficient feature extraction and
matching implementation for large images in large-scale aerial photogram-
metry experiments. First, a Block-SIFT method is designed to overcome
the memory limitation of SIFT for extracting and matching features from
large photogrammetric images. For each pair of images, the original large
image is split into blocks and the possible corresponding blocks in the other
image are determined by pre-estimating the relative transformation between
the two images. Because of the reduced memory requirement, features can
be extracted and matched from the original images without down-sampling.
Next, a red-black tree data structure is applied to create a feature relation-
ship to reduce the search complexity when matching tie points. Meanwhile,
tree key exchange and segment matching methods are proposed to match
the tie points along-track and across-track. Finally, to evaluate the ac-
curacy of the features extracted and matched from the proposed L2-SIFT
algorithm, a bundle adjustment with parallax angle feature parametriza-
tion (ParallaxBA1) is applied to obtain the Mean Square Error (MSE) of

∗Corresponding author
Email addresses: syb51@pku.edu.cn (Yanbiao Sun), Liang.Zhao-1@uts.edu.au

(Liang Zhao), Shoudong.Huang@uts.edu.au (Shoudong Huang), lyan@pku.edu.cn (Lei
Yan), Gamini.Dissanayake@uts.edu.au (Gamini Dissanayake)

1 The ParallaxBA source code is available open-source at OpenSLAM
http://openslam.org/ParallaxBA.html. The features of the test datasets in this
paper as the input to ParallaxBA are also available at OpenSLAM.

Preprint submitted to Elsevier February 2, 2014



the feature reprojections, where the feature extraction and matching result
is the only information used in the nonlinear optimisation system. Seven
different experimental aerial photogrammetric datasets are used to demon-
strate the efficiency and validity of the proposed algorithm. It is demon-
strated that more than 33 million features can be extracted and matched
from the Taian dataset with 737 images within 21 hours using the L2-
SIFT algorithm. In addition, the ParallaxBA involving more than 2.7 mil-
lion features and 6 million image points can easily converge to an MSE of
0.03874. The C/C++ source code for the proposed algorithm is available at
http://services.eng.uts.edu.au/~sdhuang/research.htm.

Keywords: Aerial Photogrammetry, Large-scale, SIFT, Feature Extraction
and Matching, Bundle Adjustment

1. INTRODUCTION

Feature extraction and matching plays a crucial role in the field of pho-
togrammetry, in which accurate and reliable features are often provided as
original input information for estimating camera orientation, 3D scene re-
construction, digital surface model generation and, especially, for bundle
adjustment (BA), which minimises the reprojection error of 2D image points
to produce optimal 3D structures and estimate camera parameters simulta-
neously. As a basic procedure for photogrammetry, feature extraction and
matching has attracted considerable attention in recent decades.

In the literature, many approaches have been proposed to extract and
match features from images. The earliest feature extraction approach can
date back to the work of Moravec (Moravec, 1981). The Moravec detector
was improved, resulting in the Harris detector (Harris and Stephens, 1988).
The Harris detector took the Gaussian window function instead of the binary
window function and set different weights according to the distances between
the central pixel and the surrounding pixels, aiming to decrease the noise ef-
fect. It used a Taylor series to approximate more directions and adopted
new criteria to identify candidate features. Although the Harris detector
outperformed the Moravec detector, both detectors were variant to trans-
formation, scale and illumination changes. To extract features from images
taken from different viewpoints and under different illumination conditions,
the Scale Invariant Feature Transform (SIFT) detector was first proposed by
(Lowe, 2004). It exploited the scale space theory that was first proposed by

2



(Lindeberg, 1998) to produce scale-invariant features. Furthermore, SIFT
used a Difference-of-Gaussian (DoG) instead of scale-normalised Laplacian
of Gaussian (LoG) because DoG is much faster. Moreover, the local gradient
orientation and magnitudes were computed so that reliable features may be
extracted even when there are rotation and translation between two images.
In the matching procedure, a 128-dimension descriptor was utilised to match
reliable features. However, SIFT most likely failed to extract and match
reliable correspondences of images captured from very different viewpoints.
To overcome this drawback, two improved SIFT algorithms have been pro-
posed, including the Gradient location-orientation histogram (GLOH) and
Affine-SIFT (ASIFT) (Zhang et al., 2012). GLOH was an extension of the
SIFT descriptor and computed the SIFT descriptor for a log-polar location
grid with 3 bins in a radial direction and 8 bins in an angular direction
instead of a 4 × 4 chessboard location bin. In addition, its gradient ori-
entations were quantised in 16-bin and 272-bin histograms, and a principal
component analysis (PCA) was applied to reduce the descriptor dimension
(Mikolajczyk and Schmid, 2005). ASIFT is a fully affine invariant method
that includes six parameters of affine transform, whereas SIFT is only invari-
ant to four of the six parameters of affine transform. It simulated the image
views obtained by the longitude and the latitude angles and then applied the
other parameters (Morel and Yu, 2009).

High computational and memory storage costs are required by SIFT; thus,
it is impossible to use the primal SIFT algorithm in some applications such
as real-time tracking with a sequence of images. To decrease memory usage
and improve its efficiency, many approaches have been proposed in the last
few years. The SIFT++ software package, which is a lightweight C++ imple-
mentation of SIFT, was published in (Vedaldi, 2010). SIFT++ requires less
memory compared with other SIFT implementations, so it can process large
images if the parameter “first octave” is set as 0 rather than -1. However, for
very large images such as aerial images and satellite images in the photogram-
metry field, the software needs other operations such as down-sampling or
tiling to process these images. LDAHash reduced the dimensionality by
mapping the descriptor vectors into the Hamming space and represented
descriptors with short binary strings whose similarity can be measured by
the Hamming distance, so it could speed up matching and reduce memory
consumption (Strecha et al., 2012). PCA-SIFT adopted the dimensionality
reduction strategy to express feature patches and projected high-dimensional
samples into low-dimensional space (Ke and Sukthankar, 2004). It utilised

3



PCA to normalise gradient patches instead of histograms, significantly de-
creasing the dimension of feature vectors and improving matching efficiency.
Speeded-Up Robust Features (SURF) was a fast scale and rotation invariant
interest point detector and descriptor (Bay et al., 2008). It had less runtime
than SIFT because it used integral images, which drastically reduced the
number of operations for simple box convolutions, independent of the chosen
scale. These algorithms can only slightly decrease the computational cost;
fortunately, the SIFT implementation designed on a graphic process unit
(GPU) can achieve considerable computational savings. Among them, the
SiftGPU (Wu, 2007) open-source software package has been released, which
is used in the implementation of the L2-SIFT algorithm proposed in this
paper.

With the development of camera hardware, image resolution is becoming
higher and higher. Nevertheless, with the limitation of memory storage, the
SiftGPU algorithm cannot directly provide a solution to feature extraction
and matching using large images taken by professional metric cameras in
aerial photogrammetry. It is impossible to allocate enough memory when
the processed images are very large because the software needs to build a
series of pyramid images to create Gaussian and DoG scale space. SiftGPU
reduces the size of large images with down-sampling, but it will give rise to
a loss of detail in the images and decrease the number of extracted features.
In 2011, a recursive tiling method was proposed for feature matching for
close-range images to extract more features and improve matching correct-
ness; this method can be used for dealing with large images (Novak et al.,
2011). To diminish the perspective distortion and reduce the number of sim-
ilar points from repetitive textures, this method recursively splits a tile into
four smaller tiles so that homography becomes a better local approximation
of the perspective distortion. The main advantage of this algorithm is that it
can increase an average of 2-3 times more matches compared to conventional
wide-baseline matching; at the same time, the main drawback is the high
computational cost, as it usually takes about three times longer to measure
points than in the standard case. In this paper, 2D transformation estima-
tions have shown to be sufficient to create aerial image relationships in aerial
photogrammetry. Both the number of matches and the computational cost
are considered; we only adopt a 2D rigid transformation, which is a special
case of homography, and a single recursion level to create image transforma-
tion compared with the method used by (Novak et al., 2011). In this paper,
we design a Block-SIFT method to split two large images into blocks and ex-

4



tract features from the corresponding blocks using SiftGPU to decrease the
memory consumption and thus speed up the feature extracting and matching
process. The first “L” in L2-SIFT represents “large images”.

In this paper, correspondence refers to a pair of corresponding image
points, and tie points amount to a point set that includes two or more image
points that correspond to a same 3D point in the environment. Tie points
provide the geometric information to determine the camera poses, relative
scales and 3D structure. Thus, tie points must be matched from two or more
images according to the along-track and across-track distribution of images.
An important aspect in digital aerial triangulation is the need to match sev-
eral images simultaneously. In the earlier years, tie points must be marked on
every photograph by the stereovision ability of a human operator (Schenk,
1997). In 2010, Barazzetti et al. proposed automatic tie point extraction
(ATiPE) for unordered close-range images (Barazzetti et al., 2010). It divid-
ed the all n images into n − 2 triplets Ti where Ti = {Ii, Ii+1, Ii+2} and Ii
represented the ith image. For the single triplet Ti matching, after finishing a
pair-wise matching between images Ci = {Ii, Ii+1} and C

′
i = {Ii+1, Ii+2}, cor-

respondences from image Ii and Ii+2 can be achieved by directly comparing
the same image points appearing on image Ii+1. For multiple triplet matching
such as other triplet Ti+1 = {Ii+1, Ii+2, Ii+3}, their tie points can be trans-
ferred with a simple comparison based on the value of the image coordinates.
Because the number of images is also large for large-scale photogrammetry
experiments and the number of features that are extracted and matched from
a pair of corresponding large aerial images by Block-SIFT method is enor-
mous as well, it is very hard to match all the tie points rapidly. In this paper,
a red-black data structure is applied to create a features index to reduce the
search complexity, and a tree key exchange method and segment matching
method are presented to match tie points along-track and across-track. The
original structure of the red-black tree, which is called the symmetric binary
B-tree, was proposed in 1972 (Bayer, 1972); it was named a red-black tree
in 1978 (Guibas and Sedgewick, 1978). In many fields, red-black trees are
used for different purposes. In 2004, Fink et al. used a red-black tree as
an indexing structure to search for approximate matches in a large medical
database (Fink et al., 2004). In 2012, Crisp and Tao sorted merge costs us-
ing a red-black tree to rapidly find the cheapest merge cost in fast region
merging for image segmentation (Crisp and Tao, 2010). The proposed algo-
rithm in this paper optimises memory usage to ensure that a computer can
provide enough memory to match a very large number of image points into

5



tie points in large-scale photogrammetry experiments. The second “L” in
L2-SIFT represents “large-scale photogrammetry experiments”. The overall
flowchart of L2-SIFT is shown in Figure 1.

Figure 1: The overall flowchart of L2-SIFT.

This paper is organised as follows. Section 2 briefly introduces the SIFT
feature extraction and matching algorithm and then SiftGPU implementa-
tion. Section 3 states the Block-SIFT method for a pair of corresponding
images taken along-track or across-track. Section 4 details tie point match-
ing using a red-black tree structure, tree key exchange method and segment
matching method. In Section 5, seven sets of aerial image tests are used
to evaluate the proposed algorithm, and their detailed runtime and conver-
gence of bundle adjustment are listed. Finally, Section 6 presents the paper’s
conclusions and addresses possible further studies.

2. SIFT Feature Extraction and Matching

The SIFT algorithm can extract stable features, which are invariant to
scaling, rotation, illumination and affine transformation with sub-pixel ac-
curacy, and match them based on the 128-dimension descriptors. Therefore,
SIFT is an ideal feature extraction and matching method for photogramme-
try. To date, the algorithm has been widely used in robotics, image-based
computer graphics, digital photogrammetry, surveying and geodesy, etc.

To extract stable features from images with different sizes, the SIFT
algorithm builds pyramid images and uses a staged filtering approach based

6



on the DoG function. Pyramid image space consists of two parts (see Figure
2). The first part is Gaussian scale space, in which each octave is computed by
convolution between a down-sampled image with different Gaussian kernels,
such as L(x, y, σ) in Equation (1) whereG(x, y, σ) is a variable-scale Gaussian
and I(x, y) is an input image (Lowe, 2004). The convolution method with
Gaussian kernels can reduce the noise effect and improve the invariance of the
features when the scales of the images are changed. The second part is DoG
scale space, in which DoG is a close approximation to LoG in Equation (2).
Compared with LoG, DoG has lower computational costs and approximately
the same function to extract stable features.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ);

(2)

where k is a constant multiplicative factor.

Figure 2: SIFT scale space.

Feature extraction in SIFT includes pixel and sub-pixel localisations of a
keypoint. A candidate pixel keypoint is chosen when it is an extreme pixel
compared with 26 neighbouring pixels in DoG scale space. The sub-pixel
keypoint localisation is implemented by a quadratic approximation, which is
computed using a second-order Taylor expansion. Additionally, to improve
stability, keypoints with low contrast are removed.

7



Matching the SIFT features extracted above can be achieved by compar-
ing two sets of feature descriptors with the nearest neighbour method. The
correspondences can be found when the ratio between the shortest distance
and the second shortest distance is smaller than a given threshold. Con-
sidering the effect of image scale, rotation and affine distortion, the SIFT
algorithm uses 128-dimension descriptors to conduct feature matching. The
SIFT feature descriptors represent image gradient magnitudes and orienta-
tions in a 4×4 sub-region around the candidate feature. The descriptors can
describe both the shape and the orientation of a feature; thus, features with
different rotations between two images can be easily matched.

To obtain reliable and accurate corresponding features, it is necessary to
use pyramid images and 128-dimension descriptors to conduct SIFT extrac-
tion and matching. Unfortunately, this strategy needs high computational
power and memory consumption, which limit the use of SIFT in real-time
implementations or aerial photogrammetry with large images. The SiftGPU
has three implementations including GLSL Unpacked/Packed and CUDA;
the five steps of the primal SIFT can run on GPU in a parallel way. It is
shown that the performance of SiftGPU is nearly real-time for webcam-sized
images, and the quality of the features extracted by SiftGPU is approximate-
ly the same as that extracted by the primal SIFT. However, because the GPU
memory is limited, large images need to be down-sampled to reduce the size
before applying SIFT.

Due to the limitations of GPU and CPU memory, SiftGPU and most
of the SIFT implementations cannot address large images directly without
other operations such as down-sampling or tiling. In the next section, a
Block-SIFT method based on SiftGPU is proposed to extract and match
features from large aerial photogrammetric images more efficiently.

3. Block-SIFT Features Extraction and Matching for One Pair of
Images

The SIFT feature extraction and matching algorithm is originally de-
signed to process images in computer vision, in which images are taken by
general cameras with low resolution (e.g., 1024 × 768 pixels). However, in
aerial photogrammetry, to efficiently and economically reconstruct large-scale
terrain, the images are always acquired by professional metric cameras with
large frames (e.g., DMC camera, 7680 × 13824 pixels). Applying SIFT to
these large images directly will bring about “out of memory” (Wu, 2007), so

8



some implementations such as SiftGPU first down-sample the original images
such that they can be processed within the memory capacity of the CPU or
GPU. However, this will cause information loss, and fewer features can be
extracted from the images, which is inappropriate in aerial photogrammetry
where high precision in both feature extraction and 3D locations is required.
To extract and match features from photogrammetric images without losing
any information, the Block-SIFT method is proposed in this paper. The main
idea is to split the original images into blocks and extract and match features
from the corresponding blocks using SiftGPU. The strategy contains three
major steps. First, a few seed points are generated to estimate the relative
transformation parameters between the two original images; second, the first
original image is split into blocks, and the corresponding blocks in the other
image are found based on the relative transformation parameters; finally, we
collect all the features that are extracted and matched by SiftGPU from the
different block pairs (see Figure 1).

3.1. Generate Seed Points

To find the corresponding block in the other image and extract and match
features by the Block-SIFT method, the geometric relative relationship be-
tween two images needs to be computed first. In this paper, we assume that
extra information such as GPS/IMU is not available and that finding the cor-
responding block is based on 2D transformation parameters of two images
computed by seed points.

Although down-sampling will suffer a loss of the detail of images and thus
is not suggested for extracting and matching features with high quality, it
can still be used to generate seed points that refer to a small amount of cor-
respondences. In this paper, three or more pairs of seed points are sufficient
to obtain an approximate estimation of the transformation parameters. To
generate seed points, SIFT is used on the down-sampled images to obtain
features, and Random Sample Consensus (RANSAC) (Fischler and Bolles,
1981) is used to remove the outliers. The resulting matched features are
used as the seed points to estimate the transformation parameters by using
the linear SVD algorithm described in Section 3.2.

When estimating transformation parameters, the accuracy of seed points
is more important than the number of the seed points. Although few in-
liers are retained after RANSAC with a small threshold, the estimation of
transformation parameters is still accurate enough to find the corresponding
blocks, as shown in the results section of this paper.

9



3.2. Estimate Transformation Parameters

In traditional aerial photogrammetry, the aircraft platform used in pho-
togrammetry always attempts to impose zero pitch and roll angles; thus,
the transformation between two adjacent corresponding aerial images can be
approximated as a simple 2D rigid transformation in this paper. The trans-
formation parameters including rotation matrix R, translation t and scale c
can be estimated by minimising the mean squared error using the seed points
described in Section 3.1, which can be implemented according to the linear
SVD method (Umeyama, 1991).

Because the images are scaled by down-sampling, the translation t and
scale c computed by using seed points are different from the real translation
and scale parameter between the original corresponding images. The real
translation tL and scale cL can be obtained by using the down-sampling
scale λ as {

tL = λt

cL = λc
(3)

Because the rotation matrix does not have scale issues, the rotation param-
eters between the original images can be represented as RL = R.

3.3. Split Large Image into Blocks

3.3.1. Estimate the overlaps

Because the overlap area between two adjacent images accounts for some
portion of the whole large image, we only split the overlap part rather than
the whole image into blocks to improve the algorithms efficiency. The overlap
region, which is described by the size and the origin of the overlap area on
the first image, must first be estimated. In this paper, the overlap region
is described using three parameters, Ho, Wo and o, where Ho and Wo refer
to the width and height of the overlap area, respectively, and o = (ou, ov)
represents the origin of the overlap area in the first image, as shown in Figure
3.

The overlap region is determined by the flight direction and camera ori-
entation as shown in Figure 3, where Figure 3(a) shows the overlap region
between two along-track corresponding images, while Figure 3(b) describes
the overlap region between two across-track corresponding images. The bold
arrow lines represent the axis of the image coordinates, and the bold point
is the origin of the overlap region in the first image.

10



(a) Overlap region along-track. (b) Overlap region across-track.

Figure 3: Overlap region between two images.

Suppose the width and height of the original image are w and h, respec-
tively; the centre µP2 of the four corners of the second image can be computed
by Equation (4) {

µP2u = w/2

µP2v = h/2
(4)

where µP2u, µP2v are the two-dimensional image coordinates of µP2. Then,
the corresponding points µ

′
P2 in the first image can be computed by using

the estimated transformation parameters as follows

µ
′

P2 = (1/cL)R
−1
L (µP2 − tL) (5)

Meanwhile, the center of the first image is µP1 = (w/2, h/2). Thus it is
clear that the overlap region is not empty only when |µ′

P2u − µP1u| < w
and |µ′

P2v − µP1v| < h hold simultaneously, where µ
′
P2u, µ

′
P2v are the u, v

components of the image coordinate µ
′
P2, and µP1u, µP1v are those of µP1.

When the overlap region is not empty, the origin of the overlap in the
first image can be computed by

ou =

{
µ

′

P2u − µP1u, µ
′

P2u > µP1u

0, µ
′

P2u ≤ µP1u

(6)

11



ov =

{
µ

′

P2v − µP1v, µ
′

P2v > µP1v

0, µ
′

P2v ≤ µP1v

(7)

and the size of the overlap area can be calculated as{
Wo = w − |µ′

P2u − µP1u|
Ho = h− |µ′

P2v − µP1v|
(8)

3.3.2. Split Image and Find Corresponding Block

After the overlap region is computed, we can split the overlap area in the
first large image into blocks and find the corresponding blocks in the second
image easily by using the transformation parameters computed in Section
3.2. Suppose the width and height of one block image is represented as Ws

and Hs, respectively, as shown in Figure 4. For a specified block in the first
image with the index of the column and row as (i, j) (starting from 0), the
origin of this block is computed as

oi = {ou +Ws × i, ov +Hs × j} (9)

Then the four corners can be easily determined by the width Ws and height
Hs in the first image. By using transformation parameters, the four corners
are transformed into the second image and the corresponding block can be
found.

Because only simple two-dimensional rigid transformations are consid-
ered, the estimated block in the second image is inaccurate. To match more
features, the size of the corresponding block in the second image should be
expanded when finding the corresponding block in Figure 4. How large the
block size and expanded size should be will be discussed in Section 5.2.

3.4. Remove Outliers

After all the blocks from original large images are processed using SiftG-
PU, the outliers must be removed. In this paper, RANSAC (Fischler and Bolles,
1981) is used for outlier removal. Because RANSAC is based on the geomet-
ric relationship between the two corresponding images with a pinhole camera
model, all of the features extracted and matched in different blocks with re-
spect to the original images must be transformed into the original image
coordinates before applying RANSAC. This transformation can be achieved
by adding the global coordinates of the local origin of each block to the
feature locations in the blocks.

12



Figure 4: Split image into blocks and find corresponding blocks in the second image.

The RANSAC algorithm applied in this paper makes use of an epipolar
geometric estimation based on a fundamental matrix. To estimate the funda-
mental matrix from a minimal sample when fitting the model to determine
inliers or outliers, a 7-point algorithm is used. For the final step to esti-
mate the fundamental matrix from all inlier points, the normalised 8-point
algorithm is used.

In this paper, our main objective is to reconstruct a more accurate scene;
thus, a multi-level RANSAC (Zhao et al., 2010) is applied for outlier removal.
The idea of a multi-level RANSAC is to firstly prune out outliers with large
error, thereby leaving a higher inlier ratio for the next-step RANSAC. A
two-level RANSAC is adopted in the experiments of this paper, in which
the threshold of the first level is set to 2.0 pixels, and the threshold of the
second level is set to 1.0 pixel. Our experiments show that the two-level
RANSAC can provide more accurate feature matching (with slightly fewer
inliers identified) compared to a normal one-step RANSAC and LO-RANSAC
(Chum et al., 2003) with a threshold of 1.0 pixel (the same as that in the
last level in the two-level RANSAC).

13



4. Tie Points Matching Along-Track and Across-Track

In this paper, tie points refer to image points that appear on different
visual images and correspond to the same 3D feature, and finding the sets of
tie points is called “tie points matching”. Tie points are very important for
reconstructing terrain scenes and estimating camera poses. A tie point sets
file with a specified format needs to be generated as the input of a bundle
adjustment. For example, Figure 5 shows the format of the file as the input of
ParallaxBA, which is almost the same as that of SBA (Lourakis and Argyros,
2009) (In the input of SBA, an initial value of the 3D feature positions is
needed. However, it is unnecessary to provide initial values of the features in
ParallaxBA because they are automatically calculated within the algorithm).
Each row in the file represents a tie point set denoted as Ri

F where i is the
index of the 3D feature. The first element of Ri

F is an integer Ni denoting
the number of image points corresponding to the same 3D feature i; the rest

of Ri
F contains the image points {F j1

i , F j2
i ..., F

jNi
i } where each F j

i includes
the image index j and the corresponding image point coordinates (u, v).

For one pair of images, the Block-SIFT method presented in Section 3
can be used to generate correspondences. For multiple images, tie points
matching is used to find all image points of each of the same features among
a large amount of correspondences from many pairs of images. To accelerate
tie points matching among numerous putative correspondences, a red-black
tree structure is used in this paper. Furthermore, a tree key exchange method
and a segment matching method are proposed to match along-track and
across-track tie points. The process is detailed in the following subsections.

4.1. Red-Black Tree Structure for Tie Points Matching

In an aerial photogrammetry study case, there are many large images
with rich texture information, whilst Block-SIFT can extract and match
numerous image point correspondences. Consequently, it is extremely slow
to conduct tie points matching by searching and comparing the image indexes
and the image point coordinates directly. To reduce the computational cost
of searching among many image point correspondences, it is necessary to
utilise a special data structure. In this paper, a red-black tree data structure
is applied.

A red-black tree is a type of advanced binary search tree and has al-
ready been applied in search-based applications (including text mining and

14



Figure 5: A file of tie points which serves as the input to bundle adjustment (ParallaxBA).

nucleotide sequence matching). For a binary tree with n nodes, basic oper-
ations which include search, delete and insert, take O(lg n) time on average
and take O(n) time in the worst case, when the binary tree is a linear chain
of n nodes. A red-black tree as one form of balanced search trees is proposed
to solve this issue and it takes O(lg n) time on basic operations in any case.
Compared with the standard binary tree structure, it has extra colour prop-
erty besides tree keys and tree pointers. Thus, a red-black tree has the least
possible tree height and the searching complexity of traversing elements from
root to leaf is O(lg n) (Cormen et al., 2010).

A node of a red-black tree for matching tie points contains a key and a
node value, where the key can be set as the first image point, and the node
value is all the image points in each line in Figure 5. When creating a red-
black tree with tie point sets, nodes are arranged according to the image point
index j and the image point coordinate (u, v). If the image point indexes
are the same, the first image point coordinate u will determine where a node
should be placed in the tree. Similarly, if both j and u values are the same,
then the second image point coordinates v will be used to arrange the node
positions. Figure 6 gives an example of a red-black tree structure using the
data in Figure 5 according to the red-black tree rules, where the u values in
the second image are used to arrange the node positions. In this red-black
tree, one node of a tree represents a tie point set in which the left (red or

15



Figure 6: Red-black tree structure using
data in Figure 5. All the keys have the
same image index 2 which is ignored in
the figure.

Figure 7: Match R7
F – the same key

is found and the tie point sets are com-
bined.

black) colour element is a node key and the right element is the corresponding
node value. In Figure 6, the first image points in each row of Figure 5 are set
as the node keys, and all image points in each row Ri

F are their node values.
Supposing that the red-black tree has been constructed as in Figure 6, we

now illustrate how to perform the tie points matching when another two tie
point sets, R7

F and R8
F , become available. Assume the key of R7

F is the same
as that of R4

F , while the key of R8
F is different from any existing keys. To

match R7
F , two searching steps from the root is enough to find the same key

that is located at the second level of the tree. The green dotted line in Figure
7 describes the searching path. Now, the node value R7

F can be combined
with the node value R4

F as shown in Figure 7. To match R8
F , because the

same key cannot be found in the tree (within four searching steps as shown
by the green dotted line in the left figure in Figure 8), R8

F will be inserted
into the tree. Afterward, the tree structure should be adjusted with the
restriction of the red-black tree’s properties; the new tree structure is in the
form of the right figure in Figure 8 instead of that as shown in the left figure
of Figure 8. For the details of the operations of the red-black tree, please
refer to Chapter 13 in (Cormen et al., 2010).

In the following subsections, a red-black tree will be used as a basis in tie
points matching both along-track and across-track.

16



Figure 8: Match R8
F – the same key cannot be found, adjust the tree structure and insert

the tie point set as a new node.

4.2. Tree Key Exchange Method for Along-Track Tie Points Matching

Along-track tie points matching means to match the tie point sets from a
sequence of images taken along-track. Supposing that there are n images in
one track that will be processed by Block-SIFT, we can obtain n−1 groups of
correspondences ζ = {ζ21 , ζ32 ..., ζnn−1}, where ζ

j+1
j = {(F j

i , F
j+1
i ) : i ∈ Mj(j+1)}

is the group of correspondences between the jth image and the (j+1)th image
(here Mj(j+1) denotes the set of matched points between the jth image and

the (j + 1)th image). Similarly, another group of correspondences ζj+2
j+1 =

{(F j+1
k , F j+2

k ) : k ∈ M(j+1)(j+2)} is generated from the (j+1)th image and the

(j + 2)th image. Supposing that F j+1
i and F j+1

k are identical, F j
i , F

j+1
i , F j+2

k

are projected from the same 3D feature and should be combined into a single
tie point set {F j

i , F
j+1
i , F j+2

k }.
In this paper, the tree key exchange method is proposed to rapidly match

tie points among the numerous correspondences generated by Block-SIFT.
The detailed implementation is described in Algorithm 1. First, the groups
of correspondences ζj+1

j are extracted from each of two adjacent large images
along-track using the Block-SIFT method in Section 3. Because there is not
enough memory to store all of the correspondences in one track, ζj+1

j is firstly
saved into a file. Second, load ζ21 = {(F 1

i , F
2
i ) : i ∈ M1(2)} from the file and

initialise a red-black tree Rb. Here, each tree node is Ri
b = {F 2

i |(F 1
i , F

2
i )},

17



whose node key is set as the second image point F 2
i . Third, for each ζj+1

j (j ≥
2), search the same keys in the tree, update the tree and exchange the tree
keys for next step. Assuming that ζ21 , · · · , ζ

j
j−1 have been processed, the cur-

rent tree node is in the format of Ri
b = {F j

i |(F 1
i , ..., F

j−1
i , F j

i )}. Now, load
ζj+1
j = {(F j

k , F
j+1
k ) : k ∈ Mj(j+1)} from the file, and for each correspondence

in ζj+1
j , compare F j

k with the existing tree keys. If F j
k is the same as the

key of Ri
b = {F j

i |(F 1
i , ..., F

j−1
i , F j

i )}, that is, F j
k = F j

i , then F j+1
k can be

directly added to the node Ri
b to get Ri

b = {F j
i |(F 1

i , ..., F
j−1
i , F j

i , F
j+1
k )}. If

F j
k is different from all of the existing keys in the tree, then the correspon-

dence (F j
k , F

j+1
k ) is set as a new node Rk

b = {F j
k |(F

j
k , F

j+1
k )} (the node key

is F j
k ) and inserted into the tree. To prepare for the next step in matching

pairs of correspondences in ζj+2
j+1 = {(F j+1

k , F j+2
k ) : k ∈ M(j+1)(j+2)}, tree

key exchange is performed to change the key into the image point in the
(j + 1)th image, that is, to change Ri

b = {F j
i |(F 1

i , ..., F
j−1
i , F j

i , F
j+1
k )} into

Ri
b = {F j+1

k |(F 1
i , ..., F

j−1
i , F j

i , F
j+1
k )} because it is impossible to match a cor-

respondence in ζj+2
j+1 with a node that does not contain an image point in the

(j + 1)th image. All of the nodes that do not contain an image point in the
(j + 1)th image are released from tree Rb and saved to the file. Finally, after
ζnn−1 is processed, all along-track tie point sets are saved to the file ξ.

In the proposed tree key exchange method, when determining whether a
new available tie point set should be combined with an existing tie point set,
it is only necessary to search the key among the key sets of the red-black
tree instead of all of the image points, the search cost is low, and the search
process is efficient. Moreover, the proposed method only loads necessary
candidate tie point sets and always immediately releases unnecessary ones;
therefore, it can keep the number of nodes in the tree bounded and will
not increase search runtime when dealing with more tie point sets. Hence,
this method is also feasible and efficient when processing many along-track
images without breaching the memory capacity.

4.3. Segment Matching Method for Across-Track Tie Points Matching

The across-track tie points matching refers to finding all the correspond-
ing image points among a very large quantity of along-track tie point sets of
multiple tracks obtained by the approach described in Section 4.2. Conse-
quently, it is extremely time-consuming to search and match tie points within
numerous tree nodes in a red-black tree if all of the tie point sets are loaded.
In addition, it is impossible to load all of the tie point sets into a red-black tree

18



Algorithm 1 Tree Key Exchange Method for Along-Track Tie Points Match-
ing

Input: n large images in one track
Output: all along-track tie point sets ξ

1: Block-SIFT
2: for j = 1; j < n; j ++ do
3: Apply Block-SIFT to the jth and (j + 1)th image to get the group of

correspondences ζj+1
j = {(F j

i , F
j+1
i ) : i ∈ Mj(j+1)}

4: save ζj+1
j into file

5: end for
6: Initialize red-black tree Rb

7: Load ζ21 = {(F 1
i , F

2
i ) : i ∈ M1(2)}

8: for each i ∈ M1(2) do
9: insert the node Ri

b = {F 2
i |(F 1

i , F
2
i )}

10: end for
11: Search same keys, update the tree and exchange tree keys
12: for j = 2; j < n; j ++ do
13: load ζj+1

j = {(F j
k , F

j+1
k ) : k ∈ Mj(j+1)}

14: for each k ∈ Mj(j+1) do

15: search F j
k in Rb

16: if F j
k is found (F j

k = F j
i ) then

17: F j+1
k is directly added in Ri

b, R
i
b = {F j

i |(F 1
i , ..., F

j−1
i , F j

i , F
j+1
k )}

18: else
19: insert a new node Rk

b = {F j
k |(F

j
k , F

j+1
k )}

20: end if
21: end for
22: release the nodes that do not contain an image point in the (j + 1)th

image from the tree, save them into file ξ
23: exchange tree keys for all the other nodes, set the new key as the image

points in the (j + 1)th image
24: Ri

b = {F j+1
k |(F 1

i , ..., F
j−1
i , F j

i , F
j+1
k )}

25: Rk
b = {F j+1

k |(F j
k , F

j+1
k )}

26: end for
27: Save all along-track tie point sets into file ξ

due to the memory limit. To rapidly match across-track tie points without

19



breaching the memory restriction, a segment matching method is proposed
in this paper. The idea is: we split all of the along-track tie points into
segments and only load the corresponding segments that possibly contain
matched tie points to conduct matching. The detailed across-track tie points
matching algorithm is stated below and illustrated by a simple example.

First, we discuss the size of the segment. The size of each segment should
be determined by the forward overlap percentage. Supposing that the for-
ward overlap percentage is ϵ, then the maximum number of images that
observe a same 3D point is approximately nε = ⌈1/(1− ϵ)⌉ where ⌈a⌉ means
the smallest integer greater than or equal to a (for example, when ϵ = 0.6,
nε = 3). Thus, if an image point in the kth image in the second track is
matched with an image point in the jth image in the first track, then the im-
ages in the first track that may contain an image point of the same matched
3D feature include the jth image itself and its 2nε − 2 neighboring images
(nε−1 images on the left and nε−1 images on the right). Therefore, the size
of each segment is chosen as 2nε−1 in this paper. For example, when the for-
ward overlap percentage is ϵ = 60%, the size of each segment is 2nε − 1 = 5,
as shown in Figure 9.

Next, we show and explain the detailed steps of the method. In gen-
eral, the segment-matching method contains five main steps: (i) split all
along-track tie points into segments; (ii) create links between every image
point and the first image point in an along-track set point set; (iii) match
across-track tie points between overlapped images; (iv) load segments and
match across-track points within putative along-track tie point sets; (v) col-
lect and combine along-track and across-track tie points from all segments.
The detailed implementation of tie points matching for two across-tracks is
described in Algorithm 2. The input of the algorithm incorporates the two
along-track tie point sets ξ1 and ξ2 and the n1 and n2 images from the two
tracks. The output is all of the matched tie point sets. For more than two
tracks, the operation is similar.

The first step of Algorithm 2 is to split all along-track tie points into

segments. For each tie point set Ri
F = {F j1

i , F j2
i , ..., F

jNi
i } in ξ1 or ξ2, its

segment index Sj can be determined according to the image index of the first
image point F j1

i . If F j1
i lies in the first track, then Sj = [j1/(2nε − 1)] + 1

is the segment index for this tie point set and the segment is denoted as
ξ
Sj

1 . Here, [a] denotes the largest integer less than or equal to a. If F j1
i

belongs to the second track, then appoint the tie point set into segment ξ
Sj

2

20



(Sj = [(j1 − n1)/(2nε − 1)] + 1, where n1 is the total number of images in
the first track). After appointing all tie point sets to different segments in
this way, we only need to load the necessary segments instead of the whole
ξ1, ξ2 in the fourth step of the algorithm. For example, in Figure 9, there are
8 segments ξ11 , ξ

2
1 , ξ

3
1 , ξ

4
1 and ξ12 , ξ

2
2 , ξ

3
2 , ξ

4
2 each with the size of 5.

The second step is to create links between every image point in each tie
point set and its first image point. The reason is that the keys of red-black
tree are set as the first image points of the tie point sets; thus, an image
point that is not the first one in a tie point cannot be found within tree keys.
Therefore, we have to create a relationship between each image point and
the first image point in a tie point set. In this step, we load each tie point set

Ri
F = {F j1

i , F j2
i , ..., F

jNi
i } ∈ ξ1

∪
ξ2, and the link Kjp = {F jp

i → F j1
i }, jp ∈

{j1, j2, ..., jNi
} (F j1

i is the first image point in Ri
F ) is constructed and saved

to the key file. After such key files are created, if there are two corresponding
image points that are not the first in the two tie point sets, we can match
them easily by searching their first image points within tree keys with the
help of the key files. For example, in Figure 9, F 11

k of Rk
F and F 32

t of Rt
F can

be linked with their first image points F 10
k and F 31

t .
The third step is to match across-track tie points between the overlapped

images among two tracks. In aerial photogrammetry, an image in one track
will overlap with many images in the adjacent track. For the jth image in the
first track, the overlapped image set P j

2 in the second track can be calculated
according to the snaked shape of the airline track. The groups of correspon-
dences ζjpj = {(F j

i , F
jp
i ), i ∈ Mj(jp)} between the jth image in the first track

and the jpth image in the second tracks (jp ∈ P j
2 ) are obtained using the

Block-SIFT method described in Section 3. Then, construct a tree Rb where
each node is denoted as Ri

b = {F j
i |(F

j
i , F

jp
i )}, while the node keys are set

as image point F j
i appearing on the jth image. The process is as follows:

Initialise the tree using ζj1j and traverse other groups of correspondences ζjpj .

Search the first image point of ζj1j among the node keys. If found, the corre-
spondence is added to the node value; if not, it will be inserted into Rb and
become a new node. After this process, the node values become matched tie
points between overlapping images P j

2 . Then, save all node values to the file
and destroy the tree. For example, in Figure 9, the 11th image has overlap ar-
eas with the 28th, 29th, 30th, 31th, and the 32th images, so five groups of corre-
spondences can be obtained by Block-SIFT, which are ζ2811 = {(F 11

i , F 28
i ), i ∈

M(11)(28)}, ζ2911 = {(F 11
i , F 29

i ), i ∈ M(11)(29)}, ζ3011 = {(F 11
i , F 30

i ), i ∈ M(11)(30)},

21



ζ3111 = {(F 11
i , F 31

i ), i ∈ M(11)(31)} and ζ3211 = {(F 11
i , F 32

i ), i ∈ M(11)(32)}. Be-
cause the 11th image is the common image for the pair-wise matching, F 11

i

are set as the tree node keys. After the tree is constructed, all of the node
values are the matched image points from the 11th, 28th, 29th, 30th, 31th, and
the 32th images, and they are save to the file. For example, one matched tie
point set can be represented as Ri

F = {F 11
i , F 28

i , F 29
i , F 30

i , F 32
i }.

The fourth step is to match across-track points within putative along-
track tie point sets in the corresponding segments. For each image in the
first track, load tie points from the file in the third step and search the
corresponding tie points in ξ1 and ξ2. When processing the jth image in the

first track, only segments ξ
sj
1 , ξ

sj+1
1 , ξ

sj
2 and ξ

sj+1

2 are required to be loaded,
where sj = [(j+nε−1)/(2nε−1)] and sj = [(j−n1+nε−1)/(2nε−1)] (here j
is the index of the image located in the second track that has the most overlap

areas with the jth image). If ξ
sj
1 or ξ

sj
2 equals zero, only segment ξ

sj+1
1 or ξ

sj+1

2

is loaded. Similarly, if ξ
sj+1
1 or ξ

sj+1

2 is larger than the maximum number of
segments, then only ξ

sj
1 or ξ

sj
2 is necessarily loaded. These segments can

provide all possible corresponding tie points. Now, use ξ
sj
1 and ξ

sj+1
1 to build

a red-black tree Rb1, and use ξ
sj
2 and ξ

sj+1

2 to build another tree Rb2. The
tree keys are set as the first image points of each tie point set. Because the
first image point of any tie point set in file in the third step comes from
the first track and all the other image points in the tie point set are from
the second track, we will then search for the corresponding image points of
the first image point in Rb1 and search for the corresponding image points
of the other image points in Rb2. With the help of the link files created in
the second step, it is easy to find the first image point in a tie point set.
Assume that F j1

k is found when searching F j
i in key file, then we search F j1

k

in the tree Rb1 and assume that the node value Rk
F is found. For each other

image point F jp
i (jp ∈ P j

2 ) in Ri
F , the first image point F j1

t of the tie point
set is found in the key file when searching F jp

i . Then, search F j1
t among the

node keys of Rb2 and find the corresponding node value Rt
F . Furthermore,

Ri
F , R

k
F and Rt

F are combined into a new tie point set R̄i
F . For example,

in Figure 9, for j = 11, j = 30, sj = 2, sj = 2 and four segments ξ21 ,
ξ31 , ξ

2
2 and ξ32 (with red bold rectangle) need to be loaded when matching

across-track tie points between the 11th image and its overlapped images.
Suppose there are two tie point sets Rk

F = {F 10
k , F 11

k , F 12
k } ∈ ξ21

∪
ξ31 and

Rt
F = {F 31

t , F 32
t , F 33

t } ∈ ξ22
∪
ξ32 . F

11
k and F 11

i are corresponding image points,
whilst F 32

t and F 32
i are also corresponding image points. When matching Rk

F

22



and Rt
F with Ri

F = {F 11
i , F 28

i , F 29
i , F 30

i , F 32
i }, it is necessary to search their

first image points F 10
k and F 31

t within tree keys. Now, Rk
F , R

i
F and Rt

F can
be combined to become a new matched tie point set. In the last step, the tie
point sets in different segments are collected and combined. Thus, all of the
tie points are obtained.

In the proposed segmentation method, only the necessary tie point sets
among corresponding segments are loaded into a red-black tree, and the
number of nodes in the tree is kept bounded, so it is efficient to match
across-track tie points with numerous along-track tie points.

Figure 9: Across-track tie points matching among two adjacent tracks. Segment matching
method is used. Only 2 segments from the first track and 2 segments from the second
track are needed when matching one image in the first track to the images in the second
track.

5. EXPERIMENTAL RESULTS

In the experiments, seven datasets are used to check the validity and ac-
curacy of the proposed L2-SIFT algorithm. First, we discuss the influence
of the two parameters, namely, the block size and the expended size, on the
number of correspondences extracted and matched by the proposed L2-SIFT
algorithm. Then, for two large images, we compare the number of correspon-
dences extracted using the L2-SIFT algorithm and that extracted using the
SiftGPU algorithm. For all of the test datasets in large-scale photogramme-
try listed in Table 1, the detailed runtime of extracting and matching the
tie points is listed in Table 2. To evaluate the accuracy of the extracted

23



Algorithm 2 Segment Matching for Across-Track Tie Points Matching

Input: two along-track tie point sets ξ1 and ξ2, n1 and n2 images from two
tracks
Output: all along-track and across-track tie points

1: Split ξ1 and ξ2 into segments
2: compute segment size sg

3: for each tie point set Ri
F = {F j1

i , F j2
i , ..., F

jNi
i } ∈ ξ1

∪
ξ2 do

4: if Ri
F ∈ ξ1 then

5: Sj = [j1/(2nε − 1)] + 1

6: appoint Ri
F into ξ

Sj

1 segment
7: else
8: Sj = [(j1 − n1)/(2nε − 1)] + 1

9: appoint Ri
F into ξ

Sj

2 segment
10: end if
11: end for
12: Create link between every image points with the first image

point in a tie point set in ξ1
∪

ξ2
13: load Ri

F = {F j1
i , F j2

i , ..., F
jNi
i } in ξ1

∪
ξ2

14: for each image point in Ri
F do

15: create link Kjp = {F jp
i → F j1

i }, jp ∈ {j1, j2, ..., jNi
}

16: save Kjp into key file
17: end for
18: Match across-track tie points between overlapped images
19: for j = 1; j < n1; j ++ do
20: compute the set of overlapped images P j

2 in the second track
21: for each image jp (jp ∈ P j

2 ) do
22: extract and match ζjpj = {(F j

i , F
jp
i ), i ∈ Mj(jp)} using Block-SIFT

23: end for
24: construct a red-black tree Rb, each node Ri

b = {F j
i |(F

j
i , F

jp
i )}

25: for each ζjpj do

26: search F j
i in Rb

27: combine node values or insert new nodes
28: end for
29: destroy tree Rb and save matched nodes into file
30: end for

24



31: Load segments and match across-track points within putative
along-track tie point sets

32: for j = 1; j < n1; j ++ do

33: load segments ξ
sj
1 , ξ

sj+1
1 , ξ

sj
2 and ξ

sj+1

2 from files
34: sj = [(j + nε − 1)/(2nε − 1)]
35: sj = [(j − n1 + nε − 1)/(2nε − 1)]

36: create tree Rb1 using ξ
sj
1 and ξ

sj+1
1 , whose keys are the first image

points in the tie point sets.

37: create tree Rb2 using ξ
sj
2 and ξ

sj+1

2 , whose keys are the first image
points in the tie point sets.

38: load Ri
F = {(F j

i , F
jp
i ), jp ∈ P j

2} from file
39: search F j

i , find F j1
k

40: search F j1
k in Rb1, find node value Rk

F

41: for each F jp
i , jp ∈ P j

2 do
42: search F jp

i , find F j1
t

43: search F j1
t in Rb2, find node value Rt

F

44: end for
45: combine Rk

F , R
i
F and Rt

F into R̄i
F

46: end for
47: Collect and combine along-track and across-track tie points

from all segments

25



Toronto Vaihingen DunHuan Jinan Village College Taian

Camera UCD DMC Cannon Cannon DMC Cannon DMC

#Images 13 20 63 76 90 468 737

#Tracks 3 3 3 2 4 14 12

Image
Size

11500×
7500

7680×
13824

5616×
3744

5616×
3744

7680×
13824

5616×
3744

7680×
13824

Forward
Overlap

60% 60% 60% 60% 80% 60% 60%

Side
Overlap

30% 60% 30% 30% 50% 30% 30%

Table 1: Overview of the test datasets

features, ParallaxBA (Zhao et al., 2011) is applied where reprojection error
in the objective function can measure the accuracy of the feature extraction
and matching results of L2-SIFT. In addition, three-dimensional terrains are
reconstructed based on the ParallaxBA method with a large amount of image
points extracted and matched by the L2-SIFT algorithm. Finally, L2-SIFT
and some functions of MicMac software (Pierrot-Deseilligny and Clery, 2011)
are compared.

5.1. Datasets

Detailed parameters of the seven test datasets are shown in Table 1. All
of the images are taken by high-quality cameras equipped on aircraft plat-
forms, and they contain abundant terrain texture information. Among these
datasets, publicly available Toronto and Vaihingen datasets are from the IS-
PRS Test Project on Urban Classification and 3D Building Reconstruction
(Cramer, 2010) (Rottensteiner et al., 2011) (Rottensteiner et al., 2012). All
experiments are executed on an Intel CPU i5-760 computer on the Windows
platform with a 2.5GHz CPU and 1 G GeForce GT 220 graphics card.

5.2. Analysis on The Number of Correspondences Influenced by Block Size
and Expanded Size

Block size and expanded size are two important parameters of the L2-
SIFT algorithm. The number of correspondences that can be extracted and
matched strongly depends on these two parameters. In this section, we will
discuss what size blocks should be split in the first image and what size
corresponding blocks should be expanded in the second image, aiming to
extract more correspondences. We will experiment on a pair of along-track

26



images from the Vaihingen dataset. The size of the images is 7680 × 13824
pixels. The first octave of SIFT starts from -1, and the two thresholds of
RANSAC are set as 2.0 pixels and 1.0 pixel, respectively.

To analyse the influence of the block size, the expanded size is set as 50
pixels and the block sizes in the first image are set as 250× 250, 500× 500,
1000×1000, 2000×2000, 3000×3000, 4000×4000, 5000×5000, 6000×6000,
7000× 7000 pixels, respectively. The number of correspondences is counted
and depicted in Figure 10. The results show that fewer correspondences
will be generated with larger block sizes and the number of correspondences
begins to drop quickly when the size of the split block is up to 3000× 3000
pixels. The reason for this result is that for many candidate correspondences,
the ratio of the smallest Euclidian distance between two descriptor sets to
the second smallest one is smaller than a given threshold when the block
size is larger and there are many unrelated feature descriptors; thus, fewer
features are matched. In addition, when the block size is large, L2-SIFT
must first down-sample the split block instead of extracting and matching
them directly. Thus, if the block size is smaller, more correspondences will
be extracted. However, considering that this will greatly increase the total
runtime when the block is very small, we set the block size as 500×500 pixels
in this paper.

To analyse the influence of the expanded size, the block size is set as
500 × 500 pixels and the expanded sizes are set as 0, 25, 50, 100, 200, 300,
400, 500, and 1000 pixels, respectively. The number of correspondences is
shown in Figure 11. It is clearly shown that the number of correspondences
increases when the expanded size in the second image ranges from zero to
50 pixels, and it reduces when the expanded size ranges from 50 to 1000
pixels. Because the transformation parameters are inaccurate, the image
block in the second image cannot contain the specified image block in the
first image entirely if it does not expand or merely expands a little. However,
if the image block in the second image expands too much, there will be many
unrelated feature descriptors, and many candidate correspondences cannot
satisfy the matching rule and are discarded in the matching procedure, as
described previously.

To sum up, considering the number of correspondences and runtime, the
block size in the first image should be neither too small nor too large. In this
paper, the block size is set as 500×500 pixels. In the meantime, the expanded
size in the second image should be large enough such that the corresponding
block in the second image can contain the specified block in the first image.

27



However, it should not be too large to avoid redundant feature descriptors.
In this paper, the expanded size is set as 50 pixels.

Figure 10: Number of correspondences affected by the block size in L2-SIFT.

5.3. Feature Extracting and Matching for Two Large Images

With limited memory capacity, the original SIFT algorithm cannot pro-
cess large images directly. In many open software packages, such as SiftGPU,
the down-sampling procedure is used to extract and match features for large
images, which brings out a loss of texture information and results in few or
even no features matched in aerial photogrammetry. In the L2-SIFT algo-
rithm, Block-SIFT can first split the overlapped part of a whole image into
blocks and each of the corresponding blocks is processed separately so that
many reliable features can be extracted without reaching the memory limit.
In this subsection, the numbers of correspondences from two large images
using the SiftGPU algorithm and the L2-SIFT algorithm are compared. The
two images used are from the Toronto dataset with a size of 11500 × 7500
pixels. For the L2-SIFT algorithm, we set the block size as 500× 500 pixels
and the expanded size as 50 pixels. Meanwhile, RANSAC is used to remove
outliers. For SiftGPU, because the original images are down-sampled into
2875 × 1875 pixels before feature extraction and matching, only 215 corre-
spondences can be extracted using SiftGPU, as shown in Figure 12, where

28



Figure 11: Number of correspondences affected by the expanded size in L2-SIFT.

the red points represent features, whereas L2-SIFT can extract 40,504 cor-
respondences, depicted in Figure 13. From the results, we can see that the
L2-SIFT algorithm can avoid texture information loss and extract a very
large number of reliable features when processing one pair of large images.

5.4. Feature Extracting and Matching for Large-Scale Photogrammetry

In this section, the number of features and image points extracted and
matched from the seven datasets and the detailed runtime of each procedure
and the total time are listed in Table 2.

The L2-SIFT algorithm contains six procedures, which are extraction
and matching from adjacent along-track images by Block-SIFT (SIFT-ALT),
matching tie points along-track by the tree key exchange method (Key-
Exchange), splitting all tie point sets in one track into segments (Split-
Seg), extraction and matching from overlapped across-track images by Block-
SIFT (SIFT-ACT), matching across-track tie points by the segment match-
ing method (SegMat) and combining segments (Combine-Seg). For all test
datasets, the start octave of SIFT is set as 0, and the two-level RANSAC
thresholds are 2.0 pixels and 1.0 pixels. For the College dataset, it takes

29



(a) 215 features extracted and matched by SiftGPU.

(b) Correspondences are linked with green lines.

Figure 12: Features from Toronto dataset extracted by SiftGPU after outliers removal
using RANSAC.

(a) 40,504 features extracted and matched by L2-SIFT.

(b) Correspondences are linked with green lines.

Figure 13: Features from Toronto dataset extracted by L2-SIFT after outliers removal
using RANSAC.

30



Toronto Vaihingen DunHuan Jinan Village College Taian

Features 113685 554169 250784 1229011 3282901 3305361 33208549

Image points 239279 1201982 597294 2864868 8683526 8302182 74464965

SIFT-ALT 5.6 10.8 11.5 8.9 55.8 33.6 400.8

Key-Exchange 0.4 1.6 0.4 0.7 7.1 4.7 43.8

Split-Seg 0.3 1.2 0.5 0.5 8.3 4.4 81.8

SIFT-ACT 8.5 19.1 21.2 14.7 82.4 120.5 372.3

SegMat 3.1 2.5 3.3 0.7 49.6 20.5 306.6

Combine-Seg 0.3 1.1 0.4 0.4 6.1 3.4 39.8

Total time 18.2 36.3 37.3 25.9 209.3 187.1 1245.1

Table 2: Runtime statistic of each procedure (in minutes).

approximately 3 hours to extract 3,305,361 features, in which there are
8,302,182 image points, and for the Taian dataset, it takes approximately
21 hours to extract 33,208,549 features, in which there are 74,464,965 image
points (the first row in Table 2 represents the number of features, and the
second row shows the number of image points).

5.5. Accuracy Analysis by Bundle Adjustment

Although the RANSAC algorithm has been used to remove outliers, there
may still be outliers in the tie point sets. Bundle adjustment is currently the
most accurate and widely used method in 3D reconstruction; therefore, it
is an ideal tool to assess the quality of tie points by using the objection
function about the reprojection errors. In this section, we use ParallaxBA
to evaluate the accuracy of the features extracted and matched from the L2-
SIFT algorithm, which has more advantages than other bundle adjustment
methods in terms of convergence (Zhao et al., 2011).

In ParallaxBA, a camera pose is represented as rotation angles and posi-
tion of the camera. The ith camera pose P is represented by

P = [φ, ω, κ, x, y, z]T (10)

where [φ, ω, κ]T are the yaw, pitch, roll angles of P and [x, y, z]T are the
three-dimensional coordinates of the exposure position of camera. In this
paper, the global coordinate system in ParallaxBA optimization locates the
first image coordinate. That is, the 1st camera pose is [0, 0, 0, 0, 0, 0]T .

A feature is parameterized by three angle in ParallaxBA instead of Eu-
clidean XYZ (see Figure 14).

31



Figure 14: Parametrization for a 3D feature in ParallaxBA.

Supposing that a feature F is observed by two cameras Pm and Pa, define
Pm as the main anchor and Pa as the associate anchor of F. XF

m and XF
a

are corresponding rays which are from the main and associate anchor to the
feature, respectively. The feature is described as follows:

F = [ϕ, θ,ϖ]T (11)

where ϕ is the azimuth angle and θ is the elevation angle. ϖ is the parallax
angle from the main corresponding ray XF

m to the associate corresponding
ray XF

a .
The tie points extracted and matched by L2-SIFT are used as the input

of ParallaxBA for all seven aerial photogrammetry datasets. The MSE of
the feature reprojection errors is an important index to assess the features
quality, computed by

ϵ2 =
1

N

N∑
i=1

((ui − ui)
2 + (vi − vi)

2) (12)

where N is the total number of image points, [ui, vi] denotes the reprojected

32



Dataset #features #image points #outliers MSE

Toronto 113685 239279 0 0.041

Vaihingen 554169 1201982 0 0.119

DunHuan 250782 597289 2 0.168

Jinan 1228959 2864740 52 0.126

Village 1544021 4098528 58 0.0953

College 1236502 3107524 75 0.734

Taian 2743553 6016649 148 0.03874

Table 3: Accuracy analysis of L2-SIFT by MSE using ParallaxBA.

image point coordinates in ParallaxBA, and [ui, vi] denotes the extracted
image point using L2-SIFT.

Because of the memory limitations, it is not possible to load all the fea-
tures from the Village, College and Taian datasets into ParallaxBA. We only
use part of the features to execute the ParallaxBA optimisation for these
datasets. The number of features, the number of image points, the num-
ber of outliers removed, and the final MSE of ParallaxBA using the seven
datasets are listed in Table 3.

Terrains are reconstructed with tie points, which are extracted and matched
by L2-SIFT. The three-dimensional point clouds from the results of Paral-
laxBA are shown in Figure 15, in which the point clouds of the Toronto,
Vaihigen, DunHuan and Jinan datasets are drawn in Figure 15(a), Figure
15(b), Figure 15(c) and Figure 15(d) respectively. Similarly, the point clouds
of the Village, College and Taian datasets are shown in Figure 15(e), Figure
15(g) and Figure 15(i), respectively, and for the Village, College and Taian
datasets, the features that were not used in ParallaxBA are triangulated by
using the camera poses optimised by ParallaxBA. The full point clouds are
shown in Figure 15(f), Figure 15(h) and Figure 15(j). Because 3D point
clouds are reconstructed by ParallaxBA in a relative coordinate system in
which the first camera’s coordinate system is regarded as the global coordi-
nate system, the colours in the figures have no practical implications.

5.6. Compare L2-SIFT with MicMac

MicMac is an open-source photogrammetric software package developed
and published by the MATIS laboratory of the Institute Graphique National
(IGN) (Pierrot-Deseilligny and Paparoditis, 2006). As one of the best soft-
ware programs in photogrammetry to compute and reconstruct 3D models, it

33



(a) 113685 3D features using the Toronto
dataset.

(b) 554169 3D features using the Vaihin-
gen dataset.

(c) 250782 3D features using the Dun-
Huan dataset.

(d) 1228959 3D features using the Jinan
dataset.

(e) 1544021 3D features using the Vil-
lage dataset.

(f) 3282901 3D features using the Village
dataset based on triangulation.

(g) 1236502 3D features using the Col-
lege dataset.

(h) 3305361 3D features using the Col-
lege dataset based on triangulation.

34



(i) 2743553 3D features using the Taian
dataset.

(j) 33208549 3D features using the Taian
dataset based on triangulation.

Figure 15: Reconstructed terrains by ParallaxBA using features from L2-SIFT.

has been applied in a wide spectrum of applications (Pierrot-Deseilligny and Clery,
2011). Among all of the functions of MicMac, the Tapioca function, which
makes full use of multi-core parallel computation technology, can provide
a solution to extract and match features from large images. The features
extracted and matched by the Tapioca function are used as the input of
the Apero function, which uses one type of bundle adjustment algorithm
to optimise camera poses. The Tapioca function utilises an external solu-
tion SIFT++ to process large images with low efficiency. In this section, a
comparison between some functions of MicMac and L2-SIFT are performed,
including the number of features extracted and matched from two large im-
ages, the total runtime of features extraction and matching in a study area.
Meanwhile, the MSE of BA with L2-SIFT is compared with that of MicMac
to assess the accuracy of the features extracted and matched by L2-SIFT.

First, two images in the publicly available Village dataset are used to
compare the number of features extracted and matched from two large images
whose size is 7680×13824 pixels, as shown in Table 1. The number of features
and the total runtime (in minutes) are shown in Table 4, in which the first-
octave parameters are set as 0. This table shows that L2-SIFT is faster than
MicMac. In L2-SIFT, we have also tried to simply use SIFT++ instead of
SiftGPU to extract features from the block pairs, and the time used is similar
to that of MicMac. This proves that the time advantage of L2-SIFT mainly
benefits from the utilisation of SiftGPU.

Second, to compare the total runtime of features extraction and matching
in a study area, the Toronto, Vaihingen and Village datasets are chosen. In
MicMac, a specified file that indicates the image distribution is given as an

35



number of features time used (in minutes)

MicMac 81684 34.7

L2-SIFT 62898 0.6

Table 4: Features and time comparison for two large images between L2-SIFT and MicMac.

Toronto Vaihingen Village

MicMac 380.2 1755.6 10109.1

L2-SIFT 18.16 36.31 209.3

Table 5: Time comparison for a study area between L2-SIFT and MicMac (in minutes).

input of the Tapioca tool. From Table 5, it is clear that L2-SIFT is much
faster when processing many images in a study area.

Finally, to verify the accuracy of the features extracted and matched by
L2-SIFT, the MSE of ParallaxBA is compared with that by the Apero tool
in MicMac. In Table 6, the MSE with L2-SIFT is slightly less than that of
MicMac, showing that L2-SIFT can extract reliable features.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we present the L2-SIFT algorithm to extract and match
features from large images in large-scale aerial photogrammetry. The Block-
SIFT method, the red-black tree structure, the tree key exchange method
and the segment matching method are proposed in the L2-SIFT algorith-
m. The Block-SIFT method is proposed to overcome the memory limitation
problem when matching two large images. The red-black tree structure, tree
key exchange method and segment matching method are used to improve the
efficiency of tie points matching along-track and across-track in large-scale
aerial photogrammetry. Finally, the detailed runtime of the L2-SIFT algo-
rithm is listed, and the accuracy of the extracted features are evaluated by
the MSE of reprojection errors in ParallaxBA using seven real-world aerial
datasets. As shown in the experiments, the L2-SIFT algorithm can efficient-

Toronto Vaihingen Village

MicMac 0.1775 3.186 1.2435

L2-SIFT 0.041 0.119 0.0953

Table 6: MSE of BA comparison between L2-SIFT and MicMac (unit is square pixels).

36



ly extract numerous high-quality features from large images and accurately
match tie points among a very large number of unordered image points in
large-scale aerial photogrammetry.

In this paper, we assumed near-zero pitch and roll angles of the platform
in the method for extracting and matching 2D image features. This assump-
tion may not hold in many applications, such as those using an Unmanned
Aerial Vehicle. In future work, we will investigate how to extract and match
a pair of large images taken from a platform with large pitch or roll angles;
thus, the estimated transformation between two images is not limited to 2D.

Acknowledgements

The authors would like to thank the authors of SiftGPU, MicMac and
SIFT++ for making their algorithms available as open-source which is really
helpful to the research described in this paper.

References

Altmaier, A. and Kany, C., 2002. Digital surface model generation from
corona satellite images. ISPRS Journal of Photogrammetry and Remote
Sensing 56(4), 221–235.

Baltsavias, E., 1999. A comparison between photogrammetry and laser s-
canning. ISPRS Journal of Photogrammetry and Remote Sensing 54(2),
83–94.

Barazzetti, L., Remondino, F., and Scaioni, M., 2010. Extraction of accurate
tie points for automated pose estimation of close-range blocks. In ISPRS
Technical Commission III Symposium on Photogrammetric Computer Vi-
sion and Image Analysis.

Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L., 2008. Speeded-up robust
features (surf). Computer Vision and Image Understanding 110(3), 346–
359.

Bayer, R., 1972. Symmetric binary b-trees: Data structure and maintenance
algorithms. Acta informatica 1(4), 290–306.

Chum, O., Matas, J., and Kittler, J.,2003 Locally optimized RANSAC.
Pattern Recognition, Springer Berlin Heidelberg, pp. 236–243.

37



Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C, 2009. Introduc-
tion to algorithms (3rd Edition). MIT Press, pp. 309–338.

Cramer, M., 2010. The DGPF-test on digital airborne camera evaluation
overview and test design. Photogrammetrie Fernerkundung Geoinforma-
tion 2010(2), 73–82.

Crisp, D., and Tao, T., 2010. Fast region merging algorithms for image
segmentation. In: Proc. the Fifth Asian Conference on Computer Vision,
Melbourne, Australia, pp. 412–417.

Fink, E., Goldstein, A., Hayes, P., and Carbonell, J. G., 2004. Search for
approximate matches in large databases. In: Proc. Systems, Man and
Cybernetics, pp. 1431–1435.

Fischler, M. and Bolles, R., 1981. Random sample consensus: a paradig-
m for model fitting with applications to image analysis and automated
cartography. Communications of the ACM 24(6), 381–395.

Guibas, L. and Sedgewick, R., 1978. A dichromatic framework for balanced
trees. In: Proc. 19th Annual Symposium on Foundations of Computer
Science, pp. 8–21.

Harris, C. and Stephens, M., 1988. A combined corner and edge detector.
Proc. Alvey Vision Conference, pp. 147–151.

Heipke, C. and Eder, K., 1998. Performance of tie-point extraction in auto-
matic aerial triangulation. OEEPE Official Publications, 125–185.

Ke, Y. and Sukthankar, R., 2004. Pca-sift: A more distinctive representa-
tion for local image descriptors. In: Proc. Computer Vision and Pattern
Recognition (CVPR), pp. 506–513.

Lalonde, M., Byrns, D., Gagnon, L., Teasdale, N. and Laurendeau, D., 2007.
Real-time eye blink detection with gpu-based sift tracking. Proc. Fourth
Canadian Conference on Computer and Robot Vision, pp. 481–487.

Leibe, B., Schindler, K., Cornelis, N. and Van Gool, L., 2008. Coupled
object detection and tracking from static cameras and moving vehicles.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10),
1683–1698.

38



Lindeberg, T., 1998. Feature detection with automatic scale selection. Inter-
national Journal of Computer Vision 30(2), 79–116.

Lourakis, M. I., and Argyros, A. A., 2009. SBA: A software package for
generic sparse bundle adjustment. ACM Transactions on Mathematical
Software 36(1), 1–30.

Lowe, D., 2004. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60(2), 91–110.

Mikolajczyk, K. and Schmid, C., 2005. A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(10), 1615–1630.

Moravec, H., 1981. Rover visual obstacle avoidance. In: Proc. 7th Interna-
tional Joint Conference on Artificial Intelligence, vol. 2, pp. 785–790.

Morel, J. M., and Yu, G, 2009. ASIFT: A new framework for fully affine
invariant image comparison. SIAM Journal on Imaging Sciences, 2(2),
438-469.

Novák, D., Baltsavias, E., and Schindler, K, 2011. Reliable image matching
with recursive tiling. In: Photogrammetric Image Analysis, pp. 49–60.

Pierrot-Deseilligny, M. and Paparoditis, N., 2006. A multiresolution and
optimization-based image matching approach: An application to sur-
face reconstruction from spot5-hrs stereo imagery. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences
36(part 1/w41), 73–77.

Pierrot-Deseilligny, M. and Clery, I., 2011. Apero, an open source bun-
dle adjusment software for automatic calibration and orientation of set of
images. International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXVIII(5).

Rottensteiner, F., Baillard, C., Sohn, G. and Gerke, M., 2011. ISPRS test
project on urban classification and 3D building reconstruction.

Rottensteiner, F., Sohn, G., Jung, J., Gerkec, M., Baillard, C., Sebastien, B.,
and Uwe, 2012. The ISPRS Benchmark on Urban Object Classification and
3D Building Reconstruction. In: Proc. XXII ISPRS Congress, Melbourne.

39



Schenk, T., 1997. Towards automatic aerial triangulation. ISPRS Journal of
Photogrammetry and remote Sensing, 52(3), 110-121.

Sinha, S., Frahm, J., Pollefeys, M. and Genc, Y., 2006. Gpu-based video
feature tracking and matching. Workshop on Edge Computing Using New
Commodity Architectures 278.

Strecha, C., Bronstein, A. M., Bronstein, M. M., and Fua, P., 2012. LDA-
Hash: Improved matching with smaller descriptors. IEEE Transactions on
Pattern Analysis and Machine Intelligence 34(1), 66–78.

Umeyama, S., 1991. Least-squares estimation of transformation parameters
between two point patterns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(4), 376–380.

Vedaldi, A., 2010. SIFT++, http://vision.ucla.edu/˜vedaldi/code/siftpp/siftpp.
html.

Wu, C., 2007. SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT), http://cs.unc.edu/˜ccwu/siftgpu.

Zhao, L., Huang, S., Yan, L. and Dissanayake, G., 2011. Parallax angle
parametrization for monocular SLAM. In: Proc. IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3117–3124.

Zhao, L., Huang, S., Yan, L., Wang, J. J., Hu, G. and Dissanayake, G.,
2010. Large-scale monocular SLAM by local bundle adjustment and map
joining. In: Proc. 11th International Conference on Control Automation
Robotics & Vision (ICARCV), pp. 431–436.

Zhang, Z., Ganesh, A., Liang, X., and Ma, Y., 2012. TILT: transform invari-
ant low-rank textures. International Journal of Computer Vision 99(1),
1–24.

40


