
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Motion Segmentation based Robust RGB-D SLAM

Youbing Wang and Shoudong Huang
Faculty of Engineering and IT

University of Technology, Sydney
Sydney, Australia

youbing.wang@student.uts.edu.au,
shoudong.huang@uts.edu.au

Abstract—A sparse feature-based motion segmentation algo-
rithm for RGB-D data is proposed which offers us a unified way
to handle outliers and dynamic scenarios. Together with the
pose-graph SLAM framework, they constitute an effective and
robust solution that enable us to do RGB-D SLAM in wide range
of situations, although traditionally they have been divided into
different categories and treated separately using different kinds
of methods. Through comparisons with RANSAC using simu-
lated data and testing with different benchmark RGB-D datasets
against the state-of-the-art method in RGB-D SLAM, we show
that our solution is efficient and effective in handling general
static and dynamic scenarios, some of which have not be achieved
before.

Keywords—robust SLAM; motion segmentation

I. INTRODUCTION
In simultaneous localization and mapping (SLAM)

scenarios, there are three long standing problems that are
pervasive and till now they are regarded as different problems
and being treated in different ways, either from the front end or
back end.

Firstly, in traditional pose-feature SLAM, while doing data
association at the front end, there are unavoidable outliers
coming from feature matching and sensor noises. How to get
rid of them is a classical problem. Nowadays, RANdom
SAmple Consensus (RANSAC) [1] is widely utilized to find
the motion model for the camera that can encompass most
available feature points as inliers. Once such a model is found,
the points that are inconsistent with the model are regarded as
outliers and discarded. Since the proportions of this kind of
outliers are usually very low, RANSAC can do very well in
most cases [2, 3], although it is an iterative and non-
deterministic method.

Secondly, dynamic scenarios can bring in another kind of
outliers. As we know, the traditional solution framework of
SLAM assumes that everything is static except the camera.
And when it comes to dynamic scenarios, the effects of moving
objects can be very serious. In this case, we do not care about
what the moving objects are and how they are moving; instead,
our sole purpose is just to filter out these extra outliers together
with those mentioned above. RANSAC method can still work
in some special cases, but as we will see, its performance will
degrade rapidly as the fraction of outliers increases. Dense vis-
ual SLAM [4], which represents the latest achievement in
RGB-D SLAM, makes use of the color and depth information
at every pixel to do SLAM and employ t-distribution to en-

hance its robustness; while in [5], weighting function is utilized
to handle moving objects. On the other hand, instead of relying
solely on the data association stage to get rid of all of the
outliers, robust kernels such as Huber function [6], and recently
some other robust approaches [7-9], have also been proposed
and adopted at the back end to cope with unwanted outliers
leaked from the front end. The basic idea of them is to
minimize the effects of outliers including dynamic elements
while doing the least squares optimization instead of explicitly
identifying and separating them away beforehand.

Thirdly, multibody SLAM concerns about depicting all of
the parts, either static or moving ones, in the scenarios. In such
situations, we usually firstly resort to motion segmentation
algorithms to decompose the dynamic scenarios into different
motion groups and then apply the current solution framework
of static SLAM to handle each of them.

As a matter of fact, in multibody SLAM, moving objects
become one of our focuses instead of unwanted, useless pseudo
noises; at the same time, we still need to deal with outliers
caused by feature matching and sensor noises. So, to some
degree, multibody SLAM is a more general task, and those
situations we have mentioned before constitute some of the
special cases of it. It means that motion segmentation
algorithms need to be able to cope with such kind of situations
as well. In other word, motion segmentation algorithms can be
a general solution to all these three kind of problems.

In this paper, we propose a sparse feature-based motion
segmentation. Although it is originally targeted for multibody
RGB-D SLAM, we argue that a good motion segmentation
algorithm can act as a unified solution to the three different
problems mentioned above, and we will see that it is efficient
and effective in handling the three kinds of situations in the
same framework. We have tested it using simulated data and
several benchmark RGB-D datasets, some of which are
difficult ones, and our results are quite promising. So, we are
confident that as a supplement for the traditional solution
framework of static SLAM, this algorithm will enable us to do
robust pose-graph SLAM in more general static and dynamic
scenarios.

The structure of this paper is as follows. Firstly, we talk
about RANSAC and motion segmentation algorithms in
Section II. Then we propose our motion segmentation
algorithm in Section III, in which no motion model or object
model is assumed. After that, we choose standard RANSAC as
a reference, and make detailed comparisons between them
using simulated data; based on that, we further test our

mailto:youbing.wang@student.uts.edu.au�
mailto:shoudong.huang@uts.edu.au�

algorithm using several publicly available benchmark datasets
and compare our results with those of the state-of-the-art in
RGB-D SLAM, i.e., dense visual SLAM [4] in Section IV.
And finally we summarize the paper and talk about future
work.

II. RELATED WORK
In this section, we will talk about RANSAC and give a

brief review of the related work that has made use of RANSAC
to deal with outliers and moving objects in SLAM, and the
available motion segmentation algorithms in multibody
SLAM.

A. RANSAC and Its Application in SLAM
As an important robust estimator, RANSAC has become a

standard and indispensable tool to deal with outliers in sparse
feature-based SLAM [10, 11] as well as many other areas. It
was firstly proposed in [1], and the standard RANSAC is
composed of iterations of three simple steps: generate random
hypothetical minimal inliers, fit a model, and get the consensus
set. It will keep iterating till the possibility of obtaining a good
model with the corresponding consensus set is above a preset
value or the maximum iteration times have been reached.

Theoretically, with appropriate threshold values, given
enough time, RANSAC can always find the most accurate
model, but when the number of iterations is limited, the
obtained solution is not guaranteed to be optimal. As we all
know, in practice, time is a precious resource, so the balance
between accuracy and time is always an important topic of
RANSAC. Furthermore, for one of the common cases where
we are only concerned about the predominant model in the data,
only when outliers just constitutes a small part of the whole
data, standard RANSAC turns out to be a simple and efficient
solution; as the number and portion of moving parts and other
outliers increase, RANSAC will become inefficient very
quickly. To improve the efficiency, accuracy and robustness of
the standard RANSAC, many extensions have been proposed.
The basic conclusion is that RANSAC can be improved in one
regard but at the expense of the others, and interested reader
can refer to [12] for a detailed survey and performance
evaluation of them.

On the other hand, the standard RANSAC can not be
directly used to estimate multi-model in a scenario, although
[13] has made use of it to detect a moving object which can be
regarded as a simple case of multibody SLAM. So, some
researchers propose to do sequential RANSAC [14]: apply
RANSAC to get a model and its inliers, remove the found
inliers from the data and then for the remaining data apply
RANSAC again. The iterations will keep going till no model
can be recovered from the data. However, during the process,
inaccurate inliers detection will affect the estimation of the
following models. To tackle this problem, multiRANSAC [15]
is proposed, which does the estimation in a parallel manner.
Nevertheless, it requires the user to specify the number of
model instances, which is usually unknown in most cases.

So, generally speaking, although many variants of
RANSAC have been proposed to partially address the
shortcomings of the standard RANSAC, the problem has not

been fully solved yet. And as far as we know, up till now, none
of them has been applied in multibody SLAM yet.

In this paper, we are mainly concerned about robust
estimation of camera poses, or ego-motion, in various
situations where the static features usually amount to be the
predominant part of the data, so we choose to compare our
algorithm with the standard RANSAC here.

B. Motion Segmentation in Multibody SLAM
In multibody SLAM, motion segmentation algorithms have

been regarded as an important step to decompose the dynamic
scenario into different motion groups. And almost all of the
available motion segmentation algorithms do segmentation
without discrimination, which means that while doing
segmentation, they do not care about which group belongs to
the static environment.

In terms of targeted applications, most of the available
motion segmentation algorithms are for RGB data only, quite
recently some work on RGB-D data is also emerging. In our
recent work [16], a brief review of the related work is given
and an efficient algorithm for motion segmentation in RGB-D
SLAM based on the necessary and sufficient conditions of
being relatively static is proposed. However, since the
segmentation algorithm solely relies on the distance values
whose accuracy is limited by the capability of the sensor, i.e.,
Kinect, while it is good at detecting large movements, it may
fail to detect small movements within the precision range of
Kinect. Furthermore, the approach is restricted to scenarios
composed of rigid moving objects.

As to the output, the segmentation results can be dense or
sparse. In the former case, every pixel in an image will get a
label associated with a motion group; while the latter only give
identifications for some of the pixels in the image. To get
dense results, some algorithms start from dense optical flow,
which is usually obtained by employing available mature
algorithms in computer vision. And therefore their accuracy
depends on that of optical flow results. On the other hand,
some others firstly conduct a long trajectory analysis to get a
sparse segmentation result, then through a label diffusion
process to get the dense result [17]. The accuracy also depends
on that of its initial stage.

III. OUR MOTION SEGMENTATION ALGORITHM
The inputs to our motion segmentation algorithm are two

frames of RGB-D data, from which we can get detected and
matched sparse feature pairs, and then we will separate them
into different motion groups.

As we know, for each dynamic scenario composed of some
moving objects, its corresponding D3 flow field is made up
of several coherent parts, so each pairs of inlier points is not
singular. Instead, each of them can find some close neighbours
that have similar flow vectors. On the other hand, for those
who can not find similar neighbours, it is highly possible that
they are outliers. It is based on this observation that we firstly
select 2 similar neighbouring pair of points and then together
with the given pair to calculate the rotation matrix R and trans-
lation T across the two frames during the segmentation process.

More specifically, when judging whether two vectors are
similar or not, we are using the following formula as in [18]:

ε++
−

=
|)||(|*5.0

||

0

0

VV
VVs

i

i (1)

In this formula, s represents the similarity score, iV

represents the D3 flow vector of one of the neighbours, 0V
represents the D3 flow vector of the current chosen point, and
ε is a constant whose value is set according to the noise level
of the data. After some primitive verification, we discover that
if ε is set to 1, and if 05.0<s , the corresponding neighbour
could be regarded as similar to the current point. And these two
values are fixed in this paper except for the last dataset where
adaptive thresholds are used.

After getting the initial R and T with similar neighbours,
we will iterate between updating R and T and inliers till no
more inliers can be included. This process is similar to locally
optimal RANSAC [19].

The detailed steps of our algorithm are as follows:

A. Sparse-Feature Based Motion Segmentation Algorithm
1) Given two frames of RGB-D data, do feature detection

and matching, and then only keep those features with depth
information.

2) Convert obtained features into (x, y, z) form, and then
get their corresponding 3D flow.

3) For one pair of matched features, choose its neighbours
who have similar 3D flow as a cluster to get an initial guess of
R and T, based on which corresponding inliers are obtained.
And we will keep iterating between updating R and T and
inliers until no more inliers can be included.

 If for one feature, we cannot find a minimum number (3 is
used in this paper) of similar neighbours, it is highly possible
that it is an outlier and we will skip it.

4) From what is left choose another pair of matched fea-
tures, and then go on as step 3) has described.

5) After all of the features have been classified, choose the
largest group as the static group.

B. Solution for Robust SLAM and Multibody SLAM
The chosen group and its corresponding R and T will be

put into a pose-graph optimization process to get the camera
poses. For robust SLAM, all of the work is done; and for mul-
tibody SLAM, it is also a good start. For example, it does not
require that every moving object needs to have enough features
on it in every frame; once ego-motion is known, it can help us
identify various moving object and their motions types,
including both rigid and non-rigid objects.

IV. SIMULATION AND EXPERIMENTAL RESULTS
Firstly, to show the efficiency of our algorithm, we

compare it with the standard RANSAC (without causing con-

fusion, we will just call it RANSAC thereafter) using simulated
data. As we will see, as the fraction of the targeted group
decreases, the performance for RANSAC degrades quickly
while ours remains almost the same. Please note that the
computation time include just one round of RANSAC, which
can only tell us the inliers corresponding to the biggest group,
while our algorithm will segment all the points into different
groups in one go.

Then, we test our algorithm using several benchmark RGB-
D datasets, which include both static and dynamic scenarios.
The segmentation results are verified by the accurate visual
odometry achieved, based on which pose-graph SLAM results
can be obtained.

A. Results from Simulated Dynamic Scenarios
1) Simulated Dynamic Situations:

We randomly generate one thousand of 3D points (x, y, z),
separate them into different groups, and then translate and
rotate them using different sets of motion parameters (R and T),
all of which constitute the ground-truth values.

From the 3D points, we can get their images at their
different positions through a simulated RGB-D camera (its
intrinsic matrix is the same as the Kinect in the real dataset),
then we add Gaussian noises to the u, v and d values
respectively (within 0.5 pixel for the u and v values, 1% for the
d values).

2) Simulation Results
Given the two sets of u, v and d values, we then apply our

algorithm (we call it MS3D) and RANSAC to do the
segmentation respectively. The threshold for both MS3D and
RANSAC is chosen to be 0.08 m .

As of the iteration times k of RANSAC, assuming that the
probability of choosing an inlier component is w , if we want
to ensure that we can get a subset of n -component coming
from the inlier set with the probability of p , the traditional
way is calculated as follows:

)1log(
)1log(

nw
pk

−
−

= (2)

While directly applying this formula to our data, we find
that in most cases, RANSAC cannot find a solution at all.
According to our understanding, this formula just tell us that
within k times, we can find one subset of inliers; on the other
hand, as we know, for noisy data, we cannot expect that one
subset can give us a good estimation. So, in our comparisons,
we have used 30 times of k as the limit. Even at this larger
limit, there are still some occasions that RANSAC can not find
R and T.

If we change the portion of the predominant group, the run
time for RANSAC will increase dramatically while that of our
algorithm remains almost the same, as shown in Table I and
Table II. More specifically, in Table I where there are two mo-
tion groups, when the percentage of the targeted group
decreases from 100% to 51%, to attain the same accuracy, the
consumed time for RANSAC increases from 0.01 second to

2.7 seconds (discarding those situations in which it fails to find
the results) while the running time for our algorithm remains to
be around 0.03 second. Similar trend can be seen in Table II
which represents the five motion-group scenario.

B. Experimental Results from Static and Dynamic Scenarios
We then test our algorithm using several typical benchmark

RGB-D datasets provided by TUM [20], among which are
static (fr3_long_office_household), dynamic (fr3_sitting_xyz,
fr2_desk_with_person) scenarios, and even a very challenging
dataset that no visual odometry results have been reported
before (fr3_walking_static).

TABLE I. COMPARISON OF AVERAGE COMPUTATION TIME:
SCENARIOS COMPOSED OF TWO MOTION GROUPS

Percentage for The
Targeted Group (%)

Average Run Time (Seconds)
RANSAC MS3D

100 0.01 0.02

90 0.3 0.03

80 0.5 0.03

70 0.9 0.03

60 1.6 0.03

51 2.7 0.03

TABLE II. COMPARISON OF AVERAGE COMPUTATION TIME:
SCENARIOS COMPOSED OF FIVE MOTION GROUPS

Percentage for The
Targeted Group (%)

Average Run Time (Seconds)
RANSAC MS3D

80 0.5 0.3

70 0.9 0.2

60 1.6 0.2

50 2.9 0.2

40 5.8 0.2

30 14.2 0.2

For each dataset, we are not using all of the data; instead,
we firstly select some keyframes according to two criteria:
either every two consecutive frames at least have a minimum
number of common features (we choose 100 here), or have a
minimum distance (we specify that the norm of the relative
translation (in meters) and rotation angles (in radians) together
should be bigger than 0.03) from each other. There are no
further manual pruning involved in addition to them. Then the
relative translation and rotation, i.e., visual odometry, is
obtained after sparse feature (we are using SIFT) detection,
matching and segmentation.

Based on the visual odometry results from every two
consecutive frames, we can get the initial values for the camera
poses; furthermore, we also check every frame with its closest
neighbours within a certain distance (we use 0.2 m as the
limit). Those frames that have at least 100 common features
with the current frame amount to be good loop closures.

With all of these R and T values, we then employ G2O [21]
to do a pose-graph based SLAM. The respective visual
odometry and SLAM results for each dataset are shown below
(the last one only has visual odometry results because its loop
closures are impaired due to shortage of common features).

Our visual odometry comes right after motion
segmentation, and its accuracy can directly reflect the quality
of motion segmentation results. According to [20] and [4, 5],
the RMSE of relative pose error (RPE) in meters per second is
a good evaluation standard for visual odometry; while the
RMSE of absolute trajectory error (ATE) is especially suitable
for evaluating the SLAM results. In this paper, we follow these
rules and make use of the final results of dense visual SLAM
[4] (called DVSLAM thereafter) as a reference.

1) rgbd_dataset_freiburg3_long_office_household
In this dataset, the camera is moving around a large table,

so the outliers mainly come from feature detection, matching
and/or sensor errors.

a) Motion Segmentation Result
As shown in Fig. 1, our motion segmentation algorithm can

detect outliers effectively.

Fig. 1. Two sample motion segmentation results (best viewed in color):
blue points respresent detected inliers, while red points represent outliers
caused by inaccurate depth data or feature matching.

b) Visual Odometry Result
The RMSE of RPE for our visual odometry is

0.023654 sm / ; while the RMSE of RPE for DVSLAM is
0.053943 sm / .

c) After Pose-graph SLAM
Our RMSE of ATE is 0.049933 m , and the obtained

camera poses as compared with the ground truth values are
shown in Fig. 2; while The RMSE of ATE for DVSLAM is
0.083816 m .

2) rgbd_dataset_freiburg3_sitting_xyz
In this dataset, two people are sitting in front of a table

before the camera, chatting with small body movements.

a) Motion Segmentation Result
As shown in Fig. 3, our motion segmentation algorithm can

detect moving points and other outliers effectively.

b) Visual Odometry Result
The RMSE of RPE for our visual odometry is

0.025184 sm / ; while the RMSE of RPE for DVSLAM is
0.048998 sm / .

c) After Pose-graph SLAM
Our RMSE of ATE is 0.018450 m , and our camera poses

as compared with the ground truth values are shown in Fig. 4;
while the RMSE of ATE for DVSLAM is 0.060418 m .

Fig. 2. Our SLAM results for the first dataset compared with the ground

truth (best viewed in color): gray lines represent ground truth, blue lines
represent the SLAM results, and red lines represent the differences
between them at various corresponding timestamps.

Fig. 3. Two sample motion segmentation results for the second dataset
(best viewed in color): blue points respresent detected inliers, while
points in other colors represent outliers caused by inaccurate depth data,
feature matching, or moving objects.

3) rgbd_dataset_freiburg2_desk_with_person
In this dataset, one people comes to sit before the desk,

simulating working there with some big body movements and
making changes to parts of the environment.

a) Motion Segmentation Result
As shown in Fig. 5, our motion segmentation algorithm can

separate the moving parts of the human body and other outliers
from the static group effectively.

b) Visual Odometry Result
The RMSE of RPE for our visual odometry is

0.018190 sm / ; while the RMSE of RPE for DVSLAM is
0.018318 sm / .

c) After Pose-graph SLAM
Our RMSE of ATE is 0.055157 m , and the camera poses

as compared with the ground truth values are shown in Fig. 6;
while the RMSE of ATE for DVSLAM is 0.073133 m .

Fig. 4. Our SLAM results for the second dataset compared with the

ground truth(best viewed in color): gray lines represent ground truth,
blue lines represent the SLAM results, and red lines represent the
differences between them at various corresponding timestamps.

Fig. 5. Two sample motion segmentation results for the third dataset (best

viewed in color): blue points respresent detected inliers, while points in
other colors represent outliers caused by inaccurate depth data, feature
matching, or moving objects.

Fig. 6. Our SLAM results for the third dataset compared with the ground

truth (best viewed in color): gray lines represent ground truth, blue lines
represent the SLAM results, and red lines represent the differences
between them at various corresponding timestamps.

4) freiburg3_walking_static
As shown in Fig. 7, in this dataset, two people are moving

in front of the camera, there are blur caused by quick camera

movements and in some frames useful features are limited. Till
now, no one has publish reasonable results on this dataset yet.

Since there are wide ranges of dynamic changes in the
scenarios, a fixed threshold value is no longer valid for
segmenting all of the frames into different motion groups.
Therefore, we have modified our algorithm so that it can
change the threshold value on the fly to adapt to different
situations. However, similar to [22], it is based on a basic
assumption that there are at least 20 common features in each
pairs of frames. Nevertheless, we can only obtain relatively
better visual odometry results at current stage.

Fig. 7. Two snapshots of the fourth dataset: freiburg3_walking_static.

For our visual odometry, the RMSE of ATE is
0.161254 m , and the RMSE of RPE is 0.084001 sm / ; while
for DVSLAM, the RMSE of ATE is 0.469814 m , and RMSE
of RPE is 0.309064 sm / .

V. CONCLUSION
In summary, we propose a general motion segmentation al-

gorithm for robust RGB-D SLAM. We have shown that to-
gether with the solution framework of static SLAM, it is able
to handle outliers and dynamic objects in an efficient, effec-
tive and unified manner. Using real datasets, we have
achieved promising results that are comparable or better than
what has been achieved using dense method [4, 5].

While dealing with the “walking” datasets of TUM, motion
blur and textureless areas are pervasive; as a result, the num-
ber of useful features drops quickly, preventing us from get-
ting better results out of them. To fully address this problem,
image deblurring and ICP need to be integrated into the cur-
rent framework to make it more robust and versatile.

Also, to make current motion segmentation algorithm adap-
tive to datasets including wide ranges of dynamic scenarios is
still an open question. [22] and [23] have made some benefi-
cial endeavors, but more work is needed to fully solve this
fundamental problem.

REFERENCES

[1] M. A. Fischler and R. C. Bolles, "Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography," Communications of the ACM, vol. 24, pp.
381-395, 1981.

[2] G. Klein and D. Murray, "Parallel tracking and mapping for small
AR workspaces," in Mixed and Augmented Reality, 2007. ISMAR

2007. 6th IEEE and ACM International Symposium on, 2007, pp.
225-234.

[3] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, "Real-
time 3D visual SLAM with a hand-held RGB-D camera," in Proc.
of the RGB-D Workshop on 3D Perception in Robotics at the
European Robotics Forum, Vasteras, Sweden, 2011.

[4] C. Kerl, J. Sturm, and D. Cremers, "Dense visual slam for RGB-D
cameras," in Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, 2013, pp. 2100-2106.

[5] C. Kerl, J. Sturm, and D. Cremers, "Robust Odometry Estimation
for RGB-D Cameras," in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2013.

[6] P. J. Huber, "Robust estimation of a location parameter," The
Annals of Mathematical Statistics, vol. 35, pp. 73-101, 1964.

[7] N. Sunderhauf and P. Protzel, "Switchable constraints for robust
pose graph slam," in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, 2012, pp. 1879-1884.

[8] Y. Latif, C. D. C. Lerma, and J. Neira, "Robust Loop Closing Over
Time," in Robotics: Science and Systems, 2012.

[9] E. Olson and P. Agarwal, "Inference on networks of mixtures for
robust robot mapping," in Robotics: Science and Systems, 2012.

[10] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D
mapping: Using Kinect-style depth cameras for dense 3D
modeling of indoor environments," The International Journal of
Robotics Research, vol. 31, pp. 647-663, 2012.

[11] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W.
Burgard, "An evaluation of the RGB-D SLAM system," in
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, 2012, pp. 1691-1696.

[12] S. Choi, T. Kim, and W. Yu, "Performance Evaluation of
RANSAC Family," presented at the British Machine Vision
Conference (BMVC), 2009.

[13] M. Agrawal, K. Konolige, and L. Iocchi, "Real-time detection of
independent motion using stereo," in Application of Computer
Vision, 2005. WACV/MOTIONS'05 Volume 1. Seventh IEEE
Workshops on, 2005, pp. 207-214.

[14] E. Vincent and R. Laganiére, "Detecting planar homographies in
an image pair," in Image and Signal Processing and Analysis,
2001. ISPA 2001. Proceedings of the 2nd International Symposium
on, 2001, pp. 182-187.

[15] M. Zuliani, C. S. Kenney, and B. Manjunath, "The multiransac
algorithm and its application to detect planar homographies," in
Image Processing, 2005. ICIP 2005. IEEE International
Conference on, 2005, pp. III-153-6.

[16] Y. Wang and S. Huang, "An Efficient Motion Segmentation
Algorithm for Multibody RGB-D SLAM," in Australasian
Conference on Robotics and Automation (ACRA), Sydney, 2013.

[17] T. Brox and J. Malik, "Object segmentation by long term analysis
of point trajectories," in Computer Vision–ECCV 2010, ed:
Springer, 2010, pp. 282-295.

[18] S. M. Smith, "ASSET-2: Real-time motion segmentation and
object tracking," Real-Time Imaging, vol. 4, pp. 21-40, 1998.

[19] O. Chum, J. Matas, and J. Kittler, "Locally optimized RANSAC,"
in Pattern Recognition, ed: Springer, 2003, pp. 236-243.

[20] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
"A benchmark for the evaluation of RGB-D SLAM systems," in
Proc. of the IEEE Int. Conf. on Intelligent Robot Systems (IROS),
2012.

[21] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W.
Burgard, "G2o: A general framework for graph optimization," in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
2011, pp. 3607-3613.

[22] H. Wang, T.-J. Chin, and D. Suter, "Simultaneously fitting and
segmenting multiple-structure data with outliers," Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 34, pp.
1177-1192, 2012.

[23] H. Wang, J. Cai, and J. Tang, "AMSAC: An Adaptive Robust
Estimator for Model Fitting," in IEEE International Conference on
Image Processing (ICIP), Melbourne, Australia, 2013.

	I. Introduction
	II. Related Work
	A. RANSAC and Its Application in SLAM
	B. Motion Segmentation in Multibody SLAM

	III. Our Motion Segmentation Algorithm
	A. Sparse-Feature Based Motion Segmentation Algorithm
	B. Solution for Robust SLAM and Multibody SLAM

	IV. Simulation And Experimental Results
	A. Results from Simulated Dynamic Scenarios
	1) Simulated Dynamic Situations:
	2) Simulation Results

	B. Experimental Results from Static and Dynamic Scenarios
	1) rgbd_dataset_freiburg3_long_office_household
	a) Motion Segmentation Result
	b) Visual Odometry Result
	c) After Pose-graph SLAM

	2) rgbd_dataset_freiburg3_sitting_xyz
	a) Motion Segmentation Result
	b) Visual Odometry Result
	c) After Pose-graph SLAM

	3) rgbd_dataset_freiburg2_desk_with_person
	a) Motion Segmentation Result
	b) Visual Odometry Result
	c) After Pose-graph SLAM

	4) freiburg3_walking_static

	V. Conclusion
	References

