
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Towards an industry-collaborative, reflective software
learning and development environment

Julia Prior, Chanissara Arjpru and John Leaney
Faculty of Engineering and Information Technology

 University of Technology, Sydney
Sydney, Australia

Abstract— A significant mismatch (88%) has been found between
what employers and graduates perceived as important abilities and
how universities had prepared graduates for employment.
Conventional Teaching and Learning approaches fall short of
providing the kind of learning experiences needed to prepare
graduates for the realities of professional practice in industry. On
the other hand, current students have very different learning styles
than their forebears. Their learning preferences are experiential,
working in teams, and using technology for learning. One solution
to address this mismatch issue is the software development studio.
Our aim is to provide an industry-collaborative, reflective learning
environment that will effect the student’s development of holistic
skills, such as teamwork, collaboration and communication,
together with technical skills, in a discipline context. This paper
further describes the design and validation via prototyping for our
software development studio, the progress that we have made so
far, and presents the preliminary insights gleaned from our studio
prototyping. The prototypes raised issues of attitudinal change,
communication, reflection, sharing, mentoring, use of process,
‘doing time’, relationships and innovation.

Keywords— software education, software engineering, software
development, software factory, software studio, reflective practice,
pedagogy.

I. INTRODUCTION
In the Information and Communication Technologies (ICT)
discipline scoping project [4], a significant mismatch (88%) was
found between what employers and graduates perceived as
important abilities and how universities had prepared graduates
for employment. Employers expressed dissatisfaction with
personal and interpersonal skills of graduate recruits. Graduates
suggested a number of improvements, including interactive
sessions, real-world examples, group work related to industry
practice and meaningful problem-solving activities.

These concerns ought to impact on the learning environments
provided for Software Engineering and ICT (SE/ICT) education.
Addressing these concerns by using non-traditional approaches
could also provide leverage for a graduate entering the SE/ICT
profession. Such approaches are based on active learning
models, addressing learning as more discursive and collaborative.
An example of this type of approach is the use of studios [2]. As

the Studio Teaching Project [7] demonstrates, there is a long
tradition in the use of this approach in the creative arts
disciplines, which is firmly based in Schön’s work on the
reflective practitioner[6][34]. Over the last twenty years, the
studio approach has gained traction in the ICT and Engineering
disciplines because it offers a superior learning experience,
especially in achieving practical skills [35][19][15]. A famous
application, where the studio is used for 40% of the Masters’
degree in software engineering and has run for 23 years, is at
Carnegie Mellon [33] [19]. In undergraduate education, studios
are more often applied to capstone courses rather than
foundational learning [31], although increasing activity at other
levels is being reported[9]. 1

In Australia, enrolments in information technology (IT)
degree courses dropped by almost 20% per annum between 2002
and 2008 [37], and there has not been a noticeable reverse in this
trend in recent years. There has been a steady decline in
domestic enrolments in undergraduate IT degrees over the last
decade: the number of tertiary ICT graduates in 2012 was half of
the 9,093 who graduated in 2003 [1]. We imagine that similar
figures apply to Australian software engineering degrees, but no
quantitative information is available.

The lack of interest by students in the SE/ICT profession
appears to arise from, firstly, a lack of appreciation of the
software profession [4], and, secondly, current practices in higher
education not matching prospective students ways of working
[2]. Conventional Teaching and Learning approaches fall short of
providing the kind of learning experiences needed to prepare
graduates for the realities of professional practice in industry [10]
[5]. Therefore there is a need for innovative approaches to
SE/ICT undergraduate teaching. The characteristics of the studio
environment [11] suggest studio-based approaches in SE/ICT
education are a potential solution for addressing these problems
and will help meet industry’s increased expectations of
graduates’ work-readiness.

1 The beginning of the introduction was formulated during discussion with
 Dr Jocelyn Armarego in 2013

II. RELATED WORK
Several researchers have cited the recent problems of software
engineering pedagogy. Stiller & LeBlanc claim that how we
teach software engineering can have an effect on whether
software development is well practiced in industry [36].
According to Garg & Varma, inadequate software engineering
education is due to insufficient interaction with industry and lack
of experience as software engineering educators[20]. The major
challenge of teaching software engineering is to integrate applied
methodology and theory into the practice of software
development [28][29].

Armarego [2] shows that current students have very different
learning styles than their forebears. Their learning preferences
are: experiential (learning in projects, ‘learning by doing’),
working in teams, and using technology-based learning. Stiller &
LeBlanc suggest that students will not be convinced of the
benefits of software engineering techniques until they experience
the benefits themselves [36]. These authors suggest further that
the most effective way of convincing students that software
engineering is critical to their professional development is to
complete a semester-long project. There is also a need for a
collaborative teaching and learning environment in teaching
software engineering. One study has shown that a collaborative
environment better prepares the African-American Millennial
students in IT for the real world; further, it is likely to better
prepare all IT students for the professional practice [40][25].
Proposed aspects of professional software development practice
to include in tertiary courses are: team-based development,
problem definition from industry clients, a managed development
process, an iterative software development approach with self-
created milestone management, using software tools that are
prevalent in the software industry, learning from industry experts,
formal product presentations, emphasis on problem solving and
learning how to learn, and, exit exams that assess students’
problem solving ability in addressing complex, industry problems
[25].

A. The Software Studio
The Software Teaching Project has a section entitled ‘What is

a studio?’ The following definition of a studio is a summary of
that section, “A studio is a learning community of students and
teachers, interacting in a creative, reflective process to develop
some kind of product ,in a physical environment/space that
enables collaboration.” [8]. We use this definition as our basis,
because of its provenance, as being developed by a number of
studio-focused faculties from several universities in a large
project over a number of years.

The studio concept for education was originally based on
Schön's principles concerning the education of the practitioner
[34]. In all professions, practitioners must decide which are the
best techniques or processes to solve a particular problem. The
software studio approach has been applied successfully to

software engineering education, primarily in the USA and
Australia.

The Carnegie Mellon University runs a Master of Software
Engineering (MSE) program. The key feature is the MSE Studio,
which is built around a year-long project for paying clients,
providing students with a professional software development
setting in which they can develop their skills [17] [33][38]. The
design of this studio course was directly inspired by Schön’s
Reflective Practitioner concept [38].

Washington State University has also implemented a studio-
based course for a computer sciences undergraduate course. The
development of an adapted studio-based instruction for an
introductory programming course called Pedagogical Code
Review (PCR), which is modeled on the code inspection process
used in the software industry. Students’ self-efficacy (a measure
of students' perceptions of their ability to program) was reported
to decrease significantly among students who did not participate
in the PCR while peer learning was reported to increase in the
studio-based course [15][21][22]. Studio-based learning has
promoted significant gains in students’ intrinsic motivation,
extrinsic motivation, self-efficacy, peer learning, self-regulation,
and sense of community [22].

Auburn University in Alabama has also integrated studio-
based learning into the undergraduate program of its Computer
Science curriculum, starting in 2007. Unlike other universities’
implementation of the studio approach, the activities of a studio-
based at Auburn occur both in- and outside of class [22].

In Australia, the University of Queensland started a studio-
based education by recognising several similarities between
computer science and design sciences such as architecture. Based
on these similarities, the Bachelor of Information Environment
degree was developed by merging the three separate streams of
computer science, interaction design, and project development
into a studio-based curriculum. The subjects taught in all three
streams converged in a mandatory studio-based course. The
studio courses revolved around the collaborative creation and
presentation of projects that relate to what is being taught in each
stream. The feedback from the first intake of students in the
studio-based curriculum was very positive [18].

Built upon the concept of studio-based learning, a redesign of
the Bachelor of Information Management and Systems (BIMS)
was implemented at Monash University, Australia. Lynch et al.
[26] realised the need to better prepare students for jobs in
industry. They proposed that studio-based learning (SBL) needs
to be supported on three levels. First, the teaching space (physical
layout of the classroom) needs to support collaboration amongst
students. Second, the course needs to be taught using studio-
based learning techniques. Lastly, coursework needs to be
supported through a collaboration-oriented IT infrastructure [15].
The studio-based learning was implemented through a mandatory
studio course. Again based upon the principle of Schön’s
reflective practitioner, the focus of the studio class was the
groups of students to generate portfolios of past work and

achievements. These portfolios were then presented to faculty
and the general public. The students responded positively to
studio-based learning as they enjoyed interacting and
collaborating with other students through working in groups. The
students recognised that a studio-based learning further
developed their knowledge and skill [26]. The studio facilitates
learners’ construction of knowledge by providing an environment
in which the students can think, create and integrate [13].
Additional benefits of studio-based learning include requiring the
students take some of the responsibility for their own learning
process and experience [40]. Studio-based learning also provides
a more comprehensive understanding of what the students may
encounter once they are employed in industry [14]. The Monash
program is often cited and has extensive educational
investigations into the early years of running the course. The
Monash studio is still running after 14 years, in a modified form.

The Software Development Studio is used in both the
undergraduate and Master’s SE courses for two semesters in a
Polish university [24]. The Studio here is treated as an informal
organisation with its own culture and processes and a number of
development projects. This helps students understand how a real
software organisation operates and they get to experience the
different development roles necessary to complete a software
project. The authors identified one of the challenges with this
approach is related to balancing the assessment of a student
project between the quality of its processes and its outcome [24].
Other issues they raise include scope and budget, customer
involvement, organisational processes and policies,
tutors/mentors assistance, motivation and quality of students, and
infrastructure.

B. The Software Factory
The Software factory concept, a studio-like idea, originated in

the University of Helsinki [12]. The proposed benefit of applying
the software factory concept to software development education
is to create practical learning of project activities following
quality standards. In the software factory, students follow a
defined and controlled process, which makes it easier for the
students to understand the activities to be done. It also exposes
the students to many problems which are common in enterprise,
which assists an interaction among the students and a discussion
with the teacher for the best alternatives for a solution. The
software factory has been applied to software engineering
education in Brazil, Finland and USA.

At the University of Helsinki, Finland, their Software Factory
is considered a strategic investment in a new infrastructure
supporting software engineering research, education and
entrepreneurship globally [12]. The Software Factory here has
the slogan: “Learn. Share. Grow”, which implies a level of
collaborative learning amongst the students.

In Brazil, the educational factory was designed taking the
context of the course “Software Engineering Laboratory II”
offered to senior undergraduate students (5th year) of Computer

Engineering, at Escola Politécnica of the University of São Paulo
(USP). Using a software factory in software engineering
education allows the simulation of a real software development
environment, in which undergraduate students execute the
development activities and management activities to monitor and
control the projects [35].

In the State University, Ohio, in the USA, the software
factory is also applied to service-learning in a software
engineering classroom, using Agile methods and collaboration
with a technical communication course. Here, the students are
exposed to the pressures present in the business environment, but
at the same time they are assiduously educated in modern
software technologies, development methods and testing
techniques. After completing this course, most of the students
valued the service-learning experience and the real-world skills
they gained from their own involvement [16].

Both the software factory and software studio have the
common aim of preparing students for jobs in the software
engineering industry through the development of the necessary
professional skills. These skills are technical, problem solving
and collaboration. The difference between the software factory
and the software studio is the former’s emphasis on developing
software engineering skills required by industry in a software
development organisation. However, it does not appear to
necessarily incorporate, and certainly not accentuate, the
principle of reflective practice, which is a core approach in any
studio approach

III. ISSUES OF IMMERSION AND REFLECTION
Software studio/laboratory/factory courses that have been
implemented in undergraduate courses form only part of the
program over one or two semesters, or are the mainstay of an
entire postgraduate course. Only one, at Carnegie Mellon, is for
the full 16-month duration of the course, and it is a Masters in
Software Engineering course, with students who all have
considerable prior industry experience [17]. One undergraduate
course includes the studio approach for four semesters (rather
than two semesters), but the college has very small class
numbers, less than 10 students [29]. At Monash university, the
software studio was implemented only for two undergraduate
courses, Bachelor of Information Management Systems (BIMS),
(one semester in the studio) and for the final year capstone
project (two semesters), in the Bachelor of Software Engineering.
BIMS was originally designed for students to have a studio
subject throughout the course [26], but because of resource
challenges currently only runs in the final year of the course
(personal communication with current course director).

Those degrees which provide only two to four courses seem
to lack exposure, and, the possibility for students to immerse
themselves in the studio experience. This exposure does not
provide necessary depth of experience to the students in the
following areas:

• Experience in the various responsibilities of different
developer roles

• Implications of decisions on long-term development
• Opportunities to learn from previous mistakes by

reflecting on their work on a project and improving their
practice on the next one.

The issue of reflection is fundamental to any studio which
purports to be connected to Schon’s reflective practice. It is the
experience of the authors that reflection, with either
undergraduate or postgraduate students, takes a significant time
to learn, and, requires immersion.

In order to improve the way we teach SE/ICT at UTS, we
propose an integration of the software factory and software studio
educational approaches. The basis of the software factory
approach is students working in a software development
environment using professional tools and processes, with
industry involvement in the course design and delivery. Studio-
based learning builds upon the call to better prepare students for
jobs in industry, by having the students working in a studio
environment, in which reflection is a dominant theme [15]. The
studio is seen as a realisation of software development as design
practice.

The rest of the paper details our proposal and some of the
insights we have gained so far during the feasibility, design and
prototyping of our software studio.

IV. PROPOSED SOLUTION:
THE SOFTWARE DEVELOPMENT STUDIO

We will move a substantial portion of the current undergraduate
teaching into the Software Development Studio (SDS), wherein
students engage on problems posed by industry, using industrial
tools and working in development roles appropriate to their
stages of learning and experience. Lectures, tutorials and
laboratories would be reduced and significant course time spent
in a studio environment. Practical development experience in the
software studio will be combined with theoretical education and
scholarship. Educationally, it will be based on reflective practice
and developing software as design practice.

Another characteristic of the approach is that students will
participate in the SDS throughout the duration of their degree
course. This ‘whole of degree’ approach is significant because
“effective education seems to be encouraged by both long-term
engagement with the learning tasks and opportunities to exercise
responsible choice in the content and method of study” [27]
citing [30]. Students will experience different development roles
and levels on a number of different projects throughout their
degree program.

Industry involvement will be at various levels. The software
development studio advisory board will comprise representatives
from each of the companies supporting this program. Companies
will provide development projects, and thus will benefit from the
student work in having projects completed that may not be
otherwise be tackled. Integrated software development

environments with configuration management, version control
and testing may also be provided by the industry. They will have
direct input into the curricula, for subjects and the course as a
whole.

As it is now considered a mainstream approach to developing
large-scale, complex software products, an Agile software
development methodology will underpin the work done on the
projects in the software company. The decision of which
software development methodology to utilise needed to be made
early on as it impacts other design decisions, such as the physical
teaching and learning environment (the classroom/studio layout),
discussed briefly below.

The roles of the academics will be markedly different to their
traditional teaching roles of lecturer or tutor, as their primary
functions will be mentoring, coaching, guiding and facilitating in
the master/apprenticeship studio model.

Similar schemes to the SDS exist, but no identical scheme has
been implemented, as far as we can ascertain. A comprehensive
program was designed in which students were required to take an
eight-semester sequence, which put the students’ newly acquired
skills to work in a real software organisation staffed and managed
by the students enrolled in the program [39]. Unfortunately, this
course was not actually implemented, at least there seems to be
no further literature on it, although the concept and the design
were the inspiration for the ‘software factory’ courses in the USA
and Brazil described earlier.

Whilst we obviously want to build on the experiences and
recommendations of the software factory and software studio
programs discussed in the previous section, there will be
considerable differences in the way that a software studio
program is offered at our university. The SDS will be specifically
for undergraduate students, providing them with opportunities to
learn in an environment that more closely mirrors professional
practice. The experience will not be offered as a studio subject or
unit, but across subjects throughout the degree program.

Initially, we are proposing to implement the SDS only for
software education, i.e. for students who wish to become
professional software developers or software engineers. It will
start in full in Spring 2014, after extensive exploration, design
and prototyping, as discussed below.

A. The Physical SDS Space
We have been allocated a dedicated studio room in our faculty’s
new building, to which we will relocate in early to mid-2014.
The SDS has been designed to seat 30 students at one time, in
groups of 5 to 6 students, each group in one of five hubs. Each
hub has extensive whiteboards, on the walls and the partitions, a
large monitor up on the wall, and in-desk power and data
connections. The studio space also has a stand-up meeting area,
with a waist-high table, an electronic whiteboard, audio-visual
system and power and data connections. Two large sofas will be
placed in the studio for comfortable, informal seating.

The design of the studio has incorporated aspects of a typical
Agile, pair programming set-up with those of a traditional design
studio, and more general collaborative teaching and learning
spaces. We have also attempted to allow for both ‘separate and
together’ ways of working, so that students can work alone
without being disturbed, or work in teams on a design or
development task.

B. Feasibility Study
A six-month feasibility study early in the project showed
enthusiastic acceptance and support, within the faculty and
university, for the proposed model of software engineering
education and that it is logistically, technically and pedagogically
achievable. This study also raised a number of issues that needed
to be addressed, where possible in the prototyping stage, but
some will be more effectively dealt with in the implementation of
the full program.

1) Pedagogical Issues
The most pressing concerns that emerged from this study fall into
this category.

a) Types and length of Projects
Students should participate in numerous projects over their

degree [27]. This would provide opportunities for each student to
work with a number of different teams and team leaders, on a
spectrum of software products and software development
methods.

b) Matching the motivation of students
Including students of differing capacities, differing work

ethics and differing ambitions is a key factor in the design of the
program. Some academics in our faculty suggested that we
restrict the studio approach to the attainment of higher grades, at
least for first and second year students – students wanting a
higher grade (High Distinction or Distinction) must participate in
the studio system, but the others would have the option to do the
conventional lecture-tutorial-laboratory subjects only. This
would also give a phased implementation strategy, which is a
lower-risk strategy than starting out on a large scale with
increased risks of failure.

c) Mentoring
A ‘students mentoring other students’ approach is risky,

primarily because of selecting and training students, the attitude
of other students to mentors [23]. Student mentoring is an aspect
that will be explored once the studio is running. Academics as
mentors raise workload and training issues for academic staff
who will move into a mentoring role, as the capacity of the
teaching staff will need to be developed in this area – most
academics are used to a more conventional lecturing approach
and will need re-skilling.

d) Assessment
An entirely different management of marking and grading of

student work and performance will be required, in contrast to the
more traditional, well-defined assessment tasks and marking.

Bareiss [3] uses four viewpoints: team marks, individual work,
peer review and the mentor’s input. At this stage we are
planning to have three broad categories of assessment criteria:
product, process and reflection and students must perform
satisfactorily in two of those three categories. This would help to
mitigate the risks of students having to work with other students
who may be less motivated or capable, as well as giving a more
authentic assessment of the student’s work over the time in the
studio. This needs to be understood more deeply, but clearly will
have to be based upon multiple viewpoints.

2) Other Considerations

The studio approach should be seen as supplementing lectures
and tutorials, not necessarily replacing them. Other approaches
need to be considered, before a final decision is made about the
specific teaching and learning approach, as to whether it is a
studio, a laboratory or some other mode.

We have done an analysis of the activities that students are
likely to be doing at various stages of the project development
process, based on an Agile methodology. We used these as input
for design decisions with regard to the physical teaching and
learning space, and will also use them for specifications on what
will be required of the academic and industry mentors at these
various times in the development process.

Finally, while real projects should be developed for real
clients in the studio, students should not be treated like full-time
software developers producing a commercial product from a
financial perspective. In other words, the software studio should
not be self-funded, reliant on income generated from the
students’ work, as this is not conducive to learning [32] or
scholarship, so sponsorship for the everyday running of the
studio is crucial.

C. Software Development Studio Prototype
The aim of the prototyping stage was to explore the studio-based
approach and the issues raised above, and to manage risks, prior
to introducing it as a formal part of the software development
undergraduate courses. This prototyping stage moved on from the
feasibility study outcomes to understand the pedagogical
implications of introducing the approach. The prototype
objectives include:

• Explore and evaluate different implementations of the
approach;

• Ensure the studio ideas are well-explored and understood
from educational and resource perspectives;

• Identify strengths, weaknesses, threats and opportunities;
these may include: types and length of projects, differing
capacities and motivations of students, mentoring,
assessment, graduate attributes, reflective practice,
management of perceptions and fears;

• Maximise effective risk management;
• Enable course objectives, although this is prototyping

phase; and

• Implement a prototype which is practice-based, industry
and faculty co-operatively driven.

1) Prototype I

In the first semester 2013, the first author sat in an Games
Design Studio subject primarily in the role of ethnographer,
making weekly field notes while observing the students’ ways of
working on a prescribed games development project using a
Scrum process during their timetabled class time. She had no
direct role in the classroom TAL activities on games
development, nor in the assessment of any student work. She did
have input into the design of the students’ reflective journals and
teaching them the process for completing these over the
semester. The following are the overall conclusions; space
prevents providing detailed ethnographic evidence.

a) Attitudinal Change
There was strong evidence of attitudinal change over the

semester in most of the students, which demonstrated
achievement of the ‘harder' graduate attributes, attainment of
which is one of the main aims of the studio approach (see V,
below). For example, the students were initially resistant to
‘process’, finding it challenging to adhere to the disciplines of
the Scrum process, but as the semester progressed, most of them
learnt that it allowed them to make progress, by being able to
methodically plan, and re-plan, their tasks and work allocation,
in short cycles. So, it went from being a burden to being helpful.

b) Communication
 There were also changes in communication. Later in the

semester, groups noticed that they were more efficient when
working together face to face more often (not just in class), and
they progressed from an ad hoc approach to design and
development to using co-ordination tools and documented
communications.

c) Reflection
Reflection was still a "nuisance" for many students by the

end of semester. Few students reached a level of reflection,
rather than simply reporting, on their work, despite deliberate
scaffolding throughout the semester and a significant percentage
(20%) of their final mark being based on this task.

d) Sharing
Another unexpected issue was that many students continued to

be reluctant to show, or submit, work in progress, putting off
submitting the due task at the very last minute.

2) Prototype II
In the second semester 2013, we ran a software studio prototype,
to understand how students and mentors react to the studio
approach and to explore the enabling and limiting factors. We
did this in a 2nd-year core subject, in which students work in
assigned groups of 10, each with a project tutor/manager, to
design and develop a complete software system from scratch.
The subject is regarded, as being very challenging, by both
students and staff, as it the students’ first full system

development experience. For the studio prototype, we asked for
a volunteer group in the subject – the decision to participate
needed to be unanimous within the group, given that they would
have a different experience in the subject to the other students.
Two groups enthusiastically volunteered to participate, and so
we had 20 students, 2 academic tutors – the first author was one
of these – and an industry mentor. We also had an ethnographer
present for every studio session, observing and making field
notes. Although the approach was different for these two groups,
they developed their systems from the same set of requirements
as the rest of the students in the subject and underwent exactly
the same assessment.

The preliminary results from the fieldwork offer a number
of insights, summarised below. Again, space prevents providing
the evidence from the ethnography.

a) Mentors
The combination of academic and industry mentors was

greatly valued by the students. While the academic
tutors/mentors provided a structured learning process, guidance
and direction on expectations and assessments, reflection and
other subject organisation issues, the industry mentor provided
advice from an up-to-date, “real-world” (students’ phrase)
perspective that the students specifically appreciated. Having
both types of mentors also raised the issue of appropriate
training and development for both academic tutors and industry
mentors.

b) Process
As in Prototype I, the use of process was a significant hurdle,

but to an even greater extent. ‘Learning by doing’ and having to
cope with the technical challenges continually confronting them
resulted in progressive development of students’ confidence
both in their understanding and use of the process, as well as
effective collaboration within their team and the production of
the system.

c) ‘Doing time’
At the end of the semester, both groups of students stated

that they would have preferred to have had more timetabled
sessions together in the studio, as they gradually learnt that
working together face-to-face regularly and for extended periods
was far more effective and productive than trying to get tasks
done individually in their own time and then integrating these in
their class time.

d) Relationships
The third, and perhaps the most interesting, issue is that of

relationships. The relationships between the students and their
mentors set the tone for the type of learning community that
developed over the semester. The students stated that they learnt
different things and were supported in different ways from the
three mentors, who had various approaches to mentoring and
relating to the students.

The second type of relationship was the peer relationship.
Intra-group relations were obviously important, particularly with

respect to how tasks were identified and allocated to the group
members in each development sprint.

What was somewhat unexpected was the significance of the
inter-group relationships. Having two groups or teams working
together each week on their own projects allowed us to explore
developments such as the change from competitive interactions
to collaborative and supportive interactions later in the semester
in which the two teams learnt from each other. This was the
type of experience that set the two studio prototype groups apart
from the rest of the students in the subject, who only met with
their own team and tutor each week, focusing on what they were
doing to achieve the project outcomes.

e) Innovation
The insights from the prototyping stage also relate to

innovation, and what enables innovation and creativity, in the
studio environment. We plan to explore this further in the last
months of the prototyping phase.

V. BENEFITS OF THE APPROACH
Due to the cost involved, involvement and investment in this
program must have benefits for the university, faculty, students,
graduates, employers and industry partners.

The program can be seen as similar to an external internship
program, with input into the type of training and experience
companies usually give in an orientation/internship period for
employed graduates, but it is deliberately integrated with tertiary
course learning. Potential employers of students from the SDS
will have a much clearer picture of what a student knows and can
do when they have completed the course, particularly in relation
to what will be expected of them in the professional work
environment. The company will also need to spend much less
time and money on company orientation/internship before the
employed graduate is productive.

The emphasis of this approach is on gaining technical
expertise and teamwork and interpersonal skills – in the context
of software development and software engineering knowledge, in
contrast to management or sales skills, for example – through the
process of producing commercial software products as part of a
development team, whether this be a project requested by an
industry partner, or an innovation developed by students as part
of an innovative entrepreneurial process. The attainment of
graduate attributes has become a structuring goal in the higher
education sector in Australia. A software studio enables the
development and assessment of these more holistic skills and, in
particular, those attributes that may be considered as
employability skills [10] in the context of the discipline and
professional practice.

Industry will get graduates who are experienced across the
whole life cycle of development. Even if it is not with the
company's specific tools and methodologies, the graduates would
have experience in the typical activities that would be part of a
company’s internship period. It is an aim that students will be

productive, and deeply rooted in practice, in the company much
sooner after graduation. Companies will also be taking on
graduates who can be better assured to be independent learners,
reflective about their practice and not simply academically
competent in the area of software development.

As students will have experience in a variety of roles within
the development company, both graduates and their employers
will have a much clearer idea of what roles suit them best and in
which they are likely to be most productive and of benefit to the
company and to the students’ own career paths.

VI. CONCLUDING REMARKS
We propose a software learning and development approach for
undergraduates that has a strong industry-collaborative character,
emphasises reflective design practice, and incorporates the
success factors of the software factory and software studio
approaches. The major innovations in this proposal are:

• a software studio is being established, with which the
students will be closely associated throughout their
degree;

• it is aimed specifically at educating software developers
and software engineers, rather than as part of a more
general ICT degree;

• it will be part of undergraduate degree courses, with
subjects ‘contributing’ credit points to fund the studio,
in return for satisfaction of subject objectives;

• there will be significant industry involvement in the
studio, for instance, as members of the studio advisory
board and in providing projects;

• students will work in various roles in different teams on
several industry suggested projects;

• students work in the studio for the duration of their
course, not just in their final project or capstone
semesters.

After the completion of the prototyping stage for the
software studio, in which we will also identify evaluation criteria
for its successful implementation, we look forward to
implementing this approach in full in our school from mid-2014.

ACKNOWLEDGMENTS
This work was made possible by a Faculty Teaching and
Learning Grant 2012/2013. We acknowledge the contribution of
our colleague Jocelyn Armarego from Murdoch University. We
also acknowledge the staff members, mentor and students who
participated in the prototype at UTS.

REFERENCES
[1] Australian Computer Society (ACS). Australian Computer Society

Statistical Compendium 2012 (Annual Report).
http://www.acs.org.au/news-and-media/news-and-media-releases/2012/acs-
statistical-compendium-2012. Retrieved on 30 October 2013.

[2] Armarego, J. & Fowler, L. Orienting Students to Studio Learning’,
Proceeding of the 2005 ASEE/AAEE 4th Global Colloquium on
Engineering Education. Australasian Association for Engineering
Education, 2005.

[3] Bareiss, R. & Griss, M., A Story-Centered, Learn-by-Doing Approach to
Software Engineering Education, SIGCSE’08, ACM Press, 2008.

[4] Koppi, T, & Naghdy, F. Discipline-Based Initiative: managing educational
change in the ICT discipline at the tertiary education level, Australian
Learning and Teaching Council (ALTC) Final report. Wollongong:
University of Wollongong, 2009.

[5] Koppi, T., Ogunbona, P., Armarego, J., Bailes, P., Hyland, P., McGill, T.,
Naghdy, F., Naghdy, G., Pilgrim, C. and Roberts, M., Addressing ICT
curriculum recommendations from surveys of academics, workplace
graduates and employers, OLT Final Report. Wollongong: University of
Wollongong, 2013.

[6] Hazzan, O. The reflective practitioner perspective in software engineering
education, The Journal of Systems and Software, 63, 2002.

[7] Studio Teaching Project, 2008-2009, active in 2013.
http://www.studioteaching.org/, retrieved 13December 2013.

[8] What is a studio?, Studio Teaching Project, 2008-2009, active in 2013.
http://www.studioteaching.org/index.php?page=what_is_studio

[9] Narayanan, N H, Hundhausen, C, Hendrix, D, & Crosby, M. Transforming
the CS classroom with studio based learning. SIGCSE’12, Raleigh (NC),
2012.

[10] DEEWR. Employability Skills Framework Stage 1 – Final Report, 2012.
Canberra: Australian Government. DEEWR Retrieved on 1September
2013 from
http://foi.deewr.gov.au/system/files/doc/other/employability_skills_framew
ork_stage_1_final_report.pdf

[11] Kuhn, S.. Learning from the architecture Studio: implications for project-
based pedagogy. International Journal of Engineering Education, 17(4 and
5), 349-352, 2001.

[12] P. Abrahamsson, P. Kettunen, and F. Fagerholm, "The set-up of a software
engineering research infrastructure of the 2010s". in Proceedings of the
11th International Conference on Product Focused Software (PROFES
'10), pp.112-114, 2010.

[13] A. Carbone and J. Sheard, “A studio-based teaching and learning model in
IT: what do first year students think?”, Proceedings of the 7th annual
conference on Innovation and technology in computer science education,
2002, pp. 213-217.

[14] A. Carbone, K. Lynch, A. Barnden and C. Gonsalvez, “Students' reactions
to a studio-based teaching and learning philosophy in a three year IT
degree”, Proceedings of the Annual International Conference of the Higher
Education Research and Development Society of Australasia (HERDSA),
2002.

[15] A. Carter and C. Hundhausen, “A review of studio-based learning in
computer science”, Journal of Circuits, Systems, and Computer (JCSC 27),
October, 2011.

[16] J. Chao and J. Brown, “Empowering Students and the Community through
Agile Software Development Service-Learning”, P. Abrahamsson, M.
Marchesi, and F. Maurer (Eds.): XP 2009, LNBIP 31, pp. 104–113.

[17] A. Damasceno, “MSE studio project: the viewpoint of a UC student”,
CSEE&T 2011, Waikiki, Honolulu, HI, USA, 2011.

[18] M. Docherty, P. Sutton, M. Brereton and S. Kaplan, “An innovative design
and studio-based CS degree”, SIGCSE 2001, 2/01 Charlotte, NC USA,
2001.

[19] D. Garlan, D. P. Gluch and J. E. Tomayko, “Agents of change: educating
software engineering leaders”, IEEE, November, 1997.

[20] K. Garg and V. Varma, “People issues relating to software engineering
education and training in India”, ISEC’08, Hyderabad, India, 2008.

[21] C.Hundhausen, A. Agrawal, D. Fairbrother and M. Trevisan, “Integrating
pedagogical code reviews into a CS 1 course: an empirical study”,
SIGCSE’09, Chattanooga, Tennessee, USA, 2009.

[22] C. Hundhausen, A. Agrawal, D. Fairbrother and M. Trevisan, “Does
studio-based instruction work in CS 1? An empirical comparison with a
traditional approach”, SIGCSE ‘10, Milwaukee, Wisconsin, USA, 2010.

[23] Kinniburgh , J., “A Culture of Success: Building Depth into Institution
Wide Approaches to First Year Transition”, 16th International First Year
in Higher Education Conference (FYHE 2013), 2013

[24] Kopczynska, S.; Nawrocki, J.; Ochodek, M..,"Software development studio
— Bringing industrial environment to a classroom," Software Engineering
Education based on Real-World Experiences (EduRex), First International
Workshop on , pp.13-16, 2012.

[25] J. Liu, J. Marsaglia and D. Olson, “Teaching software engineering to make
students ready for the real world”, the Consortium for Computing Sciences
in Colleges, 2002.

[26] K. Lynch, A. Carbone, D. Arnott and P. Jamieson, “A studio-based
approach to teaching information technology”, Proceedings of the Seventh
world conference on computers in education: Australian topics, Vol. 8,
2002, pp. 75-79.

[27] J. Leaney, C. Peterson, C. Drane, “Computer systems engineering in large
groups,” Proceedings of Frontiers in Education Conference, FIE '96, vol.3,
pp. 1491-1494, 1996.

[28] N. R. Mead, “Software engineering education: How far we’ve come and
how far we have to go”, The Journal of Systems and Software, 2008, Vol.
82. pp. 571-575.

[29] T. Nurkkala and S. Brandle, "Software studio: teaching professional
software engineering", in Proceedings of the 42nd ACM technical
symposium on Computer science education (SIGCSE '11), 2011.

[30] Ramsden, P. “Learning to Teach in Higher Education”, Routledge,
London, 1992.

[31] Ramakrishnan, “MUSE studio lab and innovative software engineering
capstone project experience”, ITiCSE'03 June 30-July 2, 2003.

[32] D. Root., R. Mel and G. Taran, “Exporting studio: critical issues to
successfully adopt the software studio concept”, 21st Conference on
Software Engineering Education and Training, 2008.

[33] Shaw, M., Herbsleb J., Ozkaya, I. and Root, D., “Deciding what to design:
closing a gap in software engineering education”, P. Inverardi and M.
Jazayeri (Eds.): ICSE 2005 Education Track, LNCS 4309, 2006. pp. 28-58.

[34] D. A. Schön, The Reflective Practitioner, Basic Books, Inc., New York,
1983.

[35] F. Siqueira, G. Barbarán and J. Becerra, “A software factory for education
in software engineering”, 21st Conference on Software Engineering
Education and Training, IEEE Computer Society, 2008.

[36] E. Stiller and C. LeBlanc, “Effective software engineering pedagogy”,
CCSC: Northeastern Conference, 2002.

[37] Tan, G., & Venables, A. "Survival mode: The stresses and strains of
computing programs review". Journal of Information Technology
Education, vol 7, pp.33‐43, 2008.

[38] J. E. Tomayko, “Carnegie Mellon’s software development studio: a five
year retrospective”, IEEE, 1996, pp. 119-129.

[39] J. Tvedt, R. Tesoriero and K. Gary, "The Software Factory: combining
undergraduate computer science and software engineering education,"
Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd
International Conference on , pp.633-642, 2001.

[40] L.Williams, L. Layman, K. M. Slaten, S. B. Berenson and C. Seaman, “On
the impact of a collaborative pedagogy on African American millennial
students in software engineering”, 29th International Conference on
Software Engineering (ICSE'07), 2007.

