
Things Coming Together:
Learning Experiences in a Software Studio

Julia Prior, Andrea Connor, John Leaney

Faculty of Engineering and Information Technology
University of Technology, Sydney

Sydney, Australia
julia.prior@uts.edu.au

ABSTRACT
We have evidence that the software studio provides learning that
genuinely prepares students for professional practice. Learning
that entails dealing with complex technical problems and tools.
Learning that involves working effectively in groups. Learning
that results in the building of students’ self-confidence and the
conviction that they can successfully deal with the challenges of
modern software system development. Learning that allows the
accomplishment of the more elusive professional competencies.
In order for students to achieve this type of deep learning, they
need time to immerse themselves in complex problems within a
rich environment – such as the software studio. The studio also
enables each student group to develop and succeed according to
their needs, and in different ways.

The conclusions above arise from an ethnographic study in an
undergraduate software studio prototype with two student groups
and their mentors.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Computer
science education, Curriculum.

General Terms
Design, Human Factors

Keywords
software engineering education; design practice; studio-based
learning and instruction; ethnography; groups; graduate attributes;
professional competencies.

1. INTRODUCTION
Challenges in contemporary Information Technology higher
education include: a significant mismatch between what
employers perceive as important abilities and how universities
prepare graduates for employment, particularly with regard to
non-technical skills [16]; and the changing expectations and
learning styles of students [1] [16].

One response to these challenges is to use studio-based learning,
the classic approach in the creative arts. Over the last twenty
years, the studio approach has gained traction in the ICT and
Engineering disciplines because it offers a superior learning
experience, especially in achieving practical skills [12] [6].

In the undergraduate ICT degrees at our university, one of our
aims is to provide an industry-collaborative, reflective software
learning and development environment for students [13]. This is
in order to re-invigorate software education and make it more
effective, vibrant and acceptable to students and industry. This
entails moving a substantial portion of the current teaching
objectives in some majors of the undergraduate IT and
Engineering degrees into a Software Development Studio (SDS).
The SDS will start mid-2014.

The SDS will be a component of every year of the degrees, with
experiences and responsibilities increasing with each year.
Institutionally, the studio will be a component of a course
(subject), integrated with lectures, tutorials and laboratories.
Educationally, the studio will be based on reflective practice, and
developing software as design practice. It will incorporate the
ideas of an iterative/agile approach to software development,
using industrial tools and with students working in development
roles appropriate to their stages of learning and experience.
Grounding in professional practice will be provided by industry
partners and mentors and industry projects.

Before our new studio-based approach becomes part of the way
that software engineering and development is taught in our
faculty, it was, and is, important that we explore, design,
prototype and evaluate different aspects of the approach. This
paper reports upon our prototyping.

1.1 Related Work
Empirical research to date demonstrates that students appreciate
studios, and, that the studio’s rich environment contributes to
graduate attributes/professional competencies. The research
methods used have included surveys, diary examination,
structured interviews, action research and reflection.

With regard to students’ appreciation of studios (where studios are
compared to lectures, etc.), Carbone [5], Armarego [1],
Hundhausen [15] [14] and Williams [19] all reported that students
prefer the studio experience to the lecture/tutorial/laboratory
format.

As for graduate attributes/professional competencies, Williams
[19] found that “students overwhelmingly enjoy learning from
their peers and believe that a collaborative environment better
prepares them for the ‘real world’.”
Carbone [5] states that “Students found the studio precinct an
inviting and comfortable place to learn despite some frustrations
with IT-related problems. Students' comments indicate the
teaching environment facilitated collaboration, and by the end of
the year they began to see the course as being better integrated.”

Cennamo [7] asserts that “students need to learn to iteratively
generate and refine possible solutions to a design problem.
Collaboration with others is essential to seeing the design problem
in new and different ways, serving to both broaden solution
possibilities and assist in idea refinement. Students need learn to
communicate clearly by using the conventions of their discipline,
in order to convey their design ideas and gain meaningful input
from others.”
Hundhausen et al’s work [15] is notable in that they used what
may be called a control group (which stayed in the lecture
stream). Their results indicated that students’ self-efficacy
(empowerment, ability to control their situation), which may be
extended to imply life long learning, increased with the studio
group, and, decreased in the traditional stream group.

Daniels and Cajander have explored the issue of groups and
collaboration over a number of years. In [9], they explore
collaboration within and without groups, with the outcome of
greater understanding between subgroups, and, a realisation by
subgroups that greater collaboration would improve their work.

With regard to professional competencies, or graduate attributes,
empirical work includes issues for students in evaluating
competencies [4]; the issue of staff engagement [10] and the
issues of success in developing competencies in students and
assessing them [8].

2. RESEARCH APPROACH
Ethnography is seen as a method that allows a broad landscape to
be developed, to find the (previously) unseen and unobserved, and
may shed light upon the confusion mentioned. “The irony is that
good ethnography requires the researcher to pursue the detours,
and to become lost in the culture in order to learn the terrain” [11].
Previous empirical research has not used ethnography, and it
seems appropriate to add ethnography to the research viewpoints
from which to view studios.

Beyond the broad landscape, one of the things that we wanted to
explore in the prototype was how the people worked together in a
studio-type environment, as it was happening during the time that
they were experiencing it. Bull et al, discovered that the studio is
not as well defined as those who use the term may hope. “Our
results suggest that there are many intertwined aspects that define
studio education, but it is primarily the people and the culture that
make a studio” [3].
As an experienced ethnographer, the second author was employed
to lead the study. She was required to participate in all the weekly
studio sessions, by ‘being there’, the most important aspect of
fieldwork [11]. Her non-technical background gave her some
distance from the participants (both students and mentors) and the

process. This distance facilitated observations and the
development of insights that someone more familiar with software
development may have missed.

3. FIELDSITE AND SETUP
In the second semester of 2013, we ran a software studio
prototype. We did this in an undergraduate second year core
project subject, in which students work in assigned groups of 10,
each with a project tutor, to design and develop a complete
software system from scratch. The subject is regarded as being
very challenging, by both students and staff, as it is the students’
first full system development experience. The Agile Scrum
approach is used and students have to practice version control,
configuration management, different levels of testing etc. Prior to
this semester, students have only done subjects that each focus on
one, discrete aspect of software development, covering
programming, requirements modelling, algorithms and data
structures, interface design, database design and web systems.

All of the groups were given the same requirements: to develop a
system to track feral animals for a state Wildlife and Parks
department. The core of the system was a database to store details
about sighted feral animals and registered users, with a web-based
system to record and search for feral animals in various state
parks and display analytics of the sightings. The web system
needed to provide for user entry of sightings of particular feral
animals, a search function for feral animals and an analytics
function to visually display statistical and summary information
on feral animals, and user account registration and management,
The groups were allowed to choose whichever technologies they
preferred – the studio prototype groups both chose to use MySQL
and PHP for the development and Atlassian’s Jira to manage the
project.

Two groups enthusiastically volunteered to participate in the
studio prototype, and so we had 20 students and 2 academic
mentors (project tutors), one of whom is the first author of this
paper.

There was also an industry mentor in the weekly studio sessions.
His was a consultative role, and he answered students’ queries on
development issues as these came up and advised on
contemporary development, particularly issues of architecture,
scalability and usability. The two groups met together in same
room with both academic mentors and the industry mentor once a
week for two to three hours.

4. WHAT HAPPENED WAS …
In this section, a narrative of the studio prototype is presented. It
is not a complete account of what happened in the studio over the
semester; it is a distillation of the ethnographic record that focuses
on particular aspects of the story. The events are given in
chronological order to give the reader a sense of the temporal
nature of the study and, especially, the changes that occurred over
the semester. The names used in the narrative are pseudonyms.

4.1 Starting Off
The studio is a large trapezoid-shaped room, with tables with
computers upon them, around the outside and in the centre of the
room. There are no partitions, but the room shape allows a degree
of separation. The two studio prototype groups are referred to as
G1 and G2. Their first action was to elect leaders, Stephan (G1)
and Neal (G2).

In the first studio session, the students performed an exercise
called the Lego Scrum game, which is frequently used to
introduce the Agile software development methodology. The

students were given minimal instructions on how to go about the
task, but they were told what was required: build a mini-town,
with various components such as a house, a garage, roads, a sports
stadium. There were also some constraints given such as colours,
building functions and relative size of components. They were
also told that the task had to be completed within a limited time.
Each group was given a box of Lego blocks to use.

One of the groups, G1, immediately all sat down in a circle on the
floor, and spread all their Lego blocks out in front of them to start.
The group was very methodical and cooperative– they broke the
tasks up, planned how to go about the building and allocated
specific building tasks to each group member. This group
finished in good time, with extra components built.

The other group, G2, stood around a table, with the box of Lego
on top of it. They seemed to be rather overwhelmed by the
assignment and went about the task in some confusion. There was
not much discussion, and no planning or task allocation occurred.
Two people tried to build the components while another two dug
around in the Lego box and passed blocks to the two builders.
The other members of the group just stood around and watched.
This group was not finished by the end of the allocated time, and
seemed very disheartened by their performance and the
expectations imposed by the task.

The Lego Game was indicative of the first Sprint planning that the
groups are required to do later in the session. G1 talked about the
Scrum methodology and how to use it and implement it, as several
group members were familiar with the approach and so they could
get going with it immediately. This group were very confident in
themselves, as well as with their understanding of the
development process and how to use it. Most of the members of
this group seem to be extrovert, self-confident personalities, and
so the discussion was lively and they required little direction or
prompting from the mentors.

G2 was a much quieter group whose members appeared more
introverted than G1, and not at all confident about what they were
required to do or their capacity to tackle the work. The Agile
approach was totally new to all of them. This group focused on
the technology that they wanted to use for the database, the
programming language etc., rather than the Scrum methodology
and its use as a process to understand the requirements and
develop the software.
In the second week, G1 was still very focused and apparently
organised, getting on with the work without much guidance. G2
needed significant direction, obtaining it from both their academic
mentor and the industry mentor. Neal, the G2 group leader, was
more confident than in the first week and, encouraged by the
mentors, the group orientation started to change from listening to
the mentors to listening to each other. At one point, Neal said to
the group that collaboration is necessary and beneficial, and they
should not be concerned… “those who are not strong can get
better in the process.”
A week later, G1 did not seem to have as much energy and focus
as previously – one member, the communications leader, was
unusually late, and the other members engaged and disengaged
with the discussion at various times, looking at their own screens
or moving out of the circle. Later in the session, the group
worked together with some concentration on designing the
database schema on the whiteboards, in two sub-groups, each on a
different part of the schema. Their academic mentor was very
pleased with their progress, stating to the ethnographer that they
were ‘’exceeding expectations’’ at that stage.

 G2 had started to understand, implement and become comfortable
with the Scrum process. They spent some time going over the
approach again with their academic mentor, and the discussion
seemed to be a breakthrough for the group. They started being
methodical, with the whole group working out together which
tasks they needed to do in the next Sprint and allocating them to
specific group members. They used the class time to plan and
organise the work, rather than to design or work on their software
system They spent time outside class once or twice each week, to
work together for a couple of hours.

Apart from the obvious use of technology in class, social media,
especially Facebook, was used extensively by both groups to
communicate about their work and the project.

4.2 Sprints and Leadership
A month into the semester, G1 still seemed more cohesive than
G2, and indeed somewhat competitive with regard to G2. Both
groups seemed to be in a similar place and doing much the same
tasks in the studio session.

G2 could see “results” in terms of completing their allocated tasks
and working as a group. There was a sense in the group that they
might finally be on track and were able to envision the project in
its various stages. Completing their first Sprint had given them
momentum and a project plan through which to consider the next
set of tasks.

The organisational tool of the Scrum Sprint seemed to helped both
groups create a project plan. It also seemed to help Neal find his
feet as the G2 group leader and as the coordinator of the Sprints
and Backlogs week to week. His style was more understated than
that of the other group leader, but he seemed to be more
comfortable and grew into the leader’s role with each passing
week.
G1, which originally appeared the more cohesive, had its leader
changed (to Hardeep) and a week later appeared to be undergoing
another leader change. Wayne, one of the leadership contenders,
acted as ‘discussant’ for the group, posing problems and
suggesting possible directions for them to go in. [The
ethnographer] was no longer sure if Hardeep was still the group
leader as Wayne had assumed a central role.

4.3 The Hare and the Tortoise
It was the week before the mid-semester presentations, in which
each group in the subject had to present their work to another
group and their tutor for a peer review. G1 and G2 practiced their
presentations in the studio session.

G1 was not ready at the beginning of the session, so G2 offered to
present first. It was obvious that their efforts over the past few
weeks had paid off in terms of group cohesion and understanding
the Agile process – it had provided them with a structure to work
within, and they had become deeply embedded in it and made
significant progress. The group appeared fully prepared and
acquitted themselves well, even if their presentation was a little
unadventurous. As this was a simulation of the formal
presentations, G1 left the room for a few minutes to put together
some questions to ask the presenters, although 2 of them remained
in the back of the studio and worked on their presentation. Neal,
the G2 group leader, answered most of the questions. He came
across as pleased and confident in answering the questions, and
spoke about his group’s work in a relaxed manner. He did not
appear to be at all phased by any questions and one answer was
that, yes, they are following the Scrum methodology very closely.

Overall, G1 seemed somewhat surprised by the quality of the
presentation and work they had just seen.

G1 started their presentation in some disarray; it was clear that
they were underprepared. Although their presentation perhaps
better demonstrated the system requirements and how they
responded to these, their slides were not complete, one of their
presenters was missing and they finished in a bit of a muddle.

What struck [the ethnographer] most about the response from both
groups was a level of generosity – no one was gloating or trying
to point score off the other group. There was genuine curiosity
and camaraderie on display, even if a sense of competition still
hung in the atmosphere.
In discussing their presentation and progress later in the session,
G1 decided to appoint a single ScrumMaster (Wayne) for the rest
of the semester. Further, their mentor suggested that they needed
to improve the level of communications within the group. One of
the members, who was very tired, said to the ethnographer just
before the session that working in groups was demanding,
especially when most of their interactions were on Skype and via
GoogleDocs. This was also when G1 found out that G2 had been
meeting face-to-face every week outside class and decided to do
the same.

4.4 The Invisible Boundary
It was mid-October. Both groups appeared relaxed. They knew
they were nearing the end of the semester and had achieved goals
in relation to setting up their systems. At this session they
reported on the past weeks’ achievements and plan for the final
Sprint.

The mentors gave feedback to all the students together on the
formal mid-semester presentations and discussion ensued. The G2
leader raised a problem that his group had with the presentation
peer review. The reviewing group (non-studio group) marked
very hard, whilst his group took a more measured and generous
approach with the group that it reviewed. Perhaps this reflects the
co-operative atmosphere and ethos that had been established in
the studio setting over many weeks.

After more feedback and discussion in each group separately with
their mentors about their presentations, and, the mentors’ mid-
semester assessment of their respective groups’ work and
progress, the groups worked on closing their previous Sprints and
planning the final Sprints. At some point, Neal crossed over an
invisible boundary and sat talking with members of G1, on G1’s
side of the room. This was the first time [the ethnographer had]
seen him do this and it seemed like breaking a habitual, spatial
division between the two groups, and, evidence of inter-group
camaraderie, collaboration, and cooperation.

4.5 Doing Time
In the very last studio session for the semester, in the week after
the final presentations to other groups in the subject, each studio
group gave a detailed demonstration of their system to the rest of
the studio - the first time everyone had seen ‘step through’
demonstrations of the entire system. Although the mentors asked
probing questions about the system design, particularly with
regard to the user interface and data management, the atmosphere
was informal and relaxed, with some gentle teasing and laughter
amongst all the students and the presenters from both groups.

After the two demonstrations, there was a class discussion about
the subject as a whole, and more specifically, about the studio
prototype – what the students found particularly helpful about the
environment and approach and what was not very useful. One of

the themes that came through very clearly was that the students
felt strongly that they wanted more time working together in the
studio, not just the 2-3 hours per week timetabled for the subject.
Both groups of students had gradually learnt that working together
face-to-face regularly and for extended periods was far more
effective and productive than trying to get tasks done individually
in their own time and then integrating these in class time.

5. FINDINGS
Two findings from this study are highlighted here. The first is the
insight into group relations, both intra- and inter-group, and the
changes in behaviour within and between the groups over the
semester. The second is the holistic nature of the learning
experience in the studio, which we call ‘things coming together’.

5.1 Group Relations
Looking over the semester as a whole, some of the most
significant changes occurred at a group level. We discuss these
developments from two perspectives: within each of the groups,
and between the groups.

5.1.1 Intra-Group Relations
Initial impressions suggested that G1 was cohesive, competent
and collaborative from the beginning of the semester. In the Lego
exercise, G2 showed little sense of how to organise, delegate,
decision-make – in short, collaborate – in order to complete a task
within a reasonable time. These early group impressions frame the
perception, by the students themselves and the mentors, of each
group in the coming weeks.

To start with, G2 had very little confidence, in their knowledge,
skills or capacity to successfully deal with the challenges given by
the project. Their inclination to focus on tools and technical
details in the first two weeks may have been because they were
unsure about the Scrum process and how to use it effectively. For
the first couple of weeks, there was not much interaction amongst
the group members in G2. Discussions were often oriented
towards the mentors instead of each other. This changed as their
knowledge, skills and confidence grew. Regular group meetings,
in the studio and outside class to work together seems to have
enabled the group to build relationships between the members,
work things out more as a group, and to become familiar and
comfortable with use of process. By the end of the semester they
seemed to have achieved a harmonious yet determined ethos as a
group. G2 cohered slowly and steadily over time – with the group
leader growing into his leadership role. There are a few confident
personalities in this group but they were not dominating, and none
of them seemed interested in being the group leader at any stage.
Once they started to gain an understanding of the methodology,
this group stuck very closely to the Scrum approach and this
helped them allocate roles, clarify workloads and establish group
interactions that appeared to be equitable and inclusive.
G1 came across as super-confident, with a clear idea from the
beginning of how to tackle the development challenges as a
group. G1 had several members who were forthright, confident
and willing to take on leadership positions. One individual worked
as a de facto leader at various times in his role as communications
leader. The group focused on system development, rather than the
intricacies of implementing the process. From the start, they
developed solutions quickly, individual tasks were allocated
without much debate or coercion and these were completed
relatively quickly. It seems, however, that their self-assurance
and fast-paced approach meant that they were not as thorough as
they might have been in understanding the requirements or
considering alternate design solutions. Their mentor spent much

of the studio time playing ‘devil’s advocate’ and asking ‘what if’
questions, subtly reining them in to encourage them not to rush
into decisions.

Further, ambivalence about and changes in the group leader role
in the first half of the semester proved disruptive to their group
functioning. It was also not clear how less self-assured members
may have coped initially in a group where 5 (half) of the members
had leadership personalities. The group had difficulty allocating
roles, as well as ongoing concern over a group member who was
not pulling his weight.

The wake-up call about their relative progress at the mock mid-
semester presentations encouraged them to reflect on the way they
were going about the work as a group. As a direct result of this,
the group reorganised itself, allocated a ScrumMaster role to one
specific person for the rest of the semester, separate to that of
group leader, and started meeting and working together face-to-
face regularly outside of class time. These strategies helped the
group stabilise and smoothed their progress over the second part
of the semester. They still appeared driven to succeed, but were
less sure of themselves and perhaps more realistic.

Collaborative learning within each group
One of the most significant characteristics of a studio environment
is collaborative learning, with students working out how to do
things and to develop their own skills by learning together and
from each other. This was very evident in the prototype.

The willingness of G2 to work slowly, methodically through the
Scrum methodology and acquire confidence and competence in its
use appeared to give them a solid foundation and enabled steady
progress in system development. A sound, thorough
understanding of the requirements, the Scrum process and various
development tools were gained by a ‘learning by doing’ approach,
More than this, together, the group had to figure out what they
needed to know at each stage and how to use it effectively.

In G1, the group learnt about the Scrum approach from the three
group members who already had experience in it, which meant the
group got going quickly implementing a development process,
and the other group members built up their own knowledge about
Scrum from others’ experience. Whatever else happened, it is
clear that each group learnt how to operate effectively, but in very
different ways; neither group’s learning was better, just different.

5.1.2 Inter-Group Relations
The perception of how each group responded to the Lego exercise
may have been a distraction. It set the groups up in a way that
confirmed G1’s view of itself as having the capacity, and then
some, to cope with the semester project, which encouraged them
to be somewhat gung-ho in their approach. G2 was left feeling
overwhelmed and convinced that they did not know enough to
deal with the challenges posed in the subject.
Initially there was some sense of rivalry and competition –
particularly from G1, whose own self-perception was one of
“having the edge” on G2.

A turning point in terms of shifting perceptions of both groups
and the dynamic between them emerged during the mid-semester
mock presentations. G1 appeared surprised by the standard of
work done by and confidence of G2, leading to a re-assessment of
their own work practices. This event changed the dynamic and
the “assumed order of things” between both groups.

So, the interactions between the groups within the studio sessions
effected changes in the way G1 went about their work and

managed their intra-group relations, learning from what strategies
they deemed successful for G2.

Collaborative learning across/between the groups
 The co-operative atmosphere during the mock presentations was
impressive. Each group appeared to be genuinely interested in the
work of the other and afterwards this continued to permeate the
environment.

Attitudes between the two groups changed, over the first half of
the semester particularly, from competitive to a strong sense of
camaraderie between the groups and across the studio as a whole,
where the groups supported and encouraged one another.

Moreover, there was clear evidence of one group learning from
the other when G1 made changes to their strategy as a direct
consequence of finding out what had been effective for G2.

This section is about how the 2 groups worked and changed over
the semester, but it is very important to recognise that this is not a
comparison, or value judgement of the two groups’ characters,
behaviour and performance. It is simply a statement about how
different groups function and flourish in different ways. Both
groups ended up in a similar place – working together
competently and effectively as a group, having designed and
produced a good quality software system. But, the learning
experiences and the changes that occurred in each group were
very different.

This is a very significant finding in terms of the studio approach
to learning software development. The studio environment allows
each group to evolve, as they need to, given their specific member
mix, with various backgrounds and experiences and preferred
ways of working. This is in contrast to traditional teaching
according to a syllabus, covering each topic regardless of where
students are or what is their prior knowledge. Learning both
technical skills and more on an as-needed basis throughout the
project development process was made possible by the studio
environment.

Much of what we learnt about the group relations, the behaviour
within each of the groups and their interactions across groups can
be considered to lead to the second finding. The changes in the
group relations did not happen in a vacuum, but as part of the
studio prototype experience as a whole. The import of this
holistic experience is addressed in the following section.

5.2 Things Coming Together
One way of looking at the studio prototype is as a network which
incorporates people, software tools, subject policies and
procedures, a development methodology, processes, techniques,
documents, practices and products [17][18]. This network is not
static, nor is it pre-configured or already there. Rather, the
relational and emerging nature of this type of network means that
it is continuously and dynamically reconfigured over time. Star
calls this network a web; she values “the ways in which
knowledge is co-created by a web of people, symbols, machines
and things” ([18] p.405).
So, we could consider the ‘tangible’ elements of this (studio)
network to be the two groups’ members, the three mentors, the
system specification/requirements, the Scrum methodology, the
development tools, the project management tools and
communication tools. The ‘intangible’ elements include the intra-
group relations and interactions, the inter-group relations, the
relations and interactions of the mentors with the groups and
individual members, and the relations of the groups and their
members with the technical tangibles. All of these elements

interconnect; dynamically providing a network or web in which
software development knowledge and skills are co-created.

Perhaps the most challenging aspect of the project for the students
was integrating their technical know-how, decision-making, and
communications–verbal and written–at a systems level. Instead of
being able to focus on a discrete thing such as a single program or
a relatively simple data model, the students were required to deal
with all the different aspects of the development experience at
once. Although at specific times they could focus on a particular
task or element, much of the time, their efforts were aimed at
integrating things and working in a complex context.

The Lego exercise was something that needed to be done
immediately, within a very limited time, and it was a contained
problem, with very clear requirements and tasks. Very much like
an assignment in a ‘normal’ subject. Using a methodology such as
Scrum over a significant period of time to develop the effective
use of a process by the whole group to design and build a
particular software product of good quality was an entirely
different proposition. Group functioning and relations had to be
managed more thoughtfully, strategically and contingently.
Ultimately, both groups were successful, but they went about the
project in different ways and, notably, from different starting
contexts.

Another significant factor is time – time for students to engage
with a complex problem, time to build the group, time to build an
effective solution. Time is the catalyst within a rich learning
environment that allows students to immerse themselves and to
deeply learn [2] as things come together.

6. CONCLUSION
In conclusion, we see evidence in this study that the studio
provides a learning experience that genuinely prepares students
for professional practice. Learning that entails dealing with
complex technical problems and tools. Learning that involves
working effectively in groups. Learning that results in the building
of students’ self-confidence and -conviction that they can
successfully deal with the challenges of modern software system
development. Learning that allows the accomplishment of the
more elusive professional competencies

7. ACKNOWLEDGMENTS
Our sincere thanks to the studio prototype mentors and students
and the subject co-ordinator. This research was made possible by
Faculty and University teaching and learning grants.

8. REFERENCES
[1] J. Armarego and L. Fowler, Orienting students to studio

learning, in Proceedings of the 2005 ASEE/AAEE 4th Global
Colloquium on Engineering Education. Australasian
Association for Engineering Education, 2005.

[2] J. Biggs and C. Tang, Teaching for Quality Learning at
University, Fourth Edition. McGrawHill. 2011.

[3] C. Bull, J. Whittle and L. Cruickshank, Studios in software
engineering education: towards an evaluable model, in
Proceedings of the 35th International Conference on
Software Engineering (ICSE13), IEEE, 2013.

[4] Å Cajander, M Daniels and B von Konsky, Development of
professional competencies in engineering education, in
Proceedings of the 41st ASEE/IEEE Frontiers in Education
Conference, IEEE, 2011.

[5] A. Carbone and J. Sheard, A studio-based teaching and
learning model in IT: what do first year students think?, in
Proceedings of the 7th annual conference on Innovation and
Technology in Computer Science Education, 2002, pp. 213-
217.

[6] A. Carter and C. Hundhausen, A review of studio-based
learning in computer science, Journal of Circuits, Systems,
and Computer (JCSC 27), October, 2011.

[7] K Cennamo, C Brandt, B Scott, S Douglas and M McGrath,
Managing the complexity of design problems through studio-
based learning, Interdisciplinary Journal of Problem-based
Learning, vol. 5, Issue 2, 2011.

[8] M.Daniels, Developing and assessing professional
competencies, Acta Universitatis Upsaliensis, Digital
Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 808, 2011.

[9] M.Daniels and Å. Cajander, Experiences from using
constructive controversy in an open-ended group project, in
Proceedings of the 40th ASEE/IEEE Frontiers in Education
Conference, IEEE, 2010.

[10] B. de la Harpe and A. Radloff, Developing graduate
attributes for lifelong learning – how far have we got?,
Lifelong Learning Conference, 2008.

[11] D. M. Fetterman, Ethnography: Step-by-Step. Third ed.
Applied social research methods series, Vol. 17. Sage, 2010.

[12] D. Garlan, D. P. Gluch and J. E. Tomayko, Agents of
change: educating software engineering leaders, IEEE
Computer, November, 1997.

[13] O. Hazzan, The reflective practitioner perspective in software
engineering education, The Journal of Systems and Software,
63, 2002.

[14] C. Hundhausen, A. Agrawal, D. Fairbrother and M. Trevisan,
Integrating pedagogical code reviews into a CS 1 course: an
empirical study, SIGCSE’09, Chattanooga, Tennessee, USA,
2009.

[15] C. Hundhausen, A. Agrawal, D. Fairbrother and M. Trevisan,
Does studio-based instruction work in CS 1? An empirical
comparison with a traditional approach, SIGCSE ‘10,
Milwaukee, Wisconsin, USA, 2010.

[16] T. Koppi, P. Ogunbona, J. Armarego, P. Bailes, P. Hyland,
T. McGill, F. Naghdy, G. Naghdy, C. Pilgrim and M.
Roberts, Addressing ICT curriculum recommendations from
surveys of academics, workplace graduates and employers,
OLT Final Report. Wollongong: University of Wollongong,
2013.

[17] L. Suchman. Human-Machine Reconfigurations: Plans and
Situated Actions, 2nd edition. Cambridge University Press,
2007.

[18] S. L. Star. The trojan door: organizations, work and the
“open black box”. Systems Practice, 5(4), 1992.

[19] L. Williams, L. Layman, K. M. Slaten, S. B. Berenson and C.
Seaman, On the impact of a collaborative pedagogy on
African American millennial students in software
engineering, in Proceedings of 29th International
Conference on Software Engineering (ICSE'07), 2007.

