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ABSTRACT 

 
This paper presents methods in recording satisfactory EEG signals using non-contact capacitive EPIC 

electrodes in a headset system. The method involves incorporating only a single pair (two) of non-contact 

capacitive electrodes, positioned at targeted site of the scalp. The second important aspect is the 

consideration of the headset systems for maintaining stable position and contact at the interface between 

headset-based non-contact EPIC electrodes system and the targeted sites of scalp skin. The critical aspect 

is the optimization evaluation of contact pressure at the interface between headset-based non-contact EPIC 

electrode and scalp to minimising movement of the electrode with respect to the skin, and this will directly 

affect the optimal quality of the recording EEG signals. Thus, the classification performance of the 

recorded EEG signals can be optimised with maximum of subject comfort. 
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1. INTRODUCTION 

 
Although basics of the brain electrical scalp recordings of human have been the same since it was 

first performed by Hans Berger in 1929[1], the technological developments give the opportunity 

to build much more sophisticated acquisition systems regarding clinical needs and scientific 

research communities. The human brain generates cortical electrical signals called EEG signals 

which are roughly in very low amplitude range (typically 1-100 µV) and very low frequency 

behaviour (less than 100Hz) related to body functions, and acquired by electrodes non-invasively 

placed on the scalp of the head. This paper is about their recording. 

 

The main problem in EEG recording is that these signals are generally obscured by transient 

signal noises and large-amplitude artefacts which can also produce power increases at specific 

frequencies and affect their classification accuracy of EEG signals, and then usability. In that 

sense, method to record good EEG signals should be considered. 

 

This paper presents method for recording EEG signals using non-contact capacitive EPIC 

electrodes in a headset system. The method involves incorporating only three non-contact 

capacitive EPIC electrodes, positioned at targeted site of the scalp. The second important aspect is 

the consideration of the headset systems for maintaining stable position and contact at the 

interface between headset-based non-contact EPIC electrodes system and the targeted sites of 

scalp skin. The critical aspect is the optimization evaluation of contact pressure at the interface 

between headset-based non-contact EPIC electrode and scalp to minimising movement of the 

electrode with respect to the skin, and this will directly affect the optimal quality of the recording 
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EEG signals. Thus, the classification performance of the recorded EEG signals can be optimised 

with maximum of subject comfort.  

 

We will thus record EEG simultaneously with non-contact EPIC electrode and wet contact 

electrodes. 

 

2. METHODS 

 
We used bipolar configuration for measuring the EEG signals. The set-up shown in figure 1 

describes that the placement of the electrodes was in agreement with the bipolar configuration by 

placing three non-contact EPIC electrodes on the occipital region of the headset system at O1, T4 

and T3, representing the sensing electrode ( )s , the reference electrode ( )r  and the ground 

electrode ( )g  

 

 
 

Figure 1: Block diagram for measuring skin-electrode impedance and EEG. 

 

Each of these three non-contact EPIC electrodes was incorporated simultaneously with gold wet 

electrodes about 5 cm away from each other. The headset was fixed at optimal applied pressure to 

maintain a mechanical stability between the electrode and scalp skin. 

 

2.1. Impedance Measurement 

 
In order to obtain the impedance signal, a sinusoidal signal current is applied among electrodes g  

and s  through a resistor in series R, then the current that crosses the electrode s , can be 

calculated by measuring the voltage drop g sV −  across resistor R for: 

 

 

g s

s

V
I

R

−
=     (1) 

 

Voltage in points s  and r  generated by the measurement current sI  was buffered with the 

instrumentation amplifier AD620 (G=10, CMRR=100 dB), and was measured with an 

oscilloscope Instex GOS-622G (Input impedance: 1MΩ // 25 pF). The measured sinusoidal 

voltage signal is first high pass filtered so that DC component and the EEG from the skin-

electrode interfacial contact are removed from the signal. Then, any voltage that appears among 
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the electrodes s  and r  is due to the impedance sZ  that is the impedance of the union of the 

sensing electrode s  with the skin. Consequently, 
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Finally signal is amplified and converted into digital form. A 16-bits differential analogue-to-

digital converter (ADC) was used to acquire the amplified and filtered signal from electrode, with 

frequency of 256 samples per second. The skin-electrode contact impedance was therefore 

measured at 256 different frequencies range between 1 and 1000 Hz  with a maximum of pp1V , 

where the injected current is proportional to the selected resistor at 100 nA  to 1µA . The resistor 

R << 200 MΩ  was large enough to secure this constant current condition in the circuit. All 

measurements were taken without averaging and all data were recorded in the analyser and then 

downloaded to a host PC employing the software provided by the manufacturer. 

 

2.2. EEG recording 
 

 
 

Figure 2. Overall flow of the data processing for classification. 

 

EEG is detected from the measurement signal by first low-pass filtering the measurement signal 

(Figure 1), which removes the high frequency signals from the skin-electrode impedance 

contact[2,3]. Next the EEG signal is amplified and digitized. A 12-bits differential analogue-to-

digital converter (ADC) was used to acquire the amplified and filtered signal from electrode, with 

sampling rate of 256 Hz. The sampled signals were then sent wirelessly to a computer for 

processing. The overall flow of the proposed processing is presented in Figure 2. 
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The processing steps include pre-processing and feature extraction[4]. Pre-processing including 

filtering, digitizing, artefact removing and DC level correction are to be applied on the EEG 

signals. Feature extraction part focus on extracting features accurately using FFT-PSD technique 

as described in the previous chapter. Following the parameterization, classification is performed 

using Feed Forward Back-Propagation Neural Network (BPNN) trained using Levenberg-

Marquardt algorithm. All processing and analysis were performed in Matlab R2009b, using 

scripts for processing data[5]. 

 

3. EXPERIMENTAL RESULTS 

 
All measurements were performed on eight (8) disabled subjects (6 males including 2 dark-

skinned and 4 fair-skinned, and 2 females including 1 dark-skinned and 1 fair-skinned). All 

participants were volunteers and had a similar educational background, taking no medication, and 

reporting no medical treatments or health problems. The experiment was undertaken at the Centre 

for Health Technologies (CHT) at an ambient temperature of 23 ± 2 ◦C and a relative humidity 

between 50 and 55%, with the understanding and written consent of each participant, following 

the recommendations of the ethics committee of the University of Technology Sydney-Australia.  

 

3.1. Impedance 

 
The contact impedance to several frequencies was obtained varying the injected current to obtain 

a better noise-signal ratio. Before starting the measurements, we observed the warm-up time of 30 

min after electrode placement, and then we performed a calibration to guarantee reliable and 

reproducible results. The test signal of the impedance spectroscopy was set to 1 V and the 

frequency range from 0.5 to 1000 Hz. Twenty four tests were performed on height different 

subjects in this study.  
 

 
 

Figure 3. Impedance measurement at different frequencies, when comparing non-contact EPIC electrode 

simultaneously with gold-wet electrodes 

 

Figure 3 shows the absolute values of impedance measurement results under different frequency 

conditions. When comparing the absolute impedances, the wet gel electrode has the lowest 

impedance. There is roughly one order of difference between the wet and dry electrodes. Figure 4 

shows the fitting approach on a Cole-Cole plot using the Levenberg–Marquardt algorithm for 

electrode-scalp impedance spectral evaluation for the non-contact EPIC electrodes, dry electrode 

with bristles and gold wet electrodes, corresponding parameters are summarized in Table II. The 

measurements showed a more negative impedance phase for non-contact EPIC electrode, mean 



 

 

 

International journal of Biomedical Engineering and Science (IJBES), Vol. 1, No. 3, October 2014 

5 

 

that the non-contact EPIC electrodes are more capacitive than bristle dry electrode and gold-wet 

electrodes for low frequencies. 

 

 

 
 

Figure 4. Cole-Cole plot and fitting of coating impedance. 

 

 

 
 

Figure 5. Impedance spectrum comparison between three different applied forces: 0.3N, 0.7N and 1N. 

 

3.2. Impedance measurement at different applied forces 

 
To characterize the performance of the sensor at various distances, three different applied force 

values (0.3N, 0.7N and 1N) are considered to squeeze and mechanically maintain the non-contact 

EPIC electrode on the scalp skin targeted sites, and then current was applied to the electrode pair 

to measure the impedance. The smallest distance is that created by just the solder-mask, which is 

estimated to be 0.15mm. The two larger distances are formed with spacers made of an acrylic 

plastic. Its dielectric constant of about 4 is roughly the same as that of human hair[6]. When 

comparing the absolute impedances (Figure 5), there is roughly one order of difference between 

the three applied forces. The normalized impedance results show that the non-contact electrode 
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pressed at 1N outperforms others (0.3N and 0.7N), and even has the lower impedance in all range 

of frequency than when electrode is pressed at 0.3N or 0.7N. 

 

3.3. Impedance Measurement for Long-term Monitoring 

 
Figure 6 shows the averaged values of the long-term impedance variation (5 h) for five subjects. 

The long-term impedance variation of the conventional wet electrode with conduction gel is more 

obvious than that of our non-contact EPIC capacitive dry electrode. The impedance variation of 

our non-contact electrode was observed in the range from 4kΩ to 26kΩ, and is in the acceptable 

range for normal EEG measurement[7]. Furthermore, the non-contact dry electrode used can 

significantly provide better stability of the skin–electrode interface impedance because it does not 

need conduction gel, which is apt to drying. 

 

 

 
 

Figure 6. Comparing the impedance variation between the non-contact and wet electrodes for long-term 

measurement on the occipital site (O1). 

 

3.4. Spectral Analysis 

 
Figure 7 shows spectrograms of EEG data taken during a trial where a subject was asked to close 

their eyes from the segment spanning 5 to 20 seconds into the trial. The absence of alpha activity 

was confirmed by a non-contact control electrode placed on the forehead. The integrated sensor 

was able to resolve alpha waves through hair over the occipital region. 
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Figure 7.  Spectrograms of EEG data when subject was asked to close their eyes from the segment spanning 

5 to 20 seconds into the trial. The absence and the presence of alpha activity when non-contact electrodes 

are placed on the forehead and occipital. 

 

3.5. Motion Sensitivity 
 

 
 

Figure 8: Comparison of noise between wet gold and non-contact electrodes across five subjects during fast 

motion. 

 

In this experiment, EEG measurements were carried-out using the non-contact EPIC electrode 

simultaneously with wet electrode to investigate whether it is possible to perform unsupervised 

fast recordings with non-contact EPIC sensor.  

 

To this end, we recorded ongoing EEG while the participant is at resting condition with eyes open 

for around 10s. While recording, high-frequency oscillation evoked by median nerve stimulation 

test was carried-out. This fast EEG activity is visibly in the 17.5–30 ms time interval with an 

amplitude of around 0.2 – 0.4µV (Figure 8). 
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3.6. Noise calculation 

 
To help facilitate objective comparisons, we have computed the level of noise when non-contact 

EPIC electrode is used in recording EEG signals. For this purpose, the time-domain EEG signal 

from G-electrode in simultaneous comparison with its counterparts recorded by our proposed dry 

non-contact EPIC electrode is shown in Figure 9. From first glance, the amplitude from the wet 

electrode almost perfectly matches that from the non-contact, verifying that it is indeed capable of 

acquiring EEG signals through hair. 

 

 

 
 

Figure 9: the time-domain EEG signal from gold wet electrodes in simultaneous comparison with dry non-

contact EPIC electrode while subject is resting with eyes-closed for around 15s. 

 

For quantitative analysis of the signal quality from the various electrode types, a few key 

parameters are desired. First, it is useful to obtain a metric that conveys how close the signal from 

non-contact electrodes matches the signal from a ’gold standard’ wet electrode. Secondly, it is 

also useful to know the ratio, or SNR Specifically for this experiment, After the EEG signal 

quality has been verified by the user, the application can switch to canonical correlation analysis 

(CCA) mode, provided by each electrode showing the amount of useful cognitive EEG signal 

versus the background noise. Correlations between dry and wet difference latencies were obtained 

by calculating bivariate correlations (Pearson correlation), which were tested for significance by a 

one sample t-test against zero. The probability of getting a correlation as large as the resulting one 

by chance, if true correlation was zero, was evaluated against a significance level of 0.05. For 

confirmation, the same event was experimentally repeated also to the remaining four subjects. 

Their amplitude profiles, not included here, showed optimal match between both non-contact 

electrode and wet electrode in all tested subjects similar to figure 9. 

 

 

 

 

 

 

 

 

 

 



 

 

 

International journal of Biomedical Engineering and Science (IJBES), Vol. 1, No. 3, October 2014 

9 

 

 
Table 1. Signal correlation and computed SNR (in decibel)  

between no-contact and wet electrodes 

 
 

Subject          Sensor Correlation             SNR (dB) 

                            N-C vs Wet                  N-C           Wet 
    1                              0.85                         -12.7           -11.4    
    2                             0.96                         -9.3             -8.5 
    3                             0.93                         -10.2            -7.8 
    4                             0.91                        -11.5             -7.1 
    5                             0.88                        -10.4            -9.5             

 

A summary of the computed correlations can be found in Table I. Results shown that bivariate 

correlations could not show any significant differences in amplitude for both recording electrodes 

across subjects. Over half (three) the subjects had a correlation of greater than 0.9 (0.96, 0.93 and 

0.91) and the remaining (two) subjects had correlation values of above 0.8, between non-contact 

and wet electrodes. Some minor differences in the oscillatory burst are likely to be due to 

differences in spatial locations and skin preparation of electrodes.  

 

EEG data collected were also used to examine the peaks and troughs of a wave differ on an 

average from the mean voltage using the standard deviation. For analysing the statistical feature 

of a signal, the signal’s mean has to be computed. It can also be claimed that the mean value is 

the average value of a signal. The signal mean value is determined by: 

 
1

0

1 N

i

i

x
N

µ
−

=

= ∑      (3) 

 

where µ  represents the signal mean and the signal contained in 
0x  through 

1Nx −
 and i  denote an 

index that goes through these values. Using the equation Error! Reference source not found., 

the standard deviation is computed as, 

( )
1

2

0

1

1

N

std i

i

x
N

σ µ
−

=

= −
−
∑     (4) 

 

 which represents the noise and other inferences. The signal to noise (SNR) is thus calculated by 

dividing the mean by the standard deviation value. 

 

( ) ( )10
20log

std
SNR dB µ σ=     (5) 

 

Computed values in Table 1 shown that the signal quality or instantaneous SNR using non-

contact electrodes was less significant compared with the wet gold-electrodes between subjects. 

They are always well below 0 dB due to the small amplitude of the alpha EEG signal relative to 

the background EEG and noise. 

 

The complete analysis could confirm that electrodes used were in good contact with reduced 

noisy. However, if the electrodes were in poor contact and noisy, causing the recording electrodes 

to drift synchronously, then the correlation value should increase towards one, irrespective of how 

well the individual sensors are performing.  
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3.7. Cognitive task classification 

 
In this section, the results of classification experiment performed for recording cognitive task 

using non-contact and wet electrodes are presented. For data acquisition, subjects were requested 

to keep eyes open while seating in a sound-proof, dimly-lit, room and given a mental task for 

fifteen (15) seconds and each task was repeated five times per session. Since the duration of each 

test was 15 seconds, each subject took in total between 45 to 60 minutes to complete all 5 tests, 

the survey and the briefing. Following is the detail of the two (5) tasks performed by each 

participant [8] : 

 

• Task 1 - Relaxation: With their eyes closed, subjects were instructed to relax as much as 

possible and think of nothing in particular, for five minutes, in the means to best achieve 

this purpose. This is considered to be the baseline session for alpha wave production, and 

other asymmetries. 

• Task 2 - Mental Arithmetic: Users were given a non-trivial arithmetic task to be solved 

mentally without vocalization or making any other physical movements. Problems posed 

were non-repeating so that immediate answers were not apparent. 

• Task 3 - Mental letter composing: Users are instructed to mentally compose a letter to a 

friend without vocalizing or making any other physical movements. 

 

For the purpose of this present study, we had a total of 40 PSD values for each segment (or 1 

second), giving a total of 480 (40 x 12 seconds) features for each recording session and each 

cognitive task, and a total of 1440 (480 x 3 cognitive task) features from each subject. Neural 

network classifier was assessed on both the training and the test validation set. 960 data were 

randomly taken from the 1440 data extracted using FFT-PSD method and used for training the 

NN, and the remaining 480 data were kept aside and used for testing each of 4 combinations pairs 

of cognitive tasks for each subject after each training epoch. Selection of the training data is 

chosen randomly. The procedures implied a randomized 10-fold cross-validation. The class 

distribution numbers of the samples in the training and test data set training for each subject after 

pre-processing are shown in Table 1. 

 

Prior to the NN process, the training and testing samples are normalised from 0 to 1 using binary 

normalization algorithm[9]. Training was conducted by varying the hidden layer nodes and then 

calculating the offline classification error. In the case of this study, Levenberg-Marquardt back-

propagation algorithm popularized by [10] was used to find a local minimum of the error function 

of the network. The best approach to find the optimal number of hidden units was by trial and 

error. Table II shown that a reasonable number of hidden units, with testing error tolerance value 

of 0.05 and better learning performance rate of 0.0001, were found between 5 and 12, and we 

recommend 10. Performances were not good if the numbers are less than 5 while larger than 12 

has no significant decrease in the training error. Training is conducted (or the algorithm is 

assumed to have converged) until the average error falls below 0.0001 or reaches a maximum 

iteration limit of 10000. 

 

Next, we test validation by using samples from test dataset features. By trial and error, 7 hidden 

nodes were chosen. The NN tries to classify these features and the number of correct 

classifications is recorded. Since the EEG is classified into three cognitive tasks, we ensured that 

the tree outputs correspond to the cognitive tasks and are represented by unit vectors: relaxation = 

[1 0 0], arithmetic calculation = [0 1 0], and writing letter = [0 0 1]. Result values below 0.5 of 

total samples are regarded as a 0 and values above 0.5 of total samples are regarded as a 1. 
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Table 2. Average squared error vs. hidden units 

 

Parameters Values 

Input Neurons 1440 

Output Neurons 5 (0 and 1) 

Hidden Neurons 5 - 30 

Learning Rate 0.0001 

Testing Error Tolerance 0.05 

Maximum Epoch 10000 

 

The performance of the electrode was evaluated in terms of percentage recognition rate of 

cognitive patterns that were correctly detected by the electrode and extracted by the network. The 

overall accuracy of cognitive task scenario from EEG data recorded using non-contact electrodes 

was computed and presented in Table 3, which has shown that the average values over all five 

subjects tested were 86.10% for the relaxation scenario, 81.55% for mathematical calculation 

scenario and 82.35% for writing letter scenario.  

 

 
                             TABLE 3.  Classification analysis using non-contact electrode. 

 

          
 

Clearly the best classification is achieved with the wet electrode (Table 4), giving an average 

accuracy through all five participants of 90.10% for the relaxation scenario, 86.23% for 

mathematical calculation scenario and 88.35% for writing letter scenario. 
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TABLE 4. Classification analysis using wet electrodes. 

 

          
 

4. CONCLUSION 

 
In this paper, methods using non-contact capacitive EPIC electrodes in a headset system have 

been proposed for effective EEG recordings and classification of the cognitive EEG signals as 

relaxation with eye-closed, mathematical calculation and writing letter tasks. Results could show 

that our proposed recording technique is able to acquire quality EEG signals at different 

conditions. However, there is lack of optimal effectiveness and efficiency of the proposed non-

contact electrode in recording cognitive states in comparison with wet electrode. This is because 

the PSD features extracted using FFT technique constitutes a high dimensional vector (1440 

features from three different cognitive states recorded) that contains information pertinent to the 

classification accuracy of electrode in recording cognitive states, as well as irrelevant 

components. A novel EEG signal classification method is needed which will be presented in our 

future work. 
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