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Abstract—A sparse feature-based motion segmentation algo-
rithm for RGB-D data is proposed which offers us a unified way 
to handle outliers and dynamic scenarios. Together with the 
pose-graph SLAM framework, they constitute an effective and 
robust solution that enable us to do RGB-D SLAM in wide range 
of situations, although traditionally they have been divided into 
different categories and treated separately using different kinds 
of methods. Through comparisons with RANSAC using simu-
lated data and testing with different benchmark RGB-D datasets 
against the state-of-the-art method in RGB-D SLAM, we show 
that our solution is efficient and effective in handling general 
static and dynamic scenarios, some of which have not be achieved 
before. 
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I. INTRODUCTION 
In simultaneous localization and mapping (SLAM) 

scenarios, there are three long standing problems that are 
pervasive and till now they are regarded as different problems 
and being treated in different ways, either from the front end or 
back end. 

Firstly, in traditional pose-feature SLAM, while doing data 
association at the front end, there are unavoidable outliers 
coming from feature matching and sensor noises. How to get 
rid of them is a classical problem. Nowadays, RANdom 
SAmple Consensus (RANSAC) [1] is widely utilized to find 
the motion model for the camera that can encompass most 
available feature points as inliers. Once such a model is found, 
the points that are inconsistent with the model are regarded as 
outliers and discarded. Since the proportions of this kind of 
outliers are usually very low, RANSAC can do very well in 
most cases [2, 3], although it is an iterative and non-
deterministic method. 

Secondly, dynamic scenarios can bring in another kind of 
outliers. As we know, the traditional solution framework of 
SLAM assumes that everything is static except the camera. 
And when it comes to dynamic scenarios, the effects of moving 
objects can be very serious. In this case, we do not care about 
what the moving objects are and how they are moving; instead, 
our sole purpose is just to filter out these extra outliers together 
with those mentioned above. RANSAC method can still work 
in some special cases, but as we will see, its performance will 
degrade rapidly as the fraction of outliers increases. Dense vis-
ual SLAM [4], which represents the latest achievement in 
RGB-D SLAM, makes use of the color and depth information 
at every pixel to do SLAM and employ t-distribution to en-

hance its robustness; while in [5], weighting function is utilized 
to handle moving objects. On the other hand, instead of relying 
solely on the data association stage to get rid of all of the 
outliers, robust kernels such as Huber function [6], and recently 
some other robust approaches [7-9], have also been proposed 
and adopted at the back end to cope with unwanted outliers 
leaked from the front end. The basic idea of them is to 
minimize the effects of outliers including dynamic elements 
while doing the least squares optimization instead of explicitly 
identifying and separating them away beforehand. 

Thirdly, multibody SLAM concerns about depicting all of 
the parts, either static or moving ones, in the scenarios. In such 
situations, we usually firstly resort to motion segmentation 
algorithms to decompose the dynamic scenarios into different 
motion groups and then apply the current solution framework 
of static SLAM to handle each of them.  

As a matter of fact, in multibody SLAM, moving objects 
become one of our focuses instead of unwanted, useless pseudo 
noises; at the same time, we still need to deal with outliers 
caused by feature matching and sensor noises. So, to some 
degree, multibody SLAM is a more general task, and those 
situations we have mentioned before constitute some of the 
special cases of it. It means that motion segmentation 
algorithms need to be able to cope with such kind of situations 
as well.  In other word, motion segmentation algorithms can be 
a general solution to all these three kind of problems. 

In this paper, we propose a sparse feature-based motion 
segmentation. Although it is originally targeted for multibody 
RGB-D SLAM, we argue that a good motion segmentation 
algorithm can act as a unified solution to the three different 
problems mentioned above, and we will see that it is efficient 
and effective in handling the three kinds of situations in the 
same framework. We have tested it using simulated data and 
several benchmark RGB-D datasets, some of which are 
difficult ones, and our results are quite promising. So, we are 
confident that as a supplement for the traditional solution 
framework of static SLAM, this algorithm will enable us to do 
robust pose-graph SLAM in more general static and dynamic 
scenarios.  

The structure of this paper is as follows. Firstly, we talk 
about RANSAC and motion segmentation algorithms in 
Section II. Then we propose our motion segmentation 
algorithm in Section III, in which no motion model or object 
model is assumed. After that, we choose standard RANSAC as 
a reference, and make detailed comparisons between them 
using simulated data; based on that, we further test our 
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algorithm using several publicly available benchmark datasets 
and compare our results with those of the state-of-the-art in 
RGB-D SLAM, i.e., dense visual SLAM [4] in Section IV. 
And finally we summarize the paper and talk about future 
work. 

II. RELATED WORK 
In this section, we will talk about RANSAC and give a 

brief review of the related work that has made use of RANSAC 
to deal with outliers and moving objects in SLAM, and the 
available motion segmentation algorithms in multibody 
SLAM.  

A. RANSAC and Its Application in SLAM 
As an important robust estimator, RANSAC has become a 

standard and indispensable tool to deal with outliers in sparse 
feature-based SLAM [10, 11] as well as many other areas. It 
was firstly proposed in [1], and the standard RANSAC is   
composed of iterations of three simple steps: generate random 
hypothetical minimal inliers, fit a model, and get the consensus 
set. It will keep iterating till the possibility of obtaining a good 
model with the corresponding consensus set is above a preset 
value or the maximum iteration times have been reached.  

Theoretically, with appropriate threshold values, given 
enough time, RANSAC can always find the most accurate 
model, but when the number of iterations is limited, the 
obtained solution is not guaranteed to be optimal. As we all 
know, in practice, time is a precious resource, so the balance 
between accuracy and time is always an important topic of 
RANSAC. Furthermore, for one of the common cases where 
we are only concerned about the predominant model in the data, 
only when outliers just constitutes a small part of the whole 
data, standard RANSAC turns out to be a simple and efficient 
solution; as the number and portion of moving parts and other 
outliers increase, RANSAC will become inefficient very 
quickly. To improve the efficiency, accuracy and robustness of 
the standard RANSAC, many extensions have been proposed. 
The basic conclusion is that RANSAC can be improved in one 
regard but at the expense of the others, and interested reader 
can refer to [12] for a detailed survey and performance 
evaluation of them.   

On the other hand, the standard RANSAC can not be 
directly used to estimate multi-model in a scenario, although 
[13] has made use of it to detect a moving object which can be 
regarded as a simple case of multibody SLAM. So, some 
researchers propose to do sequential RANSAC [14]: apply 
RANSAC to get a model and its inliers, remove the found 
inliers from the data and then for the remaining data apply 
RANSAC again. The iterations will keep going till no model 
can be recovered from the data. However, during the process, 
inaccurate inliers detection will affect the estimation of the 
following models. To tackle this problem, multiRANSAC [15] 
is proposed, which does the estimation in a parallel manner. 
Nevertheless, it requires the user to specify the number of 
model instances, which is usually unknown in most cases. 

So, generally speaking, although many variants of 
RANSAC have been proposed to partially address the 
shortcomings of the standard RANSAC, the problem has not 

been fully solved yet. And as far as we know, up till now, none 
of them has been applied in multibody SLAM yet.  

In this paper, we are mainly concerned about robust 
estimation of camera poses, or ego-motion, in various 
situations where the static features usually amount to be the 
predominant part of the data, so we choose to compare our 
algorithm with the standard RANSAC here.  

B. Motion Segmentation in Multibody SLAM 
In multibody SLAM, motion segmentation algorithms have 

been regarded as an important step to decompose the dynamic 
scenario into different motion groups. And almost all of the 
available motion segmentation algorithms do segmentation 
without discrimination, which means that while doing 
segmentation, they do not care about which group belongs to 
the static environment. 

In terms of targeted applications, most of the available 
motion segmentation algorithms are for RGB data only, quite 
recently some work on RGB-D data is also emerging. In our 
recent work [16],  a brief review of the related work is given 
and an efficient algorithm for motion segmentation in RGB-D 
SLAM based on the necessary and sufficient conditions of 
being relatively static is proposed. However, since the 
segmentation algorithm solely relies on the distance values 
whose accuracy is limited by the capability of the sensor, i.e., 
Kinect, while it is good at detecting large movements, it may 
fail to detect small movements within the precision range of 
Kinect. Furthermore, the approach is restricted to scenarios 
composed of rigid moving objects. 

As to the output, the segmentation results can be dense or 
sparse. In the former case, every pixel in an image will get a 
label associated with a motion group; while the latter only give 
identifications for some of the pixels in the image. To get 
dense results, some algorithms start from dense optical flow, 
which is usually obtained by employing available mature 
algorithms in computer vision. And therefore their accuracy 
depends on that of optical flow results. On the other hand, 
some others firstly conduct a long trajectory analysis to get a 
sparse segmentation result, then through a label diffusion 
process to get the dense result [17]. The accuracy also depends 
on that of its initial stage. 

III. OUR MOTION SEGMENTATION ALGORITHM 
The inputs to our motion segmentation algorithm are two 

frames of RGB-D data, from which we can get detected and 
matched sparse feature pairs, and then we will separate them 
into different motion groups.  

As we know, for each dynamic scenario composed of some 
moving objects, its corresponding D3  flow field is made up 
of several coherent parts, so each pairs of inlier points is not 
singular. Instead, each of them can find some close neighbours 
that have similar flow vectors. On the other hand, for those 
who can not find similar neighbours, it is highly possible that 
they are outliers. It is based on this observation that we firstly 
select 2 similar neighbouring pair of points and then together 
with the given pair to calculate the rotation matrix R and trans-
lation T across the two frames during the segmentation process.  



 

More specifically, when judging whether two vectors are 
similar or not, we are using the following formula as in [18]: 
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In this formula, s  represents the similarity score, iV  

represents the D3  flow vector of one of the neighbours, 0V  
represents the D3  flow vector of the current chosen point, and 
ε  is a constant whose value is set according to the noise level 
of the data. After some primitive verification, we discover that 
if ε is set to 1, and if 05.0<s , the corresponding neighbour 
could be regarded as similar to the current point. And these two 
values are fixed in this paper except for the last dataset where 
adaptive thresholds are used. 

After getting the initial R and T with similar neighbours, 
we will iterate between updating R and T and inliers till no 
more inliers can be included. This process is similar to locally 
optimal RANSAC [19]. 

The detailed steps of our algorithm are as follows:  

A. Sparse-Feature Based Motion Segmentation Algorithm 
1) Given two frames of RGB-D data, do feature detection 

and matching, and then only keep those features with depth 
information. 

2) Convert obtained features into (x, y, z) form, and then 
get their corresponding 3D flow. 

3) For one pair of matched features, choose its neighbours 
who have similar 3D flow as a cluster to get an initial guess of 
R and T, based on which corresponding inliers are obtained. 
And we will keep iterating between updating R and T and 
inliers until no more inliers can be included. 

 If for one feature, we cannot find a minimum number (3 is 
used in this paper) of similar neighbours, it is highly possible 
that it is an outlier and we will skip it. 

4) From what is left choose another pair of matched fea-
tures, and then go on as step 3) has described.  

5) After all of the features have been classified, choose the 
largest group as the static group. 

B. Solution for Robust SLAM and Multibody SLAM 
The chosen group and its corresponding R and T will be 

put into a pose-graph optimization process to get the camera 
poses. For robust SLAM, all of the work is done; and for mul-
tibody SLAM, it is also a good start. For example, it does not 
require that every moving object needs to have enough features 
on it in every frame; once ego-motion is known, it can help us 
identify various moving object and their motions types, 
including both rigid and non-rigid objects. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 
Firstly, to show the efficiency of our algorithm, we 

compare it with the standard RANSAC (without causing con-

fusion, we will just call it RANSAC thereafter) using simulated 
data. As we will see, as the fraction of the targeted group 
decreases, the performance for RANSAC degrades quickly 
while ours remains almost the same. Please note that the 
computation time include just one round of RANSAC, which 
can only tell us the inliers corresponding to the biggest group, 
while our algorithm will segment all the points into different 
groups in one go. 

Then, we test our algorithm using several benchmark RGB-
D datasets, which include both static and dynamic scenarios. 
The segmentation results are verified by the accurate visual 
odometry achieved, based on which pose-graph SLAM results 
can be obtained. 

A. Results from Simulated Dynamic Scenarios 
1) Simulated Dynamic Situations: 

We randomly generate one thousand of 3D points (x, y, z), 
separate them into different groups, and then translate and 
rotate them using different sets of motion parameters (R and T), 
all of which constitute the ground-truth values.  

From the 3D points, we can get their images at their 
different positions through a simulated RGB-D camera (its 
intrinsic matrix is the same as the Kinect in the real dataset), 
then we add Gaussian noises to the u, v and d values 
respectively (within 0.5 pixel for the u and v values, 1% for the 
d values). 

2) Simulation Results 
Given the two sets of u, v and d values, we then apply our 

algorithm (we call it MS3D) and RANSAC to do the 
segmentation respectively. The threshold for both MS3D and 
RANSAC is chosen to be 0.08 m .  

As of the iteration times k  of RANSAC, assuming that the 
probability of choosing an inlier component is w , if we want 
to ensure that we can get a subset of n -component coming 
from the inlier set with the probability of p , the traditional 
way is calculated as follows: 
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While directly applying this formula to our data, we find 
that in most cases, RANSAC cannot find a solution at all. 
According to our understanding, this formula just tell us that 
within k  times, we can find one subset of inliers; on the other 
hand, as we know, for noisy data, we cannot expect that one 
subset can give us a good estimation. So, in our comparisons, 
we have used 30 times of k  as the limit. Even at this larger 
limit, there are still some occasions that RANSAC can not find 
R and T. 

If we change the portion of the predominant group, the run 
time for RANSAC will increase dramatically while that of our 
algorithm remains almost the same, as shown in Table I and 
Table II. More specifically, in Table I where there are two mo-
tion groups, when the percentage of the targeted group 
decreases from 100% to 51%, to attain the same accuracy, the 
consumed time for RANSAC increases from 0.01 second to 



 

2.7 seconds (discarding those situations in which it fails to find 
the results) while the running time for our algorithm remains to 
be around 0.03 second. Similar trend can be seen in Table II 
which represents the five motion-group scenario.  

B. Experimental Results from Static and Dynamic Scenarios 
We then test our algorithm using several typical benchmark 

RGB-D datasets provided by TUM [20], among which are 
static (fr3_long_office_household), dynamic (fr3_sitting_xyz, 
fr2_desk_with_person) scenarios, and even a very challenging 
dataset that no visual odometry results have been reported 
before (fr3_walking_static). 

TABLE I.  COMPARISON OF AVERAGE COMPUTATION TIME: 
SCENARIOS COMPOSED OF TWO MOTION GROUPS 

Percentage for The 
Targeted Group (%) 

Average Run Time (Seconds) 
RANSAC MS3D 

100 0.01 0.02 

90 0.3 0.03 

80 0.5 0.03 

70 0.9 0.03 

60 1.6 0.03 

51 2.7 0.03 

TABLE II.  COMPARISON OF AVERAGE COMPUTATION TIME: 
SCENARIOS COMPOSED OF FIVE MOTION GROUPS 

Percentage for The 
Targeted Group (%) 

Average Run Time (Seconds) 
RANSAC MS3D 

80 0.5 0.3 

70 0.9 0.2 

60 1.6 0.2 

50 2.9 0.2 

40 5.8 0.2 

30 14.2 0.2 

For each dataset, we are not using all of the data; instead, 
we firstly select some keyframes according to two criteria: 
either every two consecutive frames at least have a minimum 
number of common features (we choose 100 here), or have a 
minimum distance (we specify that the norm of the relative 
translation (in meters) and rotation angles (in radians) together 
should be bigger than 0.03) from each other. There are no 
further manual pruning involved in addition to them. Then the 
relative translation and rotation, i.e., visual odometry, is 
obtained after sparse feature (we are using SIFT) detection, 
matching and segmentation.  

Based on the visual odometry results from every two 
consecutive frames, we can get the initial values for the camera 
poses; furthermore, we also check every frame with its closest 
neighbours within a certain distance (we use 0.2 m  as the 
limit). Those frames that have at least 100 common features 
with the current frame amount to be good loop closures. 

With all of these R and T values, we then employ G2O [21] 
to do a pose-graph based SLAM. The respective visual 
odometry and SLAM results for each dataset are shown below 
(the last one only has visual odometry results because its loop 
closures are impaired due to shortage of common features). 

Our visual odometry comes right after motion 
segmentation, and its accuracy can directly reflect the quality 
of motion segmentation results. According to [20] and [4, 5], 
the RMSE of relative pose error (RPE) in meters per second is 
a good evaluation standard for visual odometry; while the 
RMSE of absolute trajectory error (ATE) is especially suitable 
for evaluating the SLAM results. In this paper, we follow these 
rules and make use of the final results of dense visual SLAM 
[4] (called DVSLAM thereafter) as a reference.  

1) rgbd_dataset_freiburg3_long_office_household 
In this dataset, the camera is moving around a large table, 

so the outliers mainly come from feature detection, matching 
and/or sensor errors.  

a) Motion Segmentation Result 
As shown in Fig. 1, our motion segmentation algorithm can 

detect outliers effectively. 

 

Fig. 1. Two sample motion segmentation results (best viewed in color): 
blue points respresent detected inliers, while red points represent outliers 
caused by inaccurate depth data or feature matching. 

b) Visual Odometry Result 
The RMSE of RPE for our visual odometry is 

0.023654 sm / ; while the RMSE of RPE for DVSLAM is 
0.053943 sm / . 

c) After Pose-graph SLAM  
Our RMSE of ATE is 0.049933 m , and the obtained 

camera poses as compared with the ground truth values are 
shown in Fig. 2; while The RMSE of ATE for DVSLAM is 
0.083816 m . 

2) rgbd_dataset_freiburg3_sitting_xyz 
In this dataset, two people are sitting in front of a table 

before the camera, chatting with small body movements.  

a) Motion Segmentation Result 
As shown in Fig. 3, our motion segmentation algorithm can 

detect moving points and other outliers effectively. 

b) Visual Odometry Result 
The RMSE of RPE for our visual odometry is 

0.025184 sm / ; while the RMSE of RPE for DVSLAM is 
0.048998 sm / . 



 

c) After Pose-graph SLAM  
Our RMSE of ATE is 0.018450 m , and our camera poses 

as compared with the ground truth values are shown in Fig. 4; 
while the RMSE of ATE for DVSLAM is 0.060418 m . 

 
Fig. 2. Our SLAM results for the first dataset compared with the ground 

truth (best viewed in color):  gray lines represent ground truth, blue lines 
represent the SLAM results, and red lines represent the differences 
between them at various corresponding timestamps. 

 

Fig. 3. Two sample motion segmentation results for the second dataset 
(best viewed in color): blue points respresent detected inliers, while 
points in other colors represent outliers caused by inaccurate depth data, 
feature matching, or moving objects. 

3) rgbd_dataset_freiburg2_desk_with_person 
In this dataset, one people comes to sit before the desk, 

simulating working there with some big body movements and 
making changes to parts of the environment. 

a) Motion Segmentation Result 
As shown in Fig. 5, our motion segmentation algorithm can 

separate the moving parts of the human body and other outliers 
from the static group effectively. 

b) Visual Odometry Result 
The RMSE of RPE for our visual odometry is 

0.018190 sm / ; while the RMSE of RPE for DVSLAM is 
0.018318 sm / .  

c) After Pose-graph SLAM  
Our RMSE of ATE is 0.055157 m , and the camera poses 

as compared with the ground truth values are shown in Fig. 6; 
while the RMSE of ATE for DVSLAM is 0.073133 m .  

 
Fig. 4. Our SLAM results for the second dataset compared with the 

ground truth(best viewed in color):  gray lines represent ground truth, 
blue lines represent the SLAM results, and red lines represent the 
differences between them at various corresponding timestamps.  

 
Fig. 5. Two sample motion segmentation results for the third dataset (best 

viewed in color): blue points respresent detected inliers, while points in 
other colors represent outliers caused by inaccurate depth data, feature 
matching, or moving objects. 

 
Fig. 6. Our SLAM results for the third dataset compared with the ground 

truth (best viewed in color):  gray lines represent ground truth, blue lines 
represent the SLAM results, and red lines represent the differences 
between them at various corresponding timestamps.   

4) freiburg3_walking_static 
As shown in Fig. 7, in this dataset, two people are moving 

in front of the camera, there are blur caused by quick camera 



 

movements and in some frames useful features are limited. Till 
now, no one has publish reasonable results on this dataset yet. 

Since there are wide ranges of dynamic changes in the 
scenarios, a fixed threshold value is no longer valid for 
segmenting all of the frames into different motion groups. 
Therefore, we have modified our algorithm so that it can 
change the threshold value on the fly to adapt to different 
situations. However, similar to [22], it is based on a basic 
assumption that there are at least 20 common features in each 
pairs of frames. Nevertheless, we can only obtain relatively 
better visual odometry results at current stage. 

 

Fig. 7. Two snapshots of the fourth dataset: freiburg3_walking_static.  

For our visual odometry, the RMSE of ATE is 
0.161254 m , and the RMSE of RPE is 0.084001 sm / ; while 
for DVSLAM, the RMSE of ATE is 0.469814 m , and RMSE 
of RPE is 0.309064 sm / . 

V. CONCLUSION 
In summary, we propose a general motion segmentation al-

gorithm for robust RGB-D SLAM. We have shown that to-
gether with the solution framework of static SLAM, it is able 
to handle outliers and dynamic objects in an efficient, effec-
tive and unified manner. Using real datasets, we have 
achieved promising results that are comparable or better than 
what has been achieved using dense method [4, 5]. 

While dealing with the “walking” datasets of TUM, motion 
blur and textureless areas are pervasive; as a result, the num-
ber of useful features drops quickly, preventing us from get-
ting better results out of them. To fully address this problem, 
image deblurring and ICP need to be integrated into the cur-
rent framework to make it more robust and versatile. 

Also, to make current motion segmentation algorithm adap-
tive to datasets including wide ranges of dynamic scenarios is 
still an open question. [22] and [23] have made some benefi-
cial endeavors, but more work is needed to fully solve this 
fundamental problem.  
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